WorldWideScience

Sample records for water treatments included

  1. Conservation-reuse of water in fossil-fuel power plants including water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T.S.R.

    1984-02-01

    The various areas where the conservation-reuse of water is possible are discussed. However, water conservation, especially effluent volume reduction-treatment reuse, should be seen in the light of pollution control measures. Some of the areas indicated recover a small quantity of water but they should be viewed in the light of well yield being not adequate, or having high salinity or having an increase of well water salinity after some use. Some of the methods can only be adopted at the design stage whereas others could be incorporated at the site.

  2. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  3. Exploration of an Optimal Policy for Water Resources Management Including the Introduction of Advanced Sewage Treatment Technologies in Zaozhuang City, China

    Directory of Open Access Journals (Sweden)

    Gengyu He

    2016-12-01

    Full Text Available Water shortage and water pollution are important factors restricting sustainable social and economic development. As a typical coal resource-exhausted city and a node city of the South-to-North Water Transfer East Route Project in China, Zaozhuang City’s water resources management faces multiple constraints such as transformation of economic development, restriction of groundwater exploitation, and improvement of water environment. In this paper, we develop a linear optimization model by input–output analysis to study water resources management with the introduction of three advanced sewage treatment technologies for pollutant treatment and reclaimed water production. The simulation results showed that from 2014 to 2020, Zaozhuang City will realize an annual GDP growth rate of 7.1% with an annual chemical oxygen demand (COD emissions reduction rate of 5.5%. The proportion of primary industry, secondary industry, and tertiary industry would be adjusted to 5.6%, 40.8%, and 53.6%, respectively. The amount of reclaimed water supply could be increased by 91% and groundwater supply could be decreased by 6%. Based on the simulation, this model proposes a scientific reference on water resources management policies, including water environment control, water supply plan, and financial subsidy, to realize the sustainable development of economy and water resources usage.

  4. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Xiao, Hongdi; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-03-15

    This is the first study to systematically investigate the characteristics of the water obtained by dewatering cyanobacteria-containing sludge generated in the drinking water treatment plant, including formation of C- and N-disinfection by-products (DBPs). Results showed that this 'dewatering water' (DW) had different properties when the sludge was stored at different times. The content of dissolved organic matter (DOM) and microcystins (MCs) in the DW were low when the sludge was treated or disposed of within 4 days; correspondingly, the C-, N-DBP production was also low. However, due to the damage of algal cells to some extent, the DOM and MC levels increased significantly for storage time longer than 4 days; the production of C-, N-DBPs also increased. There were also obvious differences in the characteristics of the DW from sludges generated with different coagulant species. Due to the better protective effect of FeCl 3 and polymeric aluminium ferric chloride (PAFC) flocs, the DOM and MC levels and the production of C-, N-DBPs in the DW with FeCl 3 and PAFC coagulation were lower than those with AlCl 3 coagulation, even though the sludges were stored for the same amount of time. Furthermore, because of the formation of Al and Fe hydroxides, precipitated onto the surface of flocs, the soluble Al and Fe in the DW decreased with increased storage time, especially in the first four days. Overall, this study revealed the trends in variation of DW quality for cyanobacteria-containing sludges formed with different coagulants, then FeCl 3 and PAFC coagulants are recommended and sludge should be treated or disposed of within 4 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The occurrence and removal of algae (including cyanobacteria) and their related organic compounds from source water in Vaalkop Dam with conventional and advanced drinking water treatment processes

    OpenAIRE

    Swanepoel, A; Du Preez, HH; Cloete, N

    2017-01-01

    Cyanobacterial bloom formation in freshwaters, such as rivers, lakes and dams, is known to occur throughout the world. The Vaalkop Dam, which serves as source to the Vaalkop drinking water treatment works (DWTW), is no exception. Blooms of cyanobacteria occur annually in Vaalkop Dam as well as in dams from which Vaalkop is replenished during low-rainfall periods. These blooms during the summer months are associated with the production of cyanotoxins and taste and odour compounds such as geosm...

  6. High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Ma, Chunxia; Wang, Yuting; Sun, Jiongming; Li, Hongmin

    2018-04-10

    The microbial community structures of drinking water treatment sludge (DWTS) generated for raw water (RW) from different locations and with different source types - including river water, lake water and reservoir water -were investigated using high-throughput sequencing. Because the unit operations in the six DWTPs were similar, community composition in fresh sludge may be determined by microbial community in the corresponding RW. Although Proteobacteria, Cyanobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, and Planctomycetes were the dominant phyla among the six DWTS samples, no single phylum exhibited similar abundance across all the samples, owing to differences in total phosphorus, chemical oxygen demand, Al, Fe, and chloride in RW. Three genera of potentially toxic cyanobacteria (Planktothrix, Microcystis and Cylindrospermopsis), and four potential pathogens (Escherichia coli, Bacteroides ovatus, Prevotella copri and Rickettsia) were found in sludge samples. Because proliferation of potentially toxic cyanobacteria and Rickettsia in RW was mainly affected by nutrients, while growth of Escherichia coli, Bacteroides ovatus and Prevotella copri in RW may be influenced by Fe, control of nutrients and Fe in RW is essential to decrease toxic cyanobacteria and pathogens in DWTS. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  8. Medicine Of Water Treatment

    International Nuclear Information System (INIS)

    Shin, Jeong Rae

    1987-02-01

    This book deals with the medicine of water handling, which includes medicine for dispersion and cohesion, zeta-potential, congelation with Shalze Hardy's law, inorganic coagulants, inorganic high molecule coagulants, aid coagulant such as fly ash and sodium hydroxide, and effect of aluminum and iron on cohesion of clay suspension, organic coagulants like history of organic coagulants, a polyelectrolyte, coagulants for cation, and organic polymer coagulant, heavy metal and cyan exfoliants, application of drugs of water treatment.

  9. Stochastic Inversion of Geomagnetic Observatory Data Including Rigorous Treatment of the Ocean Induction Effect With Implications for Transition Zone Water Content and Thermal Structure

    Science.gov (United States)

    Munch, F. D.; Grayver, A. V.; Kuvshinov, A.; Khan, A.

    2018-01-01

    In this paper we estimate and invert local electromagnetic (EM) sounding data for 1-D conductivity profiles in the presence of nonuniform oceans and continents to most rigorously account for the ocean induction effect that is known to strongly influence coastal observatories. We consider a new set of high-quality time series of geomagnetic observatory data, including hitherto unused data from island observatories installed over the last decade. The EM sounding data are inverted in the period range 3-85 days using stochastic optimization and model exploration techniques to provide estimates of model range and uncertainty. The inverted conductivity profiles are best constrained in the depth range 400-1,400 km and reveal significant lateral variations between 400 km and 1,000 km depth. To interpret the inverted conductivity anomalies in terms of water content and temperature, we combine laboratory-measured electrical conductivity of mantle minerals with phase equilibrium computations. Based on this procedure, relatively low temperatures (1200-1350°C) are observed in the transition zone (TZ) underneath stations located in Southern Australia, Southern Europe, Northern Africa, and North America. In contrast, higher temperatures (1400-1500°C) are inferred beneath observatories on islands, Northeast Asia, and central Australia. TZ water content beneath European and African stations is ˜0.05-0.1 wt %, whereas higher water contents (˜0.5-1 wt %) are inferred underneath North America, Asia, and Southern Australia. Comparison of the inverted water contents with laboratory-constrained water storage capacities suggests the presence of melt in or around the TZ underneath four geomagnetic observatories in North America and Northeast Asia.

  10. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  11. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  12. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  13. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  14. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  15. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  16. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  17. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  18. Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages

    Science.gov (United States)

    ... Food Resources for You Consumers FDA Regulates the Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages ... addition, the flavorings and nutrients added to these beverages must comply with all applicable FDA safety requirements and they must be identified in the ...

  19. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  20. Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal

    International Nuclear Information System (INIS)

    Butler, Thomas W.

    2007-01-01

    Spatial and temporal variations in groundwater chemistry indicate that the use of low TDS lake water for irrigation, on land located just south of the City of Dixon, Solano County, California, is primarily responsible for improving groundwater quality with regards to salts. The stable isotopes of water further support this finding and suggest that TDS concentrations decrease as groundwater evolves to a more highly evaporated state. This seemingly contradictory finding was primarily attributed to infiltration of low TDS Lake Berryessa surface water, which has an isotopic signature indicative of an evaporated source and is used extensively for irrigation in the area, mixing with poorer quality locally recharged shallow groundwater. Geochemical modeling using the program PHREEQC further supports the anthropogenic aquifer freshening hypotheses through computed reductions in the saturation state of carbonate minerals in the vicinity of land irrigated by lake derived water, which is undersaturated with regards to modeled carbonates. Additionally, δ 18 O and δ 2 H were found to be useful in estimating climatic variables such as temperature and humidity, illustrating the potential for applying these models in hydrologic investigations within the area. It was however found that USDA NRCS soils data and measured water chemistry were not well correlated and thus the use of soils classifications to assess potential groundwater quality impacts was of limited utility

  1. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  2. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  3. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.

    1997-01-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  4. Biological treatment of inorganic ion contamination including radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, R S [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-12-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III).

  5. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  6. Water curative treatment device

    International Nuclear Information System (INIS)

    Fridrihsons, J.

    2011-01-01

    The device is made of two water containers (water that is intended to be activated) which are connected with a glass pipe in lower parts. In these containers disinfectant ultraviolet radiance “U” type luminescent light bulbs are placed which are connected to a mono-phase electrical power network from the shell surface spiral steel wire electrodes through a voltage duplicator. In water such harmless chemical composition coagulator is placed which automatically in the lower part of the connecting glass pipe creates residue hydra-gate that separates fractions of anion and cation. The lower parts of the containers are equipped with coal filter taps; mixing the anion and cation in equal proportions allows collecting single fractions of activated water selectively and gain drinking water which is refined from residues and processed antibacterially. (author)

  7. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  8. Mine water treatment in Donbass

    Energy Technology Data Exchange (ETDEWEB)

    Azarenkov, P A; Anisimov, V M; Krol, V A

    1980-10-01

    About 2,000,000 m$SUP$3 of mine water are discharged by coal mines yearly to surface waters in the Donbass. Mine water in the region is rich in mineral salts and suspended matter (coal and rock particles). The DonUGI Institute developed a system of mine water treatment which permits the percentage of suspended matter to be reduced to 1.5 mg/l. The treated mine water can be used in fire fighting and in dust suppression systems in coal mines. A scheme of the water treatment system is shown. It consists of the following stages: reservoir of untreated mine water, chamber where mine water is mixed with reagents, primary sedimentation tanks, sand filters, and chlorination. Aluminium sulphate is used as a coagulation agent. To intensify coagulation polyacrylamide is added. Technical specifications of surface structures in which water treatment is carried out are discussed. Standardized mine water treatment systems with capacities of 600 m$SUP$3/h, with 900, 1200, 1500, 1800 and 2100 m$SUP$3/h capacities are used. (In Russian)

  9. Identification of hardly biodegradable residuals (sulfur- and nitrogen-containing substances) during waste water treatment, including the development of analytical methods; Identifizierung von schwer abbaubaren Reststoffen (stickstoff- und schwefelhaltigen Verbindungen) bei der Abwasserbehandlung, einschliesslich analytischer Methodenentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Moehle, E; Huber, A; Metzger, J W

    1999-07-01

    Organic residuals in sewage, which are not removed completely by waste water treatment may be relevant in environmental toxicology and may disturb drinking water treatment processes. The organic residuals must be identified before new techniques to eliminate these substances from waste water can be developed and steps can be taken to prevent them from polluting waste waters. In the research project sum parameters of sulfur- and nitrogen-containing substances in municipal waste water were determined. A new method was developed to determine the organic sulfur in compounds absorbed on activated carbon (AOS). The determination of dissolved organic nitrogen (DON) was calculated as the difference between total nitrogen and the sum of NH{sub 4}{sup +}-N, NO{sub 3}{sup -}-N and NO{sub 2}{sup -}N. The removal of organic substances from the inorganic matrix was only possible for standard solutions, but not for real samples. More than 60 substances contributing to the sum parameters could be identified with GC-MS and GC-AED, an most of them could be quantified. 30-70% of the sulfur-containing substances detected with GC-AED could be identified. With the GC-MS screening method 21 drugs or drug metabolites could be identified and partly quantified. Hydrophilic organic residuals were identified and quantified with high performance liquid chromatography coupled with UV- and fluorescence detectors and also with a mass detector (ESI-MS-MS). With the methods described only a small percentage of the sum of AOS and DON could be detected, although new materials for the solid phase enrichment and new analytical methods, such as HPLC-MS-MS were used. In order to get information about the degree of elimination (absorption or degradation) of different drugs in a municipal sewage plant, laboratory-scale tests under aerobic conditions were performed. A batch reactor containing drugs in environmentally relevant concentrations and a suspension of activated sludge was coupled online with HPLC

  10. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... going up even though treatment is given. Treatment Option Overview Key Points There are different types of ...

  11. Water treatments of the future

    International Nuclear Information System (INIS)

    Poon, John; Moore Kenneth

    2011-01-01

    This article discusses and reviews nine water technologies. They are solar desalination, synthetic aquaporin membranes, microbial fuel cell and desalination, forward osmosis, resource recovery and brine managment, 'Smart' water grids, micropollutant treatment, the Cities of the Future program and high retention membrane bioreactors.

  12. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  13. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  14. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  15. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  16. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  17. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... cancer treatment is also called biotherapy or immunotherapy. Immunomodulators are a type of biologic therapy. Thalidomide , lenalidomide , and pomalidomide are immunomodulators used to treat multiple myeloma and other plasma ...

  18. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  19. Including the Consumer and Environment in Occupational Therapy Treatment Planning.

    Science.gov (United States)

    Brown, Catana; Bowen, Robin E.

    1998-01-01

    Occupational therapists (n=29) completed treatment plans based on case study data. Analysis indicated they often identified goals not addressed by the consumer/client. They significantly selected more simulated than real activities and more activities designed to change the person rather than the environment. (SK)

  20. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  1. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  2. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  3. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    Science.gov (United States)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  4. A new approach on anti-vortex devices at water intakes including a submerged water jet

    Science.gov (United States)

    Tahershamsi, Ahmad; Rahimzadeh, Hassan; Monshizadeh, Morteza; Sarkardeh, Hamed

    2018-04-01

    A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

  5. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  6. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  7. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  8. Multidisciplinary treatment including chemoradiotherapy for advanced esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Fukuda, Kazuhiro; Kikkawa, Nobuteru; Kobayashi, Tetsurou; Yagyu, Toshio; Hasuike, Yasunori; Mishima, Hideyuki; Shin, Eisei [Osaka National Hospital (Japan)

    1997-03-01

    Over 3 years, concurrent chemoradiotherapy was performed in 16 patients with advanced esophageal cancer (clinical Stage IV) and suspected noncurative resection. The subjects were {>=}A3 or N3, or were stage IV with distant metastasis on preoperative diagnosis. Two courses of 5FU and CDDP were given with concurrent radiotherapy. The predominant side effects were nausea, vomiting and anorexia. Mild or moderate leukopenia also occurred. The response was complete remission (CR) in two patients, partial remission (PR) in eight, minor response (MR) in two, no change (NC) in two and progressive disease (PD) in two. The overall response rate was 62.5%. Esophagectomy was performed in four patients (histological stage II in one, stage III in one, and stage IV in two). Two of 4 resected patients are alive (33.8 months), while the other died of unrelated causes. One of the 6 non-resected PR patients has survived for 18 months, but all other patients died of cancer within nine months of starting treatment. The survival rate of 16 patients undergoing chemoradiotherapy was 16.7% at one and two years. Thus, chemoradiotherapy may improve the prognosis of advanced esophageal cancer with suspected noncurative resection by increasing the response rate and the curative resection rate. (author)

  9. Should metformin be included in fertility treatment of PCOS patients?

    Science.gov (United States)

    Haas, Jigal; Bentov, Yaakov

    2017-03-01

    Metformin, a drug developed for the treatment of patients with type II diabetes, has become commonly prescribed medication for PCOS patients. Initially, metformin was prescribed for patients with impaired glucose tolerance at the pre conception period, however more recently its use was expanded to many of the PCOS patients and for the whole duration of pregnancy. Several studies examining the effects of Metformin during pregnancy reported a lower pregnancy loss, reduced gestational diabetes and no increased risk for birth defects, however, several more recent studies also raised concerns about its safe use. The therapeutic effect of metformin stems from its ability to inhibit the action of the first complex of the electron transport resulting in reduced ATP production. At the initial stages of embryo development, the only source of ATP is the mitochondrial electron transport chain. Lowering ATP production at the critical stage of early embryo development may impair oocyte maturation and embryo development as well as reprogram the metabolic characteristics of the offspring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  11. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  12. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  13. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-01-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly

  15. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  16. Membrane technology revolutionizes water treatment.

    Science.gov (United States)

    Wilderer, P A; Paris, S

    2007-01-01

    Membranes play a crucial role in living cells, plants and animals. They not only serve as barriers between the inside and outside world of cells and organs. More importantly, they are means of selective transport of materials and host for biochemical conversion. Natural membrane systems have demonstrated efficiency and reliability for millions of years and it is remarkable that most of these systems are small, efficient and highly reliable even under rapidly changing ambient conditions. Thus, it appears to be advisable for technology developers to keep a close eye on Mother Nature. By doing so it is most likely that ideas for novel technical solutions are born. Following the concept of natural systems it is hypothesized that the Millennium Development Goals can be best met when counting on small water and wastewater treatment systems. The core of such systems could be membranes in which chemical reactions are integrated allowing recovery and direct utilization of valuable substances.

  17. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  18. Produced water treatment methods for SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2008-07-01

    Produced water treatment methods for steam assisted gravity drainage (SAGD) processes were presented. Lime softening is used to remove sludge before weak acid cation processes. However, the process is not reliable in cold climates, and disposal of the sludge is now posing environmental problems in Alberta. High pH MVC evaporation processes use sodium hydroxide (NaOH) additions to prevent silica scaling. However the process produces silica wastes that are difficult to dispose of. The sorption slurry process was designed to reduce the use of caustic soda and develop a cost-effective method of disposing evaporator concentrates. The method produces 98 per cent steam quality for SAGD injection. Silica is sorbed onto crystals in order to prevent silica scaling. The evaporator concentrate from the process is suitable for on- and off-site deep well disposal. The ceramic membrane process was designed to reduce the consumption of chemicals and improve the reliability of water treatment processes. The ion exchange desilication process uses 80 per cent less power and produces 80 per cent fewer CO{sub 2} emissions than MVC evaporators. A comparative operating cost evaluation of various electric supply configurations and produced water treatment processes was also included, as well as an analysis of produced water chemistry. tabs., figs.

  19. Economics of mine water treatment

    OpenAIRE

    Dvořáček, Jaroslav; Vidlář, Jiří; Štěrba, Jiří; Heviánková, Silvie; Vaněk, Michal; Barták, Pavel

    2012-01-01

    Mine water poses a significant problem in lignite coal mining. The drainage of mine water is the fundamental prerequisite of mining operations. Under the legislation of the Czech Republic, mine water that discharges into surface watercourse is subject to the permission of the state administration body in the water management sector. The permission also stipulates the limits for mine water pollution. Therefore, mine water has to be purified prior to discharge. Although all...

  20. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  1. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  2. Survey of disinfection efficiency of small drinking water treatment ...

    African Journals Online (AJOL)

    A survey involving 181 water treatment plants across 7 provinces of South Africa: Mpumalanga, Limpopo, North West, Free State, KwaZulu-Natal, Eastern Cape and Western Cape was undertaken to identify the challenges facing small water treatment plants (SWTPs) in South Africa . Information gathered included ...

  3. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  4. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  5. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  6. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  7. 78 FR 56695 - Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters...

    Science.gov (United States)

    2013-09-13

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9900-95--Region 5] Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters Under the Clean Water Act AGENCY: Environmental Protection Agency (EPA). ACTION: Reopening of comment period. SUMMARY: EPA is reopening the comment period...

  8. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1977-01-01

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  9. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  10. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  11. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  12. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  13. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  14. Water treatment for 500 MWe PHWR plants

    International Nuclear Information System (INIS)

    Vasist, Sudheer; Sharma, M.C.; Agarwal, N.K.

    1995-01-01

    Large quantities of treated water is required for power generation. For a typical 500 MWe PHWR inland station with cooling towers, raw water at the rate of 6000 m 3 /hr is required. Impurities in cooling water give rise to the problems of corrosion, scaling, microbiological contamination, fouling, silical deposition etc. These problems lead to increased maintenance cost, reduced heat transfer efficiency, and possible production cut backs or shutdowns. The problems in coastal based power plants are more serious because of the highly corrosive nature of sea water used for cooling. An overview of the cooling water systems and water treatment method is enumerated. (author). 2 refs., 1 fig

  15. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  16. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  17. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  18. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  19. [Treatment Strategy for Liver Metastasis of Colorectal Cancer - Including Treatment for Oligometastasis].

    Science.gov (United States)

    Sato, Takeo; Nakamura, Takatoshi; Yamanashi, Takahiro; Miura, Hirohisa; Tsutsui, Atsuko; Shimazu, Masashi; Watanabe, Masahiko

    2017-10-01

    The mainstay of treatment for metastatic colorectal cancer is surgery. Therefore, colorectal cancer metastasis is distinctive, compared to other cancer types in which chemotherapy is the main treatment. Initially, Japan experienced medical druglag compared with western countries. However, the use of oxaliplatin for unresectable recurrent metastatic colorectal cancer became available in Japan, as well as in western countries, in 2005. We have since shifted chemotherapeutic regimens from monotherapy to combination therapy with molecular targeted agents. The combination therapy has rapidly become a standard therapy for unresectable metastatic colorectal cancer, and prognosis has dramatically increased for patients with this condition. Herein, we describe the treatment of liver metastasis of colorectal cancer, and surgery and adjuvant or neoadjuvant therapy options for resectable cancer. Furthermore, we focus on conversion therapy for unresectable cancer.

  20. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  1. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  2. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  3. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  4. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  5. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  6. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.; Hoek, Eric M.V.

    2011-01-01

    readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality

  7. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  8. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  9. Sewage water treatment by irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Othman, I.

    1999-06-01

    Irradiation of the outlet wastewater from Adra Plant shows that radiation sensitivity for the total count of the microorganism, fungi, and pathogenic microorganism were 0.328, 0.327, 0.305 kGy respectively at 3.4 kGy/h. No Ascaris Lumbricoides eggs were found. These results show that radiation technology in wastewater treatment at Adra Plant for reuse in irrigation safely from microbial point of view can be applied. (author)

  10. Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods.

    Science.gov (United States)

    Kauvar, Arielle N B; Cronin, Terrence; Roenigk, Randall; Hruza, George; Bennett, Richard

    2015-05-01

    Basal cell carcinoma (BCC) is the most common cancer in the US population affecting approximately 2.8 million people per year. Basal cell carcinomas are usually slow-growing and rarely metastasize, but they do cause localized tissue destruction, compromised function, and cosmetic disfigurement. To provide clinicians with guidelines for the management of BCC based on evidence from a comprehensive literature review, and consensus among the authors. An extensive review of the medical literature was conducted to evaluate the optimal treatment methods for cutaneous BCC, taking into consideration cure rates, recurrence rates, aesthetic and functional outcomes, and cost-effectiveness of the procedures. Surgical approaches provide the best outcomes for BCCs. Mohs micrographic surgery provides the highest cure rates while maximizing tissue preservation, maintenance of function, and cosmesis. Mohs micrographic surgery is an efficient and cost-effective procedure and remains the treatment of choice for high-risk BCCs and for those in cosmetically sensitive locations. Nonsurgical modalities may be used for low-risk BCCs when surgery is contraindicated or impractical, but the cure rates are lower.

  11. SISTEM PENGOLAHAN AIR MINUM SEDERHANA (PORTABLE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Isna Syauqiah

    2017-04-01

    Full Text Available Water is the most important thing for living. Lately it is difficult to get clean water and suitable for consumption. Many water sources are commonly used not as good as it used to be. It needs to research about making a simple water treatment system with variable time and suitable volume for Martapura river conditions by knowing the quality of drinking water that produced. The technology used includes water treatment conducted physically (filtration and aeration, chemical processing (adsorption and desinfection using UV. This research was conducted in several stages. First is the design of portable water treatment itself is by making the columns of aeration, filtration column, adsorption column, and columns where the desinfection equipment are separated. Second, the optimizing tools that aim to determine the optimum time and volume of each instrument. So it will be obtained the optimum time and volume for whole instrument. Third, the analysis results of Martapura river. Based on research results obtained that the design of this tool is less effective with the quality of Martapura river water conditions to be processed into drinking water that is usually consumed by people around because the quality of drinking water that produced has not reached the standard of specified drinking water quality standard. Optimum time for this tool is 135 s with a desinfection time for 2 minutes and the optimum volume of entering water amounts to 2 L

  12. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  13. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  14. Physical water treatment against calcification and rust

    International Nuclear Information System (INIS)

    Burger, A.

    1995-01-01

    In contrast to Germany, where the installation of small-sized, decentralised plants is still prefered, water supply companies in countries such as Denmark have already for some time successfully been using physical water treatment systems. Although the health and environmental benefits of this non-chemical method of water treatment are undisputed and its proper application is also economically beneficial, there is still a widerspread lack of information as to where such plants can be used. Consequently, older methods are often resorted to combatting calcification and rust. (orig.) [de

  15. Water (electrolyte) balance after abdominal therapeutic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cionini, L; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia

    1976-07-01

    Total body water, plasma volume and Na space have been studied in 34 patients receiving external radiotherapy on the pelvic region. Determinations were made on the same patients before, and half-way treatment; in a few cases, some determinations were also repeated after the end of treatment. The results failed to show any appreciable modification of the different parameters studied.

  16. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  17. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  18. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  19. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  20. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  1. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  2. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  3. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  4. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  5. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  6. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  7. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  8. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  9. Impact analysis and testing of tritiated heavy water transportation packages including hydrodynamic effects

    International Nuclear Information System (INIS)

    Sauve, R.G.; Tulk, J.D.; Gavin, M.E.

    1989-01-01

    Ontario Hydro has recently designed a new Type B(M) Tritiated Heavy Water Transportation Package (THWTP) for the road transportation of tritiated heavy water from its operating nuclear stations to the Tritium Removal Facility in Ontario. These packages must demonstrate the ability to withstand severe shock and impact scenarios such as those prescribed by IAEA standards. The package, shown in figure 1, comprises an inner container filled with tritiated heavy water, and a 19 lb/ft 3 polyurethane foam-filled overpack. The overpack is of sandwich construction with 304L stainless steel liners and 10.5 inch thick nominal foam walls. The outer shell is 0.75 inch thick and the inner shell is 0.25 inch thick. The primary containment boundary consists of the overpack inner liner, the containment lid and outer containment seals in the lid region. The total weight of the container including the 12,000 lb. payload is 36,700 lb. The objective of the present study is to evaluate the hydrodynamic effect of the tritiated heavy water payload on the structural integrity of the THWTP during a flat end drop from a height of 9 m. The study consisted of three phases: (i) developing an analytical model to simulate the hydrodynamic effects of the heavy water payload during impact; (ii) performing an impact analysis for a 9 m flat end drop of the THWTP including fluid structure interaction; (iii) verification of the analytical models by experiment

  10. Drainage treatment technology for water pollution prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ebise, Sen' ichi

    1988-03-01

    Drainage is purified either at terminal treatment plants or by septic tanks for sewage. At terminal treatment plants, sewage is purified by activated sludge prosessing or by biological treatment equipment. By the normal activated sludge processing, only 20 - 30 % of nitrogen and phosphur can be removed. To solve this problem, many advanced processing systems have been employed, representative systems being coagulating sedimentation, rapid filtration, recirculating nitro-denitrification, etc. The coagulating sedimentation is a treatment process in which such metallic salt coagulations as aluminum, iron, etc. are injected and mixed with sewage, and then phosphur and the like are sedimented in the form of grains. The rapid filtration requires no large space, and can reliably remove suspended matter. For large scale septic tank processing system, advance treatment processing is supplemented to improve the quality of treated water. Among other systems of sewage purification are oxidized channel, oxidized pond, soil treatment, etc. (2 figs, 2 refs)

  11. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  12. 78 FR 35929 - Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters...

    Science.gov (United States)

    2013-06-14

    ... which existing technology-based pollution controls are not stringent enough to attain or maintain state... ENVIRONMENTAL PROTECTION AGENCY [FRL-9823-3] Proposed Listing of Additional Waters To Be Included...: Environmental Protection Agency (EPA). ACTION: Notice and request for comments. SUMMARY: This notice announces...

  13. Potential applications of plasma science techniques for water treatment systems

    International Nuclear Information System (INIS)

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  14. Cleanup and treatment of radioactively contaminated land including areas near nuclear facilities. A selected bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Faust, R.A.; Brewster, R.H.

    1982-09-01

    This annotated bibliography of 337 references summarizes the literature published on the cleanup and treatment of radioactively contaminated land. Specifically, this bibliography focuses on literature concerned with the methods of cleanup and treatment being applied - chemical, physical, or vegetative stabilization; the types of equipment being used; and the influence of climatic conditions on the method selected for use. The emphasis in such literature is placed on hazardous site cleanup efforts that have been completed as well as those that are in progress and are being planned. Appendix A includes 135 additional references to literature identified but not included in the bibliography because of time and funding constraints. Appendix B consists of a table that identifies the cleanup and treatment research conducted at specific sites. All of the information included in this bibliography is stored in a computerized form that is readily available upon request

  15. SUSTAINABLE ENVIRONMENTAL TECHNOLOGIES INCLUDING WATER RECOVERY FOR REUSE FROM TANNERY AND INDUSTRIAL WASTEWATER – INDIAN AND ASIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Dr. S. RAJAMANI

    2017-05-01

    Full Text Available World leather sector generates 600million m3 of wastewater per annum. The Asian tanneries contributes more than 350 million m3 of wastewater from the process of 8 to 10 millions tons of hides and skins. Environmental challenges due to depletion of quality water resources and increase in salinity, it has become necessary to control Total Dissolved Solids (TDS in the treated effluent with water recovery wherever feasible. Adoption of special membrane system has been engineered in many individual and Common Effluent Treatment Plants (CETPs in India, China and other leather producing countries. The sustainability of saline reject management is one of the major challenges. Conventional tannery wastewater treatment systems include physiochemical and biological treatment to reduce Chromium, BOD, COD and Suspended Solids. To tackle treated effluent with TDS in the rage of 10000 to 30000mg/l, multiple stage high pressure membrane units have been designed and implemented for recovery of water. To reduce the chemical usage and sludge generation in the tertiary treatment, Membrane Bio-Reactor (MBR has been adopted which replace secondary clarifier and sophisticated tertiary treatment units such as Reactive Clarifier, Ultra-filtration (UF, etc. Commercial scale high-tech membrane systems have been implemented in many locations for the capacities ranging from 500 to 10000m3/day. Recent applied R&D on the environmental protection techniques with focus on water-recovery for reuse, salt recovery, marine disposal of saline reject with proper bio-control system, etc. are dealt in this novel technical paper.

  16. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  17. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  18. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  19. Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same

    Science.gov (United States)

    Schmitt, Edwin W.; Norman, Timothy J.

    2013-01-08

    Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

  20. Nanofiltration technology in water treatment and reuse: applications and costs.

    Science.gov (United States)

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  1. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  2. Application of hydrodynamic cavitation in ballast water treatment.

    Science.gov (United States)

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  3. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  4. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  5. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-03-01

    Corrosion is a principal life limiting degradation mechanism in nuclear steam supply systems, particularly taking into account the trends in increasing fuel burnup, thermal ratings and cycle length. Further, many plants have been operating with varying water chemistry regimes for many years, and issues of crud (deposition of corrosion products on other surfaces in the primary coolant circuit) are of significant concern for operators. At the meeting of the Technical Working Group on Fuel Performance and Technology (TWGFPT) in 2007, it was recommended that a technical meeting be held on the subject of water chemistry and clad corrosion and deposition, including the potential consequences for fuel failures. This proposal was supported by both the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR) and the Technical Working Group on Advanced Technologies for Heavy Water Reactors (TWG-HWR), with a recommendation to hold the meeting at the National Nuclear Energy Generating Company ENERGOATOM, Ukraine. This technical meeting was part of the IAEA activities on water chemistry, which have included a series of coordinated research projects, the most recent of which, Optimisation of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC) (IAEATECDOC-1666), concluded in 2010. Previous technical meetings were held in Cadarache, France (1985), Portland, Oregon, USA (1989), Rez, Czech Republic (1993), and Hluboka nad Vltavou, Czech Republic (1998). This meeting focused on issues associated with the corrosion of fuel cladding and the deposition of corrosion products from the primary circuit onto the fuel assembly, which can cause overheating and cladding failure or lead to unplanned power shifts due to boron deposition in the clad deposits. Crud deposition on other surfaces increases radiation fields and operator dose and the meeting considered ways to minimize the generation of crud to avoid

  6. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  7. Linking water treatment practices and fish welfare

    DEFF Research Database (Denmark)

    Zubiaurre, Claire; Pedersen, Lars-Flemming

    2016-01-01

    Peracetic acids can be used as sanitizers to control water quality in aquaculture systems. As an alternative to formalin, chloramine-T or copper sulphate, PAA has strong anti-microbial effects, degrades quickly and is relatively safe to use. Its mode of action and associated rapid decay can make....... Supportive enzymatic, biochemical and physiological biomarkers can be used along with gill and epidermal histological measures to evaluate the effects on water treatment regimens. The ultimate goal is to define the therapeutic window where fish welfare is not compromised.PAA is among the few disinfectants...

  8. Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultra filtration

    OpenAIRE

    Mokhtar Mahdavi; Afshin Ebrahimi; Hossein Azarpira; Hamid Reza Tashauoei; Amir Hossein Mahvi

    2017-01-01

    During operation of most water treatment plants, spent filter backwash water (SFBW) is generated, which accounts about 2â10% of the total plant production. By increasing world population and water shortage in many countries, SFBW can be used as a permanent water source until the water treatment plant is working. This data article reports the practical method being used for water reuse from SFBW through different method including pre-sedimentation, coagulation and flocculation, second clarific...

  9. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  10. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  11. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  12. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  13. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  14. Treatment of oily water by flotation

    International Nuclear Information System (INIS)

    Ortiz O, H.B.

    2002-01-01

    The operation of the nuclear power plants such as Laguna Verde (CLV) with nuclear reactors of the boiling water type (BWR) produce radioactive waste solids, liquids and gaseous which require of a special treatment in their operation and arrangement. Such is the case of the liquid wastes from CLV which are a mixture of water and synthetic oils coming from leaks and spilling by pressure of maintenance of electro-mechanical equipment associated to the performance of the nuclear power plant. This mixture of water and spent oils is pretreated by means of sedimentation, centrifugation and evaporation. However the realized efforts by the CLV, the spent oil obtained from the pretreatment contains concentrations of radioactive material higher than the tolerance limits established in the normative in force in radiological safety (0.37 Bq m L -1 for 60 Co and 54 Mn). In this context it was necessary to design an efficient treatment system and economically profitable which separates the oil, the heavy metals and the leftovers of radioactive material that could be present in water, with the purpose of fulfil with the Mexican Official Standards corresponding for its unload or even it can reuse it in the wash process of treated oil. The treatment system of oily water waste consists of: a) Coagulation-flocculation, b) Flotation system with modified air dissolved (DAFm). The proposed flotation process allows to reach a higher separation efficiencies of: Concentration of greases and oils: 94.11 %; Turbidity: 98.6 %; 60 Co: 82.3 % ; Co: 94.8 % and Cr: 99.9 % (Author)

  15. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    -241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

  16. Enhanced drinking water supply through harvested rainwater treatment

    Science.gov (United States)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  17. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  18. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  19. Water Supply and Treatment Equipment. Change Notice 1

    Science.gov (United States)

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  20. Predictors of Workforce Attitudes to Including a Child Perspective in the Treatment of Mentally Ill Parents

    OpenAIRE

    Lauritzen, Camilla; Reedtz, Charlotte; Martinussen, Monica; vanDoesum, Karin

    2012-01-01

    Children of parents with a mental illness are at risk of developing mental health problems themselves (Beardslee, Versage & Gladstone, 1998; Hosman, van Doesum, & van Santvoort, 2009; Reupert & Maybery, 2007). In order to prevent children of mentally ill parents from developing serious problems, it is therefore beneficial to include a child perspective in the treatment of mentally ill parents by identifying the children of patients, and supporting patients in their parenting role. Norwegia...

  1. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  2. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  3. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  4. Process water treatment in Canada's oil sands industry : 1 : target pollutants and treatment objectives

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    The continuous recycling of tailings pond water in the oil sands industry has contributed to an overall decline in water quality used for bitumen recovery, general water consumption, and remedial activities. This paper reviewed process water quality and toxicity data from 2 long-term oil sands operations. The aim of the study was to determine potential roles for water treatment and provide benchmarks for the selection of candidate water treatment technologies in the oil sands region of Alberta. An overview of the oil sands industry was provided as well as details of bitumen recovery processes. The study examined target pollutants and exceedances identified in environmental and industrial water quality guidelines. The study demonstrated that the salinity of tailings pond water increased at a rate of 75 mg per litre per year between 1980 and 2001. Increases in hardness, chloride, ammonia, and sulphates were also noted. Naphthenic acids released during bitumen extraction activities were determined as the primary cause of tailings pond water toxicity. A summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands region was included. 19 refs., 4 tabs., 11 figs

  5. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    Science.gov (United States)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  6. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  7. Satisfactory patient-based outcomes after surgical treatment for idiopathic clubfoot: includes surgeon's individualized technique.

    Science.gov (United States)

    Mahan, Susan T; Spencer, Samantha A; Kasser, James R

    2014-09-01

    Treatment of idiopathic clubfoot has shifted towards Ponseti technique, but previously surgical management was standard. Outcomes of surgery have varied, with many authors reporting discouraging results. Our purpose was to evaluate a single surgeon's series of children with idiopathic clubfoot treated with a la carte posteromedial and lateral releases using the Pediatric Outcomes Data Collection Instrument (PODCI) with a minimum of 2-year follow-up. A total of 148 patients with idiopathic clubfoot treated surgically by a single surgeon over 15 years were identified, and mailed PODCI questionnaires. Fifty percent of the patients were located and responded, resulting in 74 complete questionnaires. Median age at surgery was 10 months (range, 5.3 to 84.7 mo), male sex 53/74 (71.6%), bilateral surgery 31/74 (41.9%), and average follow-up of 9.7 years. PODCI responses were compared with previously published normal healthy controls using t test for each separate category. Included in the methods is the individual surgeon's operative technique. In PODCIs where a parent reports for their child or adolescent, there was no difference between our data and the healthy controls in any of the 5 categories. In PODCI where an adolescent self-reports, there was no difference in 4 of 5 categories; significant difference was only found between our data (mean = 95.2; SD = 7.427) and normal controls (mean = 86.3; SD = 12.5) in Happiness Scale (P = 0.0031). In this group of idiopathic clubfoot patients, treated with judicious posteromedial release by a single surgeon, primarily when surgery was treatment of choice for clubfoot, patient-based outcomes are not different from their normal healthy peers through childhood and adolescence. While Ponseti treatment has since become the treatment of choice for clubfoot, surgical treatment, in some hands, has led to satisfactory results. Level III.

  8. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  9. Commentary on guidelines for radiation measurement and treatment of substances including naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Sakurai, Naoyuki; Ishiguro, Hideharu

    2007-01-01

    Study group on safety regulation on research reactors in Ministry of Education, Culture, Sports, Science and Technology (MEXT) reported the guidelines of 'Guidelines on radiation measurement and treatment of naturally occurring radioactive materials (NORM)' on 6 February 2006. RANDEC made the website contents 'Study on use and safety of the substances including uranium or thorium', based on the contract with MEXT to make theirs contents. This paper describes the outline of the website in MEXT homepage, background and contents of NORM guidelines in order to understand easily and visually the NORM guidelines, adding in some flowcharts and figures. (author)

  10. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  11. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  12. Biological Treatment of Water Disinfection Byproducts using ...

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  13. Mine water treatment with yellowcake by-production

    International Nuclear Information System (INIS)

    Csicsak, J.; Csoevari, M.; Eberfalvy, J.; Lendvai, Zs.

    2002-01-01

    Mining and milling of uranium ore in Hungary was terminated at the end of 1997. From that time rehabilitation works have been carrying out, which include manly the relocation of different solid wastes, such as waste rocks, heap leached residues, demolishing of former industrial buildings, clean up contaminated sites. Overall rehabilitation of the tailings ponds has also started. At first step the ground water restoration system is under construction, aiming at protecting the drinking water aquifer situated in the immediate vicinity of the tailings ponds. Former mining activity has been carried out also in the vicinity of the drinking water catchment area, for protection of that is compulsory to maintain appropriate depression in the mine in question. This means that mine water has to be pumped out continuously and because of the elevated uranium concentration in mine water, the water has to be treated. Thus the water quality protection is connected with uranium removal from the mine water. Mine water treatment process developed is based on anion-exchange process and removal of the uranium from the eluates with hydrogen peroxide. (author)

  14. Treatment of some power plant waters

    International Nuclear Information System (INIS)

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  15. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  16. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  17. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  18. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, C.; Peperzak, L.; Buma, A.G.J.

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  19. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  20. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  1. Integrated oil sands tailings pond water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2010-07-01

    This PowerPoint presentation discussed research currently being conducted to treat oil sands tailings pond water (TPW). The treatment of TPW is challenged by the high level of naphthenic acids (NAs), the slow settling rate of fine particulate materials, and the complex chemistry of the water. The treatment process consisted of bioflocculation, sludge blanket assisted clarification, ozonation, and oil sands coke assisted hybrid biodegradation. The aggregation and adsorption process bound small particles and cells together while also ensuring the passive uptake of pollutants using microbial masses. The mixed liquor then passed through a sludge blanket to ensure enhanced particle capture. An ozonation process was used to increase the biodegradability of the TPW as well as to increase the biodegradability of the residual NAs after ozonation. The process used a hybrid bioreactor that consisted of both suspended and fixed microbial communities. The coke served as a biofilm carrier for the waste. Further studies are being conducted to investigate the efficiency and capability of the process. tabs., figs.

  2. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  3. State of the art of produced water treatment.

    Science.gov (United States)

    Jiménez, S; Micó, M M; Arnaldos, M; Medina, F; Contreras, S

    2018-02-01

    Produced water (PW) is the wastewater generated when water from underground reservoirs is brought to the surface during oil or gas extraction. PW is generated in large amounts and has a complex composition, containing various toxic organic and inorganic compounds. PW is currently treated in conventional trains that include phase separators, decanters, cyclones and coarse filters in order to comply with existing regulation for discharge. These treatment trains do not achieve more restrictive limitations related to the reuse of the effluent (reinjection into extraction wells) or other beneficial uses (e.g., irrigation). Therefore, and to prevent environmental pollution, further polishing processes need to be carried out. Characterization of the PW to determine major constituents is the first step to select the optimum treatment for PW, coupled with environmental factors, economic considerations, and local regulatory framework. This review tries to provide an overview of different treatments that are being applied to polish this type of effluents. These technologies include membranes, physical, biological, thermal or chemical treatments, where special emphasis has been made on advanced oxidation processes due to the advantages offered by these processes. Commercial treatments, based on the combination, modification and improvement of simpler treatments, were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Newly Designed Water Treatment Systems for Hospital Effluent].

    Science.gov (United States)

    Azuma, Takashi

    2018-01-01

     Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.

  5. Ultrasound applications and ionizing radiations in water treatment

    International Nuclear Information System (INIS)

    Al-Oraby, M.N.A.

    2013-01-01

    Application of ultrasound irradiation is one of the innovative techniques that was used for improvement of water treatment process and lowering levels of contaminants in waste water. The main mechanism of sonication is based on the cavitation phenomenon which includes the whole procedure of creation, expansion and collapsing of micro bubbles throughout liquid phase when negative pressure is applied to the medium during sonication. Consequently, hydroxyl and hydrogen radicals would be formed by thermal dissociation of water and hydrogen. These radicals penetrate into water and oxidize dissolved organic compounds. Hydrogen peroxide is formed as a consequence of hydroxyl and water radical recombination. During the free radical attack, the cell membranes of microorganisms are ruptured physically. The application of ionizing radiation for the removal of odorific substances and organic pollutants from water is an advanced oxidation process based on fast reactions with hydroxyl radicals formed as a result of radiolysis of water. GEO and MIB are the main responsible organic composites for the taste and odor in water. These compounds and other organic pollutants such as herbicide 2,4-DCP can be removed by different doses of gamma rays depending on magnitude, rate of radiation dose, chemical condition of the process and other factors. (author)

  6. Interleukin-1 antagonists in the treatment of autoinflammatory syndromes, including cryopyrin-associated periodic syndrome

    Directory of Open Access Journals (Sweden)

    Pierre Quartier

    2011-01-01

    Full Text Available Pierre QuartierUnité d'Immunologie-Hématologie et Rhumatologie pédiatriques, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, FranceAbstract: Cryopyrin-associated periodic syndrome (CAPS include a group of rare autoinflammatory disorders, the spectrum of which ranges from the mildest form, ie, familial cold autoinflammatory syndrome to more severe phenotypes, ie, Muckle-Wells syndrome, and chronic infantile neurological cutaneous and articular syndrome, also known as neonatal-onset multisystem inflammatory disease. Three interleukin (IL-1 antagonists have been tested in adults and children with CAPS, ie, anakinra, a recombinant homolog of the human IL-1 receptor antagonist; rilonacept, a fusion protein comprising the extracellular domains of IL-1 receptor I and the IL-1 adaptor protein, IL-1RAcP, attached to a human immunoglobulin G molecule; and canakinumab, the anti-IL-1β monoclonal antibody. Following rapid clinical development, rilonacept and canakinumab were approved by both the US Food and Drug Administration and the European Medicines Agency for use in adults and children. This review describes how the study of CAPS has helped us to understand better the way the innate immune system works, the pathogenesis of autoinflammatory syndromes, and the key role of IL-1. It also reviews the effects of IL-1 blockade in CAPS and other disorders, in particular systemic juvenile idiopathic arthritis, adult-onset Still's disease, and gout. Finally, this review covers some issues addressed by very recent and ongoing work regarding treatment indications, from orphan diseases to common disorders, continuous versus intermittent treatment, the pharmacokinetics, pharmacodynamics, and optimal dosages of the different drugs, as well as the need for Phase IV trials, exhaustive registries, and long-term follow-up of several patient cohorts.Keywords: inflammation, interleukin-1, cytokines, treatment

  7. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  8. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments.

    Science.gov (United States)

    Schollée, Jennifer E; Bourgin, Marc; von Gunten, Urs; McArdell, Christa S; Hollender, Juliane

    2018-05-25

    Ozonation and subsequent post-treatments are increasingly implemented in wastewater treatment plants (WWTPs) for enhanced micropollutant abatement. While this technology is effective, micropollutant oxidation leads to the formation of ozonation transformation products (OTPs). Target and suspect screening provide information about known parent compounds and known OTPs, but for a more comprehensive picture, non-target screening is needed. Here, sampling was conducted at a full-scale WWTP to investigate OTP formation at four ozone doses (2, 3, 4, and 5 mg/L, ranging from 0.3 to 1.0 gO 3 /gDOC) and subsequent changes during five post-treatment steps (i.e., sand filter, fixed bed bioreactor, moving bed bioreactor, and two granular activated carbon (GAC) filters, relatively fresh and pre-loaded). Samples were measured with online solid-phase extraction coupled to liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) using electrospray ionization (ESI) in positive and negative modes. Existing non-target screening workflows were adapted to (1) examine the formation of potential OTPs at four ozone doses and (2) compare the removal of OTPs among five post-treatments. In (1), data processing included principal component analysis (PCA) and chemical knowledge on possible oxidation reactions to prioritize non-target features likely to be OTPs. Between 394 and 1328 unique potential OTPs were detected in positive ESI for the four ozone doses tested; between 12 and 324 unique potential OTPs were detected in negative ESI. At a specific ozone dose of 0.5 gO 3 /gDOC, 27 parent compounds were identified and were related to 69 non-target features selected as potential OTPs. Two OTPs were confirmed with reference standards (venlafaxine N-oxide and chlorothiazide); 34 other potential OTPs were in agreement with literature data and/or reaction mechanisms. In (2), hierarchical cluster analysis (HCA) was applied on profiles detected in positive ESI mode across the

  9. Current treatments in Parkinson's including the proposal of an innovative dopamine microimplant

    Directory of Open Access Journals (Sweden)

    M. Velázquez-Paniagua

    2016-04-01

    Full Text Available Parkinson's disease is a chronic, debilitating, progressive neurological disorder of multifactorial origin. It affects between 0.3% and 2% of the over-65 population worldwide, with a predilection for men, and is characterised by bradykinesia, muscular rigidity, resting tremor and postural instability. Parkinson's is caused by decreased dopamine levels due to the loss of dopaminergic neurons in the substantia nigra. Because dopamine is a highly oxidisable molecule, precursors such as levodopa, together with catechol-O-methyltransferase and monoamine oxidase inhibitors to prevent degradation, are used in the treatment of this disease. These therapies, however, are not without their adverse effects. Surgical treatments for Parkinson's include pallidotomy, therapy deep brain stimulation, and stem cells. A more recent development involves a titanium dioxide micro-implant containing nanopores that stabilise the dopamine for continuous release. When inserted into the caudate nucleus, this micro-implant was found to counteract 85% of symptoms in hemiparkinsonian rats, and is a promising therapy for patients with Parkinson's disease.

  10. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  11. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  12. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  13. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    Science.gov (United States)

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  14. Increasing the technical and economic performance of wind diesel systems by including fresh water production

    DEFF Research Database (Denmark)

    Bindner, H.; Lundsager, P.

    1996-01-01

    In many remote regions of the world there is a lack of both electricity and potable water. In order to increase the standard of living and thus maintain the population both power and water have to be supplied at reasonable prices. A good option at many of these places are wind diesel systems...

  15. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  16. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  18. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  19. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic......The water resource is under increasing pressure, both from the increase in population and from the wish to improve the living standards of the individual. Water scarcity is defined as the situation where demand is greater than the resource. Water scarcity has two distinctly different dimensions......: water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...

  20. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  1. Selection of water treatment processes special study

    International Nuclear Information System (INIS)

    1991-11-01

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering

  2. Effect of microalgal treatments on pesticides in water.

    Science.gov (United States)

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.

  3. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  4. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  5. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A convolution method for predicting mean treatment dose including organ motion at imaging

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2000-01-01

    Full text: The random treatment delivery errors (organ motion and set-up error) can be incorporated into the treatment planning software using a convolution method. Mean treatment dose is computed as the convolution of a static dose distribution with a variation kernel. Typically this variation kernel is Gaussian with variance equal to the sum of the organ motion and set-up error variances. We propose a novel variation kernel for the convolution technique that additionally considers the position of the mobile organ in the planning CT image. The systematic error of organ position in the planning CT image can be considered random for each patient over a population. Thus the variance of the variation kernel will equal the sum of treatment delivery variance and organ motion variance at planning for the population of treatments. The kernel is extended to deal with multiple pre-treatment CT scans to improve tumour localisation for planning. Mean treatment doses calculated with the convolution technique are compared to benchmark Monte Carlo (MC) computations. Calculations of mean treatment dose using the convolution technique agreed with MC results for all cases to better than ± 1 Gy in the planning treatment volume for a prescribed 60 Gy treatment. Convolution provides a quick method of incorporating random organ motion (captured in the planning CT image and during treatment delivery) and random set-up errors directly into the dose distribution. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  7. 2005/2006 Southwest Florida Water Management District (SWFWMD) Lidar: Peace River South (including Carter Creek)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of select areas within Southwest Florida. These data were produced for the Southwest Florida Water...

  8. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  9. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  10. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  11. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors

    International Nuclear Information System (INIS)

    Asuni, G; Van Beek, T A; Venkataraman, S; McCurdy, B M C; Popescu, I A

    2013-01-01

    The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in ‘movie’ mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ 90% of percentage pixels with γ <1. We found that over

  12. Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Green, Daniel M.; Merchant, Thomas E.; Billups, Catherine A.; Stokes, Dennis C.; Broniscer, Alberto; Bartels, Ute; Chintagumpala, Murali; Hassall, Timothy E.; Gururangan, Sridharan; McCowage, Geoffrey B.; Heath, John A.; Cohn, Richard J.; Fisher, Michael J.; Srinivasan, Ashok; Robinson, Giles W.; Gajjar, Amar

    2015-01-01

    Purpose: The treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods: Protocol SJMB03 enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) (forced expiratory volume in 1 second [FEV 1 ] and forced vital capacity [FVC] by spirometry, total lung capacity [TLC] by nitrogen washout or plethysmography, and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin [DLCO corr ]) were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after the completion of treatment (ACT) were compared using exact Wilcoxon signed-rank tests and repeated-measures models. Results: Between June 24, 2003, and March 1, 2010, 303 eligible patients (spine dose: ≤2345 cGy, 201; >2345 cGy, 102; proton beam, 20) were enrolled, 260 of whom had at least 1 PFT. The median age at diagnosis was 8.9 years (range, 3.1-20.4 years). The median thoracic spinal radiation dose was 23.4 Gy (interquartile range [IQR], 23.4-36.0 Gy). The median cyclophosphamide dose was 16.0 g/m 2 (IQR, 15.7-16.0 g/m 2 ). At 24 and 60 months ACT, DLCO corr was <75% predicted in 23% (27/118) and 25% (21/84) of patients, FEV 1 was <80% predicted in 20% (34/170) and 29% (32/109) of patients, FVC was <80% predicted in 27% (46/172) and 28% (30/108) of patients, and TLC was <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCO corr was significantly decreased 24 months ACT (median difference [MD] in % predicted, 3.00%; P=.028) and 60 months ACT (MD in % predicted, 6.00%; P=.033) compared with the end of radiation therapy. These significant decreases in DLCO corr were also observed in repeated-measures models (P=.011 and P=.032 at 24 and 60 months ACT, respectively). Conclusions: A significant minority of EBT survivors experience PFT deficits after CSI. Continued monitoring of this cohort

  13. Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel M., E-mail: daniel.green@stjude.org [Department of Epidemiology and Cancer Control, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Billups, Catherine A. [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Stokes, Dennis C. [Department of Pediatrics, University of Tennessee School of Medicine, Memphis, Tennessee (United States); Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Bartels, Ute [Department of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario (Canada); Chintagumpala, Murali [Department of Pediatric Medicine, Texas Children' s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas (United States); Hassall, Timothy E. [Department of Haematology and Oncology, Royal Children' s Hospital, Brisbane (Australia); Gururangan, Sridharan [Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (United States); McCowage, Geoffrey B. [Department of Pediatrics, Children' s Hospital at Westmead, Sydney (Australia); Heath, John A. [Children' s Cancer Center, Royal Children' s Hospital Melbourne, Melbourne (Australia); Cohn, Richard J. [Department of Clinical Oncology, Sydney Children' s Hospital, Sydney (Australia); Fisher, Michael J. [Department of Pediatrics, Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Srinivasan, Ashok [Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Robinson, Giles W.; Gajjar, Amar [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods: Protocol SJMB03 enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) (forced expiratory volume in 1 second [FEV{sub 1}] and forced vital capacity [FVC] by spirometry, total lung capacity [TLC] by nitrogen washout or plethysmography, and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin [DLCO{sub corr}]) were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after the completion of treatment (ACT) were compared using exact Wilcoxon signed-rank tests and repeated-measures models. Results: Between June 24, 2003, and March 1, 2010, 303 eligible patients (spine dose: ≤2345 cGy, 201; >2345 cGy, 102; proton beam, 20) were enrolled, 260 of whom had at least 1 PFT. The median age at diagnosis was 8.9 years (range, 3.1-20.4 years). The median thoracic spinal radiation dose was 23.4 Gy (interquartile range [IQR], 23.4-36.0 Gy). The median cyclophosphamide dose was 16.0 g/m{sup 2} (IQR, 15.7-16.0 g/m{sup 2}). At 24 and 60 months ACT, DLCO{sub corr} was <75% predicted in 23% (27/118) and 25% (21/84) of patients, FEV{sub 1} was <80% predicted in 20% (34/170) and 29% (32/109) of patients, FVC was <80% predicted in 27% (46/172) and 28% (30/108) of patients, and TLC was <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCO{sub corr} was significantly decreased 24 months ACT (median difference [MD] in % predicted, 3.00%; P=.028) and 60 months ACT (MD in % predicted, 6.00%; P=.033) compared with the end of radiation therapy. These significant decreases in DLCO{sub corr} were also observed in repeated-measures models (P=.011 and P=.032 at 24 and 60 months ACT, respectively). Conclusions: A significant minority of EBT survivors experience PFT deficits after CSI

  14. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  15. Transarterial chemo embolization for the treatment of hepatocellular carcinoma: A single center experience including 221 patients

    International Nuclear Information System (INIS)

    Zeeneldin, A.A.; Salem, S.E.; Ibrahim, A.A.; Tabashy, R.H.; Alieldin, N.H.

    2013-01-01

    Background: Hepatocellular carcinoma (HCC) is a major health problem in Egypt as well as in many countries. Trans arterial chemo embolization (TACE) is a treatment modality applicable to locally advanced HCC beyond surgery or ablative therapies and is associated with survival improvements. The aim of this study was to assess the outcomes of TACE in our center over the past four years. Methods: This is a retrospective cohort study that included 221 patients with locally advanced HCC treated with TACE in a single center between the years 2007 and 2010. The median age was 57 years with male predominance. Liver cirrhosis, viral hepatitis and Bilharziasis were encountered in 64%, 31% and 8% of patients, respectively. Abdominal pain was the most common presenting symptom (67%). Most cases were diagnosed based on radiology (57%) with a TNM stage I or II (73%) and a median AFP value of 150 ng/m L. Results: 221 patients received 440 cycles of TACE with a median of 2 cycles per patient. Cisplatin and doxorubicin (50 mg per cycle, each) were the most commonly used drugs. Impaired liver function was the most common toxicity. Liver cell failure occurred in 17% of patients. An objective tumor response was achieved in 44% of cases. The median overall survival (OS) was 16 months (95% Cl, 13-19 months) and the median progression free survival (PFS) was 6 months (95% Cl, 4.3-7.8 months). Responding patients, Child-Pugh class A and patients receiving standard doses of chemotherapy had a significantly better OS than their counterparts. Only Child-Pugh class A was associated with significantly longer PFS (p < 0.001). Conclusion: TACE produces reasonable responses and fair survival rates in locally advanced HCC but with noticeable toxicities. Proper patients selection and prompt liver support are mandates for improving TACE outcomes.

  16. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  17. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  18. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  19. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  20. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis

    DEFF Research Database (Denmark)

    Niero, Monia; Pizzol, Massimo; Gundorph Bruun, Henrik

    2014-01-01

    Wastewater treatment has nowadays multiple functions and produces both clean effluents and sludge, which is increasingly seen as a resource rather than a waste product. Technological as well as management choices influence the performance of wastewater treatment plants (WWTPs) on the multiple...... functions. In this context, Life Cycle Assessment (LCA) can determine what choices provide the best environmental performance. However, the assessment is not straightforward due to the intrinsic space and time-related variability of the wastewater treatment process. These challenges were addressed...... in a comparative LCA of four types of WWTPs, representative of mainstream treatment options in Denmark. The four plant types differ regarding size and treatment technology: aerobic versus anaerobic, chemical vs. combined chemical and biological. Trade-offs in their environmental performance were identified...

  1. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Analysis of shallow water experimental acoustic data including normal mode model comparisons

    NARCIS (Netherlands)

    McHugh, R.; Simons, D.G.

    2000-01-01

    Ss part of a propagation model validation exercise experimental acoustic and oceanographic data was collected from a shallow-water, long-range channel, off the west coast of Scotland. Temporal variability effects in this channel were assessed through visual inspection of stacked plots, each of which

  3. A Novel Water Supply Network Sectorization Methodology Based on a Complete Economic Analysis, Including Uncertainties

    Directory of Open Access Journals (Sweden)

    Enrique Campbell

    2016-04-01

    Full Text Available The core idea behind sectorization of Water Supply Networks (WSNs is to establish areas partially isolated from the rest of the network to improve operational control. Besides the benefits associated with sectorization, some drawbacks must be taken into consideration by water operators: the economic investment associated with both boundary valves and flowmeters and the reduction of both pressure and system resilience. The target of sectorization is to properly balance these negative and positive aspects. Sectorization methodologies addressing the economic aspects mainly consider costs of valves and flowmeters and of energy, and the benefits in terms of water saving linked to pressure reduction. However, sectorization entails other benefits, such as the reduction of domestic consumption, the reduction of burst frequency and the enhanced capacity to detect and intervene over future leakage events. We implement a development proposed by the International Water Association (IWA to estimate the aforementioned benefits. Such a development is integrated in a novel sectorization methodology based on a social network community detection algorithm, combined with a genetic algorithm optimization method and Monte Carlo simulation. The methodology is implemented over a fraction of the WSN of Managua city, capital of Nicaragua, generating a net benefit of 25,572 $/year.

  4. Recommendations on Chronic Constipation (Including Constipation Associated with Irritable Bowel Syndrome Treatment

    Directory of Open Access Journals (Sweden)

    Pierre Paré

    2007-01-01

    Full Text Available While chronic constipation (CC has a high prevalence in primary care, there are no existing treatment recommendations to guide health care professionals. To address this, a consensus group of 10 gastroenterologists was formed to develop treatment recommendations. Although constipation may occur as a result of organic disease, the present paper addresses only the management of primary CC or constipation associated with irritable bowel syndrome. The final consensus group was assembled and the recommendations were created following the exact process outlined by the Canadian Association of Gastroenterology for the following areas: epidemiology, quality of life and threshold for treatment; definitions and diagnostic criteria; lifestyle changes; bulking agents and stool softeners; osmotic agents; prokinetics; stimulant laxatives; suppositories; enemas; other drugs; biofeedback and behavioural approaches; surgery; and probiotics. A treatment algorithm was developed by the group for CC and constipation associated with irritable bowel syndrome. Where possible, an evidence-based approach and expert opinions were used to develop the statements in areas with insufficient evidence. The nature of the underlying pathophysiology for constipation is often unclear, and it can be tricky for physicians to decide on an appropriate treatment strategy for the individual patient. The myriad of treatment options available to Canadian physicians can be confusing; thus, the main aim of the recommendations and treatment algorithm is to optimize the approach in clinical care based on available evidence.

  5. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  6. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... method. A membrane filtration technique is used for the treatment of water to remove or kill ... The characterization of synthesized nanoparticles was done by dynamic ... water and just 3% is available for drinking, agriculture,.

  7. Photocatalytic Treatment of Shower Water Using a Pilot Scale Reactor

    Directory of Open Access Journals (Sweden)

    Yash Boyjoo

    2012-01-01

    Full Text Available Treatment of shower water deserves special consideration for reuse not only because of its low pollutant loading but also because it is produced in large quantities. In this study, a pilot scale study of photocatalytic degradation of impurities in real shower water was performed in a 31 L volume reactor using titanium dioxide as the photocatalyst. The reactor was operated in a continuous slurry recirculation mode. Several operational parameters were studied including the slurry initial pH, catalyst concentration, air flow rate, and slurry recirculation rate. Up to 57% of total organic carbon (TOC elimination was obtained after 6 hours of treatment (for 3.0 slurry initial pH, 0.07 gL−1 catalyst concentration, 1.8 Lmin−1 air flow rate, and 4.4 Lmin−1 slurry recirculation rate. This study showed that photocatalysis could be successfully transposed from bench scale to pilot scale. Furthermore, the ease of operation and the potential to use solar energy make photocatalysis an attractive prospect with respect to treatment of grey water.

  8. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  9. Assembling and testing of laboratory scale grey water treatment system

    OpenAIRE

    Harju, Vilhelmiina

    2010-01-01

    Grey water management and reuse is slowly gaining importance in the management of water resources. The benefits of well organized grey water management is that it offers a tool for coping with water scarcity and reduces the amount of pollution to enter the hydrological cycle. Grey water management aims on using treated grey water in applications which do not require drinking water quality. These non-potable reuse applications include industrial processes, irrigation, toilet flushing and lau...

  10. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  11. Applications of nanotechnology in water and wastewater treatment.

    Science.gov (United States)

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    Science.gov (United States)

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  13. availability analysis of chemicals for water treatment

    African Journals Online (AJOL)

    NIJOTECH

    In most countries, chemicals are generally recognized as being vital in the production of potable water and will ... industries and water utility ventures are being started in Nigeria ... are being dumped into rivers thereby polluting them the more.

  14. Effect of pressurized water reactor environment on fatigue crack propagation, including hole times

    International Nuclear Information System (INIS)

    Bamford, W.H.

    1976-01-01

    Results are presented from an experimental program being conducted to investigate the effects of pressurized water reactor environment on the fatigue crack growth rate of pressure vessel steels. Tests were conducted on precracked WOL type specimens under load controlled conditions. The effects of R ratio, loading rates, and loading wave form are evaluated, and the results are compared for both forging and plate material, as well as weldments

  15. Successful treatment with supercritical water oxidation

    International Nuclear Information System (INIS)

    Jensen, R.

    1994-01-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described

  16. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  17. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  18. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  19. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  20. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  1. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  2. Numerical and experimental investigation of UV disinfection for water treatment

    International Nuclear Information System (INIS)

    Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T.

    2017-01-01

    Highlights: • UV irradiation for water treatment is numerically and experimentally investigated. • Fluence rate E increases exponentially with the increase of UVT. • UV dose distribution moves to a high range with increase of UVT and lamp power. • A linear relationship is observed between fluence rate E and average UV dose D_a_v_e. • D_a_v_e decreases with the increase of UVT and fluid flow rate. - Abstract: Disinfection by ultraviolet (UV) for water treatment in a UV reactor is numerically and experimentally investigated in this paper. The flow of water, UV radiation transportation as well as microorganism particle trajectories in the UV reactor is simulated. The effects of different parameters including UV transmittance (UVT), lamp power and water flow rate on the UV dose distribution and average UV dose are studied. The UV reactor performance in terms of average UV dose under these parameters is analysed. Comparisons are made between experiments and simulations on the average UV dose and reasonable agreement is achieved. The results show that the fluence rate increases exponentially with the increase of UVT. The UV dose distribution profiles moves to a high range of UV dose with the increase of UVT and lamp power. The increase of water flow rate reduces the average exposure time of microorganism particles to the UV light, resulting in the shifting of UV dose distribution to a low range of UV dose. A linear relationship is observed between fluence rate and the average UV dose. The average UV dose increases with the increase of lamp power while it decreases with the increase of UVT and water flow rate.

  3. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  4. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  5. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  6. The successful treatment of vocal cord dysfunction with low-dose amitriptyline – including literature review

    Directory of Open Access Journals (Sweden)

    VA Varney

    2009-11-01

    Full Text Available VA Varney1, H Parnell1, J Evans1, NT Cooke1, J Lloyd2, J Bolton31Department of Respiratory Medicine, 2Department of Speech and Language Therapy, 3Department of Liaison Psychiatry, St Helier Hospital, Carshalton, Surrey, UKAbstract: Vocal cord dysfunction is an asthma mimic. Diagnosis of this condition requires a high index of suspicion if unnecessary treatments are to be avoided. We describe the findings from our case series of 62 patients (age range 18 to 90 years in whom the diagnosis was confirmed. Our findings show low-dose amitriptyline to be very effective in 90% of cases, with rapid benefit for those patients whose symptoms had been present for less than 12 months. This treatment, in conjunction with psycho-therapeutic and behavioral therapies may reduce unnecessary hospital admissions. Future studies may show whether this treatment regimen may reduce demands on the speech and language therapists.Keywords: vocal cord dysfunction, asthma, amitriptyline, wheeze, anxiety

  7. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  8. Evaluation of the Treatment of Congenital Penile Curvature Including Psychosexual Assessment.

    Science.gov (United States)

    Zachalski, Wojciech; Krajka, Kazimierz; Matuszewski, Marcin

    2015-08-01

    Penile corporoplasty is a well-established treatment method of congenital penile deviation (CPD). Anatomical results are good with only slight differences between surgical procedures used. The disease however has huge influence on young male quality of life. This issue is not well analyzed in the literature. The aim of the study was to evaluate quality of life of the patients affected with CPD before and after the surgical treatment Study population consisted of 107 patients with CPD referred for surgical management. Patients were evaluated with not only clinical assessment, but also by four questionnaires measuring various aspects of quality of life. They were: Short-Form Medical Outcomes, Sexual Quality of Life Questionnaire for Man, Beck Depression Inventory, and International Index of Erectile Function. Quality of life measurements showed deep decrease in the general quality of life, sexual performance, depression scale, as well as in physical and mental health in men with CPD. All these parameters were restored to normal after the successful surgical treatment with any method. CPD deeply decreases the quality of life of the affected men in many aspects. Surgical treatment is able to repair the anatomical deformity and as well as significantly restore the patients' psychosocial well-being. © 2015 International Society for Sexual Medicine.

  9. [Effect of complex sanatorium treatment including magnetotherapy on hemodynamics in patients with arterial hypertension].

    Science.gov (United States)

    Efremushkin, G G; Duruda, N V

    2003-01-01

    Forty nine patients with arterial hypertension of stage I-II received combined sanatorium treatment. Of them, 21 had adjuvant total magnetotherapy. All the patients were examined for parameters of central, cerebral hemodynamics and microcirculation. The adjuvant magnetotherapy produced a beneficial effect on hypertension: clinical symptoms attenuated, arterial pressure became more stable, hemodynamics improved, duration of hospitalization reduced, requirement in hypotensive drugs diminished.

  10. Aids to Navigation for US waters, including territories, as of April 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  11. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  12. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  13. Dosimetric evaluation of three adaptive strategies for prostate cancer treatment including pelvic lymph nodes irradiation.

    Science.gov (United States)

    Cantin, Audrey; Gingras, Luc; Lachance, Bernard; Foster, William; Goudreault, Julie; Archambault, Louis

    2015-12-01

    The movements of the prostate relative to the pelvic lymph nodes during intensity-modulated radiation therapy treatment can limit margin reduction and affect the protection of the organs at risk (OAR). In this study, the authors performed an analysis of three adaptive treatment strategies that combine information from both bony and gold marker registrations. The robustness of those treatments against the interfraction prostate movements was evaluated. A retrospective study was conducted on five prostate cancer patients with 7-13 daily cone-beam CTs (CBCTs). The clinical target volumes (CTVs) consisting of pelvic lymph nodes, prostate, and seminal vesicles as well as the OARs were delineated on each CBCT and the initial CT. Three adaptive strategies were analyzed. Two of these methods relied on a two-step patient positioning at each fraction. First step: a bony registration was used to deliver the nodal CTV prescription. Second step: a gold marker registration was then used either to (1) complete the dose delivered to the prostate (complement); (2) or give almost the entire prescription to the prostate with a weak dose gradient between the targets to compensate for possible motions (gradient). The third method (COR) used a pool of precalculated plans based on images acquired at previous treatment fractions. At each new fraction, a plan is selected from that pool based on the daily position of prostate center-of-mass. The dosimetric comparison was conducted and results are presented with and without the systematic shift in the prostate position on the CT planning. The adaptive strategies were compared to the current clinical standard where all fractions are treated with the initial nonadaptive plan. The minimum daily prostate D95% is improved by 2%, 9%, and 6% for the complement, the gradient, and the COR approaches, respectively, compared to the nonadaptive method. The average nodal CTV D95% remains constant across the strategies, except for the gradient approach

  14. Dosimetric evaluation of three adaptive strategies for prostate cancer treatment including pelvic lymph nodes irradiation

    International Nuclear Information System (INIS)

    Cantin, Audrey; Gingras, Luc; Archambault, Louis; Lachance, Bernard; Foster, William; Goudreault, Julie

    2015-01-01

    Purpose: The movements of the prostate relative to the pelvic lymph nodes during intensity-modulated radiation therapy treatment can limit margin reduction and affect the protection of the organs at risk (OAR). In this study, the authors performed an analysis of three adaptive treatment strategies that combine information from both bony and gold marker registrations. The robustness of those treatments against the interfraction prostate movements was evaluated. Methods: A retrospective study was conducted on five prostate cancer patients with 7–13 daily cone-beam CTs (CBCTs). The clinical target volumes (CTVs) consisting of pelvic lymph nodes, prostate, and seminal vesicles as well as the OARs were delineated on each CBCT and the initial CT. Three adaptive strategies were analyzed. Two of these methods relied on a two-step patient positioning at each fraction. First step: a bony registration was used to deliver the nodal CTV prescription. Second step: a gold marker registration was then used either to (1) complete the dose delivered to the prostate (complement); (2) or give almost the entire prescription to the prostate with a weak dose gradient between the targets to compensate for possible motions (gradient). The third method (COR) used a pool of precalculated plans based on images acquired at previous treatment fractions. At each new fraction, a plan is selected from that pool based on the daily position of prostate center-of-mass. The dosimetric comparison was conducted and results are presented with and without the systematic shift in the prostate position on the CT planning. The adaptive strategies were compared to the current clinical standard where all fractions are treated with the initial nonadaptive plan. Results: The minimum daily prostate D 95% is improved by 2%, 9%, and 6% for the complement, the gradient, and the COR approaches, respectively, compared to the nonadaptive method. The average nodal CTV D 95% remains constant across the strategies

  15. Treatment of oil pollution on water

    International Nuclear Information System (INIS)

    Haywood, K.H.; Haywood, P.C.; Haywood, K.S.

    1991-01-01

    Oil or other polluting material on or near the surface of a body of water is treated by a device comprising a tube having a slot through which fluid within the tube emerges. A cover directs the emerging fluid over the curved outer surface of the tube. The fluid may be water or a mixture of water and a dispersant. The device may be provided with fins. Some or all of the treated water may be collected in a tank and some or all may be returned to the sea. The device may be rendered buoyant by a pair of floats or may be part of a larger sea-going vessel. (Author)

  16. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  17. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  18. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Combined modality treatment including intraoperative radiotherapy in locally advanced and recurrent rectal cancer

    International Nuclear Information System (INIS)

    Tveit, Kjell Maque; Wiig, Johan N.; Olsen, Dag Rune; Storaas, Andreas; Poulsen, Jan Peter; Giercksky, Karl-Erik

    1997-01-01

    Background: Treatment of locally advanced and recurrent rectal cancer usually has a high local recurrence rate and poor survival. Promising results have been reported by combined external radiotherapy, extensive surgery and intraoperative radiotherapy (IORT). Methods: One hundred fifteen patients with locally advanced rectal cancers fixed to the pelvic wall or locally recurrent rectal cancers underwent preoperative external radiotherapy with 46-50 Gy. Six to 8 weeks later radical pelvic surgery was attempted, and was combined with intraoperative electron beam radiotherapy (15-20 Gy) in 66 patients. The patients were followed closely to evaluate complication rate, local and distant recurrence rate and survival. Results: Surgery with no macroscopic tumour remaining was obtained in 65% of the patients with no postoperative deaths. Pelvic infection was the major complication (21%). Although the observation time is short (3-60 months), the local recurrence rate seems low (22%) and survival seems promising (about 60% at 4 years) in patients with complete tumour resection, in contrast to patients with residual tumour (none living at 4 years). Conclusions: The combined modality treatment with preoperative external radiotherapy and extensive pelvic surgery with IORT is sufficiently promising to start a randomized trial on the clinical value of IORT as a boost treatment in the multidisciplinary approach to this disease

  20. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  1. Ship board testing of a deoxygenation ballast water treatment.

    Science.gov (United States)

    McCollin, Tracy; Quilez-Badia, Gemma; Josefsen, Kjell D; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2007-08-01

    A ship board trial of a deoxygenation method for treating ballast water was carried out during a voyage from Southampton (United Kingdom) to Manzanillo (Panama). A nutrient solution added to two ballast tanks encouraged bacterial growth, resulting in a gradual change to an anoxic environment. Samples were taken from two treated tanks and two untreated tanks to assess changes in the abundance and viability of zooplankton, phytoplankton and bacteria. The work was carried out before the International Maritime Organization (IMO) standard was agreed so only a broad indication of whether the results achieved the standard was given. For the zooplankton, the standard would have been achieved within 5 or 7 days but the phytoplankton results were inconclusive. The biological efficacy was the result of the combination of several factors, including the treatment, pump damage and an increase in the water temperature during the voyage.

  2. TREATMENT OF GREY WATER USING CONSTRUCTED WETLAND SYSTEM

    OpenAIRE

    David Prashant Asirvadam; K. Dhivya Bharathi; P. Durairaj; M. Kaleeswaran; S. Abinaya

    2017-01-01

    The grey water is the waste water that is generated in the households or office buildings from streams without fecal contamination. Sources of grey water include water from sinks, showers, baths, washing machine or dish washers. As grey water contains fewer pathogens than domestic waste, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation. The removal of toxic content in grey water in this era is one of the most needed process...

  3. Evaluation of two methods in controlling dental treatment water contamination.

    Science.gov (United States)

    Bansal, Ritu; Puttaiah, Raghunath; Harris, Robert; Reddy, Anil

    2011-03-01

    Dental unit water systems are contaminated with biofilms that amplify bacterial counts in dental treatment water in excess of a million colony forming units per milliliter (cfu/ml). The Centers for Disease Control and Prevention and the American Dental Association have agreed that the maximum allowable contamination of dental treatment water not exceed 500 cfu/ml. This study was conducted to evaluate two protocols in controlling contamination of dental unit water systems and dental treatment water. Both methods used an antimicrobial self-dissolving chlorine dioxide (ClO₂) tablet at a high concentration (50 ppm) to shock the dental unit water system biofilms initially followed by periodic exposure. To treat dental treatment source water for patient care, 3 parts per million (ppm) ClO₂ in municipal/tap water was compared to use of a citrus botanical extract dissolved in municipal water. Heterotrophic microbial counts of effluent water and laser scanning confocal microscopy were performed to evaluate effects of the two treatments. Results from this study indicated that both treatments were effective in controlling biofilm contamination and reducing heterotrophic plate counts Contemp Dent Pract 2011;12(2):73-83. Source of support: Nil Conflict of interest: None declared.

  4. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  5. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  6. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  7. Advantageous technology for treatment of laundry waters

    International Nuclear Information System (INIS)

    Karlin, Y.; Gorbachev, D.; Volkov, A.; Barinov, A.

    2001-01-01

    In this paper, based on preliminary experimental studies, an improved scheme for cleaning of laundry water is offered which allows reuse of water and components of laundry solutions and produces low amounts of secondary radioactive waste. The principal feature of the proposed process is that waste water from rinsing (60-80% of the total volume) is processed by hyperfiltration, but waste water from the laundry (20-40% of the total volume) is treated by ultrafiltration. Concentrates after reverse osmosis desalination of waste liquids (after rinsing) contain a majority of laundry waste components, since a hyperfiltration membrane efficiently retains salts and surfactant molecules. Desalinated water (permeate) after hyperfiltration is reused, further reducing the volume of liquid wastes. (author)

  8. Design of a high-lift experiment in water including active flow control

    International Nuclear Information System (INIS)

    Beutel, T; Schwerter, M; Büttgenbach, S; Leester-Schädel, M; Sattler, S; El Sayed, Y; Radespiel, R; Zander, M; Sinapius, M; Wierach, P

    2014-01-01

    This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development. (technical note)

  9. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  10. Evaluation of field test kits including immunoassays for the detection of contaminants in soil and water

    International Nuclear Information System (INIS)

    Waters, L.C.; Smith, R.R.; Counts, R.W.; Stewart, J.H.; Jenkins, R.A.

    1993-01-01

    Effective field test methods are needed for hazardous waste site characterization and remediation. Useful field methods should be rapid, analyte-specific, cost-effective and accurate in the concentration range at which the analyte is regulated. In this study, field test kits for polychlorinated biphenyls (PCBs), mercury, lead and nitrate were evaluated with reference to these criteria. PCBs and mercury, in soils, were analyzed by immunoassay. Ionic lead and nitrate, in water, were measured chemically using test strips. Except for lead, each analyte was measured in both spiked and actual field samples. Twenty to 40 samples per day can be analyzed with the immunoassays and even more with the strip tests. The sensitivity of the immunoassays is in the 1-3 ppM range. Nitrate was consistently detected at ≥5 ppM; lead ions at ≥20 ppM. Results obtained using these methods compared favorably with those obtained by standard laboratory methods. In addition to being useful field screening methods, these kits can be used in the laboratory to sort out negative samples and/or to define proper dilutions for positive samples requiring further analysis

  11. A void ratio dependent water retention curve model including hydraulic hysteresis

    Directory of Open Access Journals (Sweden)

    Pasha Amin Y.

    2016-01-01

    Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.

  12. Non-traumatic thoracic emergencies: imaging and treatment of thoracic fluid collections (including pneumothorax)

    International Nuclear Information System (INIS)

    Ellis, J.R.C.; Gleeson, F.V.

    2002-01-01

    Cross-sectional imaging has revolutionised the radiological diagnosis of pleural collections. Not only can the precise location and volume of a pleural effusion be established, but also features specific for the aetiology of the effusion can be demonstrated. Increasingly, radiologists are called upon to perform image-guided biopsies, aspirations and small bore chest drain placement, all of which have been shown to be safe and efficacious. Pneumothoraces occurring due to acute trauma and in an intensive care setting can also benefit from radiological input, both in terms of diagnosis and image-guided treatment. (orig.)

  13. Non-traumatic thoracic emergencies: imaging and treatment of thoracic fluid collections (including pneumothorax)

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.R.C.; Gleeson, F.V. [Department of Radiology, The Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ (United Kingdom)

    2002-08-01

    Cross-sectional imaging has revolutionised the radiological diagnosis of pleural collections. Not only can the precise location and volume of a pleural effusion be established, but also features specific for the aetiology of the effusion can be demonstrated. Increasingly, radiologists are called upon to perform image-guided biopsies, aspirations and small bore chest drain placement, all of which have been shown to be safe and efficacious. Pneumothoraces occurring due to acute trauma and in an intensive care setting can also benefit from radiological input, both in terms of diagnosis and image-guided treatment. (orig.)

  14. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  15. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  17. Use of LiDAR to Assist in Delineating Waters of the United States, Including Wetlands

    Science.gov (United States)

    2014-03-01

    components: a mounting platform, a laser and scanning mirror, an inertial measurement unit (IMU), a global positioning system (GPS) antenna and...including but not limited to TIFF, ASC , IMG, and KML files or compressed as a KMZ file. These files are quickly imported and viewed using GIS such as...sediment transport processes and hydraulics. Sedimentology 56:2024–2043. Hogg, A., and J. Holland. 2008. An evaluation of DEMs derived from LiDAR

  18. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Kleinschmidt, Ross; Akber, Riaz

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk

  19. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  20. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred ... were analysed for some physical (particle size distribution, particle density and plant available water) and chemical attributes ...... for Industrial Wastes – Theory and Practice.

  1. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  2. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  3. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  4. Comparative study of household water treatment in a rural ...

    African Journals Online (AJOL)

    This research presents the household treatment of drinking water samples in a rural community in Nigeria by boiling and water guard. The physicochemical parameters of the raw water samples with exception of chloride, BOD and dissolved oxygen were within the permissible limits of the World Health Organization (WHO) ...

  5. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  6. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  7. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  8. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  9. Innovative on-site treatment cuts frac flowback water costs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    Water is an essential component of the drilling and hydraulic fracturing or fracking process and so the natural gas industry is a heavy user of water. Learning from other industries, gas producers are now employing mobile service providers with the latest integrated treatment systems (ITS) to clean flowback and produced water from fracturing operations at the wellhead. This paper presents a novel on-site treatment for frac water. ITS are pre-fabricated on moveable skids or a truck trailer with all the necessary controls, piping, valves, instrumentation, pumps, mixers and chemical injection modules. They remove oil and other hydrocarbons, suspended solids, and dissolved metals from the frac water using the tightly controlled chemistry, separation and filtration technology. This method can cut the average cost of treating produced water by 50%, simultaneously allowing drillers to maximize their efforts and manpower on generating oil and gas profits, rather than on water treatment.

  10. Treatment of radon rich well water

    International Nuclear Information System (INIS)

    Mose, D.; Mushrush, G.; Chrosniak, C.

    1991-01-01

    Private wells supply potable water to about 25% of the homes in northern Virginia, and almost all water wells contain radon, a carcinogenic radionuclide derived form uranium in rocks and soil. The average Virginia well provides about 2,000-3,000 pCi/l of dissolved radon; the US Environmental Protection Agency has proposed that 300 pCi/l of should be the allowed maximum for public water supplies. To estimate the ability of activated charcoal to remove radon from private well water, a home supplied by a water well carrying at sign 4,000 pCi/l was studied. Following 1 year of water measurements, an in-line tank containing 1 cubic foot of activated charcoal was installed, and a subsequent 6 month interval of radon measurements on untreated and on treated water was conducted. Although removal rates of more than 90% have been reported, this study home showed a 60-70% radiation removal in the tank. A high percentage removal rate was reached in less than a month after installation, and was maintained for about 4 months, but the removal rate declined to about 50% by the end of the testing interval. Additional studies are being conducted to determine the effect of using different charcoal volumes, different charcoal types; also being studied is the gamma emission of the charcoal tank

  11. Improvement for waste water treatment process of a uranium deposite and its effect

    International Nuclear Information System (INIS)

    Huang Jimao

    2013-01-01

    Uranium was recovered from alkaline uranium ores by heap leaching and traditional agitation leaching methods at a uranium mine, and the waste water (including waste water produced in hydrometallurgy process and mine drainage) was treated by using chemical precipitation method and chemical precipitation loading method. It was found that the removal rate of uranium by the waste water treatment process was not satisfactory after one year's run. So, the waste water treatment process was improved. After the improvement, removal rate of CO 3 2- ,HCO 3 - , U and Ra was enhanced and the treated waste water reached the standard of discharge. (author)

  12. Selection criteria for wastewater treatment technologies to protect drinking water.

    Science.gov (United States)

    von Sperling, M

    2000-01-01

    The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed.

  13. Clay Ceramic Filter for Water Treatment

    Directory of Open Access Journals (Sweden)

    Zereffa Enyew Amare

    2017-05-01

    Full Text Available Ceramic water filters were prepared from different proportions of kaolin and soft wood and sintered at 900 °C, 950 °C, and 1000 °C. The flow rate, conductivity, pH of filtered water and removal efficiency (microbial, water hardness agent’s, nitrite and turbidity were analysed. The ceramic filter with 15 % saw dust, 80 % clay and 5 % grog that was fired at temperature of 950 °C or 1000 °C showed the best removal efficiency. Statistical ANOVA tests showed a significant difference between ceramic filters with various compositions in their removal efficiencies.

  14. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea.

    Science.gov (United States)

    Lee, Sunggyu; Liao, Chunyang; Song, Geum-Ju; Ra, Kongtae; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2015-01-01

    Due to the regulation on bisphenol A (BPA) in several industrialized countries, the demand for other bisphenol analogues (BPs) as substitutes for BPA is growing. Eight BPs were determined in sludge from 40 representative wastewater treatment plants (WWTPs) in Korea. Total concentrations of BPs (ΣBP) in sludge ranged from bisphenol F (BPF), suggesting use of BPF in certain industrial products in Korea. No significant correlations were found between BPs and the WWTP characteristics. The average per-capita emissions of BPs ranged from 0.04 (BPP) to 886 g capita(-1) d (BPA) through WWTP discharges. The emission fluxes of ΣBP through industrial WWTPs were 2-3 orders of magnitudes higher than those calculated for domestic WWTPs, indicating that industrial discharges are the major source of BPs into the Korean environment. This is the first nationwide survey of BPs in sludge from Korean WWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... electricity source in the system. It was estimated that, overall, up to ca. 180—190 kt CO2-eq. y−1 may be saved by optimizing the MBT plants under assessment....

  16. [Effective immunosuppresive therapies including steroid pulse treatment for intramuscular hematoma in iliopsoas in acquired hemophilia].

    Science.gov (United States)

    Mohri, Hiroshi; Tanabe, Juichi; Takagi, Hiroshi; Murata, Takashi

    2007-12-01

    Acquired hemophilia is a life-threatening bleeding disorder by the development of autoantibody against factor VIII. The therapeutic approach relies on steroid, cyclophosphamide and/or cyclosporine. A 64-year-old man was referred to our hospital with extensive hematoma in both psoas muscles, severe anemia of 6.8 g/dl, prolonged activated partial thromboplastin time over 200 seconds, and factor VIII coagulation activity (FVIII: C) of 1.9%. A factor VIII inhibitor was detected at 118 Bethesda units (BU). The diagnosis of acquired hemophilia was made in the absence of a detectable cause. The inhibitor was IgG with a subclass of IgG4 and reacted with 72 kDa fragment of factor VIII light chain. Steroid pulse therapy following steroid treatment resulted in the resolution of acquired hemophila with marked and prolonged efficacy.

  17. Some research aspects for irradiation treatment of the polluted waters in China

    International Nuclear Information System (INIS)

    Yang Jingtian; Yun Guichun; Ha Hongfei

    1988-01-01

    This paper is a review of some aspects of research work on radiation treatment of surface and industrial polluted waters in China. These studies include: radiation-oxidized decomposition of phenols, cyanides and pesticides etc., radiation decolourization of wastewater from dyeworks, radiation modification of the biodegradability of saponificated wastewater as well as radiation sterilization of surface water, hospital sewage sludge, industrial cooling-water and water flooding in oil field. (author)

  18. Surgical treatment of severe osteoporosis including new concept of advanced severe osteoporosis

    Directory of Open Access Journals (Sweden)

    Jin Hwan Kim

    2017-12-01

    Full Text Available Severe osteoporosis is classified as those with a bone mineral density (BMD T-score of −2.5 or lower, and demonstrate one or more of osteoporotic, low-trauma, fragility fractures. According to the general principle of surgical approach, patients with severe osteoporosis require not only more thorough pre- and postoperative treatment plans, but improvements in surgical fixtures and techniques such as the concept of a locking plate to prevent bone deformity and maximizing the blood flow to the fracture site by using a minimally invasive plate osteosynthesis. Arthroplasty is often performed in cases of displaced femoral neck fracture. Otherwise internal fixation for the goal of bone union is the generally accepted option for intertrochanteric, subtrochanteric, and femoral shaft fractures. Most of osteoporotic spine fracture is stable compression fracture, but vertebroplasty or kyphoplasty may be performed some selective patients. If neurological paralysis, severe spinal instability, or kyphotic deformity occurs, open decompression or fusion surgery may be considered. In order to overcome shortcomings of the World Health Organization definition of osteoporosis, we proposed a concept of ‘advanced severe osteoporosis,’ which is defined by the presence of proximal femur fragility fracture or two or more fragility fractures in addition to BMD T-score of −2.5 or less. In conclusion, we need more meticulous approach for surgical treatment of severe osteoporosis who had fragility fracture. In cases of advanced severe osteoporosis, we recommend more aggressive managements using parathyroid hormone and receptor activator of nuclear factor kappa-B ligand monoclonal antibody.

  19. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    .... The contents have been updated to cover changes to regulatory requirements, testing methodology, and design approaches, as well as the emergent topics of pharmacological agents in the water supply...

  20. Disinfection of Water by Ultrasound: Application to Ballast Water Treatment

    National Research Council Canada - National Science Library

    Brizzolara, Robert A; Holm, Eric R; Stamper, David M

    2006-01-01

    .... A contact time for one log kill of an E. coli pure culture of 0.6 minutes was measured when using higher average intensities resulting from reduced treatment cell diameters, a substantial improvement over previous work...

  1. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  2. Midterm results of endovascular stent graft treatment for descending aortic aneurysms including high-risk patients

    Directory of Open Access Journals (Sweden)

    Gussmann, Andreas

    2006-04-01

    Full Text Available Methods: 21 patients (17 men, 4 women; mean age 66.1 years, range 29-90 years with 15 true aneurysms, and 6 type B-dissections were treated by implantation of a TalentTM Endoluminal Stentgraft System from February 2000 to July 2003. In 3 cases it was necessary to overstent the left subclavian artery, in 1 case to overstent the left common carotid. Results: 2 patients (9.5% died during the first 30 days (1 myocardial infarction, 1 pneumonia. Two patients (9.5% suffered from cerebral ischemia and needed revascularisation. No paraplegia, no stroke occurred. One endoleak required additional stenting. No patient needed conversion. Follow-up, average 25.4 months (range 0-39, was 100% complete. During this another two patients died of myocardial infarction i.e. 9.5% (the above mentioned endoleak, but no late migration were detected in the remaining patients. In all cases the graft lumen stayed patent. Conclusions: Treatment of descending thoracic aortic aneurysm with an endovascular approach has acceptable mortality and morbidity-rates even in high risk patients. Procedural overstenting of the subclavian artery requires subclavian revascularisation in a minority of cases.

  3. Treatment modalities for caries management, including a new resin infiltration system.

    Science.gov (United States)

    Kugel, Gerard; Arsenault, Peter; Papas, Athena

    2009-10-01

    Seemingly against all odds, dental caries still affects most people in the US. While fluoridated products, school-based screening and cleaning programs, better patient education, and professional and chemotherapeutic interventions have all impacted certain populations, caries is still the most prevalent chronic childhood disease and continues to affect a high percentage of adolescents, young and middle-aged adults, and seniors. Much research has proven that dental caries is not just an occasional cycle of cavitation but a complex and infectious disease process. Historically, addressing the caries challenge has relied on prevention and restoration, with no intermediary means to stop lesion progression. Recently, a technique called caries infiltration was introduced that fills the noncavitated pores of an incipient lesion with a low-viscosity resin by capillary action, creating a barrier that blocks further bacterial diffusion and lesion development. This microinvasive method for stabilizing early lesions requires no drilling or anesthesia and does not alter the tooth's anatomic shape. In cases of white spot lesions in the esthetic zone, it also eliminates opaqueness and blends with surrounding natural teeth. This article presents an overview of caries prevention initiatives and a case demonstrating the new caries infiltration technique. Combined with shifting the focus to caries risk assessment, this promising technology may prove to be a significant addition to the profession's caries treatment armamentarium.

  4. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  5. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  6. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  7. Removal of oil products from fitters in water treatment plants

    International Nuclear Information System (INIS)

    Carlson, B.B.; Olander, M.A.; Arvin, E.

    1996-01-01

    Gasoline and oil spills cause aromatic hydrocarbon pollution of ground water. Benzene, toluene and naphtalene can be found in water wells. The purpose of the experiment was to investigate the filtering of water and biological degradation of aromatics on water treatment filters. These filters were proved to reduce benzene, toluene and naphtalene concentration from 5-12 μg/l to 0,3-0,6 μg/l (86-98 % removal). (EG)

  8. Utilities and Power - Sector Report. Malaysia: including electricity, gas, water, sewerage, telecommunications and information technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report is one of a series designed to introduce British exporters to the opportunities offered by the Malaysian market. The Seventh Malaysia Plan, covering the five year period, 1996-2000, contains an ambitious menu of infrastructure projects. Total expenditure under the Plan is envisaged at RM450 billion, of which around RM380 billion will be sourced from the private sector. This is an indication of the wealth accumulated within the Malaysian economy. The infrastructure developments identified are designed to take the country towards Vision 2020. These infrastructure developments will continue to make the country highly attractive to foreign investors, who were the catalyst for Malaysia`s explosive growth over the last few years. Malaysian Corporations have also grown rapidly and are becoming international investors and traders in their own right, including in the United Kingdom. As they expand, seeking new markets, they are looking also for partners with whom they can share technology and jointly develop projects. Such companies are often ideal partners for UK companies wishing to enter the Malaysian and Asian market. Malaysia offers opportunities to companies prepared to make the small effort to know and understand the country and its people. This report will assist companies to develop a useful understanding of the market. (author)

  9. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  10. Remediation options and the significance of water treatment at former uranium production sites in Eastern Germany

    International Nuclear Information System (INIS)

    Gatzweiler, R.; Jakubick, A.T.; Kiessig, G.

    2000-01-01

    The WISMUT remediation project in the States of Saxony and Thuringia, Germany, comprises several mine and mill sites including large volumes of production residues. Due to the climate, the intensive land use and the regulatory conditions, the water path is most important in evaluating remediation options. Water treatment is an integral part of mine flooding, mine dump and tailings remediation, and treatment costs represent a major portion of the overall costs of the project. Uncertainties in the estimations of quantities of mine and seepage waters, variations in quality from site to site, and changing conditions in time demand a strategic approach to the selection and optimization of water treatment methods. The paper describes options considered and experience gained including efforts to limit long-term treatment costs by developing and applying passive treatment systems and negotiating acceptable discharge limits. (author)

  11. Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq

    Science.gov (United States)

    Toma, Janan. Jabbar.; Hanna, Aveen. Matti.

    2017-09-01

    Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.

  12. Fate of Carbamazepine during Water Treatment

    DEFF Research Database (Denmark)

    Kosjek, T.; Andersen, Henrik Rasmus; Kompare, Boris

    2009-01-01

    of acridone, hydroxy-(9H,10H)-acridine-9-carbaldehyde, acridone-N-carbaldehyde, and 1-(2-benzaldehyde)-(1H,3H-quinazoline-2,4-dione, while biological breakdown of acridine yielded acridone. In parallel, the transformation product iminostilbene was observed during sample analysis. In addition,this study...... compared the treatment technologies according to the removal of carbamazepine and the production and decay of its transformation products. The most successful method for the removal of carbamazepine was UV treatment, while acridine and acridone were more susceptible to biological treatment. Therefore...

  13. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  14. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  15. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  16. Waste water treatment of CO2+O2 in-situ leaching uranium

    International Nuclear Information System (INIS)

    Xu Lechang; Liu Naizhong; Du Zhiming; Wang Hongying

    2012-01-01

    An in-situ leaching uranium mine located in Northern China uses CO 2 +O 2 leaching process to leach uranium. The consumption of industrial reagent and water, and generation and discharge of waste water are minimized by comprehensive waste water treatment technology with process water recycle, reverse osmosis and natural evaporation. The process water of the mine that can be recycled and reused includes barren fluid, solution washing loaded resin, precipitating mother solution and filtered liquor of yellow cake. Solution regenerating barren resin is treated by reverse osmosis. Concentrated water from reverse osmosis and solution washing barren resin are naturally evaporated. (authors)

  17. Detection of Cyanotoxins During Potable Water Treatment

    Science.gov (United States)

    In 2007, the U.S. EPA listed three cyanobacterial toxins on the CCL3 containment priority list for potable drinking waters. This paper describes all methodologies used for detection of these toxins, and assesses each on a cost/benefit basis. Methodologies for microcystin, cylindrospermopsin, and a...

  18. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Science.gov (United States)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  19. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  20. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  1. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  2. Toxicity assessment of water at different stages of treatment using Microtox assay

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available Number of potentially toxic hydrophobic organic contaminants e.g. polycyclic aromatic hydrocarbons, pesticides, polychlorinated biphenyls and dioxins having entered aquatic environment, including potential sources of drinking water. Unfortunately, not all micropollutants can be removed during water treatment processes. What is more, disinfectants can react with some organic compounds already present in the water, and form disinfection by-products which also can be toxic. The aim of this study was to assess toxicity of water at different stages of water treatment and to verify usefulness semipermeable membrane devices in monitoring of drinking water. For this purpose, semipermeable membrane devices (SPMDs were deployed in a surface water treatment plant. To determine the effect of water treatment on the presence of toxic micropollutants, study was conducted for a period of 5 months. Three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After sampling dialysis in organic solvent was carried out and extracts were then analyzed with the Microtox acute toxicity test. The study has indicated the utility as well as some limitations of combining SPMDs with bioluminescence assay in the monitoring of biological effects of bioavailable hydrophobic pollutants in drinking water.

  3. Grace buys aquatic quimica to boost water treatment stake

    International Nuclear Information System (INIS)

    Hunter, D.

    1993-01-01

    How W.R. Grace (Boca Raton, FL) president and newly appointed CEO J.P. Bolduc plans to expand Grace's core businesses following his drastic portfolio pruning during the past 18 months is a key question for Grace watchers. Grace's acquisition of $70-million/year water treatment firm Aquatec Quimica (Sao Paulo) is one indicator. Grace's $300-million/year Dearborn water treatment business is currently a weak number three [in the world market], and we want to be number one or number two, nothing less, Bolduc insists. The Aquatc buy meets his criterion of a synergistic and strategic acquisition with which he plans to expand the business, backed by more focused R ampersand D. Disposal last month of Homco oil field services operation, for $98.5 million, takes Bolduc toward his $500-million target for the year for asset sales. These totaled $1.1 billion at the end of 1992. The final tally will be more than the $1.5-billion target previously stated, Bolduc says, due to higher realizations on certain sales and additions to the list, including Grace Culinary and Colowyo Coal

  4. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  5. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  6. Radiation treatment for endocrine disrupters in water

    International Nuclear Information System (INIS)

    Taguchi, Mitsumasa

    2003-01-01

    The radiation-induced decomposition of a trace amount of 17 β-estradiol (E2) in water was studied as a function of the dose of 60Co γ-rays. Concentration of both E2 and E2 activity were estimated by LC-MS and ELISA, and decreased with an increase in the dose of γ-rays. E2 at 1.8-nM in water was degraded almost completely by irradiation at 10 Gy (=J/kg), but the E2 activity of the same sample still remained, and decreased by 30 Gy to be lower than the threshold level of contamination to induce some estrogenic effects on the environmental ecology. (author)

  7. Ballast Water Treatment Corrosion Scoping Study

    Science.gov (United States)

    2011-10-01

    NANPCA Nonindigenous Aquatic Nuisance Prevention and Control Act NaCl Sodium Chloride NIOZ Nederlands Instituut voor Onderzoek der Zee NISA National...Based Testing Report on the Ecochlor System performed by Nederlands Instituut voor Onderzoek der Zee (NIOZ) (Veldhuis, 2008), ballast water treated...and the Relevant IMO Guideline. Nederlands Instituut voor Onderzoek der Zee (NIOZ). Den Burg: Royal Netherlands Institute for Sea Research. Volkening

  8. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  9. Immersed membrane technology for advanced wastewater treatment and water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkies, J.W. [Zenon Municipal Systems Inc., Oakville, ON (Canada)

    2000-07-01

    The use of membrane technology for both municipal water purification and wastewater/sewage treatment was discussed. Membranes are available in a wide range of forms and configurations. Their primary characteristics are pore size and molecular weight separation which classifies then as either microfiltration, ultrafiltration or reverse osmosis membranes. Ultrafiltration can separate soluble organics and insoluble solids such as bacteria, viruses, colloids and suspended particles. Microfiltration can separate most suspended solids including bacteria, many viruses and other suspended solids. It is not, however a complete barrier to viruses and is best used in conjunction with an ultra-violet disinfecting process. Different membrane configurations currently available were described along with their performance and efficiency. The ZenoGem{sup R} process which operates at high organic loadings, meets surface water discharge criteria. This membrane bioreactor makes wastewater reuse an achievable and cost-effective option, particularly when it is combined with carbon filtration and ultra-violet disinfection. The Cycle-Let{sup R} system produces a treated stream that is suitable for re-use in non-potable applications such as toilet flush water or for irrigation. 1 tab., 3 figs.

  10. Newly Diagnosed Meniere's Disease: Clinical Course With Initiation of Noninvasive Treatment Including an Accounting of Vestibular Migraine.

    Science.gov (United States)

    Sbeih, Firas; Christov, Florian; Gluth, Michael B

    2018-05-01

    To describe the course of Meniere's disease with noninvasive treatment during the first few years after initial diagnosis. A retrospective review of consecutive patients with newly diagnosed definite Meniere's disease between 2013 and 2016 and a minimum follow-up of 1 year. Patients received a written plan for low sodium, water therapy, and treatment with a diuretic and/or betahistine. Subjects were screened and treated for vestibular migraine as needed. Vertigo control and hearing status at most recent follow-up were assessed. Forty-four subjects had an average follow up of 24.3 months. Thirty-four percent had Meniere's disease and vestibular migraine, and 84% had unilateral Meniere's disease. Seventy-five percent had vertigo well controlled at most recent follow-up, with only noninvasive treatments. Age, gender, body mass index, presence of vestibular migraine, bilateral disease, and duration of follow-up did not predict noninvasive treatment failure. Worse hearing threshold at 250 Hz and lower pure tone average (PTA) at the time of diagnosis did predict failure. Fifty-two percent of ears had improved PTA at most recent visit, 20% had no change, and 28% were worse Conclusions: Encountering excellent vertigo control and stable hearing after a new diagnosis of Meniere's disease is possible with noninvasive treatments. Worse hearing status at diagnosis predicted treatment failure.

  11. Preferences for Depression Treatment Including Internet-Based Interventions: Results From a Large Sample of Primary Care Patients

    Directory of Open Access Journals (Sweden)

    Marie Dorow

    2018-05-01

    Full Text Available Background: To date, little is known about treatment preferences for depression concerning new media. This study aims to (1 investigate treatment preferences for depression including internet-based interventions and (2 examine subgroup differences concerning age, gender and severity of depression as well as patient-related factors associated with treatment preferences.Methods: Data were derived from the baseline assessment of the @ktiv-trial. Depression treatment preferences were assessed from n = 641 primary care patients with mild to moderate depression regarding the following treatments: medication, psychotherapy, combined treatment, alternative treatment, talking to friends and family, exercise, self-help literature, and internet-based interventions. Depression severity was specified by GPs according to ICD-10 criteria. Ordinal logistic regression models were conducted to identify associated factors of treatment preferences.Results: Patients had a mean age of 43.9 years (SD = 13.8 and more than two thirds (68.6% were female. About 43% of patients had mild depression while 57% were diagnosed with moderate depression. The majority of patients reported strong preferences for psychotherapy, talking to friends and family, and exercise. About one in five patients was very likely to consider internet-based interventions in case of depression. Younger patients expressed significantly stronger treatment preferences for psychotherapy and internet-based interventions than older patients. The most salient factors associated with treatment preferences were the patients' education and perceived self-efficacy.Conclusions: Patients with depression report individually different treatment preferences.Our results underline the importance of shared decision-making within primary care. Future studies should investigate treatment preferences for different types of internet-based interventions.

  12. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-01-01

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water

  13. Isolation of viruses from drinking water at the Point-Viau water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Payment, P.

    1981-04-01

    Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were formed but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1-10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

  14. Variationally stable treatment of two- and three-photon detachment of H- including electron-correlation effects

    International Nuclear Information System (INIS)

    Liu, C.; Gao, B.; Starace, A.F.

    1992-01-01

    A variationally stable, adiabatic hyperspherical treatment of two- and three-photon detachment of H - is presented. Results are compared with analytic predictions of a zero-range potential model of H - . Detailed comparisions are made also with other theoretical results which include the effects of electron correlations. We predict analytically (and demonstrate numerically) an extreme sensitivity of the theoretical predictions to any errors in the value of the electron affinity employed. In an Appendix we show that the low-intensity limit of the Keldysh treatment [Sov. Phys. JETP 20, 1307 (1965)] of detachment of an electron bound in a zero-range potential agrees with the results of a perturbative treatment

  15. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    Science.gov (United States)

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  16. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    C++ programme to implement Brown's model for determining water quality usage ... predicting the re-use options of the wastewater treatment system was a ... skins from rural slaughter slabs/butchers, slaughter .... City (Karnataka State, India).

  17. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  18. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  19. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  20. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.

    2012-03-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer of this technology to other locations, specifically to developing countries. A four-step methodology was developed at UNESCO-IHE to analyse feasibility and to predict the performance of BF for water treatment. This included (i) hydraulic simulation using MODFLOW; (ii) determination of share of bank filtrate using NASRI BF simulator; (iii) prediction of water quality from a BF system using the water quality guidelines developed and (iv) comparison of the costs of BF systems and existing conventional surface water treatment systems for water treatment. The methodology was then applied to assess feasibility of BF in five cities in Africa. It was found that in most of the cities studied BF is a feasible and attractive option from hydraulic, water quality as well as operational cost considerations. Considerable operational and maintenance costs saving can be achieved and water quality can be further improved by switching from conventional chemical-based surface water treatment to BF or at least by replacing some of the treatment units with BF systems. © IWA Publishing 2012.

  1. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  2. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A new approach for evaluating water hammer including the initial state of pressurization of the installation and fluid

    Directory of Open Access Journals (Sweden)

    G. Kaless

    2016-04-01

    Full Text Available The water hammer phenomenon is well known since the 19th century, while its mathematical formulation, by means of differential equations, is due to works of researchers such us Allievi (1903 and others from the beginning of the 20th century. The equations found in the technical publications produce a strange water hammer when the initial condition is defined assuming an incompressible fluid and a rigid pipe. The correct solution requires solving the water hammer equations for the initial state. When the finite difference method is applied, the initial state is solved by means of a set of non-linear equations. A novel approach is proposed including the initial state of pressurization into the governing equations and hence simplifying the calculus of the initial conditions. Furthermore, a critical reading of the deduction of the equations is done pointing out conceptual inconsistencies and proposing corrections.

  4. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  5. Predictors of dropout in an outpatient treatment for problem drinkers including cognitive-behavioral therapy and the opioid antagonist naltrexone.

    Science.gov (United States)

    Vuoristo-Myllys, Salla; Lahti, Jari; Alho, Hannu; Julkunen, Juhani

    2013-11-01

    This study investigated predictors of dropout in an outpatient treatment program for problem drinking that included individual cognitive-behavioral therapy combined with naltrexone. Specifically, we investigated whether sociodemographic factors, severity of alcohol dependence, history of problem drinking, or intensity of alcohol craving assessed at the beginning of the treatment predicted dropout from an outpatient program among a sample of 372 patients (65% male). We also investigated whether the effectiveness of the treatment (the change in alcohol consumption and symptoms of alcohol craving) or adherence to naltrexone was related to dropout. Predictors of dropout were investigated using an analysis of covariance with the number of attended treatment sessions as an independent variable. Our results demonstrated that the treatment entry factors predictive of dropout were younger age, lower severity of alcohol dependence, better ability to resist and control alcohol use, and lower obsession with alcohol. In addition, those who dropped out were more likely to begin the program by abstaining from alcohol and had lower adherence to naltrexone use than those who completed the program. The length of stay for treatment was not related to change in alcohol consumption. Patients with less severe alcohol-related problems may lack motivation for treatment, specifically cognitive-behavioral therapy and naltrexone. These patients may benefit more from less intensive treatments.

  6. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  7. Data on microbial and physiochemical characteristics of inlet and outlet water from household water treatment devices in Rasht, Iran.

    Science.gov (United States)

    Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail

    2018-02-01

    In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.

  8. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  9. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  10. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  11. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  12. Effectiveness of home water treatment methods in Dschang ...

    African Journals Online (AJOL)

    The MPN (Most Probable Number) technique was used to assess the bacteriological quality of nine of the important drinking water sources in Dschang. Water from the most polluted source was then subjected to six home-based treatment methods, commonly used by the population. Boiling for up to thirty minutes was the ...

  13. Increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Chunqi Li; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-10-01

    The effect of water treatment at 500 and 600 K on solvent extractions of Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) coals was investigated. All the coals used show that the water treatments at 600 K increased the extraction yields greatly in the extractions with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent, NMP, or 1-methylnaphthalene (1-MN). However, the water treatments at 500 K and the heat treatments at 600 K without water gave only a slight increase in the yields. Characterizations of the water-treated coals were performed using ultimate and proximate compositions, Fourier transform infrared analysis, solvent swelling, nuclear magnetic resonance relaxation time, and viscoelasticity behavior. The swelling degree in methanol and toluene was increased by the water treatment at 600 K, suggesting that crosslinks become loosened by the treatment. The results of infrared analysis and the extraction temperature dependency of the extraction yields with NMP and 1-MN suggest that the loosening of {pi} - interactions, and of both {pi} - interactions and hydrogen bonds, are responsible for the yield enhancements for PO and UF coals, respectively. However, for IL coal, which exhibited a decrease in oxygen content and the amount of hydrogen-bonded OH, suggesting the occurrence of some chemical reactions, the yield enhancements may be due to the relaxation of hydrogen bonds and the removal of oxygen functional groups, such as the breaking of ether bonds. 17 refs., 3 figs., 5 tabs.

  14. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  15. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    Science.gov (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  16. Constructed Wetland Treatment Systems For Water Quality Improvement

    International Nuclear Information System (INIS)

    Nelson, E.

    2010-01-01

    growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

  17. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.

    2010-07-19

    the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

  18. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  19. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  20. Generic Protocol for the Verification of Ballast Water Treatment Technology. Version 5.1

    Science.gov (United States)

    2010-09-01

    and to build the scientific knowledge base needed to manage our ecological resources wisely, to understand how pollutants affect our health, and to...occurring in the water at the TF location. Ballast Water Treatment System (or System): Prefabricated , commercial-ready, treatment systems designed to...pathway to begin the development of technical procedures for approving BWTSs for installation on ships. EPA’s interest includes the ecological , economic

  1. STATE-OF-ART REPORT ABOUT WATER TREATMENT AND ENVIRONMENTAL IMPACTS IN RUSSIAN MINING

    OpenAIRE

    Lysova, Valeriya

    2014-01-01

    Mining industry has a great impact on the environment including aquatic systems. Therefore, efficient water treatment is an important factor for sustainable development of every mining enterprise. The study was done for the Finnish company Measurepolis Development Ltd. with the main aim to examine the current situation of water treatment and environmental impacts in Russian mining industry. The identification of the present needs and problems may help Measurepolis Development Ltd. to enter...

  2. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  3. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    Science.gov (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet

    Directory of Open Access Journals (Sweden)

    Mi T. Nguyen

    2017-12-01

    Full Text Available HighlightBacterial growth in fecally-contaminated water is highly variable and dependent on several factors.Regrowth occurs after chlorination (low doses, no residual.Indigenous microbial communities variably impact bacterial growth.A combination of treatments can both inactivate and inhibit growth.The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC only, GAC+chlorine (sodium hypochlorite, and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that—despite treatment of water with the BAMBi—E. coli, P. aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination

  5. Behavior of gadolinium-based diagnostics in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cyris, Maike

    2013-04-25

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L{sup -1} gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L{sup -1}. In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been

  6. Behavior of gadolinium-based diagnostics in water treatment

    International Nuclear Information System (INIS)

    Cyris, Maike

    2013-01-01

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L -1 gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L -1 . In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been determined

  7. Hygiena 3, a Forgotten Project for Electrolytic Water Treatment

    Directory of Open Access Journals (Sweden)

    Kryštof Drnek

    2012-01-01

    Full Text Available In the interwar period, the city of Prague had to resolve the problem of treating the polluted water produced by its citizens. From 1933 - 1936 an ambitious competition was held. The idea behind the competition was to bring in new ideas and projects for a new water treatment station.Hygiena 3 was one of the projects that was submitted. It proposed a treatment procedure based on electrolytic consolidation of contaminants in water into flocks. The project was found to be inventive and interesting but too expensive and not effective. Nevertheless it was evaluated as a well developed proposal and received an award from the city.

  8. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  9. An Update on Modifications to Water Treatment Plant Model

    Science.gov (United States)

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  10. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...

  11. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  12. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  13. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  14. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  15. BTEX compounds in water - future trends and directions for water treatment

    OpenAIRE

    Fayemiwo, OM; Daramola, MO; Moothi, K

    2017-01-01

    BTEX (benzene, toluene, ethylbenzene, and xylene) compounds are common water resource and potable water pollutants that are often left undetected and untreated by municipal treatment systems in spite of the negative repercussions associated with their ingestion. The US EPA has classified these pollutants as priority pollutant, yet they are persistently present in a variety of water resources. In this review paper, we highlight the sources and reported concentrations of BTEX compounds in water...

  16. Perceptions of Health Communication, Water Treatment and Sanitation in Artibonite Department, Haiti, March-April 2012.

    Directory of Open Access Journals (Sweden)

    Holly Ann Williams

    Full Text Available The international response to Haiti's ongoing cholera outbreak has been multifaceted, including health education efforts by community health workers and the distribution of free water treatment products. Artibonite Department was the first region affected by the outbreak. Numerous organizations have been involved in cholera response efforts in Haiti with many focusing on efforts to improve water, sanitation, and hygiene (WASH. Multiple types of water treatment products have been distributed, creating the potential for confusion over correct dosage and water treatment methods. We utilized qualitative methods in Artibonite to determine the population's response to WASH messages, use and acceptability of water treatment products, and water treatment and sanitation knowledge, attitudes and practices at the household level. We conducted eighteen focus group discussions (FGDs: 17 FGDs were held with community members (nine among females, eight among males; one FGD was held with community health workers. Health messages related to WASH were well-retained, with reported improvements in hand-washing. Community health workers were identified as valued sources of health information. Most participants noted a paucity of water-treatment products. Sanitation, specifically the construction of latrines, was the most commonly identified need. Lack of funds was the primary reason given for not constructing a latrine. The construction and maintenance of potable water and sanitation services is needed to ensure a sustainable change.

  17. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  18. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  19. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  20. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  1. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  2. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  3. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  4. In-Patient Treatment of Fibromyalgia: A Controlled Nonrandomized Comparison of Conventional Medicine versus Integrative Medicine including Fasting Therapy

    Directory of Open Access Journals (Sweden)

    Andreas Michalsen

    2013-01-01

    Full Text Available Fibromyalgia poses a challenge for therapy. Recent guidelines suggest that fibromyalgia should be treated within a multidisciplinary therapy approach. No data are available that evaluated multimodal treatment strategies of Integrative Medicine (IM. We conducted a controlled, nonrandomized pilot study that compared two inpatient treatment strategies, an IM approach that included fasting therapy and a conventional rheumatology (CM approach. IM used fasting cure and Mind-Body-Medicine as specific methods. Of 48 included consecutive patients, 28 were treated with IM, 20 with CM. Primary outcome was change in the Fibromyalgia Impact Questionnaire (FIQ score after the 2-week hospital stay. Secondary outcomes included scores of pain, depression, anxiety, and well being. Assessments were repeated after 12 weeks. At 2 weeks, there were significant improvements in the FIQ (P<0.014 and for most of secondary outcomes for the IM group compared to the CM group. The beneficial effects for the IM approach were reduced after 12 weeks and no longer statistically significant with the exception of anxiety. Findings indicate that a multimodal IM treatment with fasting therapy might be superior to CM in the short term and not inferior in the mid term. Longer-term studies are warranted to assess the clinical impact of integrative multimodal treatment in fibromyalgia.

  5. Biochemical, Environmental Engineering and Water Treatment

    International Nuclear Information System (INIS)

    Ahmed, A.A.E.; Ibrahem, I.M.

    2004-01-01

    to Environmental Considerations - The environmental impacts of a proposed wastewater treatment facility are as important,t, if not more so, as cost considerations, a few comments regarding applicable environmental considerations that must also be addressed are appropriate. - The environmental evaluations should focus on social, technical, ecological, economic, political, legal, and institutional (STEEPLI) criteria. - Environmental Impact Statement (EIS) prepared for any proposed governmental action that is determined to have a significant impact on the quality of the human environment. - The regulations ensure that the probable environmental effects are identified, that a reasonable number of alternative actions and their environmental impacts are considered, that the environmental information is available for public understanding and scrutiny, and that the public and governmental agencies participate as a part of the decision process. - All pertinent regulations and the inherent participate afforded must be disclosed in the EIS. - National Environmental Policy Act of USA (NEP A ) neither prohibits nor permits any action but requires full disclosure of environmental information and public participation in the decision making process

  6. Chairside treatment of amelogenesis imperfecta, including establishment of a new vertical dimension with resin nanoceramic and intraoral scanning.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Hickel, Reinhard; Kühnisch, Jan

    2016-09-01

    Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient's treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  9. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  10. Hydraulic Model for Drinking Water Networks, Including Household Connections; Modelo hidraulico para redes de agua potable con tomas domiciliarias

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Angulo, Jose Oscar [Universidad Autonoma de Sinaloa (Mexico); Arreguin Cortes, Felipe [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)

    2002-03-01

    This paper presents a hydraulic simulation model for drinking water networks, including elements that are currently not considered household connections, spatially variable flowrate distribution pipelines, and tee secondary network. This model is determined by solving the equations needed for a conventional model following an indirect procedure for the solution of large equations systems. Household connection performance is considered as dependent of water pressure and the way in which users operate the taps of such intakes. This approach allows a better a acquaintance with the drinking water supply networks performance as well as solving problems that demand a more precise hydraulic simulation, such as water quality variations, leaks in networks, and the influence of home water tanks as regulating devices. [Spanish] Se presenta un modelo de simulacion hidraulica para redes de agua potable en el cual se incluyen elementos que no se toman en cuenta actualmente, como las tomas domiciliarias, los tubos de distribucion con gastos espacialmente variado y la red secundaria, resolviendo el numero de ecuaciones que seria necesario plantear en un modelo convencional mediante un procedimiento indirecto para la solucion de grandes sistemas de ecuaciones. En las tomas domiciliarias se considera que su funcionamiento depende de las presiones y la forma en que los usuarios operan las llaves de las mismas. Este planteamiento permite conocer mejor el funcionamiento de las redes de abastecimiento de agua potable y solucionar problemas que requieren de una simulacion hidraulica mas precisa, como el comportamiento de la calidad del agua, las fugas en las redes y la influencia reguladora de los tinacos de las casas.

  11. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  12. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    Science.gov (United States)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-12-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference ( p > 0.05).

  13. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  14. Wastewater treatment and reuse. Indian power plant turns sewage into process water

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.; Schroedter, F.; Demmerle, C. [ERM Lahmeyer International, Neu-Isenburg (Germany)

    2000-07-01

    Lahmeyer International provided consulting services for a private Indian investor of a 200 MW diesel engine power plant, in reviewing and controlling the EPC Contractor from Korea with regard to the treatment plant for dosmestic wastewater and the reverse osmosis plant for desalination. The wastewater treatment and subsequent water treatment for cooling water production comprised: mechanical treatment, biological treatment of domestic wastewater, lime softening, sand filtration, disinfection, micro-filtration, reverse osmosis. The services as Owner's Engineer included: (1) the review of the EPC Contractor's treatment concept, (2) the selection of internationally renowned manufacturer, (3) the review of the detailed design (including civil, mechanical, electrical and I and C work), and (4) onsite technical assistance to the Client during construction and commissioning phase. (orig.)

  15. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  16. The future for electrocoagulation as a localised water treatment technology.

    Science.gov (United States)

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.

  17. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  18. The increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    M. Iino; T. Takanohashi; C. Li; N. Kashimura; K. Masaki; T. Shishido; I. Saito; H. Kumagai [Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan)

    2005-07-01

    We have reported that the water treatments of bituminous coals at 600 K for 1 h increased their extraction yields greatly (Energy Fuels, 2005, 18, 1414). In this paper the effect of coal rank on the extraction yields enhancement by the water treatment has been investigated using four Argonne Premium coals, i.e., Pocahontas No. 3 (PO), Upper Freeport (UF), Illinois No.6 (IL), and Beulah Zap (BZ) coals with C % (daf) in the range 67 - 90%. All the coals used show that the water treatments at 600 K increased the extraction yields greatly with a 1:1 carbon disulfide / N-methyl-2-pyrrolidinone mixed solvent (CS2 / NMP) at room temperature. While, the water treatments at 500 K or the heat treatments at 600 K without water gave little increase in the yields. Characterizations of the water-treated coals were carried out from ultimate and proximate compositions, FT-IR spectrum, solvent swelling, NMR relaxation time, and viscoelasticity behavior. The effect of extraction temperature on the extraction yield enhancement was also investigated using polar NMP or non-polar 1-MN solvent. From these results it is concluded that for high coal rank coals the loosening of non-covalent bonds is responsible for the extraction yields enhancement by the water treatment. The loosening non-covalent bonds may be {pi}-{pi} interactions between aromatic rings for PO, and both {pi}-{pi} interactions and hydrogen bonds for UF. While, for lower rank IL and BZ, which showed decrease in O% and hydrogen-bonded OH, the yield enhancements may be due to the loosening of hydrogen bonds and the removal of oxygen functional groups. 9 refs., 5 figs., 1 tab.

  19. Maxillary molar distalization or mandibular enhancement: a cephalometric comparison of comprehensive orthodontic treatment including the pendulum and the Herbst appliances.

    Science.gov (United States)

    Burkhardt, Donald R; McNamara, James A; Baccetti, Tiziano

    2003-02-01

    Several methods of Class II treatment that do not rely on significant patient compliance have become popular during the last decade, including several versions of the Herbst appliance and the pendulum or Pendex molar-distalization appliances. Yet, these 2 general approaches theoretically have opposite treatment effects, one presumably enhancing mandibular growth, and the other moving the maxillary teeth posteriorly. This study examined the treatment effects produced by 2 types of the Herbst appliance (acrylic splint and stainless-steel crown) followed by fixed appliances, and the pendulum appliance followed by fixed appliances. For each of the 3 treatment groups, lateral cephalograms were analyzed before the start of treatment (T1) and after the second phase of treatment (T2). Patients were matched according to age and sex. The comprehensive treatment time for the pendulum group was 31.6 months, and the acrylic and crowned Herbst groups were treated for 29.5 months and 28.0 months, respectively. Overall from T1 to T2, there were no statistically significant differences in mandibular growth among the 3 groups. Skeletal changes accounted for a larger portion of molar correction in the Herbst treatment groups than in the pendulum group. Patients in the pendulum group had an increase in the mandibular plane angle. Conversely, the mandibular plane angle in patients treated with either Herbst appliance closed slightly from T1 to T2. At T2, the chin points (pogonion) of patients in both Herbst groups, however, were located slightly more anteriorly than were the chin points of the pendulum patients. It is likely that the slight downward and backward rotation of the mandible occurring during treatment in the pendulum patients accounted for much of this difference. The treatment effects produced by the 2 types of Herbst appliance were similar at T2, in spite of their differences in design. It is important not to generalize the findings of this comparison beyond the appliance

  20. Grey water treatment in UASB reactor at ambient temperature.

    Science.gov (United States)

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  1. Design of a new flotation system for industrial waters treatment

    International Nuclear Information System (INIS)

    Forero, J E; Diaz, J; Blandon V R

    1999-01-01

    The air flotation is a process of physical separation for the industrial wastewater treatment that removes oils and suspended solids. Although methods different from flotation have been used in petroleum industry, their application is subjected to numerous operational and economic limitations. In this work some comparisons of these flotation techniques are discussed and, a new system for the treatment of residual waters by flotation is the developed. This system is the result of several years of research both in laboratory and in pilot plants. The new design uses characteristics from other techniques, it is based on a modification of a system of induced air flotation as to operate like a system of dissolved air flotation, which improves its performance at lower costs and reduces operational problems associated with equipment maintenance. The developed system has several characteristics that improve its operation, including the use of nozzles for gas injection and dispersion in the liquid phase. As opposed to conventional systems, there is no need to use motorized bubble generating equipment for each flotation cell, diminishing therefore power requirements

  2. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  3. Promoting household water treatment through women's self help groups in Rural India: assessing impact on drinking water quality and equity.

    Directory of Open Access Journals (Sweden)

    Matthew C Freeman

    Full Text Available Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC of drinking water samples (source and household were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk, and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the

  4. Promoting Household Water Treatment through Women's Self Help Groups in Rural India: Assessing Impact on Drinking Water Quality and Equity

    Science.gov (United States)

    Freeman, Matthew C.; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent

  5. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  6. Is it time for baclofen to be included in the official recommendations concerning the treatment of alcoholism?

    Directory of Open Access Journals (Sweden)

    Masternak Sebastian

    2016-06-01

    Full Text Available Alcohol dependence and its treatment is not an exactly resolved problem. Based on the EZOP [Epidemiology of Mental Disorders and Accessibility of Mental Health Care] survey, which included a regular analysis of the incidence of mental disorders in the population of adult Polish citizens, we were able to estimate that the problem of alcohol abuse in any period of life affects even 10.9% of the population aged 18-64 years, and those addicted represent 2.2% of the country’s population. The typical symptoms of alcohol dependence according to ICD-10, include alcohol craving, impaired ability to control alcohol consumption, withdrawal symptoms which appear when a heavy drinker stops drinking, alternating alcohol tolerance, growing neglect of other areas of life, and persistent alcohol intake despite clear evidence of its destructive effect on life. At the moment, the primary method of alcoholism treatment is psychotherapy. It aims to change the patient’s habits, behaviours, relationships, or the way of thinking. It seems that psychotherapy is irreplaceable in the treatment of alcoholism, but for many years now attempts have been made to increase the effectiveness of alcoholism treatment with pharmacological agents. In this article we will try to provide a description of medications which help patients sustain abstinence in alcoholism therapy with particular emphasis on baclofen.

  7. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  8. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  9. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  10. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  11. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  12. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    Science.gov (United States)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  13. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  14. Minireview: the health implications of water treatment with ozone.

    Science.gov (United States)

    Carmichael, N G; Winder, C; Borges, S H; Backhouse, B L; Lewis, P D

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  15. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  16. Monitoring the anaerobic treatment of waste waters; Control en la depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Leon de Mora, C.; Molina Cantero, F.J.; Romero Galey, F.J.; Gomez Banderas, J.M. [Dpto. Tecnologia Electronica. Esc. Univ. Politec. Sevilla, Sevilla, (Spain)

    1997-04-01

    This article describes the results obtained in developing a system for monitoring sewage treatment. The system, supported by a PC, includes a fuzzy logic control algorithm for monitoring the anaerobic treatment of waste waters on the basis of data from sensors attached to an industrial robot (PLC). Its most outstanding features is that it is also capable of evaluating new monitoring strategies using parameters not originally included. (Author) 6 refs.

  17. Advances in treatment methods for uranium contaminated soil and water

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2002-01-01

    Water and soil contaminated with actinides, such as uranium and plutonium, are an environmental concern at most U.S. Department of Energy sites, as well as other locations in the world. Remediation actions are on going at many sites, and plans for cleanup are underway at other locations. This paper will review work underway at Clemson University in the area of treatment and remediation of soil and water contaminated with actinide elements. (author)

  18. Treatment of offshore produced water - an effective membrane process

    International Nuclear Information System (INIS)

    Taylor, J.; Larson, R.; Scherer, B.

    1991-01-01

    The conference paper describes a new membrane technology being extremely effective in separating hydrocarbons from water streams. The membrane is composed of a completely natural cellulose and is resistant to all hydrocarbons and organic solvents, and preliminary tests have shown that it is resistant to fouling by oily molecules and calcium scaling. The membrane system being designed shows good potential for the treatment of offshore produced water with a hydrocarbon content well within present and emerging standards. 6 refs., 8 figs., 3 tabs

  19. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  20. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  1. NEW MASER EMISSION FROM NONMETASTABLE AMMONIA IN NGC 7538. II. GREEN BANK TELESCOPE OBSERVATIONS INCLUDING WATER MASERS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [St. Paul' s School, Concord, NH 03301 (United States); Seojin Kim, Stella, E-mail: ihoffman@sps.edu [Current address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-12-15

    We present new maser emission from {sup 14}NH{sub 3} (9,6) in NGC 7538. Our observations include the known spectral features near v{sub LSR} = -60 km s{sup -1} and -57 km s{sup -1} and several more features extending to -46 km s{sup -1}. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other {sup 14}NH{sub 3} (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km s{sup -1} < v{sub LSR} < -4 km s{sup -1}, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H{sub 2}O and, now, {sup 14}NH{sub 3} are the only masers known to exhibit emission outside of the velocity range -62 km s{sup -1} < v{sub LSR} < -51 km s{sup -1}. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search to date toward any source for emission from the CC{sup 32}S and CC{sup 34}S molecules, indicating an age greater than Almost-Equal-To 10{sup 4} yr for IRS 1-3. We discuss these findings in the context of embedded stellar cores and recent models of the region.

  2. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    International Nuclear Information System (INIS)

    Suryanarayan, S.; Husain, A.; Williams, D.

    2010-01-01

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D 2 O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D 2 O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H 2 O 2 ) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H 2 O 2 +IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as well as TOC. Detailed

  3. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  4. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  5. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  6. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  7. Method for assessment of stormwater treatment facilities - Synthetic road runoff addition including micro-pollutants and tracer.

    Science.gov (United States)

    Cederkvist, Karin; Jensen, Marina B; Holm, Peter E

    2017-08-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff. This paper presents a method to evaluate STFs by addition of synthetic runoff with representative concentrations of contaminant species, including the use of tracer for correction of removal rates for losses not caused by the STF. A list of organic and inorganic contaminant species, including trace elements representative of runoff from roads is suggested, as well as relevant concentration ranges. The method was used for adding contaminants to three different STFs including a curbstone extension with filter soil, a dual porosity filter, and six different permeable pavements. Evaluation of the method showed that it is possible to add a well-defined mixture of contaminants despite different field conditions by having a flexibly system, mixing different stock-solutions on site, and use bromide tracer for correction of outlet concentrations. Bromide recovery ranged from only 12% in one of the permeable pavements to 97% in the dual porosity filter, stressing the importance of including a conservative tracer for correction of contaminant retention values. The method is considered useful in future treatment performance testing of STFs. The observed performance of the STFs is presented in coming papers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  9. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  10. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  11. Efficacy of a protocol including heparin ointment for treatment of multikinase inhibitor-induced hand-foot skin reactions.

    Science.gov (United States)

    Li, Jian-ri; Yang, Chi-rei; Cheng, Chen-li; Ho, Hao-chung; Chiu, Kun-yuan; Su, Chung-Kuang; Chen, Wen-Ming; Wang, Shian-Shiang; Chen, Chuan-Shu; Yang, Cheng-Kuang; Ou, Yen-chuan

    2013-03-01

    The purpose of this study is to evaluate the efficacy of a protocol including topical heparin therapy for hand-foot skin reactions (HFSR) during multikinase (MKI) treatment. We prospectively collected 26 patients who had HFSRs during treatment with the MKIs, sunitinib, sorafenib, or axitinib. The age distribution ranged from 46 to 87 years, with a mean of 66 years. The distribution of HFSR severity was 12 patients with grade 1, 12 with grade 2, and 2 with grade 3. A heparin-containing topical ointment treatment, combined with hand-foot shock absorbers and skin moisturizers, was used at the lesion sites. Changes in the grade of HFSR, MKI dosage, and interruptions of MKI therapy were recorded. The results showed that 66.7% of grade 1 patients were cured of disease, 83.3% of grade 2 patients had improved symptoms, and both grade 3 patients (100%) had improved symptoms and were downgraded to grade 2. Four (15.4%) patients required reduction of MKI dosage, but there were no treatment interruptions or dropouts. Our protocol is beneficial in promoting resolution of HFSRs induced by MKIs. Further validation in large control studies should be investigated.

  12. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  13. Dataset on the cost estimation for spent filter backwash water (SFBW treatment

    Directory of Open Access Journals (Sweden)

    Afshin Ebrahimi

    2017-12-01

    Full Text Available The dataset presented in this article are related to the research article entitled “Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment” (Ebrahimi et al., 2017 [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF and recirculation of settled SFBW to water treatment plant (WTP entrance. Coagulation conducted by PAFCl and FeCl3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively. Keywords: Spent filter backwash water, Water treatment, Coat estimation, Water reuse

  14. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    Science.gov (United States)

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. PRODUCTION WELL WATER SHUT-OFF TREATMENT IN A HIGHLY FRACTURED SANDSTONE RESERVOIR; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    As domestic oil and gas fields approach maturity or even abandonment, new methods are being tested to add life to the fields. One area being addressed is the reduction of water production to extend the economic life of a field. In many fields a very common problem is permeability heterogeneity from matrix variations, fractures, or both. Conventional procedures to remediate high water rates in fractured networks, including cement squeezing, openhole packers, and liners are generally unsuccessful. The objective of this project was to test the viability of using sequential treatment of a production well with a cross-linked polymer to restrict water production from highly permeable and fractured zones. The field used for testing was the Ashley Valley field in northeastern Utah. The process proposed for testing in this field was the sequential application of small batches of a cross-linked polymer, chromium (III) polyacrylamide polymer (Marcit(trademark)). First, the highest permeability fractures were to be blocked, followed progressively by smaller fractures, and finally the higher permeability matrix channels. The initial application of this polymer in September 1997 in the Ashley Valley (AV) well No.2 did increase oil production while decreasing both water production and the relative permeability to water. The successive application of the polymer was considered as a method to increase both daily and ultimate oil production and reduce produced water. The second polymer treatment was conducted in October 1999 in AV No.2. The treatment consisted of 4,994 barrels of 1,500-mg/l to 9,000-mg/l polymer at surface injection pressures no higher than 380 psig. During injection, four offset wells showed polymer breakthrough and were shut in during the remaining treatment. Present oil and water production rates for AV No.2 are 14 BOPD and 2,700 BWPD, which is a 44% decrease in the oil rate and a 40% reduction in water from the rates after the first treatment. The decrease in

  16. NOM characterization and removal at six Southern African water treatment plants

    Directory of Open Access Journals (Sweden)

    J. Haarhoff

    2010-04-01

    Full Text Available Organic pollution is a major concern during drinking water treatment. Major challenges attributed to organic pollution include the proliferation of pathogenic micro-organisms, prevalence of toxic and physiologically disruptive organic micro-pollutants, and quality deterioration in water distribution systems. A major component of organic pollution is natural organic matter (NOM. The operational mechanisms of most unit processes are well understood. However, their interaction with NOM is still the subject of scientific research. This paper takes the form of a meta-study to capture some of the experiences with NOM monitoring and analysis at a number of Southern African Water Treatment Plants. It is written from the perspective of practical process selection, to try and coax some pointers from the available data for the design of more detailed pilot work. NOM was tracked at six water treatment plants using dissolved organic carbon (DOC measurements. Fractionation of the DOC based on biodegradability and molecular weight distribution was done at a water treatment plant in Namibia. A third fractionation technique using ion exchange resins was used to assess the impact of ozonation on DOC. DOC measurements alone did not give much insight into NOM evolution through the treatment train. The more detailed characterization techniques showed that different unit processes preferentially remove different NOM fractions. Therefore these techniques provide better information for process design and optimisation than the DOC measurement which is routinely done during full scale operation at these water treatment plants.

  17. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.

    Science.gov (United States)

    Westrick, Judy A; Szlag, David C; Southwell, Benjamin J; Sinclair, James

    2010-07-01

    This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, "ancillary practice" refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, "auxiliary practice" refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and beta-N-methylamino-L-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.

  18. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants

    NARCIS (Netherlands)

    Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a

  19. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  20. Simulation of gamma irradiation system for a ballast water treatment

    International Nuclear Information System (INIS)

    Faez, T. P.; Sarkar, S.

    2006-01-01

    Invasion by different kinds of ballast the water microorganisms is one of the most important marine environment problems around the world therefore preventing the invasion of these unwanted and harmful stowaways is one of the main strategies of responsible agencies. Some of these methods such as ocean exchange, heating, filtration, hydro cyclones, UV irradiation and chemical treatment, have various problems such as technical deficiency, high costs, lack of safety and environmental side effects. Materials and Methods: A novel system of treatment by Gamma irradiation is designed to irradiate the blast water uniformly and effectively. To determine the dose distribution as a function of distance from the irradiation source, the MCNP code was used. The systems used for source implant in this simulation were Paterson-Parker, Paris and Network systems. In each system, Sivert-integral and inverse square law were used in MATLAB program to determine the dose distribution. Results: Results of initial laboratory tests on offshore water samples of Siri Island indicated that the appropriate dose for deactivation of organisms of water samples is approximately one kGy. It has been demonstrated that the dose can be provided by twenty five 100,000 Ci line sources of ' 60 Co in a triangle implant arranged in a 1*1*1 m3 cubic shape water pipe. In order to increase efficiency and radiation safety, water passed from two other coaxial and bigger cubes, after passing from the first cube. A one meter thick wall of concrete around the cubes was adequate to shield the system completely. Conclusion: The main advantages of this system such as high efficiency, safety, reliability, minimum environmental adverse effects, proves that this novel method not only can be used for ballast water treatment, but is also effective for drinking water purification

  1. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  2. Precision IORT - Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction.

    Science.gov (United States)

    Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik

    2017-05-01

    To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  4. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  5. Effects of sulphuric acid and hot water treatments on seed ...

    African Journals Online (AJOL)

    A study was carried out to investigate the effects of sulphuric acid and hot water treatments on the germination of Tamarind (Tamarindus indica L). Seeds were placed on moistened filter papers in 28 cm diameter Petri dishes under laboratory condition for germination. 330 seeds of T. indica (10 seeds per Petri dish) with ...

  6. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  7. Dispersed droplet dynamics during produced water treatment in oil industry

    NARCIS (Netherlands)

    van Eijkeren, D.F.

    2016-01-01

    For Lagrangian particle tracking applied to swirling flow produced water treatment the influence of the history force is investigated. In the expression for the history force an existing Reynolds number dependent kernel is adapted and validated for a range of experimental data for settling spheres.

  8. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  9. Selenium-Water Treatment Residual Adsorption And Characterization

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  10. Laser removal of water repellent treatments on limestone

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Rebollar, Esther; Oujja, Mohamed; Castillejo, Marta; Fort, Rafael

    2003-12-15

    Protective and water repellent treatments are applied on stone materials used on buildings or sculptures of artistic value to reduce water intrusion without limiting the natural permeability to water vapour of the material. The effect of the wavelength associated with the laser removal of two water repellent treatments applied on limestone, Paraloid B-72, a copolymer of methyl acrylate and ethyl methacrylate, and Tegosivin HL-100, a modified polysiloxane resin, was investigated by using the four harmonics of a Q-switched Nd:YAG laser (1064, 532, 355 and 266 nm). The modifications induced on the surface of limestone samples by laser irradiation were studied using colorimetry, roughness measurements and scanning electron microscopy (SEM). The removal of the treatments was found to be dependent on the laser irradiation conditions and on the characteristics of the coatings. The fundamental laser radiation was effective in removing both treatments, but thermal alteration processes were induced on the constituent calcite crystals. The best results were obtained by irradiation in the near UV at 355 nm.

  11. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    The treatments used were immersion of the seeds in cold water (at room o temperature) for 8, 12 and ... goat, sheep and cattle in the semi arid regions due to the palatability of its ... visible signs of infestation were selected out of the total seeds ...

  12. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process

  13. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  14. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  15. Plant-wide Control Strategy for Improving Produced Water Treatment

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2016-01-01

    This work focuses on investigation and development of an innovative Produced Water Treatment (PWT) technology for offshore oil & gas production by employing the model-based plant-wide control strategy. The key contributions lie in two folds: (i) the advanced anti-slug analysis and control...

  16. Some techniques used in the treatment of phenolic waters residual

    International Nuclear Information System (INIS)

    Alzate S, Rafael A.; Botero, Carlos Andre

    2000-01-01

    The current state of the diverse processes of treatment of phenolic waters residual is presented, beginning with the methods traditionally employees, until finishing with those but recent innovations, which have been derived of the necessity of increasing the removal of these pollutants without increasing the costs of such processes in excessive form

  17. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods.

  18. Bacterial Diversity in a Mine Water Treatment Plant▿ †

    OpenAIRE

    Heinzel, Elke; Hedrich, Sabrina; Janneck, Eberhard; Glombitza, Franz; Seifert, Jana; Schlömann, Michael

    2008-01-01

    We investigated the microbial community in a pilot plant for treatment of acid mine water by biological ferrous iron oxidation using clone library analysis and calculated statistical parameters for further characterization. The microbial community in the plant was conspicuously dominated by a group of Betaproteobacteria affiliated with “Ferribacter polymyxa”.

  19. Toxicological assessment of polyhexamethylene biguanide for water treatment

    Directory of Open Access Journals (Sweden)

    Asiedu-Gyekye Isaac J.

    2015-12-01

    Full Text Available Polyhexamethylene biguanide (PHMB is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer’s instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4×103 mg/L of 0.1% solution resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50 is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable.

  20. Cost-effectiveness of collaborative care including PST and an antidepressant treatment algorithm for the treatment of major depressive disorder in primary care; a randomised clinical trial

    Directory of Open Access Journals (Sweden)

    Beekman Aartjan TF

    2007-03-01

    Full Text Available Abstract Background Depressive disorder is currently one of the most burdensome disorders worldwide. Evidence-based treatments for depressive disorder are already available, but these are used insufficiently, and with less positive results than possible. Earlier research in the USA has shown good results in the treatment of depressive disorder based on a collaborative care approach with Problem Solving Treatment and an antidepressant treatment algorithm, and research in the UK has also shown good results with Problem Solving Treatment. These treatment strategies may also work very well in the Netherlands too, even though health care systems differ between countries. Methods/design This study is a two-armed randomised clinical trial, with randomization on patient-level. The aim of the trial is to evaluate the treatment of depressive disorder in primary care in the Netherlands by means of an adapted collaborative care framework, including contracting and adherence-improving strategies, combined with Problem Solving Treatment and antidepressant medication according to a treatment algorithm. Forty general practices will be randomised to either the intervention group or the control group. Included will be patients who are diagnosed with moderate to severe depression, based on DSM-IV criteria, and stratified according to comorbid chronic physical illness. Patients in the intervention group will receive treatment based on the collaborative care approach, and patients in the control group will receive care as usual. Baseline measurements and follow up measures (3, 6, 9 and 12 months are assessed using questionnaires and an interview. The primary outcome measure is severity of depressive symptoms, according to the PHQ9. Secondary outcome measures are remission as measured with the PHQ9 and the IDS-SR, and cost-effectiveness measured with the TiC-P, the EQ-5D and the SF-36. Discussion In this study, an American model to enhance care for patients with a

  1. Prediction of thermophysical and transport properties of ternary organic non-electrolyte systems including water by polynomials

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan D.

    2013-01-01

    Full Text Available The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister, Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Engineering Data, Journal of Chemical Thermodynamics, Journal of Solution Chemistry, Journal of the Serbian Chemical Society, The Canadian Journal of Chemical Engineering, Journal of Molecular Liquids, Thermochimica Acta, etc.. The applicability of empirical models to estimate excess molar volumes, VE, excess viscosities, ηE, excess free energies of activation of a viscous flow,

  2. Treatment of water contaminated with N-nitrosodimethylamine (NDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, K; Lakanowski, C; Somers, A; Whittaker, H; Hamid, H B [Environment Canada, Ottawa, ON (Canada); Anantaraman, A [Ottawa Univ., ON (Canada)

    1996-12-31

    A series of remediation technologies for contaminated soil and water at former nuclear missile sites in the countries of Eastern Europe have been developed. As part of this project the applicability of electrolytic reduction of N-nitrosodimethylamine (NDMA) in groundwater, using relatively cheap materials, was evaluated. It was found that reduction of NDMA in water could be achieved using inexpensive carbon electrodes and a simple two-electrode cell, making the process potentially applicable for the treatment of contaminated surface and groundwater in field conditions. Best results were achieved at pH 1 and a potential difference of 3 to 3.5 V. It is worth noting that the residual concentration of NDMA was still too high to discharge the water into the environment without additional treatment.

  3. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  4. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  5. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi

    Science.gov (United States)

    Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.

    2017-08-01

    Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality

  6. Effect of water treatment on the comparative costs of evaporative and dry cooled power plants

    International Nuclear Information System (INIS)

    Gold, H.; Goldstein, D.J.; Yung, D.

    1976-07-01

    The report presents the results of a study on the relative cost of energy from a nominal 1000 Mwe nuclear steam electric generating plant using either dry or evaporative cooling at four sites in the United States: Rochester, New York; Sheridan, Wyoming; Gallup, New Mexico and Dallas, Texas. Previous studies have shown that because of lower efficiencies the total annual evaluated costs for dry cooling systems exceeds the total annual evaluated costs of evaporative cooling systems, not including the cost of water. The cost of water comprises the cost of supplying the makeup water, the cost of treatment of the makeup and/or the circulating water in the tower, and the cost of treatment and disposal of the blowdown in an environmentally acceptable manner. The purpose of the study is to show the effect of water costs on the comparative costs of dry and evaporative cooled towers

  7. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    Science.gov (United States)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  8. Onsite defluoridation system for drinking water treatment using calcium carbonate.

    Science.gov (United States)

    Wong, Elaine Y; Stenstrom, Michael K

    2018-06-15

    Fluoride in drinking water has several effects on teeth and bones. At concentrations of 1-1.5 mg/L, fluoride can strengthen enamel, improving dental health, but at concentrations above 1.5 to 4 mg/L can cause dental fluorosis. At concentrations of 4-10 mg/L, skeletal fluorosis can occur. There are many areas of the world that have excessive fluoride in drinking water, such as China, India, Sri Lanka, and the Rift Valley countries in Africa. Treatment solutions are needed, especially in poor areas where drinking water treatment plants are not available. On-site or individual treatment alternatives can be attractive if constructed from common materials and if simple enough to be constructed and maintained by users. Advanced on-site methods, such as under sink reserve osmosis units, can remove fluoride but are too expensive for developing areas. This paper investigates calcium carbonate as a cost effective sorbent for an onsite defluoridation drinking water system. Batch and column experiments were performed to characterize F - removal properties. Fluoride sorption was described by a Freundlich isotherm model, and it was found that the equilibrium time was approximately 3 h. Calcium carbonate was found to have comparable F - removal abilities as the commercial ion exchange resins and possessed higher removal effectiveness compared to calcium containing eggshells and seashells. It was also found that the anion Cl- did not compete with F - at typical drinking water concentrations, having little impact on the effectiveness of the treatment system. A fluoride removal system is proposed that can be used at home and can be maintained by users. Through this work, we can be a step closer to bringing safe drinking water to those that do not have access to it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  10. Application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2009-07-01

    Drivers for using ceramic membranes in steam assisted gravity drainage (SAGD) include reduced investment cost; alternative treatment technologies that reduce energy and greenhouse gas emissions; and ceramic membranes can be chemically and steam cleaned. This presentation discussed the application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse. The presentation illustrated conventional ceramic membranes as well as surface enhanced membranes and provided background information on oil separation. Other topics that were discussed included issues regarding desalter bottoms de-oiling; challenges in de-oiling oil sands produced water; CeraMem surface enhanced membranes; surface facilities and ceramic membrane opportunities; and water treatment using ceramic membranes. The presentation concluded with a discussion of the application of ceramic membranes to SAGD next steps such as a demonstration test of industrial prototype membranes for de-oiling, and pilot testing of ceramic desilication. tabs., figs.

  11. A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Andersson, M.; Beale, S.B.; Espinoza, M.; Wu, Z.; Lehnert, W.

    2016-01-01

    Highlights: • The transport expressions inside PEFC GDLs are developed to describe significantly different systems. • Insight into the fundamental processes of liquid water evolution and transport in the GDL and GC is still lacking. • One important feature is the possibility to track the front between the liquid and the gas phases. • The two phase micro channels pressure drop correlations may not be applicable for GCs since one wall being porous. - Abstract: The PEFC has emerged as the most viable fuel cell type for automotive and some portable applications, and also has potential back-up power unit applications due to its low operating temperature, comparative simplicity of construction, high power density, and ease of operation. In spite of tremendous scientific advances, as well as engineering progress over the last few decades, the commercialization of PEFCs remains unrealized, owing primarily to economic viability associated with the high prices of materials and components and technical problems relating primarily to water management. The difficulty in addressing the water management issues lies mostly in the two-phase multi-component flow involving phase-change in porous media, coupled heat and mass transfer, interactions between the porous layers and gas channel (GC) and the complex relationship between water content and cell performance. Due to the low temperature of operation, water generated by the electrochemical reactions often condenses into liquid form, potentially flooding the gas diffusion layer (GDL), GC or other components. Insight into the fundamental processes of liquid water evolution and transport is still lacking, preventing further enhanced PEFC development. The aim of this paper is to give a comprehensive introduction to PEFC modeling inside GCs and GDLs, with a focus on two-phase flow and related phase-change and transport processes. Relevant momentum, mass and heat transport processes are introduced and the microstructural effects

  12. Efficacy of Manual Therapy Including Neurodynamic Techniques for the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled Trial.

    Science.gov (United States)

    Wolny, Tomasz; Saulicz, Edward; Linek, Paweł; Shacklock, Michael; Myśliwiec, Andrzej

    2017-05-01

    The purpose of this randomized trial was to compare the efficacy of manual therapy, including the use of neurodynamic techniques, with electrophysical modalities on patients with mild and moderate carpal tunnel syndrome (CTS). The study included 140 CTS patients who were randomly assigned to the manual therapy (MT) group, which included the use of neurodynamic techniques, functional massage, and carpal bone mobilizations techniques, or to the electrophysical modalities (EM) group, which included laser and ultrasound therapy. Nerve conduction, pain severity, symptom severity, and functional status measured by the Boston Carpal Tunnel Questionnaire were assessed before and after treatment. Therapy was conducted twice weekly and both groups received 20 therapy sessions. A baseline assessment revealed group differences in sensory conduction of the median nerve (P < .01) but not in motor conduction (P = .82). Four weeks after the last treatment procedure, nerve conduction was examined again. In the MT group, median nerve sensory conduction velocity increased by 34% and motor conduction velocity by 6% (in both cases, P < .01). There was no change in median nerve sensory and motor conduction velocities in the EM. Distal motor latency was decreased (P < .01) in both groups. A baseline assessment revealed no group differences in pain severity, symptom severity, or functional status. Immediately after therapy, analysis of variance revealed group differences in pain severity (P < .01), with a reduction in pain in both groups (MT: 290%, P < .01; EM: 47%, P < .01). There were group differences in symptom severity (P < .01) and function (P < .01) on the Boston Carpal Tunnel Questionnaire. Both groups had an improvement in functional status (MT: 47%, P < .01; EM: 9%, P < .01) and a reduction in subjective CTS symptoms (MT: 67%, P < .01; EM: 15%, P < .01). Both therapies had a positive effect on nerve conduction, pain reduction, functional status, and subjective symptoms in

  13. Anastomotic Strictures after Esophageal Atresia Repair: Incidence, Investigations, and Management, Including Treatment of Refractory and Recurrent Strictures

    Directory of Open Access Journals (Sweden)

    Renato Tambucci

    2017-05-01

    Full Text Available Improved surgical techniques, as well as preoperative and postoperative care, have dramatically changed survival of children with esophageal atresia (EA over the last decades. Nowadays, we are increasingly seeing EA patients experiencing significant short- and long-term gastrointestinal morbidities. Anastomotic stricture (AS is the most common complication following operative repair. An esophageal stricture is defined as an intrinsic luminal narrowing in a clinically symptomatic patient, but no symptoms are sensitive or specific enough to diagnose an AS. This review aims to provide a comprehensive view of AS in EA children. Given the lack of evidence-based data, we critically analyzed significant studies on children and adults, including comments on benign strictures with other etiologies. Despite there is no consensus about the goal of the luminal diameter based on the patient’s age, esophageal contrast study, and/or endoscopy are recommended to assess the degree of the narrowing. A high variability in incidence of ASs is reported in literature, depending on different definitions of AS and on a great number of pre-, intra-, and postoperative risk factor influencing the anastomosis outcome. The presence of a long gap between the two esophageal ends, with consequent anastomotic tension, is determinant for stricture formation and its response to treatment. The cornerstone of treatment is endoscopic dilation, whose primary aims are to achieve symptom relief, allow age-appropriate capacity for oral feeding, and reduce the risk of pulmonary aspiration. No clear advantage of either balloon or bougie dilator has been demonstrated; therefore, the choice is based on operator experience and comfort with the equipment. Retrospective evidences suggest that selective dilatations (performed only in symptomatic patients results in significantly less number of dilatation sessions than routine dilations (performed to prevent symptoms with equal long

  14. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  15. Release of natural radionuclides in the Czech Republic - from water treatment plants where water from underground water sources is treated

    International Nuclear Information System (INIS)

    Sinaglova, R.

    2014-01-01

    In this abstract author deals with the treatment of drinking water in the Czech Republic with removing of natural radionuclides as well as with treatment of filter cartridges. The advantage of these technologies is that flushing is not required so no wastewater occurs. Used ion exchangers with higher content of uranium are processed in the chemical treatment of uranium ores, managed by DIAMO, state enterprise. (authors)

  16. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  17. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    membranes generally exhibited reasonable stable rejection rates over time for chloride for a range of concentrations between 0.01 and 2.5 M. One membrane ran in excess of three months with no apparent loss of usability. This suggests that clay membranes may have a long useable life. Twenty different hyperfiltration-induced solute precipitation experiments were either attempted or completed and are reported here. The results of these experiments suggest that hyperfiltration-induced solute precipitation is possible, even for very soluble substances such as NaCl. However, the precipitation rates obtained in the laboratory do not appear to be adequate for commercial application at this time. Future experiments will focus on making the clay membranes more compact and thinner in order to obtain higher flux rates. Two alternative methods of removing solutes from solution, for which the New Mexico Tech Research Foundation is preparing patent applications, are also being investigated. These methods will be described in the next annual report after the patent applications are filed. Technology transfer efforts included two meetings (one in Farmington NM, and one in Hobbs, NM) where the results of this research were presented to independent oil producers and other interested parties. In addition, members of the research team gave seven presentations concerning this research and because of this research project T. M. (Mike) Whitworth was asked to sit on the advisory board for development of a new water treatment facility for the City of El Paso, Texas. Several papers are in preparation for submission to peer-reviewed journals based on the data presented in this report.

  18. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    Science.gov (United States)

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  19. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  20. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  1. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  2. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  3. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  4. Treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-12-01

    This rule is to be applied to the design, construction, and operation of facilities for treatment of water contaminated with radioactive material in stationary nuclear power plants with LWRs and HTRs. According to the requirements of the rule these facilities are to be designed, constructed, and operated in such a way that a) uncontrolled discharge of water contaminated with radioactive material is avoided, b) the activity discharged with water is as low as possible, c) water contaminated with radioactive material will not reach the ground, d) the radiation exposure as a consequence of direct radiation, contamination, and inhalation of the persons occupied in the facilities is as low as possible and as a maximum corresponds to the values laid down in the radiation protection regulation or to the values of the operating license. This rule is not to be applied to facilities for coolant and storage pit clean-up as well as facilities for the treatment of concentrates produced during the contamination of the water. (orig./HP) [de

  5. Investigations on the treatment of waste waters from pig breeding

    Energy Technology Data Exchange (ETDEWEB)

    Cute, E; Mambet, E; Juriari, E; Murgoci, C

    1967-01-01

    The introduction of intensive methods of pig breeding has caused changes in the characteristics, particularly the strength, of the piggeries waste waters; analytical data are tabulated for waste waters from 3 pig-breeding farms and 1 large pig-breeding combine in Romania. At older piggeries, waste waters are treated by sedimentation and sludge digestion in Imhoff tanks. In more recent establishments, treatment comprises primary sedimentation followed by storage of the settled waste waters in ponds to be used for irrigation, and separate digestion of sludge in open tanks. Experiments showed that precautions are necessary to prevent blocking of the sewerage system by easily-settleable material before reaching the sedimentation tanks; sedimentation is more efficient in horizontal sedimentation tanks than in the older Imhoff tanks; biological treatment is possible without addition of nutrients, but the waste waters must be diluted; and digestion requires a longer period than that for sewage sludge, difficulties being caused by the presence of coarse suspended particles of waste feeding stuffs.

  6. WASTE WATER TREATMENT AND MANAGEMENT TECHNIQUES IN MINES

    OpenAIRE

    Navneet S. Pote*

    2017-01-01

    Mining industries enhance comfort of human life on one hand but this also cause pollution to air and water which are essential for survival of life. Therefore, mining and industrial activity adversely affects the ecosystem including wild life population due to deforestation, fragmentation, to habitat, air and water pollution. Eliminating the mining activities is not the solution to this problem. Hence, it is important to find the most suitable and applicable methods to reduce the pollution ca...

  7. Decision support systems in water and wastewater treatment process selection and design: a review.

    Science.gov (United States)

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  8. Treatment of low level waste water by reverse osmosis

    International Nuclear Information System (INIS)

    Li Kaijun; Zhang Chuanzhi; Xue Qinhua; Liu Meijun

    1987-11-01

    A Study on the removal of certain radioactive elements Such as 141 Ce, 51 Cr 134 Cu, 106 Ru and 131 I by Reverse Osmosis and the effect of surface activity agent on property of membrance are described in this paper. RO model is carried out to examine the treatment of actual reactor waste water and radioactive laundry waste water. The removal efficiency of total β is 98%. Three preprocessing (cloth pocket filtrator, hivefiltrator and zone) and membrane cleaning methods (acid, ozone and spongeball) are also investigated

  9. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  10. The cost of providing combined prevention and treatment services, including ART, to female sex workers in Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Fiona Cianci

    Full Text Available BACKGROUND: Female Sex workers (FSW are important in driving HIV transmission in West Africa. The Yerelon clinic in Burkina Faso has provided combined preventative and therapeutic services, including anti-retroviral therapy (ART, for FSWs since 1998, with evidence suggesting it has decreased HIV prevalence and incidence in this group. No data exists on the costs of such a combined prevention and treatment intervention for FSW. This study aims to determine the mean cost of service provision per patient year for FSWs attending the Yerelon clinic, and identifies differences in costs between patient groups. METHODS: Field-based retrospective cost analyses were undertaken using top-down and bottom-up costing approaches for 2010. Expenditure and service utilisation data was collated from primary sources. Patients were divided into groups according to full-time or occasional sex-work, HIV status and ART duration. Patient specific service use data was extracted. Costs were converted to 2012 US$. Sensitivity analyses considered removal of all research costs, different discount rates and use of different ART treatment regimens and follow-up schedules. RESULTS: Using the top-down costing approach, the mean annual cost of service provision for FSWs on or off ART was US$1098 and US$882, respectively. The cost for FSWs on ART reduced by 29%, to US$781, if all research-related costs were removed and national ART monitoring guidelines were followed. The bottom-up patient-level costing showed the cost of the service varied greatly across patient groups (US$505-US$1117, primarily due to large differences in the costs of different ART regimens. HIV-negative women had the lowest annual cost at US$505. CONCLUSION: Whilst FSWs may require specialised services to optimise their care and hence, the public health benefits, our study shows that the cost of ART provision within a combined prevention and treatment intervention setting is comparable to providing ART to

  11. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  12. REMOVAL OF HEPATITIS A VIRUS AND ROTAVIRUS BY DRINKING WATER TREATMENT

    Science.gov (United States)

    The paper presents quantitative data from a two year study on the removability of rotavirus SA11 and hepatitis A virus added exogenously to Lake Houston raw water during treatment. Processes studied on laboratory and pilot scale included coagulation, filtration, softening and dis...

  13. Physico-chemical pre-treatment for drinking water

    International Nuclear Information System (INIS)

    Hassanien, W. A. M.

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  14. Physico-chemical pre-treatment for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, W A. M. [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  15. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    Science.gov (United States)

    2006-06-01

    best examples of this is glucose isomerase, which has been used in the commercial production of high fructose corn syrup (HFCS) since 1967.230 Most...EDGEWOOD CHEMICAL BIOLOGICAL CENTER U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND ECBC-TR-489 CATALYTIC ENZYME-BASED METHODS FOR WATER ...TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1. LITERATURE SURVEY Joseph J. DeFrank RESEARCH AND TECHNOLOGY DIRECTORATE June 2006 Approved for

  16. Influence of softening sequencing on electrocoagulation treatment of produced water.

    Science.gov (United States)

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ultrasonic treatment for microbiological control of water systems

    International Nuclear Information System (INIS)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E.

    2010-01-01

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  18. Ultrasonic treatment for microbiological control of water systems

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E. [Ashland Hercules Water Technologies, Krefeld (Germany)

    2010-08-15

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  19. Methods of removing uranium from drinking water. 1. A literature survey. 2. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Drury, J.S.; Michelson, D.; Ensminger, J.T.; Lee, S.Y.; White, S.K.

    1982-12-01

    Literature was searched for methods of removing uranium from drinking water. U.S. manufacturers and users of water-treatment equipment and products were also contacted regarding methods of removing uranium from potable water. Based on the results of these surveys, it was recommended that untreated, partially treated, and finished water samples from municipal water-treatment facilities be analyzed to determine the extent of removal of uranium by presently used procedures, and that additional laboratory studies be performed to determine what changes are needed to maximize the effectiveness of treatments that are already in use in existing water-treatment plants

  20. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  1. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  2. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  3. Membrane bioreactors in waste water treatment - status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Universitaet Berlin, Chair of Chemical and Process Engineering, Berlin (Germany); Drews, A. [HTW Berlin, FB II, Life Science Engineering, Berlin (Germany)

    2010-08-15

    Due to their unique advantages like controlled biomass retention, improved effluent quality, and decreased footprint, membrane bioreactors (MBRs) are being increasingly used in waste water treatment up to a capacity of several 100,000 p.e. This article reviews the current status of MBRs and reports trends in MBR design and operation. Typical operational and design parameters are given as well as guidelines for waste water treatment plant revamping. To further improve the biological performance, specific or hybrid process configurations are shown to lead to, e.g., enhanced nutrient removal. With regards to reducing membrane fouling, optimized modules, advanced control, and strategies like the addition of flux enhancers are currently emerging. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  5. Produced water treatment using polymeric resins; Resinas polimericas para tratamento da agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Freire, Norma de Oliveira [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Queiros, Yure Gomes de Carvalho; Silva, Carla Michele Frota da; Barros, Cintia Chagas; Lucas, Elizabeth Fernandes [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The treatment and disposal of oily waters from oil production and refining processes represent an important technological pass for attendance of the ambient legislation and to the politics of the Cia of search of the environmental excellence. The reuse or reinjection of the co-produced water has been considered an interesting strategical alternative, however, the water quality requirement for these processes demands a pretreatment step, considering the exit effluent from primary and secondary treatment processes currently used. This work presents resulted of the polymeric resin development for tertiary treatment of oily waters with low oil and grasses content and fine solids, including the dissolved fraction. These resins can adsorb, in reversible form, organic components. Its high adsorption capacity is determined by the polarity, superficial area, range of porosity and a wide distribution of particle size and pore. Another important characteristic is the possibility of its use in some cycles of work due to its weak forces of interaction between the contaminants and the surface of the resin. Regeneration can be carried through of diverse forms, including the use of solvent, with or without the variation of temperature and/or pH. The gotten results indicated a high resin adsorption capacity, with concentrated oily water treatment volume 10,000 times the volume of resin used. (author)

  6. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  7. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  8. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  9. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... options prescribed. The diagnostic tools are then used again to verify the efficiency of the solution applied. If the problem is not solved the whole process starts again. These tools are of significant interest for the development of the Water Safety Plans recommended by WHO to monitor filters...

  10. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  11. Process water treatment at the Ranger uranium mine, Northern Australia.

    Science.gov (United States)

    Topp, H; Russell, H; Davidson, J; Jones, D; Levy, V; Gilderdale, M; Davis, S; Ring, R; Conway, G; Macintosh, P; Sertorio, L

    2003-01-01

    The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance data are presented for each stage. The unique features of the proposed process are: recycling of the lime/CO2 softening sludge to the uranium mill as a neutralant, the use of power station off-gas for carbonation, the use of residual ammonia as the pH buffer in carbonation; and the recovery and recycling of ammonia from the RO reject stream.

  12. Retrospective cohort study shows that the risks for retinopathy of prematurity included birth age and weight, medical conditions and treatment.

    Science.gov (United States)

    Ali, Aliaa A; Gomaa, Nancy A S; Awadein, Ahmed R; Al-Hayouti, Huda H; Hegazy, Ahmed I

    2017-12-01

    This study described the characteristics and risk factors of neonates who developed retinopathy of prematurity (ROP) and severe treatable ROP in two Egyptian neonatal intensive care units (NICUs). This retrospective cohort study comprised 108 preterm neonates who were screened for ROP after being admitted to the two NICUs run by Cairo University Hospital from June 2014 to May 2015. Patients were examined using digital fundus photography and indirect ophthalmoscopy was performed if ROP was detected. Retinopathy of prematurity occurred in 75 patients. Late-onset sepsis, ventilation and hypercapnia were independently associated with ROP. Patients who developed severe treatable ROP had a younger gestational age (GA) than patients who did not develop ROP or developed mild or moderate ROP (29 weeks, range 27-33 weeks versus 32 weeks, range 28-36 weeks, p = 0.002) and a lower birthweight (1200 g, range 980-1590 g versus 1460 g, range 770-2475 g, p = 0.029). The risk factors associated with severe treatable ROP included the duration of admission, the duration of incubator oxygen, late-onset sepsis, intraventricular haemorrhage, total parenteral nutrition and the duration of caffeine citrate therapy. This study showed that the risks for ROP were wide-ranging and included GA and weight, medical conditions and treatment. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  13. Evaluation of industrial hydrotalcite for the sulfated water treatment of the Valle de Puebla

    International Nuclear Information System (INIS)

    Rosano O, G.

    2003-01-01

    = 9 min, could treat 1m 3 (1000 L) of sulphated ground water. It is expected that this process can be optimized and, later on, included in the system of drinking water treatment plant of the city of Puebla in order to simplify operations and to offer a solution to the problems of water deficit. (Author)

  14. Solar photocatalysis - a possible step in drinking water treatment

    International Nuclear Information System (INIS)

    Ljubas, Davor

    2005-01-01

    Possibility of the use of solar radiation for reduction of Natural Organic Matter (NOM) content in natural lake water, as a source for drinking water preparation, was the topic of this research. Solar radiation alone does not have enough energy for sufficient degradation of NOM, but in combination with heterogeneous photocatalyst-titanium dioxide (TiO 2 ), with or without other chemicals, the degradation potential could increase. In specific geographical conditions in Republic of Croatia, e.g. Adriatic islands or Dalmatia, solar radiation could be used for photocatalytic degradation of natural organic matter (NOM) in surface waters and therewith lighten the process of preparing them to the potable water. Specific quality of the geographical locality appears in fact that it is a very attractive tourist destination, especially in period June-September. In this period the drinking water demand is the biggest and, fortunately, the intensity of the solar radiation, too. So, there is a proportion between the drinking water demand and solar radiation available for the use in drinking water treatment. A number of tests with lake water exposed to solar radiation in non-concentrating reactors were performed and photodegradation of NOM for various combinations of doses and crystal forms of TiO 2 with H 2 O 2 was studied. Irradiation intensity was estimated from global solar radiation measurements. The best performance for the NOM degradation had combination of 1 g/L TiO 2 both anatase and rutile+solar radiation+H 2 O 2 , but - economically - it was not the best combination. An estimation of the biodegradation potential of dissolved organic matter after the photocatalytic step is given, too

  15. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  16. [The toxicity variation of organic extracts in drinking water treatment processes].

    Science.gov (United States)

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  17. Reverse osmosis based water treatment and purification systems for nuclear power installations

    International Nuclear Information System (INIS)

    Epimakhov, V.N.; Olejnik, M.S.; Moskvin, L.N.

    2004-01-01

    Experiments on the realization and service of specialized water treatment and purification plants based on the principle of reverse osmosis filtration of water at the NPU benches of the A.P. Aleksandrov Scientific Research Technological Institute (SRTI) are analyzed. Membrane-sorption unit including module of micro-, ultrafiltration, reverse osmosis and ion exchange with productivity to 0.5 m 3 /h is developed and operated at SRTI. It is demonstrated that reverse osmosis purification of manufacturing water significantly improves service conditions of NPU and decreases salinity [ru

  18. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.

    Science.gov (United States)

    Steinle-Darling, Eva; Zedda, Marco; Plumlee, Megan H; Ridgway, Harry F; Reinhard, Martin

    2007-09-01

    Reverse osmosis (RO) treatment has been found to be effective for a wide range of organics but generally small, polar, uncharged molecules such as N-nitrosodimethylamine (NDMA) can be poorly rejected. The rejection of seven N-nitrosoalkylamines with molecular masses in the range of 78-158Da, including NDMA, N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip) by three commercial brackish-water reverse osmosis membranes was studied in flat-sheet cells under cross-flow conditions. The membranes used were ESPA3 (Hydranautics), LFC3 (Hydranautics) and BW-30 (Dow/Filmtec), commonly used in water reuse applications. The effects of varying ionic strength and pH, dip-coating membranes with PEBAX 1657, a hydrophilic polymer, and artificial fouling with alginate on nitrosamine rejection were quantified. Rejection in deionized (DI) water increased with molecular mass from 56 to 70% for NDMA, to 80-91% for NMEA, 89-97% for NPyr, 92-98% for NDEA, and to beyond the detection limits for NPip, NDPA and NDBA. For the nitrosamines with quantifiable transmission, linear correlations (r(2)>0.97) were found between the number of methyl groups and the log(transmission), with factor 0.35 to 0.55 decreases in transmission per added methyl group. A PEBAX coating lowered the ESPA3 rejection of NDMA by 11% but increased the LFC3 and BW30 rejection by 6% and 15%, respectively. Artificially fouling ESPA3 membrane coupons with 170g/m(2) alginate decreased the rejection of NDMA by 18%. A feed concentration of 100mM NaCl decreased rejection of NDMA by 15% and acidifying the DI water feed to pH=3 decreased the rejection by 5%, whereas increasing the pH to 10 did not have a significant (p<0.05) effect.

  19. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  20. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs-Based Composite Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Lining Ma

    2017-03-01

    Full Text Available Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.