WorldWideScience

Sample records for water treatment plant

  1. Crow Nation Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  2. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  3. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  4. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  5. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    Science.gov (United States)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  6. Water treatment plants assessment at Talkha power plant.

    Science.gov (United States)

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  7. The Use of Water Plants for Storm Water Runoff Treatment

    Directory of Open Access Journals (Sweden)

    Lina Varneckaitė

    2011-04-01

    Full Text Available The popularity of using water plants for storm water runoff treatment has been largely due to the fact that pond and wetland based systems offer the advantages of providing a relatively passive, natural, low-maintenance and operationally simple treatment solution while enhancing habitat and aesthetic values at the same time. While ponds are generally effective at removing coarse suspended sediments, they are less effective at removing finer particulates and dissolved contaminants. To provide enhanced treatment, a wetland can be placed downstream of a pond.Article in Lithuanian

  8. Modelling of Water Turbidity Parameters in a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    A. S. KOVO

    2005-01-01

    Full Text Available The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alkThe developed model will aid the predictive assessment of water treatment plant performance. The limitations of the models are as a result of insufficient variable considered during the conceptualization.

  9. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  10. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  11. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    OpenAIRE

    CORNELIA DIANA HERTIA; ANCA ELENA GURZAU; MARIA ILONA SZASZ

    2011-01-01

    This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very...

  12. Urea Synthesis Plant - Process Water Treatment

    Directory of Open Access Journals (Sweden)

    Matijašević, Lj.

    2007-09-01

    Full Text Available After the years of operation of Petrokemija d. d. from Kutina it has been recognized that the technology of urea production can be improved at several points, including wastewater treatment.The wastewater treatment area is a part of the urea plant, Urea 2 of Petrokemija d. d., Kutina. The plant has been in operation since 1983 based on the licensed Stamicarbon CO2 stripping process. So far there have been no major process improvements in terms of utility savings. This part of the plant releases into the environment almost 800 t per day of superfluous wastewater polluted with small, however significant, amounts of urea and ammonium. As such, this wastewater cannot be used in any other segment of urea production. The aim of this paper is to improve the current process from the economical and ecological point of view with ultimate goal of implementing the results obtained.

  13. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  14. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  15. Artificial Intelligence Based Alum Dosage Control in Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    P Poongodi

    2013-08-01

    Full Text Available Supplying good quality of drinking water is a challenging task during the rainy season and floods. During this period water becomes highly polluted with suspended solids which increase the water turbidity. Alum is used to reduce the turbidity of the water. Typically in water treatment plants alum dosage is decided by the Jar test and the desired alum dosage is added manually. This research proposes an automatic alum dosage mixing process. The alum dosage is controlled by an intelligent controller which consists of a dosage predictor, an inverse model of the dosage pump and a Pulse Width Modulation (PWM controller. The optimal alum dosage is predicted by the dosage predictor. The PWM controller controls the flow rate of the alum dosing pump. This proposed method has been implemented in a laboratory based water treatment plant and it ensures the automation in water treatment plant to supply good quality drinking water.

  16. Crow Municipal Rural & Industrial Pilot Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  17. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  18. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  19. Water Treatment Plants, Published in 2006, City of Carson City.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, was produced all or in part from Hardcopy Maps information as of 2006. Data by this publisher are often provided in State Plane...

  20. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  1. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filt

  2. Hydraulic modelling of drinking water treatment plant operations

    OpenAIRE

    L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm

    2008-01-01

    For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...

  3. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    K. J. Borger

    2008-10-01

    Full Text Available For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a unit is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes. Using this library, a hydraulic model was set up and validated for the drinking water treatment plant Harderbroek.

  4. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  5. Water Treatment Plants, Water Treatment Plants, Published in 2010, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:24000 (1in=2000ft) scale as of 2010. It is described as 'Water Treatment Plants'. Data by this publisher are...

  6. Modelling total sewage water discharge to a regional treatment plant.

    NARCIS (Netherlands)

    Witter, J.V.; Stricker, H.

    1986-01-01

    In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in r

  7. An Ontology-Driven Dependable Water Treatment Plant CPS

    Directory of Open Access Journals (Sweden)

    SANISLAV Teodora

    2013-05-01

    Full Text Available The paper introduces an ontology-drivenCyber-Physical System with dependability features tocontrol, monitor and diagnose a water treatment plant,with emphasis on the ontology, as a new approach forthe existing industrial control systems used in thisfield. The proposed dependability ontology is based ona fault forecasting technique, a qualitative evaluationof the water treatment plant Cyber-Physical Systembehaviour - Failure Modes and Effects Analysis. Theontology has two important parts: one is the ontologyof faults including several categories of system faultsand the other is the ontology of failures includingseveral categories of system failures. The dependabilityontology plays a central role in the Cyber-PhysicalSystem architecture and drives various aspects of thissystem, especially the ones related to system diagnosis.

  8. Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant

    OpenAIRE

    Ellenberger, Christine Spada

    1999-01-01

    WATER QUALITY IMPACTS OF PURE CHLORINE DIOXIDE PRETREATMENT AT THE ROANOKE COUNTY (VIRGINIA) WATER TREATMENT PLANT by Christine S. Ellenberger Dr. Robert C. Hoehn, Chairman (ABSTRACT) Chlorine dioxide (ClO2) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO2 generation system ...

  9. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  10. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    Science.gov (United States)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  11. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  12. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  13. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  14. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    Science.gov (United States)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  15. Life Cycle Assessment of Waste Water Treatment Plants in Ireland

    Directory of Open Access Journals (Sweden)

    Greg Mcnamara

    2016-09-01

      The Urban Wastewater Treatment Directive 91/271/EEC introduced a series of measures for the purpose of protecting the environment from the adverse effects of effluent discharge from wastewater treatment plants.  There are environmental costs associated with attaining the required level of water quality set out in the directive such as greenhouse gas emissions due to energy production, and ecotoxicity from sludge application to land.  The goal of this study is to assess the environmental costs in an Irish context, focusing specifically on the effects of variation in scale and discharge limitation. Life cycle assessment is the analytical tool used to evaluate the environmental impact.  The life cycle impact assessment methodology developed by the Centre of Environmental Science, Leiden University (2010 has been adopted and implemented using GaBi 6.0 life cycle assessment software.  Two plants of varying size and location were chosen for the study. The study found that energy consumption and sludge application to land are the largest contributors to the overall environmental impact associated with the treatment process at both plants.  Economies of scale were observed in energy usage during secondary aeration.   

  16. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…

  17. Optimization of conventional water treatment plant using dynamic programming.

    Science.gov (United States)

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants.

  18. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  19. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  20. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O3-biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  1. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  2. Water treatment plant site location using rough set theory.

    Science.gov (United States)

    Arabani, M; Pirouz, M

    2015-10-01

    Currently, advanced methods have been developed to select an appropriate site for an engineering project. The ability to make a good decision in site selection can help the engineers to reduce the expensive costs, which are very important in large construction projects. In this paper, a new approach for site selection is presented. This method is based on rough set theory which is a mathematical theory presented by professor Pawlak. In this study, the results of the rough set decision-making are compared with the results of the regression method in a practical case study for the site location of a water treatment plant in Ardabil Province in the northwest of Iran, to demonstrate that the rough set theory provides a useful method for site selection. The results of practical studies indicate that using this method for site selection decision-making can reduce costs and prevent hazards that may happen due to civil engineering uncertainties.

  3. Performance evaluation of water and wastewater treatment plant in Kathmandu Valley

    OpenAIRE

    Bartaula, Reetu

    2016-01-01

    In this work, assessments of technology of the water and wastewater treatment plants including constructed wetlands in Kathmandu valley are presented. There are nine water treatment plants among which two are not in operation; seven constructed wetlands among which two are under maintenance and one is not in operation. In addition, one conventional wastewater treatment plant is studied in order to highlight the associated benefits and identify challenges of water and wastewater treatment in K...

  4. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  5. Water Treatment Plants, Water Treatment Plants, Published in 2007, 1:1200 (1in=100ft) scale, Town of Cary NC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2007. It is described...

  6. Water Treatment Plants, City of Morganton Water Treatment Plants, Published in 2007, 1:63360 (1in=1mile) scale, City of Morganton.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:63360 (1in=1mile) scale, was produced all or in part from Other information as of 2007. It is described as 'City...

  7. Water Treatment Plants, Water Treatment Plants derived from parcel polygons, Published in 2010, 1:1200 (1in=100ft) scale, Columbia County Board of Commissioners.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Published Reports/Deeds information as of 2010. It is...

  8. Water Treatment Plants, Location of Waste Water Treatment Plants via orthophotography and field verification., Published in 2011, 1:2400 (1in=200ft) scale, Howard County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Survey/GPS information as of 2011. It is described...

  9. Water Treatment Plants, Water Treatment Plants in 9 county region in South Georgia, Published in 1999, 1:2400 (1in=200ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Survey/GPS information as of 1999. It is described...

  10. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    Science.gov (United States)

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  11. Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region.

    Science.gov (United States)

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2014-04-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

  12. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  13. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  14. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process technologist

  15. Minding your R and Q's. Improving water treatment plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Judy [Thermal Chemistry Limited, Hamilton (New Zealand); Addison, David

    2012-09-15

    Water treatment plants need to reliably produce water with the correct quality and required quantity for boiler and heat recovery steam generator feedwater, gas turbine water injection, or co-generation plant feedwater. Without the quality guarantees, the process that utilises the water will suffer from corrosion and/or deposition issues, and if the quantity is not produced reliably, then the process which uses the final water product cannot operate correctly. This paper discusses the practical tools to ensure ''Reliability'', ''Quality'' and ''Quantity'' - the ''R and Q's'' of a water treatment plant, in the form of a performance management plan and two water treatment plant case studies.

  16. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  17. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  18. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko;

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...... streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where...... treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios...

  19. Evaluation of Five Treatment Plants for the Removal of Microcystins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Manuel Álvarez Cortiñas

    2017-06-01

    Full Text Available In Galicia there are supplies that collect water from reservoirs showing growth of cyanobacteria that could produce toxins. The drinking water treatment plants (DWTPs of these supplies should provide adequate treatment and be subjected to maintenance. WHO guidelines make recommendations on the most suitable treatments for removing microcystins. The Department of Health developed a protocol of action against these events jointly with water basin authorities. 4 reservoirs and five treatment plants were identified for this study. The treatments of the plants, the maintenance carried out at the DWTPs and the results for sestonic and dissolved toxins analyzed by the Public Health Laboratory of Galicia in the reservoirs near the point of collection, before the treatment plants and after them, during the 2013-2014 biennium were evaluated.

  20. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d(-1) in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4(+) 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  1. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    Science.gov (United States)

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  2. Notification: Hotline Complaint – Drinking Water Treatment Plant at the Fort Belknap Indian Community

    Science.gov (United States)

    Project #OA-FY13-0076, November 13, 2012. On March 22, 2012, the Office of Inspector General (OIG) received a hotline complaint on the construction of the Drinking Water Treatment Plant (DWTP) at the Fort Belknap Indian Community.

  3. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  4. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  5. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  6. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  7. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Science.gov (United States)

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  8. Water Treatment Plants, Water Treatment Plant FC of Water Utility Map of City of Ashland, WI, Published in 2007, 1:600 (1in=50ft) scale, City of Ashland.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Other information as of 2007. It is described as 'Water...

  9. Obstacles and water treatment countermeasures in boiler plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.R. [Hansu Co, Seoul (Korea, Republic of)

    1998-06-01

    Corrosive oxide generated at the boiler hydrosphere causes the following hindrance. Metallic oxide generated by the corrosion of steel drop and adhere to boiler and various devices to speed up secondary corrosion, and the decrease of facilities life is more promoted due to the penetration of decayed parts. Corrosive oxide generated at the boiler hydrosphere is easily accumulated and adhered to heating part and U-shaped pipe part, etc. to become scale or become scale with fixed products of hardened composition. Since corrosive oxide works as scale material to hinder heat conductivity because the heat-conduction rate of corrosive oxide is so low as 1/10 {approx} 1/50 of soft steel, it causes the damage by dropping the permitted tensile strength with the decrease of heat- conduction rate. Breakdown of facilities due to scaling of corrosive oxide happens frequently especially in high-temperature and high-pressure boiler. There are many reasons for the corrosion happening at the boiler hydrosphere such as dissolved gas, pH, temperature, dissolved salts, surface condition of metallic material, etc., but the biggest causes are dissolved gas and pH. Therefore, fundamental solution for the corrosion in boiler facilities is to get rid of dissolved gas and adjust pH. Dissolved oxygen is oxygen that is dissolved in the water, and there are mechanical and chemical methods to get rid of it. Generally, part of dissolved oxygen is first removed by mechanical method, and then leftover dissolved oxygen is removed by chemical method. The treatment of dissolved oxygen by deoxidization device is to use the principle that under same water temperature, the lower the atmospheric pressure is, the lower the solubility of oxygen becomes, and under same atmospheric pressure, the higher the water temperature is, the lower the solubility of oxygen becomes. Heating-type deoxidization and vacuum-type deoxidization are used. Chemical treatment is to use chemicals called deoxidizes to get rid of

  10. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  11. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  12. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  13. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    West African Journal of Industrial & Academic Research Vol.11 No.1 June 2014 3 ... The plant has the capacity of treating the wastewater with high chemical oxygen demand (COD), biological oxygen demand (BOD), settleable and non-.

  14. NOM characterization and removal at six Southern African water treatment plants

    Directory of Open Access Journals (Sweden)

    J. Haarhoff

    2010-04-01

    Full Text Available Organic pollution is a major concern during drinking water treatment. Major challenges attributed to organic pollution include the proliferation of pathogenic micro-organisms, prevalence of toxic and physiologically disruptive organic micro-pollutants, and quality deterioration in water distribution systems. A major component of organic pollution is natural organic matter (NOM. The operational mechanisms of most unit processes are well understood. However, their interaction with NOM is still the subject of scientific research. This paper takes the form of a meta-study to capture some of the experiences with NOM monitoring and analysis at a number of Southern African Water Treatment Plants. It is written from the perspective of practical process selection, to try and coax some pointers from the available data for the design of more detailed pilot work. NOM was tracked at six water treatment plants using dissolved organic carbon (DOC measurements. Fractionation of the DOC based on biodegradability and molecular weight distribution was done at a water treatment plant in Namibia. A third fractionation technique using ion exchange resins was used to assess the impact of ozonation on DOC. DOC measurements alone did not give much insight into NOM evolution through the treatment train. The more detailed characterization techniques showed that different unit processes preferentially remove different NOM fractions. Therefore these techniques provide better information for process design and optimisation than the DOC measurement which is routinely done during full scale operation at these water treatment plants.

  15. A three step approach for removing organic matter from South African water sources and treatment plants

    Science.gov (United States)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    The high variability in the levels and composition of natural organic matter (NOM) in South-African water sources in different regions means that no single treatment process can be prescribed for each water treatment plant operating in the country. In order to remove NOM from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on local environmental situation. The primary objective of this study was to characterise the NOM present in South African source waters through an extensive sampling of representative water types across the country and then develop a rapid NOM characterisation protocol. Water samples were thus collected from eight different water treatment plants located throughout the country at different sites of their water treatment trains. Raw water samples, the intermediate samples before filtration and water samples before disinfection were collected at these drinking water treatment plants. The fluorescence excitation-emission matrices (FEEMs), biodegradable dissolved organic carbon (BDOC), ultraviolet (UV) characterisation (200-900 nm) and dissolved organic carbon (DOC) analysis were used to characterise the NOM in the water samples. The FEEM and UV results revealed that the samples were composed mainly of humic substances with a high UV-254 absorbance, while some samples had marine humic substances and non-humic substances. The sample’s DOC results were within the range of 3.25-21.44 mg C/L, which was indicative of the varying nature of the NOM composition in the regions where samples were obtained. The BDOC fraction of the NOM, on the other hand, ranged from 20% to 65%, depending on the geographical location of the sampling site. It is evident from the results obtained that the NOM composition varied per sampling site which would eventually have a bearing on its treatability. The various water treatment

  16. A Qualitative Survey of Five Antibiotics in a Water Treatment Plant in Central Plateau of Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Heidari

    2013-01-01

    Full Text Available Introduction. This study aimed to survey a total of five common human and veterinary antibiotics based on SPE-LC-MS-MS technology in a water treatment plant at central plateau of Iran. Also two sampling techniques, passive and grab samplings, were compared in the detection of selected antibiotics. Materials and Methods. In January to March 2012, grab and passive samples were taken from the influent and effluent of a water treatment plant. The samples were prepared using solid-phase extraction (SPE, and extracts were analyzed by liquid chromatography tandem mass spectrometry (LC-MS-MS. Results. The results showed that enrofloxacin, oxytetracycline, and tylosin were not detected in none of the samples. However, ampicillin was detected in the grab and passive samples taken from the influent (source water of the plant, and ciprofloxacin was detected in passive samples taken from the influent and effluent (finished water of the plant. Conclusion. The results imply that passive sampling is a better approach than grab sampling for the investigation of antibiotics in aquatic environments. The presence of ampicillin and ciprofloxacin in source water and finished water of the water treatment plant may lead to potential emergence of resistant bacteria that should be considered in future studies.

  17. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    Denmark's political ambitions of a fossil fuel free energy system by 2050 calls for more renewable energy sources such as wind and solar. These green energy resources fluctuate and the transition to a green energy system requires a Smart Grid with flexible consumers that balance the fluctuating......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  18. The direct filtration in a conventional water treatment plant; La filtracion directa en una ETAP convencional

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Quiros, F. [Canal de Isabel II, Madrid (Spain)

    1995-06-01

    The article describes the difficulty of the decantation of low turbidity water. Direct filtration and in-line filtration can be available alternative treatment process to coagulation, flocculation, with the minimum required chemical dosage especially coagulants, less sludge production and lower operation cost. The adaptation of conventional treatment plant to direct filtration system with recuperation of filters backwash water by eliminating the decantation, is relatively simple. The result to apply this process shows an efficient filters performance for the same effluent quality. (Author)

  19. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Science.gov (United States)

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chemical and biological aspects of water and sludge from treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, M.; Bonadonna, L.; Mancini, L.; Veschetti, E.; Gasbarro, M.; Lulli, G.; Zanobini, A.; Gabrieli, R.; Donia, D.; Divizia, M. (Istituto Superiore di Sanita' , Rome (Italy). Lab. di Igiene Ambientale Azienda Comunale Elettricita' ed Acque, Rome (Italy) Rome Univ. ' Tor Vergata' (Italy). Dip. di Sanita' Pubblica e Biologia Cellulare)

    Waste water and sewage sludge samples were collected from an urban waste water treatment plant in Rome (Italy). Chemical and biological (microbiological, virological and parassitological) analyses were performed for verifying the hygienic quality of the samples. On the basis of the results obtained, the possibility of utilizing the waste water and the sludge analyzed in view of a correct agricultural re-use can be taken into consideration.

  1. Radiological survey of the Pasco, Washington water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Thorburn, R.C.

    1951-12-05

    A comparison of inlet and outlet water activity densities of beta emitters indicates a decontamination factor of around ten with average outlet values of around 10/sup -6/ to 10/sup -7/ ..mu..c/cc. Radiochemical studies on collected sludge samples are outlined and indicate major components of the contamination to be Cu-64, As-76 and P-32. 6 refs., 2 figs., 4 tabs.

  2. Burkholderia pseudomallei traced to water treatment plant in Australia.

    Science.gov (United States)

    Inglis, T. J.; Garrow, S. C.; Henderson, M.; Clair, A.; Sampson, J.; O'Reilly, L.; Cameron, B.

    2000-01-01

    Burkholderia pseudomallei was isolated from environmental specimens 1 year after an outbreak of acute melioidosis in a remote coastal community in northwestern Australia. B. pseudomallei was isolated from a water storage tank and from spray formed in a pH-raising aerator unit. Pulsed-field gel electrophoresis confirmed the aerator and storage tank isolates were identical to the outbreak strain, WKo97. PMID:10653571

  3. APPLICATION OF INDIVIDUAL WASTEWATER TREATMENT PLANTS IN A DIFFICULT SOIL AND WATER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Beata Karolinczak

    2014-11-01

    Full Text Available The article presents technological and economic aspects of application of individual wastewater treatment plans in difficult soil and water conditions which include impermeable soils and a high level of groundwater. Technical analysis reviews available information around possible technologies applicable to sewage treatment and its discharge. Economic analysis highlights additional outlays that are associated with a construction of the treatment plant in such difficult conditions. In summary, a cost-effectiveness analysis is carried out.

  4. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater.

    Science.gov (United States)

    Bal Krishna, K C; Aryal, Ashok; Jansen, Troy

    2016-09-15

    Alum- and iron-based sludge obtained from water treatment plant produced during a unit treatment process (coagulation and flocculation) have been widely tested as a low-cost adsorbent to remove phosphorous (P) from wastewater. However, the effectiveness of iron-based sludge generated from the oxidation of iron which naturally occurs in the ground water has not been investigated. Moreover, influences of dominant metals ions comprised in the treatment plants sludges on P adsorption capacity and rate from wastewater are not yet known. This study, therefore, employed four different groundwater treatment plants sludges iron-based (from the oxidation of iron) and alum-based (from coagulation and flocculation process) to determine their P adsorption capacities and adsorption rates from the synthetic wastewater (SWW) and secondary effluent wastewater (SEWW). Although metals ions concentrations were the highest in the iron-based sludge amongst the sludge used in this study, it appeared to have the lowest P adsorption capacity and adsorption rate. A good correlation between aluminium to iron mass ratio and adsorption capacity for both types of waters were noted. However, a poor relation between aluminium to iron mass ratio and adsorption rates for the SEWW was observed. Further, the tested sludges were found to have a better P removal efficiency and adsorption capacity from the SEWW than from the SWW. Thus, this study demonstrates the ground water treatment plants sludges could be a low cost and effective adsorbent in removing P from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia.

    Science.gov (United States)

    Kleinschmidt, Ross; Akber, Riaz

    2008-04-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk.

  6. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  7. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  8. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Science.gov (United States)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  9. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Timo Pittmann

    2017-06-01

    Full Text Available This work describes the production of polyhydroxyalkanoates (PHA as a side stream process on a municipal waste water treatment plant (WWTP and a subsequent analysis of the production potential in Germany and the European Union (EU. Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT and withdrawal (WD in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR of 1913 mgVFA/(L×d and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016 could be produced on European waste water treatment plants.

  10. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  11. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants.

    Science.gov (United States)

    Zamyadi, Arash; Henderson, Rita; Stuetz, Richard; Hofmann, Ron; Ho, Lionel; Newcombe, Gayle

    2015-10-15

    The increasing frequency and intensity of taste and odour (T&O) producing cyanobacteria in water sources is a growing global issue. Geosmin and 2-methylisoborneol (MIB) are the main cyanobacterial T&O compounds and can cause complaints from consumers at levels as low as 10 ng/L. However, literature concerning the performance of full-scale treatment processes for geosmin and MIB removal is rare. Hence, the objectives of this study were to: 1) estimate the accumulation and breakthrough of geosmin and MIB inside full-scale water treatment plants; 2) verify the potential impact of sludge recycling practice on performance of plants; and, 3) assess the effectiveness of aged GAC for the removal of these compounds. Sampling after full-scale treatment processes and GAC pilot assays were conducted to achieve these goals. Geosmin and MIB monitoring in full-scale plants provided the opportunity to rank the performance of studied treatment processes with filtration and granular activated carbon providing the best barriers for removal of total and extracellular compounds, correspondingly. Geosmin was removed to a greater extent than MIB using GAC. Geosmin and MIB residuals in water post GAC contactors after two years of operation was 20% and 40% of initial concentrations, correspondingly. Biological activity on the GAC surface enhanced the removal of T&O compounds. These observations demonstrated that a multi-barrier treatment approach is required to ensure cyanobacteria and their T&O compounds are effectively removed from drinking water.

  12. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  13. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  14. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  15. Developing the optimum boiler water and feedwater treatment for fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, B. [Electric Power Research Inst., Palo Alto, California (United States)

    1996-12-01

    Over the last two years a new set of cycle chemistry guidelines has been developed for each of the treatments used in fossil plants. These revisions have been based on research conducted over the last ten years, much at the international collaborative level. By careful selection and optimization of the boiler water and feedwater treatments, it will be possible to accrue large financial, maintenance, availability and performance improvements. (au) 14 refs.

  16. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  17. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  18. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant.

    Science.gov (United States)

    Neale, Peta A; Antony, Alice; Bartkow, Michael E; Farré, Maria José; Heitz, Anna; Kristiana, Ina; Tang, Janet Y M; Escher, Beate I

    2012-09-18

    Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not

  19. Radiological characterization of waste products at a Catalan drinking water treatment plant - Radiological characterization of waste products of one Catalan drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, A.; Montana, M.; Serrano, I.; Blazquez, S.; Duch, M.A. [Institut de Tecniques Energetiques. Universitat Politecnica de Catalunya, ETSEIB. Diagonal 647. 08028 Barcelona (Spain); Montes, S.; Ganzer, M.; Devesa, R. [Aigues de Barcelona, AGBAR. Laboratory, General Batet, 5-7, 08028 Barcelona (Spain)

    2014-07-01

    Conventional Drinking Water Treatment Plants (DWTP) have a fairly standard sequence of processes which essentially consist in solids separation using physical processes such as settling and filtration, and chemical processes such as coagulation and disinfection. Consequently large quantities of solid wastes or sludge are generated every year by DWTP. These solid wastes may contain all kind of pollutants, including significant levels of radioactivity and may cause a radiological impact on the operating personnel, but also on the public if the waste is recycled, e.g. the use of sludge as fertilizer or cement manufacturing. In this work it has been studied the radioactivity content of waste products of one DWTP. The selected DWTP treats water mainly taken from the Llobregat River and also ground water. The treatment plant has a maximum treatment capacity of 5.5 m{sup 3}/s, and provides almost 50% of the annual drinking water in Barcelona metropolitan area (population equivalent of the plant: 4,856,579). This plant has been selected taking into account both variations in water source and the treatment applied. During the period July 2007 - March 2009 a temporal study of radio-nuclides present in sludge produced by the decanter cleaning process was conducted. The temporal study was made taking into account the particular weather conditions in Spain, at least one sampling campaign per season. In these samples naturally gamma emitters from the {sup 238}U and {sup 232}Th series were detected with activities similar to the arithmetic mean found in Spanish soils so no increase in natural radiation are produced by the uses of these sludge. Furthermore, no seasonal tendency could be observed in the studied period for both series within the uncertainties associated with the results. Radiological hazard effects were also evaluated by the external hazard index because one of the end-uses of this sludge is the cement manufacturing. In 2009 the treatment plant was modified and

  20. International water and steam quality standards on thermal power plants at all-volatile treatment

    Science.gov (United States)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2016-12-01

    One of the methods for the improvement of reliability and efficiency of the equipment at heat power plants is the decrease in the rate of corrosion of structural materials and sedimentation in water/steam circuit. These processes can be reduced to minimum by using the water with low impurity content and coolant treatment. For many years, water and steam quality standards were developed in various countries (United States, Germany, Japan, etc.) for specific types of equipment. The International Association for the Properties of Water and Steam (IAPWS), which brings together specialists from 21 countries, developed the water and steam quality standards for various types of power equipment based on theoretical studies and long-term operating experience of power equipment. Recently, various water-chemistry conditions are applied on heatpower equipment including conventional boilers and HRSGs with combined cycle power plants (Combined Cycle Power Plants (CCPP)). In paper, the maintenance conditions of water chemistry with ammonia or volatile amine dosing are described: reducing AVT(R), oxidizing AVT(O), and oxygen OT. Each of them is provided by the water and steam quality standards and recommendations are given on their maintenance under various operation conditions. It is noted that the quality control of heat carrier must be carried out with a particular care on the HPPs with combined cycle gas turbine units, where frequent starts and halts are performed.

  1. The Assessment of Water Treatment Plant Sludge Properties and the Feasibility of Its Re-use according to Environmental Standards: Shahid Beheshti Water Treatment Plant Case Study, Hamadan

    Directory of Open Access Journals (Sweden)

    H. Pourmand

    2016-04-01

    Full Text Available Introduction & Objectives: Water treatment leads to produce large volumes of sludges in water treatment plants which are considered as solid waste, and should be managed appropriately and logically to avoid bioenvironmental effects. Materials & Methods: In this cross-sectional study, the required samples were taken from the sludge of Shahid Beheshti water treatment plant to assay physical and chemical characteristics during one year from summer, autumn and winter 93 until spring 94. Sampling and testing procedures were full fit according to standard methods. Results: The average concentration of total solids parameters (TSS, total suspended solids (TSS, and total dissolved solids (TDS were 22346, 21350 and 1005 mg/L, respectively. Among the heavy metals, aluminum, iron, manganese and zinc have the highest concentrations with the values of 1400, 956, 588 and 100 mg per kg of dry solids, respectively. The measured concentrations for cadmium were also higher than the permissible limits for agricultural purposes and discharges into the environment. The average concentrations of nickel were more than the recommended standard for industrial, agricultural and parkland application purposes. The concentrations were also slurry higher than the dry sludge. Conclusion: According to the past studies and results of this study, it could be concluded that contamination of heavy metals in sludge and slurry samples are more than dried sludge, .Therefore, if they are discharged into the environment, it is better to be disposed as dry sludges. Furthermore, because these types of waste sludges are routinely disposed in the environment, it is recommended to take the routine samples in order to measure the heavy metals and other relevant parameters contents of sludge before discharging it. (Sci J Hamadan Univ Med Sci 2016; 23 (1:57-64

  2. Influence of rapid mix, flocculation and decantation parameters on the treatment of the Ponta Grossa/PR water treatment plant affluent water

    Directory of Open Access Journals (Sweden)

    Fabiano Icker Oroski

    2009-08-01

    Full Text Available Brazilian regulations, NBR 12216 (1992, admit that, in the absence of laboratory and pilot plant data, rapid mix, flocculation, decantation or dissolved air flotation parameters be adopted. The present work demonstrates that this is a dangerous practice, which can compromise or difficult the water treatment plant operation, and can leave to a serious damages on the treated water quality; as well can conduct to a bigger operational costs. Therefore, in this work it was evaluated the influence of rapid mix, flocculation and decantation parameters on the treatment of the raw water affluent to the water treatment plant of Ponta Grossa City, Parana State, Brazil. As coagulant agents it was applied aluminium sulfate, PACI (polyaluminium chloride, ferric chloride and Fenton reagent. It was observed that the mentioned parameters must not be adopted because exert a big influence on turbidity removal efficiency.Keywords: rapid mix; flocculation; decantation; alum; fenton reagent.

  3. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge.

    Science.gov (United States)

    Zamyadi, Arash; MacLeod, Sherri L; Fan, Yan; McQuaid, Natasha; Dorner, Sarah; Sauvé, Sébastien; Prévost, Michèle

    2012-04-01

    The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins.

  4. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  5. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  6. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    Science.gov (United States)

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the (226)Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of (226)Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe2O3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  8. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  9. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants

    Institute of Scientific and Technical Information of China (English)

    SHAO Jiahui; FANG Xuliang; HE Yiliang; JIN Qiang

    2008-01-01

    Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditionalchlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaksin the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose.Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditionson the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration,liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9%was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically foundto be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammoniaremoval rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plantmembrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatmentplant, also paved the way towards a larger scale application.

  10. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  11. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  12. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    OpenAIRE

    H. Gardea–Villegas

    2008-01-01

    This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986) applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is a...

  13. Monitoring of ph, redox and turbidity in a water treatment plant using WSN with ZIGBEE technology

    Directory of Open Access Journals (Sweden)

    Gerson Fonseca-Gonzaléz

    2014-05-01

    Full Text Available This paper presents the design of a WSN using Zigbee technology (Standart IEEE 802.15.4, With the help of the XBee of Maxtream modules the communication is carried out between a remote water treatment plant towards a ccordinator node. The acqired data are entered to a microcontroller which takes care of the processing to be able to transmit and visualized under a graphical user interface in Matlab

  14. "Recovery of Iron Coagulants From Tehran Water-Treatment-Plant Sludge for Reusing in Textile Wastewater Treatment"

    Directory of Open Access Journals (Sweden)

    F Vaezi

    2001-09-01

    Full Text Available Most of the water treatment plants in Iran discharge their sludge to the environment whithout consideration of possible side effects. Since this kind of sludge is generally considered pollutant, the sludge treatment of water industry seems to be an essential task. Obviously theweight and volume of solids produced during the coagulation process are much more than other wastes of water treatment operations, and their treatment is much more difficult as well. Besides, this sludge contains metal hydroxide so disposing of it would waste considerable amounts of valuable metal salts. To face the mentioned problems, reclamation of coagulatns from waste sludges for reuse has been investigated in this research. Among different chemicals used in the experiments of recovery, sulfuric-acid showed better results from both practical and cost viewpoints. Three important phenomena were observed by sludge acidificantion: dissolution of metal hydroxide, reduction of sludge volume and finally faster settleability and dryness of remainder sludge. The salt recovered by sulfuric acid from the sludges of Tehran Water-Treatment Plant was ferric sulfate which showed good results in the treatment of two different types of wastewaters from textile industry.

  15. The occurrence and removal of selected fluoroquinolones in urban drinking water treatment plants.

    Science.gov (United States)

    Xu, Yongpeng; Chen, Ting; Wang, Yuan; Tao, Hui; Liu, Shiyao; Shi, Wenxin

    2015-12-01

    Fluoroquinolones (FQs) are a widely prescribed group of antibiotics. They enter the aqueous environment, where they are frequently detected, and can lead to a threat to human health. Drinking water treatment plants (DWTPs) play a key role in removing FQs from potable water. This study investigated the occurrence and removal of four selected FQs (norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), and ofloxacin (OFL)) in three urban DWTPs in China. The treatment efficacy for each system was simultaneously evaluated. Two of the examined DWTPs used conventional treatment processes. The third used conventional processes followed by additional treatment processes (ozonation-biologically activated carbon (ozonation-BAC) and membrane technology). The average concentrations of the four FQs in the source water and the finished water ranged from 51 to 248 ng/L and from removal of FQs. In contrast, the addition of advanced treatment processes such as the ozonation-BAC and membranes, substantially improved the removal of FQs. The finding of this study has important implications: even though coagulation-sedimentation and chlorination treatment processes can remove most target FQs, the typical practice of advanced treatment processes is necessary for the further removal.

  16. Presence of Naturally Occurring Radioactive Materials in sludge samples from several Spanish water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M.; Penalver, A.; Aguilar, C. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla, Tarragona (Spain); Borrull, F., E-mail: francesc.borrull@urv.cat [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla, Tarragona (Spain)

    2010-09-15

    Sludge samples from eleven potable water treatment plants (PWTP), three waste water treatment plants (WWTP) and an industrial water treatment plant (IWTP), located in different areas of Spain, mainly in Catalonia, were analyzed for their radiological content in order to determine whether they could be considered as industries affected by naturally occurring radioactive material (NORM). In general, samples from the PWTPs showed higher activity values for the alpha and gamma emitting isotopes than the WWTPs and the IWTP. For example, samples from the area located in the north of Catalonia show values of {sup 234}U, {sup 235}U and {sup 238}U in the range of 84.4-792.1 Bq/kg, 3.3-26.8 Bq/kg and 63.8-585.9 Bq/kg, respectively. In general, for PWTP, the values obtained for the gamma emitter and alpha emitter isotopes showed that both the geology and the industrial activities correlate with the values measured. The magnitude of these results demonstrates the need to measure the radionuclide content of these samples before reaching a decision about their final disposal.

  17. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  18. Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China.

    Science.gov (United States)

    Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian

    2013-07-01

    In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments.

  19. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  20. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants.

    Science.gov (United States)

    Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2014-02-01

    The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.

  1. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant.

    Science.gov (United States)

    Huerta-Fontela, Maria; Galceran, Maria Teresa; Ventura, Francesc

    2008-09-15

    The presence of psychoactive stimulatory drugs in raw waters used for drinking water production and in finished drinking water was evaluated in a Spanish drinking water treatment plant (DWTP). Contamination of the river basin which provides raw water to this DWTP was also studied. In surface waters, illicit drugs such as cocaine, benzoylecgonine (cocaine metabolite), amphetamine, methamphetamine, MDMA (ecstasy), and MDA were detected at mean concentrations ranging from 4 to 350 ng/L. Nicotine, caffeine, and their metabolites were also found at the microg/L level. The elimination of these compounds during drinking water treatment was investigated in a real waterworks. Amphetamine-type stimulants (except MDMA) were completely removed during prechlorination, flocculation, and sand filtration steps, yielding concentrations lowerthan their limits of detection (LODs). Further, ozone treatment was shown to be effective in partially eliminating caffeine (76%), while subsequent granulated activated carbon (GAC) filtration removed cocaine (100%), MDMA(88%), benzoylecgonine (72%), and cotinine (63%). Postchlorination achieved the complete elimination of cocaine and nicotine and only one parent compound (caffeine) and two metabolites (cotinine and benzoylecgonine) persisted throughout treatment although reductions of 90% for caffeine and benzoylecgonine and 74% for cotinine were obtained.

  2. Life cycle assessment of four potable water treatment plants in northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz Rodriguez

    2016-04-01

    Full Text Available There is currently great concern about the processes that directly or indirectly contribute to the potential for global warming, such as stratospheric ozone depletion or acidification. In this context, and provided that treated water is a basic public utility in urban centers around the world as well as in some rural areas, its impact on the environment is of great interest. Therefore, this study applied the environmental methodology of Life Cycle Assessment (LCA to evaluate the environmental loads of four potable water treatment plants (PWTPs located in northeastern Colombia following the international guidelines delineated in ISO 14040. The different stages of the drinking water process were thoroughly assessed, from the catchment point through pumping to the distribution network. The functional unit was defined as 1 m3 of drinking water produced at the plant. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results showed that in plants PLA-CA and PLA-PO, the flocculation process has the highest environmental load, which is mostly attributable to the coagulant agent, with a range between 47-73% of the total impact. In plants PLA-TON and PLA-BOS, electricity consumption was identified as the greatest impact source, with percentages ranging from 67 to 85%. Treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior varied from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operational cycle.

  3. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    Science.gov (United States)

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies.

  4. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  5. COST OF MUNICIPAL WATER TREATMENT PLANT IN THE BIGGEST POLISH TOWN IN PODLASKIE PROVINCE FOR THE YEARS 2010–2012

    Directory of Open Access Journals (Sweden)

    Agnieszka Kisło

    2015-02-01

    Full Text Available In this paper the operation costs of the municipal water treatment plant in the biggest Polish town in Podlaskie province was analyzed. Capacity of this WTF is 600 m3/h. Water treatment processes are primarily focused on removal of iron, mangnese and turbidity and disinfection by UV rays. Water is taken by 19 wells and then it is oxygenated. From aerators water is addressed to ten filters, which filter water at a speed of 8.5 m/h. The analysis of the operation costs of the municipal water treatment plant was carried out by a method of testing and interpretation of the materials provided by the Water and Sewerage Company in a big town in the Podlaskie Province. It was established that, groundwater treatment plant operation costs, carried out in 2010–2012, showed the highest share of depreciation and remuneration costs.

  6. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  7. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants.

    Science.gov (United States)

    Corsaro, Daniele; Pages, Gemma Saucedo; Catalan, Vicente; Loret, Jean-François; Greub, Gilbert

    2010-06-01

    In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.

  8. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    Science.gov (United States)

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  9. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Voldoire, Camille F. [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Newton, Kelly; Praptiwi, Radisti [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Collingnon, Lea [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Dreyfus, Jennifer [Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001 (Australia); Hobson, Peter [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Gaget, Virginie [University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005 (Australia); Newcombe, Gayle, E-mail: gayle.newcombe@sawater.com.au [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia)

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers.

  10. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.

    Science.gov (United States)

    Sánchez-Martín, J; Beltrán-Heredia, J; Solera-Hernández, C

    2010-10-01

    A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L(-1) aqueous solution of an acid dye), and laundry (simulated by a 50 mg L(-1) aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L(-1) (except in the case of the surface water for which the dosage was 2 mg L(-1)). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.

  11. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.

    Science.gov (United States)

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-03-14

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.

  12. Exploring the under-investigated “microbial dark matter” of drinking water treatment plants

    Science.gov (United States)

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-01-01

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term “microbial dark matter” was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water. PMID:28290543

  13. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    Science.gov (United States)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  14. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  15. Estimation of waste water treatment plant methane emissions: methodology and results from a short campaign

    Directory of Open Access Journals (Sweden)

    C. E. Yver-Kwok

    2013-10-01

    Full Text Available This paper describes different methods to estimate methane emissions at different scales. These methods are applied to a waste water treatment plant (WWTP located in Valence, France. We show that Fourier Transform Infrared (FTIR measurements as well as Cavity Ring Down Spectroscopy (CRDS can be used to measure emissions from the process to the regional scale. To estimate the total emissions, we investigate a tracer release method (using C2H2 and the Radon tracer method (using 222Rn. For process-scale emissions, both tracer release and chamber techniques were used. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the Radon tracer method encompasses not only the treatment station but also a large area around. Thus the Radon tracer method is more representative of the regional emissions around the city. Uncertainties for each method are described. Applying the methods to CH4 emissions, we find that the main source of emissions of the plant was not identified with certainty during this short campaign, although the primary source of emissions is likely to be from solid sludge. Overall, the waste water treatment plant represents a small part (3% of the methane emissions of the city of Valence and its surroundings,which is in agreement with the national inventories.

  16. Assessment of Wastewater Discharge Impact from a Sewage Treatment Plant on Lagoon Water, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezechiel Longe

    2010-05-01

    Full Text Available The aim of this study was to assess the wastewater discharge impact from the University of Lagos campus treatment plant on the lagoon system . In order to achieve this objective water samples were collected from nine sites and analyzed for different wastewater quality variables. The field survey was carried out between July and November in order to capture both the wet and dry seasons. Average removal efficiencies of measured parameters from treated effluents are 26% for Total Dissolved Solids (TDS, 73% for Biological Oxygen Demand (BOD, 65.8% for Chemical Oxygen Demand (COD and 72% for Total Nitrogen (Total N for the wet season campaign. During the dry season average rem oval efficiencies of measured parameters are 54% for TDS, 54% for BOD, 39% for COD and 42% for Total N. These values are lower than values obtained for the wet season except for TDS. Most parameters in effluents exceeded the National Environmental Protection Regulations, Effluent Limitation standards for discharge into river bodies. Average concentrations of TDS, BOD and COD in lagoon water show higher concentrations than in the treated effluent and are above the regulatory requirements. The research recommends further study on the possible influence of water dynamics and sampling methods on water quality of the lagoon. The overall results from this research conclude that the lagoon is being polluted by effluents discharge from the university treatment plant thereby exposing the health of local residents who use it for recreation and for food production purposes.

  17. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    Science.gov (United States)

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  18. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    Energy Technology Data Exchange (ETDEWEB)

    Batt, Angela L. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: abatt@hotmail.com; Bruce, Ian B. [Department of Geography, Buffalo State College, Buffalo, NY (United States)]. E-mail: ianbbruce@gmail.com; Aga, Diana S. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: dianaaga@buffalo.edu

    2006-07-15

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 {mu}g/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 {mu}g/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 {mu}g/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants.

  19. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.

    Science.gov (United States)

    Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine

    2012-04-01

    Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.

  20. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water

  1. EVALUATION OF THE QUALITY OF DRINKING WATER PRODUCED BY THE TREATMENT PLANT: CASE OF MAURITANIA

    Directory of Open Access Journals (Sweden)

    MOHAMEDEN TFEILA

    2015-10-01

    Full Text Available This study aims to evaluate the performance of treatment plants after three years of operation of the city of Nouakchott. It essentially aims to study the evolution of various raw water qualities during the different processing steps (T °, pH, EC, MES, Cl-, NO3-, NO2-, sulfate.... The water treatment in Béni Nadji pretreatment station has led to a significant removal of turbidity, organic matter, and a 99-100 % elimination of SS (Suspended Solids. For drinking water, the total hardness varies between 3.8 and 5.6 °fH. The value of turbidity in drinking water was between 0.2 and 0.3 NTU with turbidity varying between 21 and 330 NTU in the surface water. Aluminum surface concentration surface was between 0.1 and 0.7 mg·L-1. The nitrate concentration varies between 0.5 and 2 mg·L-1, which is lower than that suggested by The World Health Organization (50 mg·L-1. As a result of this study, we concluded that water clarification phases of Nouakchott must be improved.

  2. Salmonella in effluent from sewage treatment plants, wastepipe of butcher's shops and surface water in Walcheren.

    Science.gov (United States)

    Kampelmacher, E H; van Noorle Jansen, L M

    1976-07-01

    In the frame of the "Walcheren-project" in which the epidemiology of salmonellosis is studied in a certain area, effluent from sewage treatment plants, wastepipe's of butcher's shops and surface waters, which receive the effluent were studied for the presence of salmonellae. From 160 samples of effluent 150 (94%) contained salmonellae. The most common serotype was S. typhi murium (35%) followed by S. panama and S. infantis. 14 butcher's shops' wastepipes were sampled 54 times. 14 (26%) times salmonellae were found, but only twice was the type isolated from the butcher's shop the same as found in the effluent on the same day. With regard to the presence of salmonellae in surface waters receiving effluent it was shown that from the immediate vicinity of the plant to 250 m downstream from the site of drainage of effluent the number of salmonellae per 100 ml remains almost constant. After 1.5-4 kilometers Salmonella could not be isolated from any of the samples examined. The results underline the hypothesis that salmonellae multiply in the sewage system and/or plant. The spread of samonellae by effluent seems to be limited to the plant itself and of the nearest vicinity. Proposals are brought forward to interupt contamination cycles by decontamination measures.

  3. Starting the water treatment system of the 410-MW combined-cycle plant at the Krasnodar cogeneration station

    Science.gov (United States)

    Panteleev, A. A.; Zhadan, A. V.; Gromov, S. L.; Tropina, D. V.; Arkhipova, O. V.

    2012-07-01

    The process diagram of a water treatment plant constructed on the basis of integrated membrane technologies with the use of two-stage reverse osmosis for the PGU-410 power unit at the Krasnodar cogeneration station is presented.

  4. Water Treatment Plants, Published in 2008, 1:4800 (1in=400ft) scale, White County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Other information as of 2008. Data by this publisher...

  5. Water Treatment Plants, Published in Not Provided, 1:4800 (1in=400ft) scale, Warren County Emergency Services.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Hardcopy Maps information as of Not Provided. Data by...

  6. Micro Hydropower generation by Discharge water of Dongbu Sewage Treatment Plant in Seogwipo City

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Seong

    2005-02-15

    This study aims to examine the possibility of Micro hydroelectric power plants by using discharged water from Dongbu Sewage Treatment Plant located in Seogwipo City, Jeju do. The results are as follows; The best location for installing the hydropower plant is at the location of EL(+)2.0, the joint owned surface of the water on the west between discharge flow meter chamber and the surface of the sea water. In calculating the quantity of electric power generation, the amount used is 0.157m{sup 3}/sec, the average 95day water Flow for the recent 3 years. The effective difference in elevation is 12.41m between discharge flow meter chamber and the location of hydraulic turbine installation. Therefore, the quantity of electric generation is expected to be 14.6kW. The monthly quantity of electric generation is 9.46 MW and the yearly quantity of electric generation is calculated to be 113.53 MW. The type of hydraulic turbine to be applied to the hydro power generation is the hydraulic turbine of low head miniflow. Therefore, it is recommended to choose an all-in-one inline-type hydraulic turbine generator. The recommended capacity is 50kW. The hydropower generation has The system of pollution-free energy production. Because the Jejudo government has promoted the free international city project, the image of Clean Jeju is expected to continuously rise. In addition, sewage disposal plants have been regarded as disgusting facilities. Considering this fact, the hydropower generation is expected to build up the image of friendly natural environment. In a word, this project should be considered to be The project of alternative energy production.

  7. Towards spatially smart abatement of human pharmaceuticals in surface waters : Defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  8. Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Gils, J.A.G.; Coppens, L.J.C.; Laak, ter T.L.; Raterman, B.W.; Wezel, van A.P.

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  9. Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Gils, J.A.G.; Coppens, L.J.C.; Laak, ter T.L.; Raterman, B.W.; Wezel, van A.P.

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  10. Synergy of sewage water treatment plants and processing of manure; Synergie RWZI en mestverwerking

    Energy Technology Data Exchange (ETDEWEB)

    Bisschops, I.; Weijma, J.; Van Eekert, M.; Spanjers, H. [Lettinga Associates Foundation LeAF, Wageningen (Netherlands); Timmerman, M.; Fe Buisonje, F. [Wageningen UR Livestock Research WLR, Wageningen (Netherlands)

    2011-05-15

    The goal of this study is to explore profitable ways of processing manure in sewage water treatment plants. Technological options are explored for processing manure, the availability of manure in the surroundings, the space taken up by manure digestion and annual costs and benefits [Dutch] Het doel van deze studie is te verkennen hoe mest op rendabele wijze in rwzi's (rioolwaterzuiveringsinstallaties) verwerkt kunnen worden. Er is gekeken naar de technologische mogelijkheden om mest te kunnen verwerken, de beschikbaarheid van mest in de omgeving, ruimtebeslag van mestvergisting, en jaarlijkse kosten en opbrengsten.

  11. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    Science.gov (United States)

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.

  12. Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water.

    Science.gov (United States)

    Rechenburg, A; Koch, Ch; Classen, Th; Kistemann, Th

    2006-01-01

    In a small river catchment, microbiological quality of different sewage treatment plants under regular conditions and in case of heavy rainfall, when combined sewage overflow basins (CSOs) are activated, was examined regarding microbial indicators and pathogens. In the watercourse, no self-cleaning effects could be observed. Small compact treatment plants discharge treated wastewater with a poor microbiological quality compared to river water quality and the quality of treated wastewater of larger plants. During storm water events, concentrations of microorganisms downstream of sewer overflows were approximately two logs higher than during dry weather conditions. Concentrations of parasites decreased slowly during the overflow, in parallel to filterable matter and particle-bound substances. The annual load of microorganisms originating from CSOs significantly exceeds the load from treated effluent of the sewage plants. Thus, an improved hygienic quality of the water course could be achieved by preventing overflows and by enhancing sewage treatment plants.

  13. Radiation safety issues in the water treatment plant - Indoor radon and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jantsikene, A.; Kiisk, M.; Suursoo, S.; Koch, R. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology, Department of Chemical Engineering (Estonia)

    2014-07-01

    In order to reduce the indicative dose from drinking water consumption in Viimsi parish, Estonia, a new water treatment plant was launched in 2012 serving about 15 000 consumers. The promising new technology for groundwater purification consists of air injector, oxidation tank, patented venturi-type centrifugal degassing separation unit GDT and two-stage filtration in open filter columns. In each of the five parallel lines, approximately 95 tons of catalytic (FMH and sand) and 45 tons of non-catalytic (zeolite) filter materials were used. These filter materials proved to be very effective adsorbents of incoming radium isotopes. As a result, the columns emit direct gamma radiation. Moreover, columns' exposure to indoor air makes them radon generators that affect all rooms in the building. During the study period of two years the filter materials were not replaced and their lifespan has not been estimated yet. In order to minimize radiation risks for the workers inside the water treatment plant, a complex study and a long-term monitoring is needed. For the measurements of {sup 226}Ra and {sup 228}Ra concentrations in water and in solid filter materials gamma-ray spectroscopy was used. According to the results, the annual input of {sup 226}Ra and {sup 228}Ra is 325 MBq and 420 MBq, respectively. The average incoming concentration of {sup 226}Ra and {sup 228}Ra isotopes is 0.5 Bq/L and 0.6 Bq/L, respectively, and the radium content in the output water is below the limit of detection (about 10-15 mBq/L). This means strong accumulation of radium isotopes in the filter materials, thus causing an increase of {sup 222}Rn concentrations in the outgoing treated water. External dose rates throughout the length of the filter columns were measured with the portable dosimeter to estimate the {sup 226}Ra and {sup 228}Ra depth distribution. The results showed that distribution of these radionuclides is uneven with the maximum of 0.5 μSv/h for the first stage and 3 μSv/h for

  14. Fuzzy logic based risk assessment of effluents from waste-water treatment plants.

    Science.gov (United States)

    Cabanillas, Julián; Ginebreda, Antoni; Guillén, Daniel; Martínez, Elena; Barceló, Damià; Moragas, Lucas; Robusté, Jordi; Darbra, Rosa Ma

    2012-11-15

    This paper presents a new methodology to assess the risk of water effluents from waste-water treatment plants (WWTPs) based on fuzzy logic, a well-known theory to deal with uncertainty, especially in the environmental field where data are often lacking. The method has been tested using the effluent's pollution data coming from 22 waste-water treatment plants (WWTPs) located in Catalonia (NE Spain). Thirty-eight pollutants were analyzed along three campaigns performed yearly from 2008 to 2010. Whereas 9 compounds have been detected in more than 70% of the samples analyzed, 7 compounds have been found at levels equal or higher than the river Environmental Quality Standards set by the Water Framework Directive. Upon combination of both criteria (presence and concentration), compounds of greatest environmental concern in the WWTP studied are nickel, the herbicide diuron, and the endocrine disruptors nonyl and octylphenol. It is remarkable the low variability of the pollutant concentration just differing for the case of nickel and zinc. These low values of exposure together with other pollutants' characteristics provide a medium or low risk assessment for all the WWTPs. The results of this new method have been compared with COMMPS procedure, a solid method developed in the context of the Water Framework Directive, and they show that the fuzzy model is more conservative than COMMPS. This is due to different reasons: the fuzzy model takes into account the persistence of chemical compounds whereas COMMPS does not; the fuzzy model includes the weights provided by an expert group inquired in previous works and also considers the uncertainty of the environmental data, avoiding the crisp values and offering a range of overlapping between the different fuzzy sets. However, the results even if being more conservative with fuzzy logic, are in good agreement with a solid methodology such as the COMMPS procedure.

  15. Potential accumulation of estrogenic substances in biofilms and aquatic plants collected in sewage treatment plant (STP) and receiving water

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, T.; Kuch, B.; Kern, A.; Metzger, J.W. [Inst. for Sanitary Engineering, Water Quality and Solid Waste Management ISWA, Stuttgart Univ. (Germany)

    2004-09-15

    During the past years the estrogenic potency of natural (e.g. estrone and 17{beta}-estradiol E2) and synthetic hormones (e.g. ethinylestradiol EE2) and xenoestrogens (e.g. pesticides, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dioxins (PCDDs) and furans (PCDFs), alkylphenolic compounds or bisphenol A (BPA)) has attracted increasing scientific attention. Especially the occurrence and behaviour of these substances in waste water of sewage treatment plants (STPs) were often investigated. Andersen et al. found steroid estrogen concentrations in the effluent of a municipal STP always below the limit of quantification of 1 ng/l. However, Aerni et al. detected E2 and EE2 concentrations up to 6 ng/l and 2 ng/l, and alkylphenols, alkylphenolmonoand diethoxylates even at {mu}g/l concentrations in the effluent of a wastewater treatment plant with a significant industrial impact3. In activated and digested sewage sludge concentrations of estrone and E2 up to 37 ng/g and 49 ng/g, of the synthetic EE2 up to 17 ng/g were observed4. In river sediments the concentrations detected were lower with up to 2 ng/g estrone and 0,9 ng/g EE24. In the meantime many studies exist about raw and treated water in STPs, but there is little knowledge about the influence of estrogenic active substances on aquatic plants so far. In this study we investigated therefore the potency of estrogenic substances to accumulate in the duckweed Lemna minor from STP in comparison to the estrogenicity of duckweed from a natural pond, biofilms in drain and microsieve of the STP by the in vitro E-Screen- and LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). In addition, we tested the estrogenic activity of moss-like aquatic plants collected at different sites of the receiving water and analyzed the concentrations of four phenolic xenoestrogens in the effluent by GC/MS.

  16. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  17. Screening of organic pollutants in urban wastewater treatment plants and corresponding receiving waters.

    Science.gov (United States)

    Wluka, Ann-Kathrin; Coenen, Laura; Schwarzbauer, Jan

    2017-08-01

    There is a lack of knowledge in environmental pollution of the anthropogenic contaminants in wastewater and surface water. Several organic compounds merit special attention, because of their potential risk to the aquatic environment. Therefore, gas chromatography-mass spectrometry-based screening analyses were performed in order to identify anthropogenic organic contaminants and to reveal information on the structural diversity of individual compounds and to characterize their environmental behavior. Wastewater samples from wastewater treatment plants in Germany, representing various capacities, and surface water samples from corresponding receiving waters were analyzed. Numerous substances were identified in the samples. Several compounds were treated inadequately during wastewater treatment, and their identification in surface waters highlights their potential impact on the aquatic environment. Contaminants were selected according to available information about their environmental relevance (e.g. persistence, bioaccumulation potential), their possible application or usage and their occurrence within the environment. Based on the results of this study, it is recommended that non-target screening analyses be undertaken to identify the structural diversity of anthropogenic organic contaminants and that further investigations of specific anthropogenic compounds be undertaken as a high priority.

  18. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    Science.gov (United States)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  19. COST OF MUNICIPAL WATER TREATMENT PLANT IN THE BIGGEST POLISH TOWN IN PODLASKIE PROVINCE FOR THE YEARS 2010–2012

    OpenAIRE

    Agnieszka Kisło; Iwona Skoczko

    2015-01-01

    In this paper the operation costs of the municipal water treatment plant in the biggest Polish town in Podlaskie province was analyzed. Capacity of this WTF is 600 m3/h. Water treatment processes are primarily focused on removal of iron, mangnese and turbidity and disinfection by UV rays. Water is taken by 19 wells and then it is oxygenated. From aerators water is addressed to ten filters, which filter water at a speed of 8.5 m/h. The analysis of the operation costs of the municipal water tre...

  20. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    Science.gov (United States)

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  1. Chemical and ecotoxicological assessments of water samples before and after being processed by a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Regina Teresa Rosim Monteiro

    2014-01-01

    Full Text Available Physicochemical and ecotoxicological measurements were employed to appraise the water quality of the Corumbataí River raw water (RW intake, and that of its filtered (FW and treated (TW waters, processed by the Water Treatment Plant (WTP of Piracicaba (SP, Brazil during 2010. Some herbicides: ametrine, atrazine, simazine and tebuthiuron, were measured, with levels ranging from 0.01 to 10.3 µg L-1 . These were lower than those required to produce ecotoxicological effects to aquatic life based on published literature. Similarly, trihalomethanes, such as chloroform and bromodichloromethane produced as a result of the WTP process were also shown to be present in concentrations that would neither harm environmental nor human health. Elevated free chlorine concentrations found in FW and TW were credibly responsible for toxicity effects observed in algae and daphnids. (Pseudokirchneriella subcapitata and Daphnia magna. In contrast, results of toxicity testing conducted with Hydra attenuata suggested that this organism is resistant to free chorine and could be used for drinking water evaluations. Coupling bioassays with chemical analyses proved valuable to uncover putative cause-effect relationships existing between physical, chemical and toxic results, as well as in optimizing data interpretation of water quality.

  2. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    Science.gov (United States)

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit.

  3. Identification of filamentous bacteria in industrial waste water treatment plants; Identificacion de bacterias filamentosas en EDAR industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, E.; Isac, L.; Fernandez, N.; Zornosa, A.; Mas, M.

    2008-07-01

    The operation of waste water treatment plants serving towns may be adversely affected by industrial effluents. To overcome this problem, industrial treatment plants should be put in place to purify such waste before it is poured into the sewer system. Twenty-seven such plants, located across Spain, mainly in the food industry, were studied and bulking found in 17 of them. Seventeen dominant morpho types were determined, of which the most important, in order of appearance, were TO21N, Thiotrix and Haliscomenobacter hydrossis. Of the other plants examined, 18% had de flocculation problems and 4% had viscosity problems. (Author) 21 refs.

  4. Water Treatment Plants, Includedin water system layer above, Published in Not Provided, 1:600 (1in=50ft) scale, Town of Franklin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  5. Formation and fate of haloacetic acids (HAAs) within the water treatment plant.

    Science.gov (United States)

    Rodriguez, Manuel J; Serodes, Jean; Roy, Danielle

    2007-10-01

    Most research on the occurrence of chlorinated disinfection by-products (DBPs) in drinking water has focused on trihalomethane (THM) formation and evolution, in particular within distribution systems. In this research, we investigated the variability of the occurrence of haloacetic acids (HAAs) during the treatment process in two facilities where surface water is pre-chlorinated before being treated by conventional physico-chemical processes. The investigation focused on both seasonal and point-to-point fluctuations of HAAs. In both facilities, samples were collected weekly during 1 complete year at four points in order to generate robust data on HAAs and on complementary parameters. The results showed that the initial formation of HAAs was the highest and the most variable in the plant where levels of DBP precursor indicators and the pre-chlorination dose were both higher and more variable. Subsequent formation of HAAs from the pre-chlorination point until the settled water occurred due to remaining levels of residual chlorine and DBP precursors. However, HAA levels and in particular dichloroacetic acid (DCAA) (the preponderant HAA species in the waters under study) decreased dramatically during filtration, very probably because of biodegradation within the filter. The effect of filtration on DCAA fate was season-dependant, with the highest degradation in warm water periods and practically no variation during winter. Statistical modeling was applied to empirically identify the operational factors responsible for HAA formation and fate. Model performance to identify HAA variability in waters following pre-chlorination was much better than for water following filtration, which is due to the lack of information on mechanisms and conditions favoring DCAA degradation.

  6. On-Line Monitoring of Escherichia coli in Raw Water at Oset Drinking Water Treatment Plant, Oslo (Norway

    Directory of Open Access Journals (Sweden)

    Ingun Tryland

    2015-02-01

    Full Text Available The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  7. On-line monitoring of Escherichia coli in raw water at Oset drinking water treatment plant, Oslo (Norway).

    Science.gov (United States)

    Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie

    2015-02-04

    The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  8. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Directory of Open Access Journals (Sweden)

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  9. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  10. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  11. Hepatitis A among workers from a waste water treatment plant during a small community outbreak.

    Science.gov (United States)

    De Serres, G; Laliberté, D

    1997-01-01

    OBJECTIVE: This is a case report describing the occurrence of hepatitis A in three workers at a waste water treatment plant during a small community outbreak involving 16 cases. CASE REPORT: The first case was a 26 year old operator who had worked in the plant for two years, the second was a 23 year old employee hired to add new biolite in the secondary treatment area. These two cases never worked together and only met two or three times before the onset of disease in the second case. The third case occurred three months later in a 34 year old ventilation mechanic. All three cases were confirmed by IgM serology and virus was recovered by polymerase chain reaction in the stools of the last two cases. Despite an extensive search for other risk factors for hepatitis A in these workers none was found. CONCLUSION: This report confirms that hepatitis A is an occupational hazard for sewage workers. The numerous potential sources of contamination associated with that occupation support the use of vaccine to provide effective prevention. PMID:9072036

  12. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    Science.gov (United States)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  13. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    Science.gov (United States)

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  14. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  15. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology.

    Science.gov (United States)

    Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I

    2016-05-15

    Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process.

  16. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  17. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  18. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia

    Science.gov (United States)

    Richard, Reena Leeba; Ithoi, Init; Abd Majid, Mohamad Azlan; Wan Sulaiman, Wan Yusoff; Tan, Tian Chye; Nissapatorn, Veeranoot; Lim, Yvonne Ai Lian

    2016-01-01

    The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B) and seven distribution system (DS) sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS) technique to detect the presence of Giardia and Cryptosporidium (oo)cysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85), Cryptosporidium (18.8%; 16/85) followed by Spirometra ova-like (25.9%; 22/85), Blastocystis-like (25.9%; 22/85), nematode larvae-like (8.2%; 7/85) and Taenia ova-like (1.2%; 1/85). Meanwhile, 90.2% (55/61) samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7) and T4 (2/7) followed by Naegleria sp. (4/11), Naegleria italica (2/11), Naegleria australiensis (1/11), Naegleria angularis (1/11) and Vahlkampfia sp. (3/11). Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites. PMID:27367710

  19. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Reena Leeba Richard

    2016-06-01

    Full Text Available The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B and seven distribution system (DS sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS technique to detect the presence of Giardia and Cryptosporidium (oocysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85, Cryptosporidium (18.8%; 16/85 followed by Spirometra ova-like (25.9%; 22/85, Blastocystis-like (25.9%; 22/85, nematode larvae-like (8.2%; 7/85 and Taenia ova-like (1.2%; 1/85. Meanwhile, 90.2% (55/61 samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7 and T4 (2/7 followed by Naegleria sp. (4/11, Naegleria italica (2/11, Naegleria australiensis (1/11, Naegleria angularis (1/11 and Vahlkampfia sp. (3/11. Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites.

  20. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia.

    Science.gov (United States)

    Richard, Reena Leeba; Ithoi, Init; Abd Majid, Mohamad Azlan; Wan Sulaiman, Wan Yusoff; Tan, Tian Chye; Nissapatorn, Veeranoot; Lim, Yvonne Ai Lian

    2016-06-28

    The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B) and seven distribution system (DS) sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS) technique to detect the presence of Giardia and Cryptosporidium (oo)cysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85), Cryptosporidium (18.8%; 16/85) followed by Spirometra ova-like (25.9%; 22/85), Blastocystis-like (25.9%; 22/85), nematode larvae-like (8.2%; 7/85) and Taenia ova-like (1.2%; 1/85). Meanwhile, 90.2% (55/61) samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7) and T4 (2/7) followed by Naegleria sp. (4/11), Naegleria italica (2/11), Naegleria australiensis (1/11), Naegleria angularis (1/11) and Vahlkampfia sp. (3/11). Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites.

  1. Variable dynamics of sewage supply to wastewater treatment plant depending on the amount of precipitation water inflowing to sewerage network

    OpenAIRE

    Bugajski Piotr M.; Kaczor Grzegorz; Chmielowski Krzysztof

    2017-01-01

    The paper analyzes the effect of precipitation water that inflowing to sanitary sewage system as accidental water on the changes in the total amount of treated sewage. The effects of accidental water supply on the total amount of sewage inflowing to treatment plant were analyzed based on mean daily amounts from the investigated periods and mean daily amounts from incidental supplies. The study was conducted in the years 2010–2015. Six characteristic research periods were identified (one per e...

  2. A new microbiological risk analysis tool for cryptosporidium to support decision making in drinking water treatment plants

    Science.gov (United States)

    Macián-Cervera, Javier; Escuder-Bueno, Ignacio

    2017-04-01

    One of the main hazards over the water quality in the water supply systems from surface raw water is cryptosporidium, considered by World Health Organization, as the most dangerous emergent pathogen. Analitycal methods for cryptosporidium are expensive, laborious and they do not have enough precission, on the other hand, labs analyze discretal samples, while drinking water production is a continuous process. In that point, the introduction of risk models in necessary to check the ability of safety of the water produced. The advances in tools able to quantify risk applied to conventional treatment drinking water treatment plants is quite useful for the operators, able to assess about decisions in operation and in investments. The model is applied into a real facility. With the results, it's possible to conclude interesting guidelines and policies about improving plant's operation mode. The main conclusion is that conventional treatment is able to work as effective barrier against cryptosporidium, but it is necessary to assess the risk of the plant while it is operating. Taking into account limitations of knowledge, risk estimation can rise non tolerable levels. In that situation, the plant must make investments in the treatment improving the operation, to get tolerable risk levels.

  3. Application of an expert system using neural network to control the coagulant dosing in water treatment plant

    Institute of Scientific and Technical Information of China (English)

    Hang ZHANG; Dayong LUO

    2004-01-01

    The coagulation process is one of the most important stages m water treatment plant, which involves many comlex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used m a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.

  4. 污水处理场恶臭治理总结%Deodorization in waste water treatment plant

    Institute of Scientific and Technical Information of China (English)

    袁桂芬

    2015-01-01

    The deodorization technologies applied for odor source in refining waste water treatment plant are introduced in this paper. The biological deodorization as described is good at improving the atmospheric environmental quality around the waste water treatment plant.%本文介绍了炼油污水处理场在污水处理中恶臭源的治理技术.通过采用生物除臭工艺,对改善污水处理场周边的大气环境质量具有积极的推进意义.

  5. Design solutions for water treatment plants constructed on the basis of membrane technologies

    Science.gov (United States)

    Panteleev, A. A.; Ryabchikov, B. E.; Zhadan, A. V.; Khoruzhii, O. V.

    2012-07-01

    Two process circuits for demineralizing makeup water for power units at thermal power stations are considered. One of them is constructed on the basis of a combined plant comprising reverse-osmosis and ion-exchange apparatuses and the other comprises reverse-osmosis and electric deionization apparatuses. The considered circuits are analyzed by way of comparing them with the traditional chemical water demineralization system. Advantages and drawbacks of the new technologies for treating natural water are pointed out.

  6. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  7. Use of radionuclides at small water purification plants and in industrial waste water treatment by radiation adsorption method

    Energy Technology Data Exchange (ETDEWEB)

    Brusentseva, S.A.; Egorov, G.F.; Shubin, V.N. [and others

    1993-12-31

    An irradiation technique for potable water treatment is described. Use of radionuclides as a source of radiation allows for the automation of the process. The treatment is considered to be effective in waste water treatment to remove phenols, pesticides, and other toxic compounds.

  8. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    Science.gov (United States)

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  9. Comparison of zinc complexation properties of dissolved organic matter from surface waters and wastewater treatment plant effluents

    Institute of Scientific and Technical Information of China (English)

    CHENG Tao

    2005-01-01

    Unlike natural organic matter(NOM), wastewater organic matter(WWOM) from wastewater treatment plant effluents has not been extensively studied with respect to complexation reactions with heavy metals such as copper or zinc. In this study, organic matter from surface waters and a wastewater treatment plant effluent were concentrated by reverse osmosis(RO) method. The samples were treated in the laboratory to remove trace metals and major cations. The zinc complexing properties of both NOM and the WWOM were studied by square wave anodic stripping voltammetry(SWASV). Experimental data were compared to predictions using the Windermere Humic Aqueous Model(WHAM) Version VI. We found that the zinc binding of WWOM was much stronger than that of NOM and not well predicted by WHAM. This suggests that in natural water bodies that receive wastewater treatment plant effluents the ratio of WWOM to NOM must be taken into account in order to accurately predict free zinc activities.

  10. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water.

    Science.gov (United States)

    Li, Jihua; Yang, Xiaoying; Wang, Zhengfang; Shan, Ying; Zheng, Zheng

    2015-03-01

    Nutrient removal behaviors of four aquatic plant treatment systems (Oenanthe javanica, Iris pseudacorus L., Canna lily, and Potamogeton crispus) were systematically examined and compared. The kinetics of nutrient uptake were conducted with the standard depletion method. All four aquatic species exhibited a strong preference of ammonium nitrogen (NH4(+)-N) over nitrate nitrogen (NO3(-)-N) and nitrite nitrogen (NO2(-)-N). Main pathways of nutrient removal in the aquatic plant treatment system were examined in details. It was estimated that direct assimilation by plants accounted for 28.2-34.5% of N reduction and 25.2-33.4% of P reduction while substrate absorption accounted for 7.2-25.5% of N reduction and 7.3-25.0% of P reduction. The activity of urease and phosphatase in the substrates could indicate the aquatic plant treatment system's capability for reducing TN and soluble P load.

  11. Estonian waterworks treatment plants: clearance of residues, discharge of effluents and efficiency of removal of radium from drinking water.

    Science.gov (United States)

    Trotti, F; Caldognetto, E; Forte, M; Nuccetelli, C; Risica, S; Rusconi, R

    2013-12-01

    Considerable levels of radium were detected in a certain fraction of the Estonian drinking water supply network. Some of these waterworks have treatment systems for the removal of (mainly) iron and manganese from drinking water. Three of these waterworks and another one equipped with a radium removal pilot plant were examined, and a specific study was conducted in order to assess the environmental compatibility of effluents and residues produced in the plants. (226)Ra and (228)Ra activity concentrations were analysed in both liquid (backwash water) and solid (sand filter and sediment) materials to evaluate their compliance, from the radiological point of view, with current Estonian legislation and international technical documents that propose reference levels for radium in effluents and residues. Also with regard to water treatment by-products, a preliminary analysis was done of possible consequences of the transposition of the European Basic Safety Standards Draft into Estonian law. Radium removal efficiency was also tested in the same plants. Iron and manganese treatment plants turned out to be scarcely effective, whilst the radium mitigation pilot plant showed a promising performance.

  12. Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study.

    Science.gov (United States)

    Dias, Maria Celeste; Azevedo, Carla; Costa, Maria; Pinto, Glória; Santos, Conceição

    2014-02-01

    Candidate species for reforestation of areas prone to drought must combine water stress (WS) tolerance and economic or medicinal interest. Melia azedarach produces high quality timber and has insecticidal and medicinal properties. However, the impact of WS on M. azedarach has not yet been studied. Two-month old M. azedarach plants were exposed to WS during 20 days. After this period, plant's growth, water potential, photosynthetic performance and antioxidant capacity were evaluated. WS did not affect plants' growth, but induced stomatal closure, reduced net CO₂ assimilation rate (A) and the intercellular CO₂ availability in mesophyll (C(i)). WS also reduced the photosynthetic efficiency of PSII but not the pigment levels. WS up-regulated the antioxidant enzymes and stimulated the production of antioxidant metabolites, preventing lipid peroxidation. Therefore, despite some repression of photosynthetic parameters by WS, they did not compromise plant growth, and plants increased their antioxidant capacity. Our data demonstrate that M. azedarach juvenile plants have the potential to acclimate to water shortage conditions, opening new perspectives to the use of this species in reforestation/afforestation programs of drought prone areas. Copyright © 2014. Published by Elsevier Masson SAS.

  13. Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants

    DEFF Research Database (Denmark)

    Falås, Per; La Cour Jansen, Jes; Ledin, Anna

    2012-01-01

    During the last decade, several screening programs for pharmaceuticals at Swedish wastewater treatment plants (WWTPs) have been conducted by research institutes, county councils, and wastewater treatment companies. In this study, influent and effluent concentrations compiled from these screening...... WWTPs were identified. Further comparison based on the biological treatment showed lower reduction degrees for several pharmaceuticals in trickling filter plants compared to activated sludge plants with nitrogen removal....... programs were used to assess the occurrence and reduction of non-antibiotic pharmaceuticals for human usage. The study is limited to full-scale WWTPs with biological treatment. Based on the data compiled, a total of 70 non-antibiotic pharmaceuticals have been detected, at concentrations ranging from a few...

  14. The use of process simulation models in virtual commissioning of process automation software in drinking water treatment plants

    NARCIS (Netherlands)

    Worm, G.I.M.; Kelderman, J.P.; Lapikas, T.; Van der Helm, A.W.C.; Van Schagen, K.M.; Rietveld, L.C.

    2012-01-01

    This research deals with the contribution of process simulation models to the factory acceptance test (FAT) of process automation (PA) software of drinking water treatment plants. Two test teams tested the same piece of modified PA-software. One team used an advanced virtual commissioning (AVC) syst

  15. Upgrading of the Mono Media Filters in Water Treatment Plants by Changing Filter Media

    Directory of Open Access Journals (Sweden)

    L Rezaei

    2011-01-01

    Full Text Available "n "n "nBackground and Objectives:Dual media filters have two different layer beds consist of sand and Anthracite. Advantage of dual media filters is longer run duration and more filtration rate. The purpose of this study was to achieve a performable model to improve single media Filters in water treatment plants."nMaterials and Methods: in this cross-sectional study, two pilots; mono and dual media were made and in a 5 month period samples taking were done. Total samples taken from input and output of each pilot, was 40. The samples then introduced for the measurment of turbidity and total organic carbon. Meanwhile the filters head loss also quantified in 40 times head loss measurement was done."nResults: Average turbidity removal in mono and two layer pilots were 63 and 65 percent respectively. Average removal of Total Organic Carbon in mono and two media pilots were 40 and 66 percent respectively. Head loss in dual and single media pilots were 0 .68 and 1.15 m respectively."nConclusion: Although average torbidity removal disparity between two pilots was not significant the amount of total organic carbon removed was considerable. Average head loss in single media pilot was more than dual media type. Ratio of UFRV in dual media to mono media filter was 51:30 it shows that filtration rate capacity will be improved up to70 percent by changing media type.

  16. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    Directory of Open Access Journals (Sweden)

    H. Gardea–Villegas

    2008-04-01

    Full Text Available This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986 applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is appropriate to any kind of regime. Otherwise, Levenspiel underlines, that there is not yet a chart who relates the roughness coefficient with the Reynolds number for general plastics, so it is not possible by now to calculate the yield pseudoplastic fluid. Its calculation is the aim of this study. Levenspiel proposes an approach subject to the assessment of the project manager, and will therefore entail personal observations, with the limitations that this can cause. The results obtained by both propositions, are very similar. This is part of a doctorate study done by the author under the direction of Dr. Rafael B. Carmona in the Faculty of Engineering of the National Autonomous University of Mexico.

  17. The advantage of variable speed for multistage centrifugal blowers used in waste-water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. [Gardner Denver Incorp., Peachtree City, GA (United States)

    1999-07-01

    The multistage centrifugal blower is primarily a 60 Hz market product. A two-pole AC induction motor directly drives the blower at 3600 RPM. These blowers have been used widely for the last three decades in the US for waste water treatment plant applications (WWTP) due to their simple design and rugged construction. The cost of energy drives the market towards not only an efficient single design point but also an efficient operating range when both flow and pressure are varied. On the other hand, if a blower is running at 3000 RPM as in the 50 Hz market, about 20% of flow and 40% of pressure are lost comparing to a 60 Hz application. To meet these new market challenges, the Variable Frequency Drive (VFD) multistage centrifugal blower was designed, where the VFD serves not only as speed adjusting device to maximise the efficiency but also as a speed increaser to minimise the blower size. For existing WWTP installations, retrofit to a VFD drive requires minimum investment and leadtime while achieving drastic energy savings. A comparison with the gear drive high-speed single stage blower concept is also made. (Author)

  18. Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant.

    Science.gov (United States)

    Avberšek, Miha; Sömen, Jernej; Heath, Ester

    2011-08-01

    Hospital effluent and connected waste water treatment plant (WWTP) influent and effluent were sampled daily to determine the levels and inter-day variations of three naturally occurring steroid estrogens: estrone, 17β-estradiol, estriol, and synthetic 17α-ethinylestradiol. After solid phase extraction, interferences were removed with a silica gel clean-up step and the samples analysed using gas chromatography with mass selective detection (GC-MSD). The determined inter-day concentrations in hospital effluent were between 8.6 to 31.3 ng L(-1) for estrone, hospital effluent, WWTP influent and WWTP effluent, respectively. Interestingly, the estrone: 17β-estradiol:estriol ratio in the hospital effluent (1:0.1:9.4) is comparable to that found in the urine of pregnant women (1:0.3:20) indicating the most likely source of steroid estrogens. In WWTP influent the ratio was similar to that found in the non-pregnant population. Our result recognise estriol as being one of the most important steroid estrogens, accounting for up to 92% of the total EEQ present in hospital samples and 37% and 46% in WWTP influent and effluent samples, respectively. The study reveals how concentrations of steroid estrogens vary on a daily basis and concludes that careful sampling strategies must be adopted when making a risk assessment. In addition, the low potency steroid estrogens that contribute towards overall estrogenicity of the sample, e.g. estriol, should be incorporated into environmental monitoring programs.

  19. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    Science.gov (United States)

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment.

  20. [Characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant].

    Science.gov (United States)

    Wang, Chang-Hui; Pei, Yuan-Sheng

    2011-08-01

    Batch tests have been used to investigate the characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant. ICP, SEM and XRD analyses confirm that the FARs enriched in Fe and Al elements and presented amorphism structure. Orthophosphate sorption by the FARs can be described by the pseudo-second-order kinetics equation. Fine adsorption effects of the FARs were found under lower pH values, particularly a 40.13% drop of the adsorptive capacity from pH 4.6 to pH 7.6. The FARs with grain sizes of 0.6-0.9 mm had the highest adsorption capacity of orthophosphate. Experimental data could be better fitted by the isotherm models of Langmuir (R2 = 0.9736) and Freundlich (R2 = 0.9916). The maximal adsorptive capacity reached 45.45 mg x g(-1) estimated from Langmuir isotherm model. Compared with other natural and industrial materials, FARs has relatively higher adsorption capacity. Under similar testing conditions, it was found that only about 10% orthophosphate could be desorbed from the FARs. Further study demonstrated that the mean energy of orthophosphate sorption on the FARs was 13.36 kJ x mol(-1) and the deltaH0 > 0, deltaS0 > 0 and deltaG0 < 0, which indicated that orthophosphate sorption on the FARs was a spontaneously endothermic chemical reaction. It can be therefore highly valued that the FARs may be applied to phosphate removal from wastewater and surface water.

  1. Application of a microgrid with renewables for a water treatment plant

    DEFF Research Database (Denmark)

    Soshinskaya, Mariya; Graus, Wina; van der Meer, Jos

    2014-01-01

    This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving an industrial-sized drink water plant in the Netherlands. Grid-connected and stand-alone microgrid scenarios were modelled, utilizing measured wind speed and solar irradiation data...... important for the cost-effectiveness of a microgrid system....

  2. Application of a microgrid with renewables for a water treatment plant

    NARCIS (Netherlands)

    Soshinskaya, Mariya; Crijns - Graus, Wina; van der Meer, Jos; Guerrero, Josep M.

    2014-01-01

    This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving an industrial-sized drink water plant in the Netherlands. Grid-connected and stand-alone microgrid scenarios were modeled, utilizing measured wind speed and solar irradiation data,

  3. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    Science.gov (United States)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In

  4. Treatment of endosulfan contaminated water with in vitro plant cell cultures.

    Science.gov (United States)

    Lucero, Patricia A; Ferrari, Mónica M; Orden, Alejandro A; Cañas, Irene; Nassetta, Mirtha; Kurina-Sanz, Marcela

    2016-03-15

    Endosulfan is a Persistent Organic Pollutant insecticide still used in many countries. It is commercially available as mixtures of two diastereomers, α- and β-endosulfan, known as technical grade endosulfan (TGE). A laboratory model based on the use of axenic plant cell cultures to study the removal and metabolization of both isomers from contaminated water matrixes was established. No differences were recorded in the removal of the two individual isomers with the two tested endemic plants, Grindelia pulchella and Tessaria absinthioides. Undifferentiated cultures of both plant species were very efficient to lower endosulfan concentration in spiked solutions. Metabolic fate of TGE was evaluated by analyzing the time course of endosulfan metabolites accumulation in both plant biomass and bioremediation media. While in G. pulchella we only detected endosulfan sulfate, in T. absinthioides the non-toxic endosulfan alcohol was the main metabolite at 48h, giving the possibility of designing phytoremediation approaches.

  5. Treatment of waste waters from special laundries of Czechoslovak nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, K. (Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia))

    1982-01-01

    Waste water treatment methods applied in the purification of waste waters discharged from the laundries are presented. The most usually applied method is vaporization, the most frequently designed procedure is reverse osmosis and ultrafiltration and coagulation. Currently the Nuclear Research Institute in Rez is developing a technology of waste water purification which is aimed at introducing such a method of processing in which a minimum amount of solid wastes will be generated at minimum costs. From the point of view of waste water treatment it is most suitable to wash with soap with an addition of detergent such as sodium alkylaryl sulphonate. A promising preparation is the ROMY suspension. Waste water treatment with the use of coagulation by lime salt, sorption of the residues of organic substances on activated coal and of radionuclide residues on a selective ion exchanger without regeneration should be a sufficiently low-cost and effective technology.

  6. Bob McEwen Treatment Plant Data (support ECM) and Water Quality Translation Data (support PDL)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Worksheet titled Data for ECM: Data set used to estimate the error correction model to understand how turbidity and other variables affect drinking water treatment...

  7. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2012-09-15

    The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices.

  8. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions.

    Science.gov (United States)

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-09-15

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at, or in the service area of, STPs. This study was performed on a nation-wide scale for the Netherlands. Point source emissions included were 345 Dutch STPs and nine rivers from neighboring countries. The Dutch surface waters were represented by 2511 surface water units. Modeling was performed for two extreme discharge conditions. Monitoring data of 7 locations along the rivers Rhine and Meuse fall mostly within the range of modeled concentrations. Half of the abstracted volumes of raw water for drinking water production, and a quarter of the Natura 2000 areas (European Union nature protection areas) hosted by the surface waters, are influenced by STPs at low discharge. The vast majority of the total impact of all Dutch STPs during both discharge conditions can be attributed to only 19% of the STPs with regard to the drinking water function, and to 39% of the STPs with regard to the Natura 2000 function. Attributing water treatment technologies to STPs as one of the possible measures to improve water quality and protect susceptible functions can be done in a spatially smart and cost-effective way, using consumption-based detailed hydrological and water quality modeling.

  9. Productive Application of Automatic Water Balance System (WBS) in Water Treatment Plant%水厂自动水平衡系统的生产性应用

    Institute of Scientific and Technical Information of China (English)

    徐鸿凯; 顾振国; 高炜; 孙青

    2011-01-01

    A case study on water balance system(WBS) was presented with discussions. The application of water quantity balance in water treatment plants was primarily generalized. Such investigation is likely to be implemented in many other water treatment plants for automatic water balance system.%通过分析某自来水厂自动水平衡系统的实例,初步总结了自来水厂自动水平衡系统的生产性应用,探讨自来水厂实现生产水量自动平衡的方法和手段,可为其它自来水厂实施自动水平衡系统提供参考.

  10. Comparing a microbial biocide and chlorine as zebra mussel control strategies in an Irish drinking water treatment plant

    Directory of Open Access Journals (Sweden)

    Sara Meehan

    2013-06-01

    Full Text Available A need exists for an environmentally friendly mussel control method to replace chlorine and other traditional control methods currentlyutilised in drinking water plants and other infested facilities. Zequanox® is a newly commercialised microbial biocide for zebra and quaggamussels comprised of killed Pseudomonas fluorescens CL145A cells. The objective of this study was to compare the efficacy of adevelopmental formulation of Zequanox (referred to as MBI 401 FDP and chlorine treatments on adult and juvenile zebra mussels byrunning a biobox trial in conjunction with chlorine treatments at an infested Irish drinking water treatment plant. Since 2009, the plantmanagement has used a residual chlorine concentration of 2 mg/L in autumn to control both adult zebra mussels and juvenile settlement intheir three concrete raw water chambers. Juvenile mussel settlement was monitored in three bioboxes as well as in three treatment chambersin the plant for three months prior to treatment. Adult mussels were seeded into the chambers and bioboxes four days before treatment. InOctober 2011, the bioboxes were treated with MBI 401 FDP at 200 mg active substance/L, while chlorine treatment took place in the waterchambers. The MBI 401 FDP treatment lasted only 8 hours while chlorine treatment lasted seven days. Juvenile numbers were reduced tozero in both the bioboxes and treated chambers within seven days. Adult mussel mortality reached 80% for both the chlorine and MBI 401FDP treatment; however, mortality was achieved faster in the chlorine treatment. These results provided important insights into zebra musselcontrol alternatives to chlorine and supported further development of the now commercial product, Zequanox.

  11. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening.

    Science.gov (United States)

    Wombacher, William D; Hornbuckle, Keri C

    2009-11-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.

  12. Biofiltration and electrochemical treatment for the production of service water from outflows of small-scaled sewage treatment plants; Biofiltration und elektrochemische Behandlung zur Brauchwassererzeugung aus Kleinklaeranlagenablaeufen

    Energy Technology Data Exchange (ETDEWEB)

    Ilian, Jens

    2010-12-14

    Up to the 1990s a mechanical partly biological wastewater treatment was performed at remote locations or collected in reservoirs without outflow. The currently valid legal regulations require a biological treatment of wastewater. Thus, biological small-scale sewage treatment plants experience a broad dissemination recently. Under this aspect, the author of the contribution under consideration reports on the bio filtration and electrochemical treatment in order to produce service water from outflows of small-scale sewage treatment plants. The author investigates the legal regulations, and supplements these regulations by own definitions and requirements on the consideration of a hygienic potential for damage. Additionally, investigations on the cleaning performance of properly operated small-scaled sewage treatment plants are performed. The hygienic risk potential as an inflow condition of a disinfection is determined.

  13. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.

    Science.gov (United States)

    Scheurer, Marco; Storck, Florian R; Brauch, Heinz-J; Lange, Frank T

    2010-06-01

    Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water.

  14. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants

    Directory of Open Access Journals (Sweden)

    Paola Bohórquez-Echeverry

    2012-08-01

    Full Text Available The assessment of water quality includes the analysis of both physical-chemical and microbiological parameters. However,none of these evaluates the biological effect that can be generated in ecosystems or humans. In order to define the most suitable organismsto evaluate the toxicity in the affluent and effluent of three drinking-water treatment plants, five acute toxicity bioassays were used,incorporating three taxonomic groups of the food chain. Materials and methods. The bioassays used were Daphnia magna and Hydraattenuata as animal models, Lactuca sativa and Pseudokirchneriella subcapitata as plant models, and Photobacterium leioghnathi asbacterial model. To meet this objective, selection criteria of the organisms evaluated and cluster analysis were used to identify the mostsensitive in the affluent and effluent of each plant. Results. All organisms are potentially useful in the assessment of water quality bymeeting four essential requirements and 17 desirable requirements equivalent to 100% acceptability, except P. leioghnathi which doesnot meet two essential requirements that are the IC50 for the toxic reference and the confidence interval. The animal, plant and bacterialmodels showed different levels of sensitivity at the entrance and exit of the water treatment systems. Conclusions. H. attenuata, P.subcapitata and P. leioghnathi were the most effective organisms in detecting toxicity levels in the affluents and D. magna, P. subcapitataand P. leioghnathi in the effluents.

  15. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons.

  16. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  17. Integrated model for predicting the fate of organics in waste-water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Lai, L.; Dobbs, R.

    1991-01-01

    An integrated Fate Model has been developed for predicting the fate of organics in a wastewater treatment plant. The Fate Model has been validated using experimental data from a pilot-scale facility. The biodegradation kinetic constants for some compounds in the Fate Model were estimated using the group contribution approach. The Fate Model has been compared with other existing models in the literature. Potential applications of the Fate Model include assessment of volatile organic compound (VOC) emissions from a wastewater treatment plant, evaluate pretreatment requirements prior to discharge to the sewer system, predict concentrations of toxic compounds on sludges, and provide a general framework for estimating the removal of toxic compounds during activated sludge treatment.

  18. Phytodepuration plant for the treatment of domestic waste water - realized in a hotel. La fitodepurazione degli effluenti domestici - il caso di una struttura alberghiera

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, M.

    1982-12-01

    The processes and the parameters which cause eutrophization of a water system are reported. In addition, the advantage of a phytodepuration plant with respect to conventional plants for the treatment of waste waters are listed. In this paper the phytodepuration plant for the treatment of domestic waste water is described which was by ENEA during 1980 and 1981 in collaboration with the Grand Hotel S. Michele in Cetraro (Italy). The plant utilizes the water hyacinth (Eichhornia crassipes) as a biological filter. The results so far obtained suggest the convenience of the phytodepuration system for touristic village, camping or industries which are operating during the summer time.

  19. Feasibility Study of Advanced NOM-Reduction by Hollow Fiber Ultrafiltration and Nanofiltration at a Swedish Surface Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Angelica Lidén

    2016-04-01

    Full Text Available Membrane technology, i.e., ultrafiltration and nanofiltration, is growing in popularity, as it is a space efficient alternative for surface water treatment. Two types of hollow fiber membranes were tested in a fully equipped and automated pilot at a Swedish water treatment plant. Raw water was treated by a nanofilter and by coagulation before an ultrafilter. Operation parameters recorded during these trials have been the basis for cost estimations and assessments of environmental impact, comparing the two membrane modules to the existing conventional treatment. The membranes required lower chemical consumption, but led to increased costs from membrane modules and a higher energy demand. Compared to the existing treatment (0.33 €/m3, the operational costs were estimated to increase 6% for ultrafiltration and 30% for nanofiltration. Considering the low emissions from Nordic energy production, the membrane processes would lower the environmental impact, including factors such as climate and ecosystem health. Greenhouse gas emissions would decrease from 161 g CO2-eq/m3 of the existing process, to 127 g CO2-eq/m3 or 83 g CO2-eq/m3 for ultrafiltration and nanofiltration, respectively. Lower chemical consumption and less pollution from the sludge leaving the water treatment plant lead to lower impacts on the environment.

  20. Sewerage Treatment Plants, City of Hutchinson Waste Water Treatment Plant polygon layer, Published in 2002, 1:600 (1in=50ft) scale, City of Hutchinson.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Treatment Plants dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Orthoimagery information as of 2002. It is described as...

  1. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    King, Dawn N.; Donohue, Maura J.; Vesper, Stephen J.; Villegas, Eric N.; Ware, Michael W.; Vogel, Megan E.; Furlong, Edward; Kolpin, Dana W.; Glassmeyer, Susan T.; Pfaller, Stacy

    2016-01-01

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters.

  2. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  3. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants.

    Science.gov (United States)

    Blaak, Hetty; de Kruijf, Patrick; Hamidjaja, Raditijo A; van Hoek, Angela H A M; de Roda Husman, Ana Maria; Schets, Franciska M

    2014-07-16

    Outside health care settings, people may acquire ESBL-producing bacteria through different exposure routes, including contact with human or animal carriers or consumption of contaminated food. However, contact with faecally contaminated surface water may also represent a possible exposure route. The current study investigated the prevalence and characteristics of ESBL-producing Escherichia coli in four Dutch recreational waters and the possible role of nearby waste water treatment plants (WWTP) as contamination source. Isolates from recreational waters were compared with isolates from WWTP effluents, from surface water upstream of the WWTPs, at WWTP discharge points, and in connecting water bodies not influenced by the studied WWTPs. ESBL-producing E. coli were detected in all four recreational waters, with an average concentration of 1.3 colony forming units/100ml, and in 62% of all samples. In surface waters not influenced by the studied WWTPs, ESBL-producing E. coli were detected in similar concentrations, indicating the existence of additional ESBL-E. coli contamination sources. Isolates with identical ESBL-genes, phylogenetic background, antibiotic resistance profiles, and sequence type, were obtained from effluent and different surface water sites in the same watershed, on the same day; occasionally this included isolates from recreational waters. Recreational waters were identified as a potential exposure source of ESBL-producing E. coli. WWTPs were shown to contribute to the presence of these bacteria in surface waters, but other (yet unidentified) sources likely co-contribute.

  4. Multi-objective Optimization for the Robust Performance of Drinking Water Treatment Plants under Climate Change and Climate Extremes

    Science.gov (United States)

    Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.

    2016-12-01

    To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.

  5. Viimsi water treatment plant for Ra removal: NORM residue/waste generation, radiation safety issues, and regulatory response

    Energy Technology Data Exchange (ETDEWEB)

    Kiisk, M.; Suursoo, S.; Realo, E.; Jantsikene, A.; Lumiste, L.; Vaeaer, K.; Isakar, K.; Koch, R. [University of Tartu (Estonia)

    2014-07-01

    In early 2012, the first large-scale water treatment plant, specifically designed to remove Ra-isotopes from groundwater, was commissioned in Viimsi parish, North-Estonia. The plant serves approximately 15 000 consumers with maximum production capacity of 6000 m{sup 3}/d. The chosen water treatment technology is chemical free and is based on co-precipitation and adsorption with Fe(OH){sub 3} and MnO{sub 2} flocks, and adsorption of residual Ra onto zeolite sand. The chosen technology is a complex approach and is designed to reduce high Fe and Mn concentrations as well as dissolved gases along with Ra isotopes. It is proved to be well adapted with hydro-chemical conditions of the groundwater feeding the plant. As the novel technology has been applied for the first time on a large scale, the plant was taken under long-term investigation when commissioned. The latter focuses on three areas: Ra removal efficiency and its dynamics, build-up of radioactive waste, and radiation safety. The average Ra-226 and Ra-228 activity concentrations in raw water feeding the plant are approximately 0.5 Bq/L and 0.6 Bq/L, respectively, resulting in total indicative dose of 0.4 mSv/y. Operating conditions of the plant are restricted by the established indicative value of 0.1 mSv/y for drinking water, i.e. a minimum 75% removal efficiency for Ra is required. Results of the studies show that the plant operates at Ra-removal efficiency of 98% or higher without the need of regeneration or replacement of filtering materials within the first two years. Measurements confirm that ∼90% of Ra accumulates in the solid filter media, 8-9% is washed out by backwash system as liquid effluent and 1-2% is fed on to the consumer distribution network. It has been calculated that at the level of current production capacity (below 3000 m{sup 3}/d) the yearly accumulation rate in the plant is approximately 300 and 400 MBq/y for Ra-226 and Ra-228, respectively. These values strongly exceed the exemption

  6. Evolution of the waste water treatment plant in Abrera, Barcelona, spain; Explotacion de la ETAP de Abrera (Barcelona). Evolucion

    Energy Technology Data Exchange (ETDEWEB)

    Valero, F.

    1996-04-01

    The drinking water plant of ATLL in Abrera next to the Llobregat river supplies 65.000 m``3 daily to a metropolitan Barcelona area (450.000 people). Pollution diervied from urban and industrial area, uncontrolled discharges and low river flow, frequent due its geographic situation, complicate the treatment and make necessary new capital investments related with installations, distribution network, analytical instruments and remote control. In this paper we indicate the historical evolution of the plant, the current equipments and the futur plans, including the supply of new areas including the Barcelona city. (Author)

  7. Energetic autonomy of waste water treatment plants using anaerobic co-digestion of sewage sludges and MSW - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Chiesa, G.; Bozzola, L.

    The paper is a technical and economic analysis of the possibility to apply the sorted organic fraction of municipal solid wastes (MSW) to the anaerobic stabilization section of sewage sludge in a waste water treatment plant. The aim is to attain energetic autonomy of the plant through the increasing of the gas production rate. The study shows that savings of 65,000,000 Italian lire per year can be obtained with an investment cost of 300,000,000 lire. At the current interest rate (4-10%), this total amount can be paid back within 4 to 6 years.

  8. Comparing a microbial biocide and chlorine as zebra mussel control strategies in an Irish drinking water treatment plant

    OpenAIRE

    Sara Meehan; LUCY Frances E.; Bridget Gruber; Sarahann Rackl

    2013-01-01

    A need exists for an environmentally friendly mussel control method to replace chlorine and other traditional control methods currentlyutilised in drinking water plants and other infested facilities. Zequanox® is a newly commercialised microbial biocide for zebra and quaggamussels comprised of killed Pseudomonas fluorescens CL145A cells. The objective of this study was to compare the efficacy of adevelopmental formulation of Zequanox (referred to as MBI 401 FDP) and chlorine treatments on adu...

  9. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.

    Science.gov (United States)

    Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang

    2014-09-15

    The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.

  10. Context matters : water governance assessment of the wastewater treatment plant policy in Central Mexico

    NARCIS (Netherlands)

    Casiano Flores, Cesar Augusto

    2017-01-01

    A lack of wastewater treatment is one of the main water problems worldwide. In high-income countries, 70% of wastewater is typically treated, but the rate falls to an average 28% in lower-middle-income countries. This low level has negative consequences for human health and for nature, with high

  11. Radioactivity evaluation of Ebro river water and sludge treated in a potable water treatment plant located in the South of Catalonia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M.; Penalver, A.; Aguilar, C. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla Tarragona (Spain); Borrull, F. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla Tarragona (Spain)], E-mail: francesc.borrull@urv.cat

    2010-03-15

    A potable water treatment plant with an average production rate of 4.3 m{sup 3}/s, providing several cities in the south of Catalonia (Spain) with drinking water, has been studied for a period of six years (2002-2007) regarding its capacity to remove several natural and anthropogenic radionuclides. First, gross alpha, gross beta and tritium activities were determined in ingoing and outgoing water samples. The values for all these parameters were below the Spanish normative limits established for waters for human consumption. For the sludge samples generated in the plant, we quantified some gamma emitting radioisotopes: natural ({sup 40}K, {sup 214}Pb, etc.) and artificial ({sup 60}Co, {sup 110m}Ag, etc.) which may be related to the geological or/and industrial activities (such as a nuclear power plant) located upstream of the PWTP on the Ebro River. Finally, when the sludge samples were compared with those from other water treatment plants, the influence of the industrial activities on the radioisotopes found in the analysed samples was confirmed since the activity levels for some of the isotopes quantified were 10 times higher.

  12. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  13. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    Directory of Open Access Journals (Sweden)

    David C. Szlag

    2015-06-01

    Full Text Available An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC, as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.

  14. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    Science.gov (United States)

    Szlag, David C.; Sinclair, James L.; Southwell, Benjamin; Westrick, Judy A.

    2015-01-01

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA. PMID:26075379

  15. Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants.

    Science.gov (United States)

    Szlag, David C; Sinclair, James L; Southwell, Benjamin; Westrick, Judy A

    2015-06-12

    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA.

  16. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    Directory of Open Access Journals (Sweden)

    Yagüe, A.

    2002-09-01

    Full Text Available Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of sludge was determined over time. Leaching of the bricks was determined according to the NEN 7345 standard. In most cases the addition of sludge produces a decrease in porosity and absorption coefficients and an increase in compressive strength, so one could expect these bricks to have greater durability. As regards leaching pollutants in the bricks, they are below the limit of the Dutch NEN standard for construction materials and thus can be classified as inert material.

    El estudio ha consistido en la utilización de lodo seco de origen biológico de la depuradora de aguas residuales de Sabadell (Riu Sec, como adición en la preparación de adoquines de hormigón prefabricado. Después de caracterizar los lodos y el proceso de fabricación de los adoquines que utilizaremos, definimos las condiciones de adición de los lodos en esta fabricación. Se prepararon muestras de referencia, sin adición, y muestras con el 2 % de lodo seco sobrepeso de cemento. Se determinaron cómo variaban en el tiempo, con la presencia de lodos: la densidad, la porosidad y el coeficiente de absorción, y la resistencia mecánica a compresión de los adoquines. También se determinó la lixiviación que estas piezas presentaban de acuerdo a la norma NEN 7345. La adición de lodos produce, en la mayoría de los casos, una disminución de las porosidades y de los coeficientes de absorción y un aumento en las resistencias mecánicas, por lo que cabe esperar una mayor

  17. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  18. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    Science.gov (United States)

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified.

  19. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant.

  20. Monitoring for a specific management objective: protection of shorebird foraging habitat adjacent to a waste water treatment plant.

    Science.gov (United States)

    Morris, Liz; Petch, David; May, David; Steele, William K

    2017-05-01

    Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.

  1. Variable dynamics of sewage supply to wastewater treatment plant depending on the amount of precipitation water inflowing to sewerage network

    Directory of Open Access Journals (Sweden)

    Bugajski Piotr M.

    2017-06-01

    Full Text Available The paper analyzes the effect of precipitation water that inflowing to sanitary sewage system as accidental water on the changes in the total amount of treated sewage. The effects of accidental water supply on the total amount of sewage inflowing to treatment plant were analyzed based on mean daily amounts from the investigated periods and mean daily amounts from incidental supplies. The study was conducted in the years 2010–2015. Six characteristic research periods were identified (one per each calendar year, when the amount of sewage in the sanitary sewage system was greater than during dry weather. The analysis of changes in the amount of sewage supplied to the sewerage system in the six investigated periods revealed that the accidental water constituted from 26.8% to 48.4% of total sewage inflowing to the wastewater treatment plant (WWTP. In exceptional situations, during intense rains, the share of precipitation water in the sewerage system would increase up to 75%. Then, the rainwater inflowing the sewerage system caused hydraulic overloading of the WWTP by exceeding its maximum design supply.

  2. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  3. APPROACHES TO DEVELOPMENT OF THE METHODOLOGY OF RECONSTRUCTION OF WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-10-01

    WWTPs fail to perform proper treatment due to their being worn-out and obsolete. However a tougher legislation accelerates their reconstruction. Approaches to the WWTP reconstruction should demonstrate a strong economic and technological base. The author proposes a new algorithm for their reconstruction. A sensible combination of the principles of WWTP restructuring, development of new fine wastewater cleaning methods, and assimilation of new materials and chemical agents will help resolve the vital problem of waste water discharge into Russia's water bodies. This is the first methodology of reconstruction of WWTPs developed on the basis of the above concept and supported by practical implementation.

  4. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review.

    Science.gov (United States)

    Yang, Yi; Ok, Yong Sik; Kim, Ki-Hyun; Kwon, Eilhann E; Tsang, Yiu Fai

    2017-10-15

    In recent years, many of micropollutants have been widely detected because of continuous input of pharmaceuticals and personal care products (PPCPs) into the environment and newly developed state-of-the-art analytical methods. PPCP residues are frequently detected in drinking water sources, sewage treatment plants (STPs), and water treatment plants (WTPs) due to their universal consumption, low human metabolic capability, and improper disposal. When partially metabolized PPCPs are transferred into STPs, they elicit negative effects on biological treatment processes; therefore, conventional STPs are insufficient when it comes to PPCP removal. Furthermore, the excreted metabolites may become secondary pollutants and can be further modified in receiving water bodies. Several advanced treatment systems, including membrane filtration, granular activated carbon, and advanced oxidation processes, have been used for the effective removal of individual PPCPs. This review covers the occurrence patterns of PPCPs in water environments and the techniques adopted for their treatment in STP/WTP unit processes operating in various countries. The aim of this review is to provide a comprehensive summary of the removal and fate of PPCPs in different treatment facilities as well as the optimum methods for their elimination in STP and WTP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. NMR, Water and Plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  6. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    Science.gov (United States)

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use.

  7. Life Cycle Impact Assessment (LCIA of Potable Water Production in Malaysia: A Comparison among Different Technology Used in Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Amir Hamzah Sharaai

    2010-01-01

    Full Text Available LCA is a systematic procedure which assesses the lifecycle of a product to analyze the extent of its environmental impact contribution. In this LCA study comparison between three different water treatment plants in Malaysia have been conducted. Conventional Plant (using Dissolved Air Floatation (DAF and Pulsatube ® Clarifier Technology must undergo treatment process uses a standard system of screening, coagulation and flocculation, sedimentation, filtration and disinfection processes. While nonconventional plant using Ultrafiltration (UF not does go through processes like conventional plant. In reviewing the water treatment process by using LCA procedures, detailed information of every process involved is needed, including acquiring the energy information and materials consumed during the entire treatment process. The LCA procedure applied in this research uses the ISO 14040 series. Data inventory from selected month will be analyzed to gauge the impact to the environment using Eco-indicator 99 method. The high consumption of electricity in UF and DAF technologies is the contributing factors to the depletion of natural resources. Even though the electricity consumption in pulsatube ® clarifier technology is seen as efficient, but its PAC chemical usage is seen as the major contributor to the reduction of environmental quality and human health.

  8. Removal performance and water quality analysis of paper machine white water in a full-scale wastewater treatment plant.

    Science.gov (United States)

    Shi, Shuai; Wang, Can; Fang, Shuai; Jia, Minghao; Li, Xiaoguang

    2016-09-29

    Paper machine white water is generally characterized as a high concentration of suspended solids and organic matters. A combined physicochemical-biological and filtration process was used in the study for removing pollutants in the wastewater. The removal efficiency of the pollutant in physicochemical and biological process was evaluated, respectively. Furthermore, advanced technology was used to analyse the water quality before and after the process treatment. Experimental results showed that the removal efficiency of suspend solids (SS) of the system was above 99%, while the physicochemical treatment in the forepart of the system had achieved about 97%. The removal efficiency of chemical oxygen demand (COD) and colour had the similar trend after physicochemical treatment and were corresponding to the proportion of suspended and the near-colloidal organic matter in the wastewater. After biological treatment, the removal efficiency of COD and colour achieved were about 97% and 90%, respectively. Furthermore, molecular weight (MW) distribution analysis showed that after treatment low MW molecules (chromatography/mass spectrometry showed that the composition of organic matter in the wastewater was not complicated. Methylsiloxanes were the typical organic components in the raw wastewater and most of them were removed after treatment.

  9. Determination of the priority substances regulated by 2000/60/EC and 2008/105/EC Directives in the surface waters supplying water treatment plants of Athens, Greece.

    Science.gov (United States)

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Thomaidis, Nikolaos S; Kotrikla, Anna Maria; Vagi, Maria C; Petsas, Andreas S; Lekkas, Demetris F; Lekkas, Themistokles D

    2017-03-21

    An investigation into the occurrence of priority substances regulated by 2000/60/EC Water Framework Directive and 2008/105/EC Directive was conducted for a period of one year in the surface water sources supplying the water treatment plants (WTPs) of Athens and in the raw water of WTPs. Samples from four reservoirs and four water treatment plants of Athens were taken seasonally. The substances are divided into seven specific groups, including eight volatile organic compounds (VOCs), diethylhexylphthalate, four organochlorine pesticides (OCPs), three organophosphorus/organonitrogen pesticides (OPPs/ONPs), four triazines and phenylurea herbicides, pentachlorophenol, and four metals. The aforementioned substances belong to different chemical categories, and different analytical methods were performed for their determination. The results showed that the surface waters that feed the WTPs of Athens are not burdened with significant levels of toxic substances identified as European Union (EU) priority substances. Atrazine, hexachlorocyclohexane, endosulfan, trifluralin, anthracene and 4-nonylphenol were occasionally observed at very low concentrations. Their presence in a limited number of cases could be attributed to waste disposal, agricultural activities, and to a limited industrial activity in the area nearby the water bodies.

  10. Basic Water Treatment Operation.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  11. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters.

    Science.gov (United States)

    Heinzel, Elke; Janneck, Eberhard; Glombitza, Franz; Schlömann, Michael; Seifert, Jana

    2009-08-15

    The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species "Ferrovum myxofaciens" and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems.

  12. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters

    Energy Technology Data Exchange (ETDEWEB)

    Elke Heinzel; Eberhard Janneck; Franz Glombitza; Michael Schlmann; Jana Seifert [TU Bergakademie Freiberg, Freiberg (Germany). Interdisciplinary Ecological Center

    2009-08-15

    The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species 'Ferrovum myxofaciens' and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems. 32 refs., 4 figs. 1 tab.

  13. Factors in reliable treatment plant operation for the production of safe water.

    Science.gov (United States)

    Hendry, Bruce A

    2010-08-01

    This contribution to the International Congress on Production of Safe Water, Izmir, Turkey, 20-24 January, 2009, relates to general aspects of a water supply undertaking rather than to particular technologies or chemistries for water treatment. The paper offers a "creative problem solving" approach following Fogler and LeBlanc (Strategies for creative problem solving. Prentice Hall, NJ, 1995) as a model for generating sustainable solutions when water quality and safety problems arise. Such a structured approach presents a systematic methodology that can promote communication and goal-sharing across the inter-related, but often isolated and dispersed, functions of water scientists and researchers, engineers, operations managers, government departments and communities. A problem-solving strategy, or "heuristic", invokes five main steps (define; generate; decide; implement; evaluate). Associated with each step are various creative and enabling techniques, many of which are quite familiar to us in one form or another, but which we can use more effectively in combination and through our increased awareness and practice. For example, taking a fresh view of a problem can be promoted by a variety of "lateral thinking" tools. First-hand investigation of a problem can trigger new thinking about the real problem and its origins. A good strategy implementation will always address each and every step (though not necessarily every possible technique) and will use them at various stages in the search for and implementation of solutions. The creative nature of our experience with a problem-solving heuristic develops our facility to cope better with complex formal situations, as well as with less formal or everyday problem situations. A few anecdotes are presented that illustrate some of the author's experiences relating to factors involved in safe water supply. Here, the term "factors" may signify people and organisations as agents, as well as meaning those aspects of a problem

  14. Heavy metals in a degraded soil treated with sludge from water treatment plant

    Directory of Open Access Journals (Sweden)

    Teixeira Sandra Tereza

    2005-01-01

    Full Text Available The application of water treatment sludge (WTS to degraded soil is an alternative for both residue disposal and degraded soil reclaim. This study evaluated effects of the application of water treatment sludge to a Typic Hapludox soil degraded by tin mining in the National Forest of Jamari, State of Rondonia, Brazil, on the content of heavy metals. A completely randomized experimental design with five treatments was used: control (n = 4; chemical control, which received only liming (n = 4; and rates D100, D150 and D200, which corresponded to 100, 150 and 200 mg of N-sludge kg-1 soil (n = 20, respectively. Thirty days after liming, period in which soil moisture was kept at 70% of the retention capacity, soil samples were taken and analyzed for total and extractable Fe, Cu, Mn, Zn, Cd, Pb, Ni, and Cr. The application of WTS increased heavy-metal contents in the degraded soil. Although heavy metals were below their respective critical limits, sludge application onto degraded areas may cause hazardous environmental impact and thus must be monitored.

  15. Water Treatment Plants, MFRDC has WTP for some of the counties and cities., Published in 2008, 1:1200 (1in=100ft) scale, Middle Flint RDC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2008. It is described...

  16. Water Treatment Plants, Published in 2004, 1:63360 (1in=1mile) scale, City of Americus & Sumter County, GA GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:63360 (1in=1mile) scale, was produced all or in part from Field Survey/GPS information as of 2004. Data by this...

  17. Water Treatment Plants, simple feature displayed with distribution network, Published in 2000, 1:1200 (1in=100ft) scale, City of Fort Wayne.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2000. It is described...

  18. Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans in raw and treated water from water treatment plants in Shenzhen, China.

    Science.gov (United States)

    Lu, Feina; Jiang, Yousheng; Wu, Dongting; Zhou, Jian; Li, Shengnong; Zhang, Jianqing

    2016-04-01

    Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) were analyzed for the first time in raw and treated water from five water treatment plants in Shenzhen, South China. The average PCDD/Fs concentrations were 32.93 pg/L (0.057 pg international toxic equivalent quantity (I-TEQ)/L) and 0.64 pg/L (0.021 pg I-TEQ/L) in raw and treated water, respectively. The removal rate of PCDD/Fs in terms of mass concentration varied from 93.4% to 98.8%, whereas a negative removal rate was observed in one plant in terms of TEQ concentration. The PCDD/Fs concentration in raw water was lower than most of the published data from other countries and regions, and the PCDD/Fs concentration in treated water was below the Maximum Contaminants Level (MCL) of 30 pg/L for dioxin in drinking water set by the US EPA. Historical pentachlorophenol usage, local waste incineration and industrial emissions, as well as surface runoff or even soil erosion, might be the main sources for PCDD/F pollution in water. The daily intake of PCDD/Fs for local residents from drinking water was estimated to be 0.69 fg I-TEQ/kg/day, which is negligible compared with that from food consumption (1.23 pg WHO-TEQ/kg/day) in the local area.

  19. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines.

    Science.gov (United States)

    Flores, Cintia; Ventura, Francesc; Martin-Alonso, Jordi; Caixach, Josep

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two emerging contaminants that have been detected in all environmental compartments. However, while most of the studies in the literature deal with their presence or removal in wastewater treatment, few of them are devoted to their detection in treated drinking water and fate during drinking water treatment. In this study, analyses of PFOS and PFOA have been carried out in river water samples and in the different stages of a drinking water treatment plant (DWTP) which has recently improved its conventional treatment process by adding ultrafiltration and reverse osmosis in a parallel treatment line. Conventional and advanced treatments have been studied in several pilot plants and in the DWTP, which offers the opportunity to compare both treatments operating simultaneously. From the results obtained, neither preoxidation, sand filtration, nor ozonation, removed both perfluorinated compounds. As advanced treatments, reverse osmosis has proved more effective than reverse electrodialysis to remove PFOA and PFOS in the different configurations of pilot plants assayed. Granular activated carbon with an average elimination efficiency of 64±11% and 45±19% for PFOS and PFOA, respectively and especially reverse osmosis, which was able to remove ≥99% of both compounds, were the sole effective treatment steps. Trace levels of PFOS (3.0-21 ng/L) and PFOA (water were significantly lowered in comparison to those measured in precedent years. These concentrations represent overall removal efficiencies of 89±22% for PFOA and 86±7% for PFOS.

  20. Characterization of iron and manganese precipitates from an in situ ground water treatment plant.

    Science.gov (United States)

    Mettler, S; Abdelmoula, M; Hoehn, E; Schoenenberger, R; Weidler, P; von Gunten, U

    2001-01-01

    Aquifer samples from the precipitation zone of an in situ iron and manganese removal plant that was operated for 10 years were analyzed for iron and manganese minerals. Measurements were performed by various chemical extraction techniques (5 M HCI, 0.008 M Ti(III)-EDTA, 0.114 M ascorbic acid), X-ray diffraction and Mössbauer spectroscopy. Chemical extractions showed that iron was precipitated as ferric oxides, whereas manganese was not oxidized but deposited as Mn(II) probably within carbonates. The ferric oxides in particular accumulate preferentially in the smaller grain- size fractions. This tendency was observed to a lesser extent for manganese. X-ray diffraction and Mössbauer spectroscopy showed that the ferric oxides were mainly crystalline (goethite, 50% to 100% of the iron). Ferrihydrite was found as well, but only as a minor fraction (< or = 12%). Pure manganese minerals were not found by X-ray diffraction. The precipitated amounts of iron (5 to 27 micromol/g Fe as ferric oxide) and manganese (1 to 4 micromol/g Mn) during 10 years operation of the treatment plant agree with values that were estimated from operational parameters (9 to 31 micromol/g Fe and 3 to 6 micromol/g Mn). Considering the small amounts of precipitated iron and manganese, no long-term risks of clogging of the aquifer are expected.

  1. Waste water treatment plants as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, Ingo, E-mail: ingoweinberg@web.d [GKSS Research Centre Geesthacht, Max Planck Str. 1, 21502 Geesthacht (Germany); Leuphana University Lueneburg, Institute for Ecology and Environmental Chemistry, Scharnhorststr. 1, 21335 Lueneburg (Germany); Dreyer, Annekatrin; Ebinghaus, Ralf [GKSS Research Centre Geesthacht, Max Planck Str. 1, 21502 Geesthacht (Germany)

    2011-01-15

    To investigate waste water treatment plants (WWTPs) as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two WWTPs and two reference sites using high volume samplers. Contaminants were accumulated on glass fiber filters and PUF/XAD-2/PUF cartridges, extracted compound-dependent by MTBE/acetone, methanol, or hexane/acetone and detected by GC-MS or HPLC-MS/MS. Total (gas + particle phase) concentrations ranged from 97 to 1004 pg m{sup -3} (neutral PFCs), water origin on emitted contaminant amounts. - Waste water treatment plants can be regarded as sources of musk fragrances, polyfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs) to the atmosphere

  2. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  3. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan.

    Science.gov (United States)

    Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien

    2016-10-01

    Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparing a microbial biocide and chlorine as zebra mussel control strategies in an Irish drinking water treatment plant

    National Research Council Canada - National Science Library

    Sara Meehan; Frances E. Lucy; Bridget Gruber; Sarahann Rackl

    2013-01-01

    A need exists for an environmentally friendly mussel control method to replace chlorine and other traditional control methods currentlyutilised in drinking water plants and other infested facilities. Zequanox...

  5. Influence of the Nogales International Wastewater Treatment Plant on surface water in the Santa Cruz River and local aquifers

    Science.gov (United States)

    LaBrie, H. M.; Brusseau, M. L.; Huth, H.

    2015-12-01

    As water resources become limited in Arizona due to drought and excessive use of ground water, treated wastewater effluent is becoming essential in creating natural ecosystems and recharging the decreasing groundwater supplies. Therefore, future water supplies are heavily dependent of the flow (quantity) and quality of the treated effluent. The Nogales International Wastewater Treatment Plant (NIWTP) releases treated wastewater from both Nogales, Arizona and Nogales, Sonora, Mexico into the Santa Cruz River. This released effluent not only has the potential to impact surface water, but also groundwater supplies in Southern Arizona. In the recent past, the NIWTP has had reoccurring issues with elevated levels of cadmium, in addition to other, more infrequent, releases of high amounts of other metals. The industrial demographic of the region, as well as limited water quality regulations in Mexico makes the NIWTP and its treated effluent an important area of study. In addition, outdated infrastructure can potentially lead to damaging environmental impacts, as well as human health concerns. The Santa Cruz River has been monitored and studied in the past, but in recent years, there has been a halt in research regarding the state of the river. Data from existing water quality databases and recent sampling reports are used to address research questions regarding the state of the Santa Cruz River. These questions include: 1) How will change in flow eventually impact surface water and future groundwater supplies 2) What factors influence this flow (such as extreme flooding and drought) 3) What is the impact of effluent on surface water quality 4) Can changes in surface water quality impact groundwater quality 5) How do soil characteristics and surface flow impact the transport of released contaminants Although outreach to stakeholders across the border and updated infrastructure has improved the quality of water in the river, there are many areas to improve upon as the

  6. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  7. Association of naturally occurring radionuclides in sludges from Drinking Water Treatment Plants previously optimized for their removal.

    Science.gov (United States)

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A

    2014-02-01

    The raw water used in Drinking Water Treatment Plants (DWTPs) can present high values of naturally occurring radionuclides. In order to reduce this content, the routine working conditions of DWTPs were successfully modified. This meant that those radionuclides were accumulated in the sludges generated, whose radioactive content was frequently above the exemption levels. It therefore becomes necessary to assess the association of naturally occurring radionuclides in the sludges for their potential use as agricultural fertilizers. Two approaches were studied: (a) the effect of different sequential extraction methods applied to a selected sludge; and (b) the effect of the different contents of inorganic complexes dissolved in the input water on the composition of the sludges generated by two DWTPs with different origins of their input water. Uranium and radium were mainly associated with the carbonated and reducible fractions, while (210)Po and (228)Th were associated with the residual fraction. There were differences between the two speciation methods, but the order of bioavailable radionuclides was roughly the same: (226)Ra≈(234,238)U>(228)Th>(210)Po. The major inorganic complexes content, mainly carbonate, in the raw water affected the radionuclide association. The greater the carbonate content in the raw water, the greater was the association of uranium and radium with the carbonated and easily reducible fractions.

  8. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  9. Assessment of the water chemical quality improvement based on human health risk indexes: Application to a drinking water treatment plant incorporating membrane technologies.

    Science.gov (United States)

    López-Roldán, Ramón; Rubalcaba, Alicia; Martin-Alonso, Jordi; González, Susana; Martí, Vicenç; Cortina, Jose Luis

    2016-01-01

    A methodology has been developed in order to evaluate the potential risk of drinking water for the health of the consumers. The methodology used for the assessment considered systemic and carcinogenic effects caused by oral ingestion of water based on the reference data developed by the World Health Organisation (WHO) and the Risk Assessment Information System (RAIS) for chemical contaminants. The exposure includes a hypothetical dose received by drinking this water according to the analysed contaminants. An assessment of the chemical quality improvement of produced water in the Drinking Water Treatment Plant (DWTP) after integration of membrane technologies was performed. Series of concentration values covering up to 261 chemical parameters over 5 years (2008-2012) of raw and treated water in the Sant Joan Despí DWTP, at the lower part of the Llobregat River basin (NE Spain), were used. After the application of the methodology, the resulting global indexes were located below the thresholds except for carcinogenic risk in the output of DWTP, where the index was slightly above the threshold during 2008 and 2009 before the upgrade of the treatment works including membrane technologies was executed. The annual evolution of global indexes showed a reduction in the global values for all situations: HQ systemic index based on RAIS dropped from 0.64 to 0.42 for surface water and from 0.61 to 0.31 for drinking water; the R carcinogenic index based on RAIS was negligible for input water and varied between 4.2×10(-05) and 7.4×10(-06) for drinking water; the W systemic index based on the WHO data varied between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking water. A specific analysis for the indexes associated with trihalomethanes (THMs) showed the same pattern.

  10. Polymerase chain reaction and nested-PCR approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Osaki

    2013-06-01

    Full Text Available Introduction Cryptosporidium is an important protozoan cause of waterborne disease worldwide of concern to public health authorities. To prevent outbreaks of cryptosporidiosis, the monitoring of this parasite in drinking water is necessary. In the present work, the polymerase chain reaction (PCR and nested-PCR techniques were used to detect Cryptosporidium in raw water from catchment points of four water treatment plants (WTP in Curitiba, Paraná, Brazil. Methods First, DNA extraction techniques were tested in samples containing decreasing amount of oocysts in reagent water, and PCR and nested-PCR with specific primers for 18SSU rDNA of Cryptosporidium were conducted to determine their sensitivity. In reagent water, a commercial extraction kit provided the best analytical sensitivity, and PCR and nested-PCR allowed the detection of five and two oocysts, respectively, with the primers XIAOR/XIAOF and XIAO1F/XIAO2R. Results In the spiking experiments, only the PCR with the primers AWA995F/AWA1206R was successful at detecting concentrations of 0.1 oocysts/mL. Two catchments samples of raw water and/or water sludge from four WTPs were contaminated with Cryptosporidium. Conclusions The application of the techniques to monitor Cryptosporidium in water and detect contamination in water catchments of WTPs in Curitiba are discussed in the present work.

  11. Polymerase chain reaction and nested-PCR approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil.

    Science.gov (United States)

    Osaki, Silvia Cristina; Soccol, Vanete Thomaz; Costa, Adriana Oliveira; Oliveira-Silva, Márcia Benedita; Pereira, Juliana Tracz; Procópio, Antônio Eduardo

    2013-01-01

    Cryptosporidium is an important protozoan cause of waterborne disease worldwide of concern to public health authorities. To prevent outbreaks of cryptosporidiosis, the monitoring of this parasite in drinking water is necessary. In the present work, the polymerase chain reaction (PCR) and nested-PCR techniques were used to detect Cryptosporidium in raw water from catchment points of four water treatment plants (WTP) in Curitiba, Paraná, Brazil. First, DNA extraction techniques were tested in samples containing decreasing amount of oocysts in reagent water, and PCR and nested-PCR with specific primers for 18SSU rDNA of Cryptosporidium were conducted to determine their sensitivity. In reagent water, a commercial extraction kit provided the best analytical sensitivity, and PCR and nested-PCR allowed the detection of five and two oocysts, respectively, with the primers XIAOR/XIAOF and XIAO1F/XIAO2R. In the spiking experiments, only the PCR with the primers AWA995F/AWA1206R was successful at detecting concentrations of 0.1 oocysts/mL. Two catchments samples of raw water and/or water sludge from four WTPs were contaminated with Cryptosporidium. The application of the techniques to monitor Cryptosporidium in water and detect contamination in water catchments of WTPs in Curitiba are discussed in the present work.

  12. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  13. PBDEs versus NBFR in wastewater treatment plants: occurrence and partitioning in water and sludge

    Directory of Open Access Journals (Sweden)

    Joyce Cristale

    2015-06-01

    Full Text Available This study evaluates the occurrence of flame retardants (FR in five wastewater treatment plants (WWTPs located close to Barcelona (NE Spain, an area with high urban and industrial pressures. Compounds studied include eight polybromodiphenyl ethers (PBDEs and eight New Brominated Flame Retardants (NBFRs, for which little information regarding their presence, partitioning and fate within the WWTPs is available. In unfiltered influent samples, PBDEs were not detected and bis(2-ethyl-1-hexyltetrabromophthalate was the only NBFR detected, and all WWTPs were efficient in eliminating this compound as no residues were found in the effluents. However, primary sludge contained from 279 to 2299 ng/g dry weight of ΣFR and the concentration increased in secondary (biological sludge. NBFRs accounted for the main FR detected in sludge, representing a 63-97% of the total load, and among PBDEs, BDE-209 was the most ubiquitous congener. Considering the amount of sludge generated in each WWTP, it was estimated that 0.34-17.2 kg of FR are released annually through the sludge, which can have negative environmental and health implications if sludge is used as biosolid in agriculture. Overall, this study provides a sampling design and analytical protocol to be used to determine the evolution of FR in WWTPs and compares the levels detected, considering that PBDEs are being phased out to be substituted by other compounds which also have high accumulative and recalcitrant properties.

  14. Implementation of an integrated real-time control system of sewer system and waste water treatment plant in the city of Wilhelmshaven

    DEFF Research Database (Denmark)

    Seggelke, Katja; Löwe, Roland; Beeneken, Thomas;

    2013-01-01

    A case study for integrated real-time control (RTC) of an urban drainage system in the city of Wilhelmshaven (Germany) is explained. The fuzzy based RTC strategy combines control of the sewer system and inflow to the waste water treatment plant. The main objective in controlling the sewer system...... constructive measures. To avoid critical situations in the treatment process, the inflow to the treatment plant is automatically reduced to a defined value if high inflows to the treatment plant occur in combination with unfavorable conditions on the secondary clarifiers during rainfall events. The integrated...

  15. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boleda, Ma Rosa [AGBAR-Aiguees de Barcelona, Gral Batet 5-7, 08028 Barcelona (Spain); Galceran, Ma Teresa [University of Barcelona, Department Analytical Chemistry, Av. Diagonal 647, 08028 Barcelona (Spain); Ventura, Francesc, E-mail: fventura@agbar.es [AGBAR-Aiguees de Barcelona, Gral Batet 5-7, 08028 Barcelona (Spain)

    2011-06-15

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies {>=}94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. - Highlights: > The presence of pharmaceuticals and drugs of abuse in surface water was demonstrated. > Elimination in both potabilization processes reached levels >99% for most compounds. > Four pharmaceuticals and three drugs of abuse survived the potabilization process. - The efficiency of potabilization processes to eliminate or transform pharmaceuticals and illicit drugs is evaluated.

  16. Monitoring of arsenic in aquatic plants, water, and sediment of wastewater treatment ponds at the Mae Moh Lignite power plant, Thailand.

    Science.gov (United States)

    Nateewattana, Jomjun; Trichaiyaporn, Siripen; Saouy, Maliwan; Nateewattana, Jintapat; Thavornyutikarn, Prasak; Pengchai, Petch; Choonluchanon, Somporn

    2010-06-01

    Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 microg As L(-1) to 2.0 microg As L(-1) while those in the sediment were in the range of 25-200 microg As kg soil(-1). Both values were below the Thailand national standard of 0.25 mg As L(-1) for water and 27 mg As kg soil(-1) for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant(-1). Regarding the result of regression analysis (R (2) = 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R (2) = 0.954), Ipomoea aquatica Forsk. (R (2) = 0.850), and Typha angustifolia (L.) (R (2) = 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R (2) = 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC.

  17. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    Science.gov (United States)

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%).

  18. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  19. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Park, Ji Won; Kim, Hyun-Chul; Meyer, Anne S; Kim, Sungpyo; Maeng, Sung Kyu

    2016-10-01

    The influences of natural organic matter (NOM) and bacteriological characteristics on the biological stability of water were investigated in a full-scale drinking water treatment plant. We found that prechlorination decreased the hydrophobicity of the organic matter and significantly increased the high-molecular-weight (MW) dissolved organic matter, such as biopolymers and humic substances. High-MW organic matter and structurally complex compounds are known to be relatively slowly biodegradable; however, because of the prechlorination step, the indigenous bacteria could readily utilise these fractions as assimilable organic carbon. Sequential coagulation and sedimentation resulted in the substantial removal of biopolymer (74%), humic substance (33%), bacterial cells (79%), and assimilable organic carbon (67%). Rapid sand and granular activated carbon filtration induced an increase in the low-nucleic-acid content bacteria; however, these bacteria were biologically less active in relation to enzymatic activity and ATP. The granular activated carbon step was essential to securing biological stability (the ability to prevent bacterial growth) by removing the residual assimilable organic carbon that had formed during the ozone treatment. The growth potential of Escherichia coli and indigenous bacteria were found to differ in respect to NOM characteristics. In comparison with E. coli, the indigenous bacteria utilised a broader range of NOM as a carbon source. Principal component analysis demonstrated that the measured biological stability of water could differ, depending on the NOM characteristics, as well as on the bacterial inoculum selected for the analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Occurrence and fate of PBDE in sewage sludge from municipal waste water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Knoth, W.; Mann, W.; Meyer, R.; Nebhuth, J. [Federal Environmental Agency, POP Laboratory, Langen (Germany)

    2004-09-15

    With the rapidly growing use of combustible polymer material, e.g. for IT/TV casings, mattresses, upholstered furniture, the use of flame retardants like polybrominated diphenyl ether (PBDE) has also increased strongly. PBDE are available as three commercial mixtures of BDE congeners named after their principal component: PeBDE, OcBDE and DeBDE. They can release into the environment during their production, use or after disposal and have become ubiquitous. Because of (exponentially) increasing levels of the main congeners of technical Pe- and OcBDE in human blood and milk in Europe and California, the use and the placing on the market of preparations and articles containing these two flame retardants in concentrations >0.1% by mass are prohibited from August 15, 2004 in the European Union4 and in California from the year 2008. The main North American manufacturer of PeBDE flame retardant will voluntarily cease production by the end of 2004. For DeBDE a risk assessment is in progress. Surprising high levels were analysed in blood samples from 155 volunteers in the UK2 and a debromination to more bioavailable Hx- and HpBDE by juvenile carp (cyprinus carpio) following dietary exposure was observed. The objective of this study is to get more information about the actual levels and time trend of PBDE in sewage sludge in Germany and on a possible degradation of DeBDE by photolytic or reductive debromination during waste water treatment process.

  1. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Agency (FEPA) limits for effluent discharge into surface water. The investigation .... fever (Timothy, 1999), and Shigella spp. cause diarrhea world Wide .... chloride in water, according to Anon (1997B), can impact bad taste to ...

  2. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  3. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland.

    Science.gov (United States)

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H

    2016-04-01

    The presence of five selected pharmaceuticals, consisting of four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants (WWTPs) and in the receiving waterway in central Finland. The samples were taken from influents and effluents of the WWTPs and from surface water of six locations along the water way, including northern Lake Päijänne. In addition, seasonal variation in the area was determined by comparing the concentrations in the winter and summer. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations in the influents and effluents ranged from hundreds of nanogram per liter to microgram per liter while ranged from tens of nanogram per liter in northern parts of the waterway to hundreds of nanogram per liter in northern Lake Päijänne near the city area. In addition, the concentrations were higher in the winter compared to summer time in surface water due to decreased temperature and solar irradiation. On the other hand, higher concentrations of ibuprofen, ketoprofen, and naproxen were found in summer at the WWTPs, possibly due to seasonal variations in consumption. In conclusion, there are considerable amounts of pharmaceuticals not only in influents and effluents of the WWTPs but also in lake water along the waterway and in northern Lake Päijänne.

  4. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  5. Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques.

    Science.gov (United States)

    Garcia, Alicia; Goñi, Pilar; Cieloszyk, Joanna; Fernandez, Maria Teresa; Calvo-Beguería, Laura; Rubio, Encarnacion; Fillat, Maria Francisca; Peleato, Maria Luisa; Clavel, Antonio

    2013-04-02

    The occurrence of free-living amoebae (FLA) was investigated in 83 water samples from reservoirs and water treatment plants, with culture positive in 64 of them (77.1%). Polymerase chain reaction (PCR) of partial 18S rRNA gene and ITS region was performed in order to identify amoeba isolates, and the presence of Legionella pneumophila , Mycobacterium spp., Pseudomonas spp., and Microcystis aeruginosa was investigated in 43 isolates of amoebae by multiplex PCR. Of the isolated amoebae, 31 were Acanthamoeba spp., 21 were Hartmannella vermiformis, 13 were Naegleria spp., and one was Vanella spp. T2, T4, and T5 genotypes of Acanthamoeba have been identified, and T4 isolates were grouped into five subgenotypes and graphically represented with a Weblog application. Inside amoebae, L. pneumophila was detected in 13.9% (6/43) of the isolates, and Pseudomonas spp. and Mycobacterium spp. were detected in 32.6% (14/43) and 41.9% (18/43), respectively. No statistical correlation was demonstrated between FLA isolation and seasonality, but the presence of intracellular bacteria was associated with warm water temperatures, and also the intracellular presence of Mycobacterium spp. and Pseudomonas spp. were associated. These results highlight the importance of amoebae in natural waters as reservoirs of potential pathogens and its possible role in the spread of bacterial genera with interest in public and environmental health.

  6. Comparing removal efficiency and reaction rates of organic micro-pollutants during ozonation from different municipal waste water treatment plants effluents in Sweden

    DEFF Research Database (Denmark)

    El-taliawy, Haitham; Ekblad, Maja; Nilsson, Filip

    2015-01-01

    The Removal of about 50 micro-pollutants from 7 waste water treatment plant effluents –in Sweden- was tested on pilot scale. Different ozone doses and two different pilots with different reactor sizes and retention times were tested. Ozone reaction rates depended on DOC concentration in the water...

  7. Simultaneous removal of multiple odorants from source water suffering from septic and musty odors: Verification in a full-scale water treatment plant with ozonation.

    Science.gov (United States)

    Guo, Qingyuan; Yang, Kai; Yu, Jianwei; Wang, Chunmiao; Wen, Xiaodong; Zhang, Liping; Yang, Min; Xia, Ping; Zhang, Dong

    2016-09-01

    Ozonation is known to be very effective in the removal of odorants from source water. However, it is not known if ozonation is effective in the removal of multiple odorants causing different types of odors. In this study, the removal performance for odors and odorants were evaluated in a Water Treatment Plant (WTP), which was equipped with coagulation, sedimentation, ozonation, biological activated carbon (BAC) filtration, sand filtration, and chlorination in succession and located in the downstream of the Huangpu (HP) River, over the period from April, 2014 to April, 2015. Flavor profile analysis (FPA) results showed that the source water was constantly associated with septic and musty odors. Geosmin and 2-MIB, with an average OAV of 4.54 and 1.38, respectively, were the major odorants for musty odor, while bis(2-chloroisopropyl) ether, DEDS and DMDS with an average OAV of 2.35, 1.65 and 0.78, respectively, might be responsible for the septic odor. While the musty odor could be removed effectively through the combination of ozonation and BAC, the septic odor and associated odorants required further treatment with sand filtration and chlorination for complete removal. It is clear that the advanced treatment process was effective for the treatment of source water containing complicated odorants. It should be noted that the sedimentation process needs careful management because release of odorants may occur during the treatment. The result of this study will be helpful for the mitigation of odors in WTP using source waters suffering from complicated odor problems.

  8. Cytogenotoxicity screening of source water, wastewater and treated water of drinking water treatment plants using two in vivo test systems: Allium cepa root based and Nile tilapia erythrocyte based tests.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2017-01-01

    Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety.

  9. Studies of ultrasound disintegration of residual sludge and its energy consumption in water treatment of petrochemical plant

    Institute of Scientific and Technical Information of China (English)

    SHEN Jinfeng; YIN Xuan; GU Heping; L(U) Xiaoping

    2007-01-01

    To investigate the influence of ultrasound pretreatment on sludge anaerobic digestion,the ultrasound disintegration of residual sludge in water treatment of petrochemical plant was studied,and the mechanisms of ultrasound and medium were introduced.Experimental results indicate that ultrasound cavitation induces the rise of sludge temperature,which improves ultrasound disintegration on sludge.Ultrasound pretreatment can advance observably the quantity of chemical oxygen demand in sludge supernatant fluid (SCOD),which increases with ultrasound intensity and sonication time.The degree of ultrasound disintegration increases with the specific energy input.When the specific energy input is 10 000 kJ/kg of total dry solids,the degree of ultrasonic sludge disintegration reaches 40%.

  10. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Ricardo Cosme Arraes Moreira

    2011-01-01

    Full Text Available The effects of disposal of sludge from water treatment plant (WTS in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the nonsaturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  11. Reuse & Recirculation of Filter Backwash Water of Water Treatment Water

    Directory of Open Access Journals (Sweden)

    Mangesh L. Jibhakate

    2017-04-01

    Full Text Available Most of the water treatment plant, filtration is done by means of sand filtration process. Due to continuous filtration process, sand pores get clogged and decreases the efficiency. For mitigating such problem, reverse flow of water & air i.e. backwashing process is carried out. To carry out backwashing operation, 4% of treated water has been utilized and will result in muddy water known as backwash water. This backwash water is then discharged into a natural stream or storage tank near the plant for recirculation. The present study includes a trial for the reuse & recirculation of backwash water.

  12. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  13. Engineering Design of the Extention and Advanced Water Treatment Project of 3rd Water Treatment Plant in Lianyungang City%连云港市第三水厂二期及深度处理工程设计

    Institute of Scientific and Technical Information of China (English)

    王纵

    2011-01-01

    为确保连云港城市供水安全,连云港市第三水厂进行了改造,计划在2012年供水高峰前建成通水.连云港市第三水厂二期及深度处理工程设计规模分别为10万m3/d和20万m3/d.该文对项目的净水工艺进行了比选,并对主要净水工艺设计进行了介绍.%To ensure the safety of water supply in lianyungang, the 3rd Water Treatment Plant in Ljanyungang was reconstructed, which was scheduled to accomplish before the water peak in 2012. The scale of conventional water treatment in the second phase project and advanced treatment of the 3rd Water Treatment Plant is 100 000 nrVd and 200 000 mVd, respectively. The water purification process was compared and selected. The main process design was introduced.

  14. Operation, Maintenance and Performance Evaluation of the Potomac Estuary Experimental Water Treatment Plant. Main Volume.

    Science.gov (United States)

    1983-09-01

    placed in a single strength presumptive Lauryl Tryptose Broth (LTB) tube and transferred to " confirmatory Brilliant Green Lactose Bile Broth (BGB) if...0.4 1. Pest = Pesticides/PCBs Vi 2. Herb = Herbicides 3. )= No P/A data available, MDL estimated value from lOx the IDL 4-4-11 Detection Limits TABLE...a baby is fed a dehydrated formula made with water that the mother boiled (increasing the concentration), if the water initally contains 10 mg/L of

  15. Evaluating odour control technologies using reliability and sustainability criteria--a case study for water treatment plants.

    Science.gov (United States)

    Kraakman, N J R; Estrada, J M; Lebrero, R; Cesca, J; Muñoz, R

    2014-01-01

    Technologies for odour control have been widely reviewed and their optimal range of application and performance has been clearly established. Selection criteria, mainly driven by process economics, are usually based on the air flow volume, the inlet concentrations and the required removal efficiency. However, these criteria are shifting with social and environmental issues becoming as important as process economics. A methodology is illustrated to quantify sustainability and robustness of odour control technology in the context of odour control at wastewater treatment or water recycling plants. The most commonly used odour abatement techniques (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing, activated sludge diffusion and biotrickling filtration coupled with activated carbon adsorption) are evaluated in terms of: (1) sustainability, with quantification of process economics, environmental performance and social impact using the sustainability metrics of the Institution of Chemical Engineers; (2) sensitivity towards design and operating parameters like utility prices (energy and labour), inlet odour concentration (H2S) and design safety (gas contact time); (3) robustness, quantifications of operating reliability, with recommendations to improve reliability during their lifespan of operations. The results show that the odour treatment technologies with the highest investments presented the lowest operating costs, which means that the net present value (NPV) should be used as a selection criterion rather than investment costs. Economies of scale are more important in biotechniques (biofiltration and biotrickling filtration) as, at increased airflows, their reduction in overall costs over 20 years (NPV20) is more extreme when compared to the physical/chemical technologies (chemical scrubbing and activated carbon filtration). Due to their low NPV and their low environmental impact, activated sludge diffusion and biotrickling

  16. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Maria; Montesinos, Isabel; Cardador, M.J.; Silva, Manuel; Gallego, Mercedes, E-mail: mercedes.gallego@uco.es

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15–50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). - Highlights: • Occurrence of 46 regulated and non-regulated DBPs through a DWTP was

  17. Optimization of the operation of the anaerobic digestion in a water treatment plant; Optimizacion de la explotacion de la digestion anaerobia en una EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Minguez Gabina, R.

    2002-07-01

    Nowadays the companies demand an optimization of the operation in an anaerobic digestion facility in a water treatment plant. Up to now, the practice of this operation has been made controlling the internal parameters of the digester experimentally. The delay in the application of the corrections is enough to decrease the performances. Thanks to the investigation carried out in the water treatment plants of Lleida an Granollers, we conclude that the most secure way to drive the anaerobic digester is to manage a strict control of the inlet parameters into digestion process. (Author)

  18. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    Science.gov (United States)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  19. Air capture and deodorisation installations in waste water treatment plants; Instalaciones captacion y desodorizacion de aire en depuradoras de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro Alonso, J. E.

    2009-07-01

    The corrective environmental measures in waste water treatment plants are becoming more and more demanding in regard to odour levels. The best way to prevent smells is to ensure appropriate management of the different processes, including sludge. It is also necessary to design a system for capturing and treating odours based on olfatometric studies rather than outdated systems and parameters such as ventilation rates. It is recommended that the average concentrations of odour (UO/m{sup 3}) from various olfatometric studies carried out in different waste water treatment plants in Spain be adopted as targets and recommendations are made as to the design of the installations to achieve this. (Author) 7 refs.

  20. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    Science.gov (United States)

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  1. Sewerage Treatment Plants, Published in 1998, Smaller than 1:100000 scale, Peachtree City Water and Sewerage Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Treatment Plants dataset, published at Smaller than 1:100000 scale, was produced all or in part from Hardcopy Maps information as of 1998. Data by...

  2. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    Science.gov (United States)

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  3. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    Science.gov (United States)

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  4. Fusing probability density function into Dempster-Shafer theory of evidence for the evaluation of water treatment plant.

    Science.gov (United States)

    Chowdhury, Shakhawat

    2013-05-01

    The evaluation of the status of a municipal drinking water treatment plant (WTP) is important. The evaluation depends on several factors, including, human health risks from disinfection by-products (R), disinfection performance (D), and cost (C) of water production and distribution. The Dempster-Shafer theory (DST) of evidence can combine the individual status with respect to R, D, and C to generate a new indicator, from which the overall status of a WTP can be evaluated. In the DST, the ranges of different factors affecting the overall status are divided into several segments. The basic probability assignments (BPA) for each segment of these factors are provided by multiple experts, which are then combined to obtain the overall status. In assigning the BPA, the experts use their individual judgments, which can impart subjective biases in the overall evaluation. In this research, an approach has been introduced to avoid the assignment of subjective BPA. The factors contributing to the overall status were characterized using the probability density functions (PDF). The cumulative probabilities for different segments of these factors were determined from the cumulative density function, which were then assigned as the BPA for these factors. A case study is presented to demonstrate the application of PDF in DST to evaluate a WTP, leading to the selection of the required level of upgradation for the WTP.

  5. Optimizing the coagulation process in a drinking water treatment plant -- comparison between traditional and statistical experimental design jar tests.

    Science.gov (United States)

    Zainal-Abideen, M; Aris, A; Yusof, F; Abdul-Majid, Z; Selamat, A; Omar, S I

    2012-01-01

    In this study of coagulation operation, a comparison was made between the optimum jar test values for pH, coagulant and coagulant aid obtained from traditional methods (an adjusted one-factor-at-a-time (OFAT) method) and with central composite design (the standard design of response surface methodology (RSM)). Alum (coagulant) and polymer (coagulant aid) were used to treat a water source with very low pH and high aluminium concentration at Sri-Gading water treatment plant (WTP) Malaysia. The optimum conditions for these factors were chosen when the final turbidity, pH after coagulation and residual aluminium were within 0-5 NTU, 6.5-7.5 and 0-0.20 mg/l respectively. Traditional and RSM jar tests were conducted to find their respective optimum coagulation conditions. It was observed that the optimum dose for alum obtained through the traditional method was 12 mg/l, while the value for polymer was set constant at 0.020 mg/l. Through RSM optimization, the optimum dose for alum was 7 mg/l and for polymer was 0.004 mg/l. Optimum pH for the coagulation operation obtained through traditional methods and RSM was 7.6. The final turbidity, pH after coagulation and residual aluminium recorded were all within acceptable limits. The RSM method was demonstrated to be an appropriate approach for the optimization and was validated by a further test.

  6. Analysis and Comparison of Water Purification Processes and Finished Water Quality for 3 Water Treatment Plants%关于三个水厂净水工艺与供水水质的比较和分析

    Institute of Scientific and Technical Information of China (English)

    岳宇明; 陆茸; 毛丽娜; 沈元静; 何小清

    2014-01-01

    该文介绍了国内一自来水公司三个水厂的两个原水水质、净水工艺及出厂水水质。结果显示第一水厂的出厂水质较为理想,第二水厂次之,第三水厂为第三。第三水厂由于水源的问题导致出厂氨氮季节性超标,建议采取有效措施改进水源水质,以提高出厂水质。第二水厂需进行工艺改造,实施臭氧活性炭深度处理以进一步提高供水水质。第三水厂一期系统臭氧生物活性炭池置于砂滤池后较二期活性炭滤池置于砂滤池前出水有机物CODMn及TOC略低,但两者基本相近。建议第三水厂采取必要的措施改进水源水质,或再增加一道臭氧生物活性炭工序。%Water plants with two different raw water qualities,purification processes and their effluent water qualities were introduced in this paper. The finished water quality of NO. 1 plant is the best,and the NO. 2 is better. Due to raw water quality problem No. 3 water plant’s finished water ammonia nitrogen hardly meets the standard of GB 5749-2006 seasonally. Effective measures should be taken to improve the effluent water quality of No. 3 water plant No. 2 water plant need technological transformation to implement advanced treatment of O3 actived carbon to improve finished water quality. The organic indexes of effluent water of first-stage system in No. 3 water plant,of which O3 actived carbon filter is located behind the sand filter,is a little better than that of second-stage system, of which O3 actived carbon filter is located before the sand filter. But their finished water qualities are approximately same. Necessary measures to improve raw water quality for No. 3 water plant or to apply an additional ozone BAC process are recommended.

  7. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  8. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain)

    Science.gov (United States)

    Kuster, Marina; López de Alda, Maria José; Hernando, Maria Dolores; Petrovic, Mira; Martín-Alonso, Jordi; Barceló, Damià

    2008-08-01

    SummaryThis work investigated the presence of 21 emerging contaminants of various chemical groups (7 estrogens, 3 progestogens, 6 pharmaceuticals and personal care products (PPCPs), and 5 acidic pesticides) in the Llobregat river basin (NE Spain). Waters from the outlet of various sewage treatment plants (STP) and waterworks located along the river basin, as well as water samples from the river or its tributaries upstream and downstream of these plants were analysed in two pilot monitoring studies. Chemical analyses were performed by means of on-line or off-line solid-phase extraction followed by liquid chromatography-electrospray-tandem mass spectrometry. Methods detection limits (in ng/L) were ⩽0.85 for estrogens, ⩽3.94 for progestogens, ⩽30 for PPCPs, and ⩽0.99 for pesticides. Of the estrogens and progestogens analysed, only estrone-3-sulfate, estrone, estriol and progesterone were found to be present in the low nanogram per liter range in some of the samples investigated. Except for atenolol, all PPCPs studied (ibuprofen, diclofenac, clofibric acid, salicylic acid, and triclosan) could be identified at levels usually lower than 250 ng/L and up to 1200 ng/l (diclofenac). Of the various pesticides investigated (2,4-D, bentazone; MCPA, mecoprop and propanil) MCPA and 2,4-D were the most ubiquitous and abundant and bentazone the only one not detected. Individual concentrations were most often below 100 ng/L and never surpassed the EU limits.

  9. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources

    Science.gov (United States)

    Liu, G.; Ling, F. Q.; van der Mark, E. J.; Zhang, X. D.; Knezev, A.; Verberk, J. Q. J. C.; van der Meer, W. G. J.; Medema, G. J.; Liu, W. T.; van Dijk, J. C.

    2016-02-01

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 103 cells ml-1 with a biological activity of 0.01-0.04 ng l-1 ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers’ taps and be ingested.

  10. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources.

    Science.gov (United States)

    Liu, G; Ling, F Q; van der Mark, E J; Zhang, X D; Knezev, A; Verberk, J Q J C; van der Meer, W G J; Medema, G J; Liu, W T; van Dijk, J C

    2016-02-02

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 10(3) cells ml(-1) with a biological activity of 0.01-0.04 ng l(-1) ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers' taps and be ingested.

  11. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  12. Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks.

    Science.gov (United States)

    Tewari, S; Jindal, R; Kho, Y L; Eo, S; Choi, K

    2013-04-01

    Pharmaceuticals have been frequently detected in aquatic environment worldwide and suspected for potential ecological consequences. However, occurrences, sources and potential risks of pharmaceutical residues have rarely been investigated in Bangkok, Thailand, one of most densely populated cities in the world. We collected water samples from five wastewater treatment plants (WWTPs), six canals, and in mainstream Chao Phraya River of Bangkok, in three sampling events representing different seasonal flow conditions, i.e., June and September 2011 and January 2012. Fourteen major pharmaceuticals including acetaminophen, acetylsalicylic acid, atenolol, caffeine, ciprofloxacin, diclofenac, ibuprofen, mefenamic acid, naproxen, roxithromycin, sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim were analyzed. Levels of pharmaceutical residues in WWTP influents on average were the highest for acetylsalicylic acid (4700 ng L(-1)), followed by caffeine (2250 ng L(-1)) and ibuprofen (702 ng L(-1)). In effluents, the concentration of caffeine was the highest (307 ng L(-1)), followed by acetylsalicylic acid (261 ng L(-1)) and mefenamic acid (251 ng L(-1)). In surface water, acetylsalicylic acid showed the highest levels (on average 1360 ng L(-1) in canals and 313 ng L(-1) in the river). Removal efficiencies of WWTPs for roxithromycin, sulfamethoxazole and sulfamethazine were determined negligible. For several compounds, the concentrations in ambient water were higher than those detected in the effluents, implying contribution of the WWTPs to be negligible. Hazard quotients estimated for acetylsalicylic acid, ciprofloxacin, diclofenac and mefenamic acid in most of the canals and that of ciprofloxacin in the river, were greater than or close to 1, suggesting potential ecological risks. Ecological implications of the pharmaceutical residues in Bangkok waterway warrant further investigation.

  13. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China.

    Science.gov (United States)

    Cai, Mei-Quan; Wang, Rong; Feng, Li; Zhang, Li-Qiu

    2015-02-01

    A simultaneous determination method of 14 multi-class pharmaceuticals using solid-phase extraction (SPE) followed by high-performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS) was established to measure the occurrence and distribution of these pharmaceuticals in tap water and a drinking water treatment plant (DWTP) in Beijing, China. Target compounds included seven anti-inflammatory drugs, two antibacterial drugs, two lipid regulation drugs, one antiepileptic drug, and one hormone. Limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.01 to 1.80 ng/L and 0.05 to 3.00 ng/L, respectively. Intraday and inter-day precisions, recoveries of different matrices, and matrix effects were also investigated. Of the 14 pharmaceutical compounds selected, nine were identified in tap water of Beijing downtown with the concentration up to 38.24 ng/L (carbamazepine), and the concentration levels of detected pharmaceuticals in tap water (water and finished water at the concentration ranged from 0.10 to 16.23 and 0.13 to 17.17 ng/L, respectively. Five compounds were detected most frequently in DWTP, namely antipyrine, carbamazepine, isopropylantipyrine, aminopyrine, and bezafibrate. Ibuprofen was found to be the highest concentration pharmaceutical during DWTP, up to 53.30 ng/L. DWTP shows a positive effect on the removal of most pharmaceuticals with 81.2-99.5 % removal efficiencies, followed by carbamazepine with 55.4 % removal efficiency, but it has no effect for removing ibuprofen and bezafibrate.

  14. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Qu, Zhipeng; Li, Haipu; Yang, Zhaoguang

    2017-09-01

    In this study, the distribution of 2,4,6-trichloroanisole (2,4,6-TCA) in two water supply reservoirs and four associated drinking water treatment plants (DWTPs) were investigated. The 2,4,6-TCA concentrations were in the range of 1.53-2.36 ng L(-1) in water supply reservoirs and 0.76-6.58 ng L(-1) at DWTPs. To determine the contribution of filamentous fungi to 2,4,6-TCA in a full-scale treatment process, the concentrations of 2,4,6-TCA in raw water, settled water, post-filtration water, and finished water were measured. The results showed that 2,4,6-TCA levels continuously increased until chlorination, suggesting that 2,4,6-TCA could form without a chlorination reaction and fungi might be the major contributor to the 2,4,6-TCA formation. Meanwhile, twenty-nine fungal strains were isolated and identified by morphological and molecular biological methods. Of the seventeen isolated fungal species, eleven showed the capability to convert 2,4,6-trichlorophenol (2,4,6-TCP) to 2,4,6-TCA. The highest level of 2,4,6-TCA formation was carried out by Aspergillus versicolor voucher BJ1-3: 40.5% of the original 2,4,6-TCP was converted to 2,4,6-TCA. There was a significant variation in the capability of different species to generate 2,4,6-TCA. The results from the proportions of cell-free, cell-attached, and cell-bound 2,4,6-TCA suggested that 2,4,6-TCA generated by fungi was mainly distributed in their extracellular environment. In addition to 2,4,6-TCA, five putative volatile by-products were also identified by gas chromatography and mass spectrometry. These findings increase our understanding on the mechanisms involved in the formation of 2,4,6-TCA and provide insights into managing and controlling 2,4,6-TCA-related problems in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging

    NARCIS (Netherlands)

    Mintenig, S.M.; Int-Veen, I.; Löder, M.G.J.; Primpke, S.; Gerdts, G.

    2017-01-01

    Abstract The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the enviro

  16. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging

    NARCIS (Netherlands)

    Mintenig, S.M.; Int-Veen, I.; Löder, M.G.J.; Primpke, S.; Gerdts, G.

    2017-01-01

    Abstract The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the enviro

  17. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    Science.gov (United States)

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

  18. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China

    Energy Technology Data Exchange (ETDEWEB)

    Chang Xiaosong [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Meyer, Michael T. [United States Geological Survey, 4821 Quail Crest Place, Lawrence, Kansas 66049 (United States); Liu Xiaoyun [Center for Disease Prevention and Control, Lanzhou Military Region, Lanzhou 730020 (China); Zhao Qing; Chen Hao; Chen Jian; Qiu Zhiqun; Yang Lan [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Cao Jia [Department of Military Toxicology, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Shu Weiqun, E-mail: xm0630@sina.co [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China)

    2010-05-15

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660 mug/L to 4.240 mug/L and norfloxacin (NOR, 0.136-1.620 mug/L), ciproflaxacin (CIP, ranged from 0.011 mug/L to 0.136 mug/L), trimethoprim (TMP, 0.061-0.174 mug/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H{sub 2}O (ERY-H{sub 2}O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. - This study give the first insight into the concentration of antibiotics in receiving waters from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water of Chongqing region of Three Gorge Reservoir

  19. Enhanced biological phosphorus removal - results of experiences in three large waste water treatment plants. Biologische Phosphatelimination - Betriebserfahrungen an drei Grossanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, P. (Fachbereich Bauingenieurwesen, FG Siedlungswasserwirtschaft, Kassel Univ. (Gesamthochschule) (Germany)); Telgmann, U. (Fachbereich Bauingenieurwesen, FG Siedlungswasserwirtschaft, Kassel Univ. (Gesamthochschule) (Germany)); Memmen, K. (Fachbereich Bauingenieurwesen, FG Siedlungswasserwirtschaft, Kassel Univ. (Gesamthochschule) (Germany))

    1994-09-01

    Within a scientific project especially the operation of four real-size sewage treatment plants with different processes of enhanced biological phosphorus removal is investigated under the aspect of efficiency, stability, practicability and costs of the enhanced biological phosphorus removal. Three plants and first results are explained and compared as well with one another as with data, which are generally regarded as favourable conditions for the enhanced biological phosphorus removal. Between the plants there are significant differences in the degree of P-elimination mainly due to different characteristics of the wastewater. An important influence on P-effluent concentrations may be exacted by P-resolution in the final clarifier. (orig.)

  20. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Theregowda, Ranjani B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Hsieh, Ming-Kai [Tamkang Univ., Taipei (Taiwan). Waer Resources Management and Policy Research Center; Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  1. Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts.

    Science.gov (United States)

    Carrubba, Alessandra; Comparato, Andrea; Labruzzo, Andrea; Muccilli, Serena; Giannone, Virgilio; Spina, Alfio

    2016-09-01

    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice.

  2. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  3. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    Science.gov (United States)

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP.

  4. 钦州港水厂扩建工程设计方案%Design Scheme of Extension Project of Water Treatment Plant in Qinzhou Port

    Institute of Scientific and Technical Information of China (English)

    沈文; 熊家晴; 谢志稳

    2012-01-01

    Because of the low efficiency of the conventional water treatment processes, and operation of water plant hardly keeping pace with the variation of raw water quality, effluent water quality can not meet the requirements of national sanitary standard for drinking water GB 5749-2006. Some enhanced water treatment processes, such as micro-votex flocculation, inclined-tube sedimentation, air-water washing filtration, etc., were introduced into the design of the second phase extention project of the Qinzhou water treatment plant.%针对一期常规处理工艺存在的处理效率低、处理能力不能满足要求,且无法适应原水水质季节性变化等问题,二期工程有针对性地对处理工艺进行了改进,采用微涡流絮凝、斜管沉淀、气水冲洗过滤技术用于水厂设施建设,使扩建后的水厂水质有了保证.

  5. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    Science.gov (United States)

    Pal, P; Kumar, R; Srivastava, N; Chowdhury, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  6. 大沙沟净水厂改造工程实践%Reconstruction Practice of Dashagou Water Treatment Plant

    Institute of Scientific and Technical Information of China (English)

    马锦生

    2012-01-01

    大沙沟净水厂分别于1989年和1997年分两期建设投产运行,随着国家《城市供水水质标准》( CJ/T 206-2005)和《生活饮用水卫生标准》(GB 5749-2006)的颁布实施,老水厂产水量低和出水水质差等问题日益突出.因此,采用先进技术、设备对老水厂进行改造势在必行.着重介绍了大沙沟水厂改造前后的水量水质、改造方案的选择、施工要点,并分析了改造后大沙沟水厂的运行效果、社会效益和经济效益.%Dashagou Water Treatment Plant was built in two phases (1989 and 1997). With the enactment and implementation of Water Quality Standard for Urban Water Supply ( CJ/T 206 -2005) and Standards for Drinking Water Quality (GB 5749 - 2006), problems, such as low water production quantity and poor water quality of the old plant became more and more prominent. Therefore, the use of advanced technologies and equipments for reconstruction of the old water plant was imperative. The water quantity and water quality before and after the reconstruction, the selection of reconstruction schemes, the key construction points and so on were introduced. The operation effect of Dashagou Water Treatment Plant after the reconstruction, the social and economic benefits were analyzed.

  7. Experimental Study on the Heavy Metal Pollution in the Soil Irrigated by Reclaimed Water from Sewage Treatment Plant

    Institute of Scientific and Technical Information of China (English)

    Xing; YAN; Gang; LUO; Jian; CAO; Jiawen; XU; Shuang; WANG; Weihai; YE; Yicheng; LIANG

    2015-01-01

    Reclaimed water irrigation is one of the potential ways of solving the shortage of water resources,and the pollution risk on migration behavior of heavy metals in the soil which are irrigated by reclaimed water and the related soil surface is still short of research. Through the experimental study of different kinds of water irrigation methods on vegetable,it can be concluded that compared with sewage irrigation and tap water irrigation,reclaimed water irrigation does not pollute the soil,and it greatly saves the cost of water resources,and even provides a large number of growth elements for vegetables. The results show that after leaching by reclaimed water for 60 days,Cr,Cd,As,Hg,Pb,Ni,Zn and Cu from reclaimed water are enriched in soil to a certain degree,but with the leaching time extending,concentrations of the heavy metal remain stable. The variation of heavy metal content in soil irrigated by reclaimed water is small in vertical depth,basically showing a horizontal trend. According to Soil Environmental Quality Standards( GB15618- 1995),soil irrigated by reclaimed water does not exceed the standard,better than soil quality standard of planting vegetables.

  8. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    Science.gov (United States)

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  9. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle L.; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  10. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  11. In situ air-water and particle-water partitioning of perfluorocarboxylic acids, perfluorosulfonic acids and perfluorooctyl sulfonamide at a wastewater treatment plant.

    Science.gov (United States)

    Vierke, Lena; Ahrens, Lutz; Shoeib, Mahiba; Palm, Wolf-Ulrich; Webster, Eva M; Ellis, David A; Ebinghaus, Ralf; Harner, Tom

    2013-08-01

    In situ measurements of air and water phases at a wastewater treatment plant (WWTP) were used to investigate the partitioning behavior of perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs) and perfluorooctyl sulfonamide (HFOSA) and their conjugate bases (PFC(-)s, PFS(-)s, and FOSA(-), respectively). Particle-dissolved (Rd) and air-water (QAW) concentration ratios were determined at different tanks of a WWTP. Sum of concentrations of C4-12,14 PFC(A)s, C4,6,8,10 PFS(A)s and (H)FOSA were as high as 50 pg m(-3) (atmospheric gas phase), 2300 ng L(-1) (aqueous dissolved phase) and 2500 ng L(-1) (aqueous particle phase). Particle-dissolved concentration ratios of total species, log Rd, ranged from -2.9 to 1.3 for PFS(A)s, from -1.9 to 1.1 for PFC(A)s and was 0.71 for (H)FOSA. These field-based values agree well with equilibrium partitioning data reported in the literature, suggesting that any in situ generation from precursors, if they are present in this system, occurs at a slower rate than the rate of approach to equilibrium. Acid QAW were also estimated. Good agreement between the QAW and the air-water equilibrium partition coefficient for C8PFCA suggests that the air above the WWTP tanks is at or near equilibrium with the water. Uncertainties in these QAW values are attributed mainly to variability in pKa values reported in the literature. The WWTP provides a unique environment for investigating environmental fate processes of the PFCAs and PFSAs under 'real' conditions in order to better understand and predict their fate in the environment.

  12. Ultrasound efficiency in relation to sodium hypochlorite and filtration adsorption in microbial elimination in a water treatment plant

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Crystal Bello

    2005-09-01

    Full Text Available Processes like ultrasound, chlorination and filtration-adsorption were compared to eliminate microorganisms and to adjust established parameters of public drinking water. A mini water treatment plant (WTP-CB, in pilot scale, was projected and built to evaluate each process influence as: decontamination, coagulation-flocculation, sedimentation and filtration. Total and fecal coliforms, Escherichia coli and heterotrophic bacteria and physic/chemical parameters were quantified from water. Ultrasound, chlorination and filtration-adsorption were efficient to inactivate and/or eliminate bacteria. Ultrasound decontamination in addition to coagulation-flocculation, sedimentation and filtration, could be considered as an alternative treatment water solution where prechlorination, coagulation-flocculation, sedimentation and filtration were used. The chlorination itself was efficient in inactivating bacteria despite of the coagulation-flocculation process; however, in the absence of the coagulation process, the resultant water did not achieve the established parameters. The filtration-adsorption was an important process to eliminate bacteria, showing that the filter retained particles, suspended solids, besides chemical substances and microorganisms.Comparou-se diferentes processos: ultra-som, cloração e filtração/adsorção para eliminação de microrganismos e adequação de outros parâmetros exigidos para água de abastecimento público. Para avaliar a influência de cada processo: desinfecção, coagulação/floculação, decantação e filtração foi projetada e construída uma Estação de Tratamento de Água (ETA-CB em escala piloto. Foram avaliados coliformes, bactérias heterotróficas e parâmetros físico/químicos. Ondas ultra-sônicas, cloração e filtração/adsorção mostraram-se eficientes na inativação e/ou eliminação de bactérias. O processo de desinfecção com ultra-som juntamente com a coagulação/floculação, decanta

  13. for the Waste Water Cleaning Plant

    Directory of Open Access Journals (Sweden)

    E. V. Grigorieva

    2010-01-01

    Full Text Available A model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water on the given time interval is stated and solved analytically with the use of the Pontryagin Maximum Principle and Green's Theorem. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  14. Sewerage Treatment Plants, Waste_water_treatment_facilities, Published in 2007, 1:600 (1in=50ft) scale, Buffalo County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Treatment Plants dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Orthoimagery information as of 2007. It is described as...

  15. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  16. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  17. Toxicity measurement in a waste water treatment plants using active sludge aerobic biological treatment. Medida de la toxicidad en una estacion depuradora de aguas residuales con tratamiento biologico aerobio por fangos activos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.E. (Surcis, Guadalajara (Spain))

    1994-01-01

    The need for reliability in the operation of waste water treatment plants is discussed. In aerobic biological treatments of whatever kind using active sludge, the bio toxicity can be determined by measuring the oxygen consumed in endogenous breathing. The difficulty lies in carrying out the bio toxicity test without effecting the concentration of the organic substrate of the wastes water. This is overcome by operating at maximum organic material load, thereby inducing maximun breathing. (Author)

  18. A biogas plant for the digestion of distillery residue in combination with waste water treatment; Biogasanlage fuer die Vergaerung von Destillationsrueckstaenden in Kombination mit der Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Voigtlaender, A.; Vetter, H.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project at a Swiss food-processing company that produces fruit juices and beverages containing fruit components. The company uses an anaerobic pre-treatment plant to treat effluents before they are discharged to a local municipal waste water treatment plant (WWTP). The report describes the installation, which generates biogas that is used to provide heating energy for the processes used in the extraction process. The monitoring and measurement system is described and figures are quoted for energy production in the company's facilities. Also, the energy savings in the local WWTP resulting from the reduced energy consumption of the aeration blowers as a result of the pre-treatment of the wastes are discussed. Operational aspects of the installation are examined. including temperature effects on the digestion process, control strategies and waste air treatment.

  19. Continuous integrated treatment of olive mill waste waters by pilot plant experiment; Trattamento integrato in continuo di acque di vegetazione con impianto pilota

    Energy Technology Data Exchange (ETDEWEB)

    Minardi, M.; Bortone, C. [Sistema S.r.l., Taranto (Italy); Aresta, M. [Bari Univ., Bari (Italy). Dipt. di Chimica, Centro Ricerche METEA

    2001-10-01

    This research has dealt with the treatment of olive mill waters, through the use of a pilot bench-scale plant. The plant is feeded in continuous mode and implements a primary treatment (sand filtering and irradiation with ultra-violet rays) and a secondary treatment (anoxic and aerobic biological treatment). [Italian] Questa ricerca e' consistita nella messa a punto di una tecnica combinata pr il trattamento di acque di vegetazione mediante l'uso di un impianto pilota da banco che e' stato alimentato in continuo con acqua di vegetazione non diluita. In via preliminare, e' stata effettuata una filtrazione su sabbia e un irraggiamento con luce UV (trattamento primario), cui e' seguito un trattamento di tipo secondario attraverso una successione di due stadi biologici, anossico ed aerobico. L'effluente ha proprieta' tali da poter essere vantaggiosamente usato per fertirrigazione.

  20. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    Science.gov (United States)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  1. Analysis on strength and stiffness of double-deck plates filter system of mechanical water treatment plant

    Science.gov (United States)

    Feng, De-zhen; Yu, Qi-qi

    2017-01-01

    Domestic water treatment is a very important technology field. Now, mechanical water treatment technology is getting wide use in production. In the process of life water treatment, filter process is a very important step. In this paper, the strength and deformation of double-deck plates filter system which includes upper filter plate, lower filter plate and reinforced ribs were analyzed with ANSYS and useful results were got. Through the analysis on strength and deformation, the paper found the advantages and disadvantages of production and design of filter systems. After analyzing and comparing the stresses and deformations of several different design schemes, the paper provided the optimized design plan of filter system which can satisfy the strength need and decrease the creep deformation of plastic filter plates.

  2. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  3. Plants for waste water treatment--effects of heavy metals on the detoxification system of Typha latifolia.

    Science.gov (United States)

    Lyubenova, Lyudmila; Schröder, Peter

    2011-01-01

    Upon treatment with Cd and As cattail (Typha latifolia) showed induced catalase, monodehydroascorbate reductase and ascorbate peroxidase activities in leaves but strong inhibition in rhizomes. Peroxidase activity in leaves of the same plants was inhibited whereas linear increase was detected after Cd treatment in rhizomes. Glutathione S-transferase measurements resulted in identical effects of the trace elements on the substrates CDNB, DCNB, NBC, NBoC, fluorodifen. When GST was assayed with the model substrate DCNB, a different pattern of activity was observed, with strongly increasing activities at increasing HM concentrations. Consequently, to improve the success rates, future phytoremediation plans need to preselect plant species with high antioxidative enzyme activities and an alert GST pattern capable of detoxifying an array of organic xenobiotics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  5. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  6. Plant Watering Autonomous Mobile Robot

    National Research Council Canada - National Science Library

    Hema Nagaraja; Reema Aswani; Monisha Malik

    2012-01-01

    .... The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module...

  7. Power Plant Water Intake Assessment.

    Science.gov (United States)

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  8. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivam, Sivachidambaram, E-mail: sadasivams@cardiff.ac.uk; Thomas, Hywel Rhys

    2016-07-15

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment was prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.

  9. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  10. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  11. The effect of variable discharge on the inorganic chemistry downstream of a waste water treatment plant, Boulder Creek, Colorado

    Science.gov (United States)

    Antweiler, R. C.; Writer, J. H.; Murphy, S. F.

    2012-12-01

    Researchers investigating the effect of wastewater treatment plant (WWTP) effluent on streams often assume that the magnitude of this effect is constant over time. However, discharge of WWTP effluent frequently follows a distinctive diel pattern. WWTP effluent discharge into Boulder Creek, Colorado, for example, varies by almost 200% over the course of a day. Due to this variation, downstream concentrations of chloride, boron and gadolinium (commonly used "conservative tracers") exhibit major changes over a 24-hour period. In order to determine how effluent discharge variability affects stream chemistry, we performed an evaluation of discharge and inorganic chemistry of the City of Boulder's WWTP and Boulder Creek upstream and downstream of the WWTP (representing a 5.4-km reach). Sodium bromide and Rhodamine WT were used to confirm that the same parcel of water was sampled as it moved downstream. The behavior of inorganic constituents fell into three distinct categories, showing conservative behavior, in-stream loss, or in-stream gain. Accounting for variable effluent discharge, the following inorganic constituents behaved conservatively: Cl, SO4, HCO3, F, B, Ba, Ca, Gd, K, Mg, Rb, Co, Cu, Mo, NO3, P and PO4, Sb, SiO2, Sr and Zn. Inorganic compounds which showed evidence of in-stream loss were Bi, Cr, Cs, Ga, Ge, Hg, Se, and Sn. For these elements, the typical pattern was an almost immediate loss: by the time the water had traveled to the first downstream sampling site, 2.3-km below the WWTP, in-stream reactions appeared to have ceased, and a constant flux was observed at all subsequent sites. We speculate that the near-immediate rates represent precipitation and/or adsorption caused by the change in pH and temperature of the mixing zone. Inorganic constituents that showed evidence of in-stream gain were: Al, As, Cd, Fe, I, Li, Mn, Nb, Pb, Re, Th, U, V, W, and all the rare-earth elements (except Gd). As with the in-stream loss group, most of the reactions occurred

  12. Alternative disinfectant water treatments

    Science.gov (United States)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  13. Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis.

    Science.gov (United States)

    Yang, Liyang; Kim, Daekyun; Uzun, Habibullah; Karanfil, Tanju; Hur, Jin

    2015-02-01

    The formation of disinfection byproducts (DBPs) is a major challenge in drinking water treatments. This study explored the applicability of fluorescence excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) for assessing the formation potentials (FPs) of trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA), and the treatability of THM and NDMA precursors in nine drinking water treatment plants. Two humic-like and one tryptophan-like components were identified for the samples using PARAFAC. The total THM FP (TTHM FP) correlated strongly with humic-like component C2 (r=0.874), while NDMA FP showed a moderate and significant correlation with the tryptophan-like component C3 (r=0.628). The reduction by conventional treatment was more effective for C2 than C3, and for TTHM FP than NDMA FP. The treatability of DOM and TTHM FP correlated negatively with the absorption spectral slope (S275-295) and biological index (BIX) of the raw water, but it correlated positively with humification index (HIX). Our results demonstrated that PARAFAC components were valuable for assessing DBPs FP in drinking water treatments, and also that the raw water quality could affect the treatment efficiency.

  14. Industrial wastewater treatment plant of sugar production

    OpenAIRE

    Čad, Luka

    2016-01-01

    Sugar as product in our every day’s life’s been consumed in enormous quantities as one of main resources in food and drink industry. Production processes of sugar from sugar beet bring significant environmental impacts with it’s waste waters as the biggest pollutant. The thesis deals with sugar production waste water’s treatment process by presenting an example of waste water treatment plant of sugar factory, therefor presenting the production processes in sugar factories and their environmen...

  15. Clostridium perfringens removal in different stages in a Drinking Water Treatments plant; Eliminacion de Clostidium perfringens en diversas etapas de una estacion de tratamiento de aguas potables

    Energy Technology Data Exchange (ETDEWEB)

    Ormad, M. P.; Lanao, M.; Goni, P.; Ibarz, C.; Ovelleiro, J. L.

    2008-07-01

    The purpose of this research is to evaluate the effectiveness of different stages, which take part in the conventional treatments used in the drinking water treatment plants in Spain, in the removal of a microbiological indicator of faecal pollution, Clostridium perfringens. The stages studied are pre oxidation with chlorine and ozone, chemical precipitation, adsorption with activated coal and filtration sand. The pre oxidation, either with sodium hypochlorite or with ozone, gets final recounts below the detection limit with the conditions studied (> 8 log). In the rest of stages, the removal is minimal, achieving 1,32 logarithmic units at best case. (Author) 6 refs.

  16. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    Science.gov (United States)

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  17. THE IMPACT OF SEWAGE TREATMENT PLANT ON THE AMOUNT OF HEAVY METALS IN WATER OF THE SUPRAŚL RIVER CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-01-01

    Full Text Available The main purpose of this study was to evaluate the effect of treated sewage flowing from sewage treatment plants located in the basin of the Supraśl river on the concentration and load of metals in river waters and its main tributaries. Three measuring- control points were chosen, on the river and its tributaries, located near Gródek, Sokółka and Dobrzyniewo. Selected points were located behind the discharge of treated wastewater from sewage treatment plants respectively – Gródek, Sokółka and Bialystok. The samples of treated sewage and water were collected in a period from May to November, once a month in 2014. Each individual sample was examined for the content of dissolved form of the following metals: Pb2+, Cu2+, Cd2+, Ni2+, Zn2+, Fe2+/3+. After taking into account water flow of the Biała, Sokołda and Supraśl in every month, metals loads expressed in mg·h-1, transported by the Supraśl and its tributaries waters were calculated. In the study monthly metals loads discharged into the Biała, Sokołda and Supraśl by sewage treatment plants in Białystok, Sokółka and Gródek were also calculated. The studies have shown the impact of metals load in treated wastewater on metals loads in waters of studied rivers based on the obtained correlation. Most of the searched relations between loafs of Pb2+ – r = 0,88; Cd2+ – r = 0,98; Fe2+/3+ – r = 0,45; Ni2+ – r = 0,55; Zn2+ – r = 0,86 were obtained in case of wastewater treatment plant in Gródek and Supraśl waters. In the study period we observed a diversity in concentration of Cd2+, Fe2+/3+, Ni2+ and Zn2+ in treated sewage and in river waters, which affected loads of this metals.

  18. Occurrence and diversity of Arcobacter spp. along the Llobregat River catchment, at sewage effluents and in a drinking water treatment plant.

    Science.gov (United States)

    Collado, Luis; Kasimir, Georg; Perez, Unai; Bosch, Albert; Pinto, Rosa; Saucedo, Gemma; Huguet, Josep M; Figueras, Maria Jose

    2010-06-01

    The presence of Arcobacter species in faecally contaminated environmental waters has previously been studied. However, the ability to eliminate Arcobacter during the water treatment processes that produce drinking water has been little studied. We have investigated the prevalence and diversity of Arcobacter spp. throughout the year at 12 sampling points in the Llobregat River catchment (Catalonia, Spain) including 3 sites at a drinking water treatment plant. Positive samples for Arcobacter spp., came predominantly from the most faecally polluted sites. Recovery rates from all sites were greater in the spring (91.7%) and summer (83.3%) than in autumn and winter (75.0% in both cases), but this trend was not statistically evaluated due to the limited number of samples. Among the 339 colonies analyzed, the most prevalent species by multiplex PCR and 16S rDNA restriction fragment length polymorphism were Arcobacter butzleri (80.2%), followed by Arcobacter cryaerophilus (19.4%) and Arcobacter skirrowii (0.3%). Isolates showed a high genotype diversity as determined by the enterobacterial repetitive intergenic consensus PCR. In fact, 91.2% (309/339) of the colonies had different genotypes, i.e. 248 of them among the 275 isolates of A. butzleri and 60 among the 63 isolates of A. cryaerophilus and 1 genotype of A. skirrowii. Arcobacter was never detected or isolated from finished drinking water, demonstrating that water treatment is effective in removing Arcobacter species.

  19. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto;

    2014-01-01

    -based mathematical problem was formulated as mixed integer linear (MILP) and mixed integer non-linear programming (MINLP) and strived to identify the best wastewater treatment processes among a set of predefined alternatives that produce a minimum total annualized cost, while meeting all wastewater specification...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model...

  20. Urban sewage plant investment costs in the Water Treatment Plan for Catalonia; Costes de inversion en las depuradoras de aguas residuales urbanas en el Plan de Saneamiento de Catalunya

    Energy Technology Data Exchange (ETDEWEB)

    Queralt Torrell, R. [Perito Industrial, miembro de ADECAGUA, Junta de Sanejament, Dpto. Medi Ambient, Generalitat de Catalunya (Spain)

    1997-06-01

    A brief historical overview is provided of the waste water treatment plants built in Catalonia, with special reference to those included in the Water Treatment Plan. The 96 plants constructed between 1991 and 1996 are listed in a table showing the year they came into service, their location, the number of inhabitants served, inhabitant equivalents, daily volume of water, pollution charge and investments. The correlations between different parameters are examined and the causes of the most extreme figures pointed out. A graph and a function showing the relationship between the daily volume of water to be treated and the capital investment cost of building the plant is also provided. (Author)

  1. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick; Caracterizacao fisica, quimica e mineralogica de residuo de estacao de tratamento de aguas para aproveitamento em tijolo solo-cimento

    Energy Technology Data Exchange (ETDEWEB)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F., E-mail: larapessin@hotmail.com [Universidade Estadual do Norte Fluminense Darcy Ribeiro (CCT/PPGECM/UENF), Campos dos Goytacazes, RJ (Brazil)

    2011-07-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  2. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.

    Science.gov (United States)

    Ribera, G; Clarens, F; Martínez-Lladó, X; Jubany, I; V Martí; Rovira, M

    2014-01-01

    A combined methodology using life cycle assessment (LCA) and human health risk assessment (HHR) is proposed in order to select the percentage of water in drinking water treatment plants (DWTP) that should be nanofiltered (NF). The methodological approach presented here takes into account environmental and social benefit criteria evaluating the implementation of new processes into conventional ones. The inclusion of NF process improves drinking water quality, reduces HHR but, in turn, increases environmental impacts as a result of energy and material demand. Results from this study lead to balance the increase of the impact in various environmental categories with the reduction in human health risk as a consequence of the respective drinking water production and consumption. From an environmental point of view, the inclusion of NF and recommended pretreatments to produce 43% of the final drinking water means that the environmental impact is nearly doubled in comparison with conventional plant in impact categories severely related with electricity production, like climate change. On the other hand, the carcinogenic risk (HHR) associated to trihalomethane formation potential (THMFP) decreases with the increase in NF percentage use. Results show a reduction of one order of magnitude for the carcinogenic risk index when 100% of drinking water is produced by NF.

  3. Water treatment plant of Baix Llobregat (Spain); La Depuradora del Baix Llobregat pieza clave del saneamiento de Cataluna

    Energy Technology Data Exchange (ETDEWEB)

    Cazurra, T.

    2001-07-01

    The Sludge Treatment Facility of the Baix Llobregat (Catalonia) is one of the biggest in Europe. It requires an investment of 240.00 Euro and will give service to 2 million inhabitants. When ready, in 2003, it will debug the 92% of the water transported by the submarine emissary, in agreement with the European Directive. In the future, it will recover the Delta of the Llobregat and the beach between the port of Barcelona and the Garraf Mountain. (Author)

  4. Development of Site-Specific Water Quality Criteria for the Arpa Harbor Wastewater Treatment Plant in Tipalao Bay, Guam

    Science.gov (United States)

    2016-07-01

    late April 2013 from various near-shore locations (water depth < 3 m) on the west coast of Guam, Marianas Islands, and held in outdoor tanks supplied... tanks associated with ships sanitary, the three bilge oily wastewater treatment units, the Fleet Industrial Service Center (FISC) fuel reclamation...Crustaceans, Holothurians and Sharks . FAO Species Identification Guide for Fishery Purposes. FAO, Rome, Italy. Carpenter, K. E. and V. H. Niem, Eds. 1999

  5. Application of Plate-and-Frame Filter Press for Sludge Dewatering in Water Treatment Plant%板框压滤机在自来水厂污泥脱水中的应用

    Institute of Scientific and Technical Information of China (English)

    袁华为

    2016-01-01

    This article described the water treatment plant sludge treatment situation,analyzed water treatment plant sludge dewatering methods and characteristics. Based on actual cases,actionable recommendations were put forward on sludge dewatering of water treatment plant,these conclusions on sludge dewatering problems may be meaningful to similar water treatment plants.%该文通过介绍某自来水厂的污泥处理状况,分析了利用各种脱水方式进行自来水污泥脱水的优缺点,根据实际案例,对小型自来水厂污泥处理设备设施提出了可操作的方案,为相似水厂在污泥脱水处理问题上提供参考。

  6. Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

    Directory of Open Access Journals (Sweden)

    Lacatusu Radu

    2014-10-01

    Full Text Available The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1, i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

  7. The influence of amendment material on biosolid composting of sludge from a waste-water treatment plant

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2010-06-01

    Full Text Available Aerobic composting employing manual turning was evaluated by using the sludge produced by EMCALI EICE ESP's Cañaverlejo wastewater treatment plant (PTAR-C. Compost (in 1,0 ton piles consisted of sludge, a fixed proportion of bulking agent (10% and amendment material. Sugarcane waste and solid organic (marketplace waste were evaluated as amendment material using 20/80 and 40/60 weight/weight (amendment/sludge ratios. Incorporating the amendment material improved the compost, being reflected in a faster start for the thermophilic phase, higher temperatures beign maintained (>55°C and better C/N ratio obtained in the compost in all treatments compared to the pile which had no amendment added to it. Incorporating the bulking agent improved sludge manageability during composting; the best combination was 54% sludge + 10% sugacane bagasse + 36% liquid sugarcane waste.

  8. Feasibility of Treatment of the Waters of a Wadi Charged in Iron by Filters Planted of Macrophytes (Phragmites australis

    Directory of Open Access Journals (Sweden)

    Semadi Faten

    2009-01-01

    Full Text Available Problem statement: The context is summarized by the presence of important Steel manufactory close to the wadi Meboudja and its effluents rejected into the wadi which contaminate the water used for irrigation by the local farmer. Approach: The goal is to determine the usefulness of Macrophytes (Phragmites australis to filter some specific industrial effluents (Fe, Cu, Zn, Pb, Mn and Cr present into water of wadi Meboudja. The use of Reeds (Phragmites australis can be considered as a biologic and an economic solution to minimize the concentration of some industrial effluent, especially Iron which is highlighted in this article. An experimental device was built, and considered as pilot, formed of three basins plus reservoir. We use the water of Wadi to irrigate the "Phragmites australis" which are initially appropriated from Oubaiira Lake in a natural medium. Water and Reeds samples are selected for analyses. Results: Iron is found in important concentration compared to the other Elements Metal Traces (ETM. Such a variation seems to be directly related to the rate of industrial production, fluctuations of the climatic factors and the capacities of assimilation of the plants crop. It is essentially concentrated into the roots of Reeds compared to stems and leafs. For example, in one repetition we found difference between the exit sample and the entry one in basin-1of (60-23= 37 mg g-1 into roots. Conclusion: Plantation of Reeds (Phragmites australis seems a natural solution to reduce elements metal traces, in particularly Iron, into water of wadi Meboudja. Other analysis on the garden products of local farmers should be conducted in order to quantify possible hazards on the health of consumers.

  9. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...... criteria. In addition, the effluent options (for different retrofit scenarios) in the modified superstructure could be set as discharge only, zero liquid discharge (total recycling), or a combination of recycling and discharge with the aim of minimizing the amount of fresh process water consumption through...

  10. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  11. An analysis of bulking at the waste water treatment plant in Muskiz, Biscay; Analisis del fenomeno de bulking en la estacion depuradora de aguas residuales de Muskiz, Vizcaya

    Energy Technology Data Exchange (ETDEWEB)

    Merino Aldecoa, I.; Arevalo, L. F.; Romero, F.

    2003-07-01

    A mathematical model employing 30 parameters was used over a period of 30 months to find the origin of bulking at the Muskiz waste water treatment plant. The plant includes a pre-treatment unit, a biological reactor (activated sludge) and clarification. The monitoring parameters (Affluent, mixed liquor, process and sludge recycling) and the statistical techniques (conventional, multivariate) used are listed. The sludge volumetric index was employed as the descriptive parameter. The results include 81 decenal sets of data as well as the evolution of the physico-chemical parameters over time and the frequency and the factors linked to bulking. The correlation of the monitoring parameters with each other and with the SVI was analysed. The multivariate statistic included cluster analysis and multiple linear regression. The regression equations were calculated in four successive stages, which explants the SVI variance of 77.8%. (Author) 9 refs.

  12. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2007-12-01

    In this study, alum sludge was introduced to co-conditioning and dewatering with an anaerobic digested sludge from a municipal wastewater treatment plant, to examine the role of the alum sludge in improving the dewaterbility of the mixed sludge and also in immobilizing phosphorus in the reject water. Experiments have demonstrated that the optimal mix ratio for the two sludges is 2:1 (anaerobic digested sludge:alum sludge: volume basis), and this can bring approximately 99% phosphorus reduction in the reject water through the adsorption of phosphorus by alum in the sludge. The phosphorus loading in wastewater treatment plants is itself derived from the recycling of reject water during the wastewater treatment process. Consequently, this co-conditioning and dewatering strategy can achieve a significant reduction in phosphorus loading in wastewater treatment plants. In addition, the use of the alum sludge has been shown to beneficially enhance the dewaterability of the resultant mixed sludge, by decreasing both the specific resistance to filtration and the capillary suction time. This is attributed to the alum sludge acting in charge neutralization and/or as adsorbent for phosphate in the aqueous phase of the sludge. Experiments have also demonstrated that the optimal polymer (Superfloc C2260, Cytec, Botlek, Netherlands) dose for the anaerobic digested sludge was 120 mg/L, while the optimal dose for the mixed sludge (mix ratio 2:1) was 15 mg/L, highlighting a huge savings in polymer addition. Therefore, from the technical perspective, the co-conditioning and dewatering strategy can be viewed as a "win-win" situation. However, for its full-scale application, integrated cost-effective analysis of process capabilities, sludge transport, increased cake disposal, additional administration, polymer saving, and so on, should be factored in.

  13. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China

    Science.gov (United States)

    Chang, Xiaotian; Meyer, M.T.; Liu, Xiuying; Zhao, Q.; Chen, H.; Chen, J.-a.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W.

    2010-01-01

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660????g/L to 4.240????g/L and norfloxacin (NOR, 0.136-1.620????g/L), ciproflaxacin (CIP, ranged from 0.011????g/L to 0.136????g/L), trimethoprim (TMP, 0.061-0.174????g/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H2O (ERY-H2O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. ?? 2009 Elsevier Ltd. All rights reserved.

  14. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China.

    Science.gov (United States)

    Chang, Xiaosong; Meyer, Michael T; Liu, Xiaoyun; Zhao, Qing; Chen, Hao; Chen, Ji-an; Qiu, Zhiqun; Yang, Lan; Cao, Jia; Shu, Weiqun

    2010-05-01

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660 microg/L to 4.240 microg/L and norfloxacin (NOR, 0.136-1.620 microg/L), ciproflaxacin (CIP, ranged from 0.011 microg/L to 0.136 microg/L), trimethoprim (TMP, 0.061-0.174 microg/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H(2)O (ERY-H(2)O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  16. Sewerage Treatment Plants, Waste Water Treatment Plants - also included in local buildings layer, Published in 2008, 1:2400 (1in=200ft) scale, Effingham County Board Of Commissioners.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Treatment Plants dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2008. It is described...

  17. Abundance and diversity of ammonia-oxidizing archaea and bacteria on biological activated carbon in a pilot-scale drinking water treatment plant with different treatment processes.

    Science.gov (United States)

    Kasuga, Ikuro; Nakagaki, Hirotaka; Kurisu, Futoshi; Furumai, Hiroaki

    2010-01-01

    The effects of different placements of rapid sand filtration on nitrification performance of BAC treatment in a pilot-scale plant were evaluated. In this plant, rapid sand filtration was placed after ozonation-BAC treatment in Process (A), while it preceded ozonation-BAC treatment in Process (B). Analysis of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) combined with nitrification potential test was conducted. BAC from Process (A) demonstrated slightly higher nitrification potential at every sampling occasion. This might be due to higher abundances of AOB on BAC from Process (A) than those on BAC from Process (B). However, AOA rather than AOB could be predominant ammonia-oxidizers in BAC treatment regardless of the position of rapid sand filtration. The highest nitrification potential was observed for BAC from both processes in February when the highest abundances of AOA-amoA and AOB-amoA genes were detected. Since rapid sand filtration was placed after BAC treatment in Process (A), residual aluminum concentration in BAC influent was higher in Process (A). However, adverse effects of aluminum on nitrification activity were not observed. These results suggest that factors other than aluminum concentration in different treatment processes could possibly have some influence on abundances of ammonia-oxidizing microorganisms on BAC.

  18. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant.

    Science.gov (United States)

    Padhye, Lokesh P; Yao, Hong; Kung'u, Francis T; Huang, Ching-Hua

    2014-03-15

    The occurrence and removal of thirty representative pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in an urban drinking water treatment plant (DWTP) were investigated for a period of one year to evaluate current system's treatment efficacy and assess occurrence of PPCPs and EDCs in finished drinking water. Results showed that the average total PPCPs and EDCs concentration in the surface water source was around 360 ng/L (median concentration = 340 ng/L) with 57% coefficient of variation (CV). The median concentrations of most of the individual PPCPs and EDCs in the surface water were below 15 ng/L except for N,N-diethyltoluamide (DEET) and nonylphenol, which were at 122 and 83 ng/L, respectively. The compounds DEET, nonylphenol, ibuprofen, triclosan, atrazine, tris(2-chloroethyl)-phosphate (TCEP), bisphenol-A, and caffeine (in the order of decreasing median concentration) were among twenty compounds detected at least once in the surface water, while all of the above detected compounds, except two, were also detected in the finished drinking water. The average total PPCPs and EDCs concentration in the finished drinking water was around 98 ng/L (median concentration = 96 ng/L) with 66% CV. The median concentrations of most detected PPCPs and EDCs in drinking water were below 5 ng/L except for DEET and nonylphenol, which were at 12 and 20 ng/L, respectively. There was a strong correlation (r = 0.97) between PPCPs and EDCs' concentrations in the source water and in the drinking water over the one-year study period when data points from two sampling events with unusual removals were excluded. Individual water treatment unit processes showed greater temporal variations of PPCPs and EDCs removal efficiencies than the overall treatment processes. The removal efficiencies also varied greatly among different PPCPs and EDCs. The average removal for total PPCPs and EDCs was 76 ± 18% at the DWTP, with ozonation

  19. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Ashlynn S. Stillwell

    2010-04-01

    Full Text Available This manuscript uses data from the U.S. Environmental Protection Agency to analyze the potential for energy recovery from wastewater treatment plants via anaerobic digestion with biogas utilization and biosolids incineration with electricity generation. These energy recovery strategies could help offset the electricity consumption of the wastewater sector and represent possible areas for sustainable energy policy implementation. We estimate that anaerobic digestion could save 628 to 4,940 million kWh annually in the United States. In Texas, anaerobic digestion could save 40.2 to 460 million kWh annually and biosolids incineration could save 51.9 to 1,030 million kWh annually.

  20. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  1. Ornithological Fauna of the Waste Water Treatment Plants in the Northern Left Bank Ukraine (Chernihiv and Kyiv Regions: Winter Populations and Ecological Structure

    Directory of Open Access Journals (Sweden)

    Fedun О. М.

    2016-12-01

    Full Text Available The article discusses winter bird populations of the waste water treatment plants (WWTP located in the North of Left -bank Ukraine. The said population comprises 12 orders and 29 families. The most numerous are Passeriformes (37 species, Аnsеriformes (16 species and Falconiformes (6 species. Parus major was registered at all types of facilities while most of the others house Passer montanus, Carduelis carduelis, Turdus pilaris, and Parus caeruleus. The largest number of wintering birds was registered at Bortnychi aeration station, Chernihiv municipal WWTP and Chernihiv wool processing factory - 79. 51 and 15 species respectively. The nuclear part of the bird numbers are the species residing at the facilities all year around (65.8 %; species occurring there in winter only account for 34.2 %. Dendrophilous (38 species and hydrophilous (35 species dominate among them. The primary role in forming the winter fauna of the waste water treatment plants belongs to the zones of water bodies and dams.

  2. 火力发电厂膜法水处理技术应用%THE APPLICATION OF IMT WATER TREATMENT PROCESSING IN THE POWER PLANT

    Institute of Scientific and Technical Information of China (English)

    张铭; 禾志强; 刘永江; 韦强

    2011-01-01

    全膜法( IMT)处理工艺,用两级反渗透(RO)+电去离子(EDI)处理工艺,代替传统的RO+混床处理工艺,在初始投资相近的情况下,由于系统无酸碱消耗,无废水排放,无需再生用水,运行费用显著降低,同时系统占地面积大大下降.IMT水处理系统出水水质优良,运行稳定,出水电导率小于0.2 μS·cm-1,含硅量小于20μg·L-1,符合电厂锅炉补给水水质要求,综合性能优于RO+混床处理工艺.%IMT watertreatment technology, which instead of the RO+osmosis-mixed bed treatment process, with two step RO+EDI processing, had a lower operating costs than the traditional watertreatment technology with the similar initial investment, since no acid-base system consumption, no waste water discharge, no regeneration of water, and small footprint. IMT water treatment system was stable, the effluent water conductivity was less than 0.2 u,S · cm-1, silicon content was less than 20 u,g · L-1, which was consistent with requirements of the power plant boiler make-up water quality. The overall performance of the IMT water treatment technology was superior than the RO+osmosis-mixed bed treatment process.

  3. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area

    Science.gov (United States)

    Rabbia, Virginia; Bello-Toledo, Helia; Jiménez, Sebastián; Quezada, Mario; Domínguez, Mariana; Vergara, Luis; Gómez-Fuentes, Claudio; Calisto-Ulloa, Nancy; González-Acuña, Daniel; López, Juana; González-Rocha, Gerardo

    2016-06-01

    Antibiotic resistance is a problem of global concern and is frequently associated with human activity. Studying antibiotic resistance in bacteria isolated from pristine environments, such as Antarctica, extends our understanding of these fragile ecosystems. Escherichia coli strains, important fecal indicator bacteria, were isolated on the Fildes Peninsula (which has the strongest human influence in Antarctica), from seawater, bird droppings, and water samples from inside a local wastewater treatment plant. The strains were subjected to molecular typing with pulsed-field gel electrophoresis to determine their genetic relationships, and tested for antibiotic susceptibility with disk diffusion tests for several antibiotic families: β-lactams, quinolones, aminoglycosides, tetracyclines, phenicols, and trimethoprim-sulfonamide. The highest E. coli count in seawater samples was 2400 cfu/100 mL. Only strains isolated from seawater and the wastewater treatment plant showed any genetic relatedness between groups. Strains of both these groups were resistant to β-lactams, aminoglycosides, tetracycline, and trimethoprim-sulfonamide.In contrast, strains from bird feces were susceptible to all the antibiotics tested. We conclude that naturally occurring antibiotic resistance in E. coli strains isolated from Antarctic bird feces is rare and the bacterial antibiotic resistance found in seawater is probably associated with discharged treated wastewater originating from Fildes Peninsula treatment plants.

  4. Rehabilitation Scheme and Water Purification Effect of Advanced Treatment Processes for Songjiang No.2 Water Treatment Plant%松江二水厂深度处理改造方案及净水效果

    Institute of Scientific and Technical Information of China (English)

    冯钧; 陶明; 徐建平

    2011-01-01

    In order to meet the new drinking water standards, the Songjiang No.2 Water Treatment Plant reconstructed the conventional horizontal-flow sedimentation basin into a short horizontal-flow sedimentation basin, an inclined-tube sedimentation basin and an up-flow GAC filter. To realize the goal of land and energy saving, an ozone-BAC advanced treatment system was designed and established. The effluent quality was improved.%为使出厂水达到新颁(GB 5749-2006)的要求,松江自来水公司二水厂将水平沉淀池改造为短水平沉淀池、斜管沉淀池及上向流活性炭滤池,利用两组沉淀池之间的空间安装臭氧设备.在节能、节地条件下,实现了臭氧生物活性炭水处理工艺,提高了出厂水水质.

  5. Tracking the behavior of different size fractions of dissolved organic matter in a full-scale advanced drinking water treatment plant.

    Science.gov (United States)

    Quang, Viet Ly; Choi, Ilhwan; Hur, Jin

    2015-11-01

    In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.

  6. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    Science.gov (United States)

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  8. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  9. Water Treatment Technology - Springs.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  10. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  11. Water Treatment Technology - Flouridation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  12. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  13. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  14. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    Science.gov (United States)

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water.

  15. 人工湿地植物床-沟壕系统水质净化效果%Water Treatment Efficiency of Constructed Wetland Plant-Bed/Ditch Systems

    Institute of Scientific and Technical Information of China (English)

    汪仲琼; 张荣斌; 陈庆华; 魏宏斌; 王为东

    2012-01-01

    Shijiuyang constructed wetland(SJY-CW) in Jiaxing City adopted plant-bed/ditch systems originated from the natural landscape as its major functioning unit.The constructed root channel technology(CRCT) is the core technique applied within the plant-bed/ditch systems.Monitoring results demonstrated that the wetland had the capability of improving water quality indexes by one rank grade according to the national environmental quality standards for surface water(GB 3838-2002).In order to optimize the water quality improvement function of plant-bed/ditch systems and CRCT,a pilot project in SJY-CW was constructed from May to October,2010.The project contained 16 independent experimental cells.Orthogonal test design was applied to probe into the effects of constructed root channel layers,plant species combination,and reinforced physical substrates on promoting the water quality amelioration efficiency of the plant-bed/ditch systems.Comprehensively considering water treatment effects,construction difficulty,and construction and maintenance cost,the recommended optimal ways are as follows.Plant straws were preferably paved under subsurface zones by two layers with a gap of 20-30 cm.The preferable plant combination was reed(Phragmites australis) plus wild rice(Zizania caduciflora).Calcite might be applied as alternative reinforced media in some suitable sites of plant-bed/ditch systems.Water treatment effects were compared between pilot project and the whole wetland area of SJY-CW.The results showed that the reinforced pilot project exhibited higher treatment efficiency for nutrients than SJY-CW itself.The removal rates of total nitrogen,total phosphorus,and ammonia nitrogen were increased by about 20%-40% in the pilot project.This suggested that SJY-CW could release its vast water treatment potential by means of increasing water flux through the subsurface root channel zones of plant beds.Therefore,some adjustment and control measures could be proposed to maintain the

  16. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.

    Science.gov (United States)

    Chen, Ting; Xu, Yongpeng; Zhu, Shijun; Cui, Fuyi

    2015-12-01

    Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2 Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5 Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2 Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2 mg/L and 0.071-4.382 cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    Science.gov (United States)

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  18. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    Science.gov (United States)

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (PGiardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited.

  19. Analysis of the time series of waste water quality at the inflow of the wastewater treatment plant and transfer functions

    Directory of Open Access Journals (Sweden)

    Nesmerak Ivan

    2014-03-01

    Full Text Available Time series of the daily total precipitation, daily wastewater discharges and daily concentrations and pollution loads of BOD5, COD, SS, N-NH4, Ntot and Ptot were analyzed at the inflow to the wastewater treatment plant (WWTP for a larger city in 2004-2009 (WWTP is loaded by pollution from 435,000 equivalent inhabitants. The time series of the outflow from a WWTP was also available for 2007. The time series of daily total precipitation, daily wastewater discharges, concentrations and pollution loads at the inflow and outflow from the WWTP were standardized year by year to exclude a long-term trend, and periodic components with a period of 7 days and 365 days (and potentially also 186.5 days were excluded from the standardized series. However, these two operations eliminated only a small part of the variance; there was a substantial reduction in the variance only for ammonium nitrogen and total nitrogen at the inflow and outflow from a WWTP. The relationship between the inflow into a WWTP and the outflow from a WWTP for the concentrations and pollution loads was described by simple transfer functions (SISO models and more complicated transfer functions (MISO models. A simple transfer function (SISO model was employed to describe the relationship between the daily total precipitation and the wastewater discharge.

  20. Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus.

    Science.gov (United States)

    Ghanem, I; Orfi, M; Shamma, M

    2007-01-01

    A chlorpyrifos (CPY)-degrading bacterial strain was isolated from an activated sludge sample collected from the Damascus Wastewater Treatment Plant, Syria. The isolation of Klebsiella sp. was facilitated by the addition of CPY at a rate of 3.84 g/L of sludge weekly (selection pressure). Identification of Klebsiella sp. was done using major staining and biochemical differentiation tests (Gram stain, cytochrome oxidase and some relevant saccharide fermentation tests using biochemical assays). Klebsiella sp. was maintained by culturing in a poor medium consisting of mineral salts and CPY as the sole carbon source. When 3 activated sludge samples were incubated in the presence of CPY (13.9 g/L sludge), 46% of added CPY were degraded within 4 d. By comparison, within 4 d the isolated Klebsiella sp. was found to break down 92% of CPY when co-incubated in a poor mineral medium in which CPY was the sole carbon source (13.9 g/L poor medium). Isolated Klebsiella sp. was able to tolerate up to 17.3 g of CPY in the poor medium.

  1. Application of SCR Technology of Constant Water Level in Sewage Treatment Plant%恒水位SBR工艺在污水处理厂的应用

    Institute of Scientific and Technical Information of China (English)

    周志强; 张玉山; 叶晓娟

    2016-01-01

    安溪湖头镇污水处理厂采用连续进水、出水的恒水位SBR工艺,工程结构简单,占地面积小。经过三个月调试及一个月试运行,系统稳定,脱氮除磷效果良好,出水水质达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。%The sewage treatment plant in Hutou town of An Xi adopts SCR technology of the constant water level in inlet and outlet water. The plant accounts for a smal area of the land and its engineering structure is simple. Through debugging for 3 months and trial operation for one month, the system is stable. The denitrogenation and dephosphorization show a good result, the water quality meets A standard of the ifrst grade (GB 18918-2002).

  2. Experimental Study on the Heavy Metal Pollution in the Soil Irrigated by Reclaimed Water from Sewage Treatment Plant

    OpenAIRE

    Yan, Xing; Luo, Gang; Cao, Jian; Xu, Jiawen; Wang, Shuang; YE, Weihai; Liang, Yicheng

    2015-01-01

    Reclaimed water irrigation is one of the potential ways of solving the shortage of water resources, and the pollution risk on migration behavior of heavy metals in the soil which are irrigated by reclaimed water and the related soil surface is still short of research. Through the experimental study of different kinds of water irrigation methods on vegetable, it can be concluded that compared with sewage irrigation and tap water irrigation, reclaimed water irrigation does not pollute the soil,...

  3. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    Science.gov (United States)

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  4. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... African Journal of Biotechnology Vol. 7 (15), pp. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ... separate), industrial waste entering the sewer, type of.

  5. New construction of an in-drum drying plant in the central decontamination and water treatment facility (ZDW)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Martin; Koischwitz, Ingmar; Viermann, Jorg [GNS Gesellschaft fur Nuklear-Service mbh, Essen (Germany)

    2013-07-01

    In order to ensure future conditioning of the accumulating radioactive liquid waste during the advancing dismantling of the nuclear power plant Greifswald, GNS provides EWN within the new construction of the ZDW with an in-drum drying plant, including the appropriate infrastructure and media supply. For the in-drum drying plant, GNS has consistently further developed the process of the FAVORIT plant operationally proven for many years. Noteworthy is that for the first time a fully automatic plant of this type has been implemented which requires interventions of the operating personnel only for rounds and for loading and unloading processes of the drum stations. Moreover, components of the vacuum unit were designed according to needs and optimised with regard to installation space and plant engineering. (authors)

  6. [Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant].

    Science.gov (United States)

    Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo

    2015-06-01

    Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving.

  7. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  8. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  9. Enrichment planting without soil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Where enrichment planting had been carried out with either of the two species Picea abies and Pinus contorta, the survival of the planted seedlings was at least as good as after planting in a normal clear cut area treated with soil scarification. This was in spite of the fact that the seedlings were placed shallow in the humus layer without any soil treatment. However, they were sheltered from insects by treatment before planting. Where enrichment planting was carried out with Pinus sylvestris the survival in dense forest was poor, but in open forest the survival was good. The growth of planted seedlings was enhanced by traditional clearing and soil treatment. However, this was for Pinus sylvestris not enough to compensate for the loss of time, 1-2 years, caused by arrangement of soil scarification. The growth of seedlings planted under crown cover was directly related to basal area of retained trees. However, the variation in height growth among individual seedlings was very big, which meant that some seedlings grow well also under a fairly dense forest cover. The pioneer species Pinus sylvestris reacted more strongly to basal area of retained trees than did the shade tolerant species Picea abies. Enrichment planting seems to be a necessary tool for preserving volume productivity, at places where fairly intensive harvest of mature trees has been carried out in stands of ordinary forest type in central Sweden. If double seedlings, with one Picea abies and one Pinus sylvestris, are used, the probability for long term establishment is enhanced 13 refs, 20 figs, 4 tabs

  10. Sludge composting of waste water treatment plant. Compost plant of Vila-Seca (Tarragona); Compostaje de lodos procedentes de la depuracion de aguas residuales. Planta de compostaje de Vila- Seca

    Energy Technology Data Exchange (ETDEWEB)

    Marza Brillas, J.

    1995-12-01

    Composting is a very effective process in waste treatment. Very good results are obtained in mass and volume loss, moisture reduction, organic matter establization as well as making possible agricultural uses for the final product. Some parameters as nutrients (C/N ratio), pH, temperature and oxygen content are pointed as the most important for the process. Some composting systems are mentioned but finally tunnel system is shown as the best. Its great advantage is that measurements from main parameters are given continuously to the control computer, so process optimization is done at the moment. The Vila-Seca sludge composting plant is described. This plant can treat 30.000 tones/year from three water treatment plants. The expected 50% on organic matter reduction and 70% on dry matter content has been achieved after only 3 months since its starting up. Finally, in september 1995 will start the construction of another sludge composting plant were the same technology, belonging to GICOM and represented by G.T.R. in Spain, will be installed.

  11. Drivers and economic aspects for the implementation of advanced wastewater treatment and water reuse in a PVC plant

    Directory of Open Access Journals (Sweden)

    David Prieto

    2016-06-01

    The proposed solution is profitable for sites where fresh demineralized water production costs are currently higher than 1.5 €/m3 and the required flow of the recycled water exceeds 50 m3/h. The water reuse concept allows decoupling the production from fresh water use. In this case, anticipating that a drought would lead to a 3% reduction of the production, the amortization period would be lowered to one year.

  12. Cost optimisation and minimisation of the environmental impact through life cycle analysis of the waste water treatment plant of Bree (Belgium).

    Science.gov (United States)

    De Gussem, K; Wambecq, T; Roels, J; Fenu, A; De Gueldre, G; Van De Steene, B

    2011-01-01

    An ASM2da model of the full-scale waste water plant of Bree (Belgium) has been made. It showed very good correlation with reference operational data. This basic model has been extended to include an accurate calculation of environmental footprint and operational costs (energy consumption, dosing of chemicals and sludge treatment). Two optimisation strategies were compared: lowest cost meeting the effluent consent versus lowest environmental footprint. Six optimisation scenarios have been studied, namely (i) implementation of an online control system based on ammonium and nitrate sensors, (ii) implementation of a control on MLSS concentration, (iii) evaluation of internal recirculation flow, (iv) oxygen set point, (v) installation of mixing in the aeration tank, and (vi) evaluation of nitrate setpoint for post denitrification. Both an environmental impact or Life Cycle Assessment (LCA) based approach for optimisation are able to significantly lower the cost and environmental footprint. However, the LCA approach has some advantages over cost minimisation of an existing full-scale plant. LCA tends to chose control settings that are more logic: it results in a safer operation of the plant with less risks regarding the consents. It results in a better effluent at a slightly increased cost.

  13. DRINKING WATER TREATMENT

    Science.gov (United States)

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  14. Performance indicators for wastewater treatment plants.

    Science.gov (United States)

    Balmér, P; Hellström, D

    2012-01-01

    The Swedish Water & Wastewater Association has operated a web-based system, VASS, for the collection and compilation of key data from the Swedish water utilities since 2003. The VASS system will now be expanded to include data on operation of individual wastewater treatment plants (WWTP). The objective is to provide performance indicators (PIs) for performance and economy and the use of resources such as energy, chemicals and manpower. A set of PIs has been developed that also includes explanatory factors to compensate for differences in the condition of operation between plants. This paper discusses the data required for the calculation of PI but also for explanatory factors, quality checks and for plant operation context. The discussion is based on the experiences from a test round with the participation of 24 WWTP.

  15. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  16. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  17. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  18. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  19. Impact of wastewater treatment plants on receiving surface waters and a tentative risk evaluation: the case of estrogens and beta blockers.

    Science.gov (United States)

    Gabet-Giraud, V; Miège, C; Jacquet, R; Coquery, M

    2014-02-01

    Five estrogenic hormones (unconjugated + conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.

  20. Evaluating the polar organic chemical integrative sampler for the monitoring of beta-blockers and hormones in wastewater treatment plant effluents and receiving surface waters.

    Science.gov (United States)

    Jacquet, Romain; Miège, Cécile; Bados, Philippe; Schiavone, Séverine; Coquery, Marina

    2012-02-01

    Wastewater treatment plants (WWTP) are known to be a source of surface water contamination by organic compounds such as pharmaceuticals. The objective of the present work was to study the suitability of the polar organic chemical integrative sampler (POCIS) to monitor beta-blockers and hormones in effluents and surface waters. Four sampling campaigns were carried out in French rivers (the Saône, the Ardières, the Bourbre, and the Seine) between November 2007 and September 2008. Passive samplers were exposed in surface waters, upstream and downstream of WWTP outflows, and in effluents. Exposures lasted for up to 24 d to study the uptake kinetics directly in situ, and repeatability was assessed by exposure of triplicates. A good agreement was found between POCIS and water samples. With the exception of atenolol, beta-blockers showed a linear uptake during at least three weeks, and their sampling rates could be determined in situ. These sampling rates were then used to calculate time-weighted average concentrations of beta-blockers in the Seine River with an overall good accuracy and repeatability. Such calculations could not be performed for hormones because of their variable occurrences and low concentrations in water and POCIS. Polar organic chemical integrative sampler therefore seems to be a suitable tool for monitoring beta-blockers in surface waters impacted by WWTP effluents. Longer exposure durations would be necessary to determine the suitability of POCIS for monitoring hormones. Finally, preliminary assays on the use of several deuterated compounds as performance reference compounds showed promising results for deuterated atenolol. Copyright © 2011 SETAC.

  1. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    Science.gov (United States)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the

  2. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan

    Science.gov (United States)

    Bajjali, William; Al-Hadidi, Kheir; Ismail, Ma'mmon

    2017-03-01

    Groundwater in the northeastern Amman-Zarqa basin is an important source of water for irrigation. The quality and quantity of water has deteriorated due to mismanagement and misunderstanding of the hydrogeological system. Overexploitation of groundwater resources upstream of the Khirbet Al-Samra wastewater treatment plant (KSWTP) has lowered the water table 43 m since the beginning of groundwater development in 1968. Heavy pumping of groundwater downstream of KSWTP has not dropped the water level due to constant recharge from the Zarqa river bed. The water level of groundwater is rising continuously at a rate of 20 cm per year since building the KSWTP in 1985. Groundwater salinity has also shifted the quality of the aquifer from fresh to brackish. Continual irrigation from the groundwater upstream of KSWTP dissolves accumulated salt from the soil formed by evaporation, and the contaminated water infiltrates back to the aquifer, thereby increasing both salt and nitrate concentrations. The intense irrigation from the reclaimed water downstream of KSWTP and leakage of treated wastewater from the Zarqa River to the shallow groundwater is a secondary source of salt and nitrates. The isotopic composition of groundwater varies over a wide range and is associated with the meteoric water line affected by Mediterranean Sea air moisture. The isotopic composition of groundwater is represented by evaporation line (EL) with a low slope of 3.6. The enrichment of groundwater in δ18O and δD is attributed mainly to the two processes of evaporation before infiltration of return flow and mixing of different types of water in KSWTP originating from different aquifers. The EL starts from a location more depleted than the weighted mean value of the Amman rainfall station on the Eastern Meteoric Water Line indicating that the recharge took place under the climate regime prevailing today in Jordan and the recharge of the groundwater originates from a greater elevation than that of the

  3. Scaling up the chemical treatment of spent oil-in-water emulsions from a non-ferrous metal-processing plant

    Directory of Open Access Journals (Sweden)

    Lazarević Vesna B.

    2013-01-01

    Full Text Available The treatment of spent oil-in-water emulsion (SOWE from a non-ferrous metal-processing plant by using aluminum sulfate and hydrated lime was studied to determine the purification efficiency, to optimize the operating conditions and to scale up the treatment process. The purification efficiency was estimated by comparing the compositions of the SOWE and the processed wastewater. The treatment efficiency does not depend on the type of mineral oil and filter aid. The optimum doses of aluminum sulfate and hydrated lime must be experimentally determined for each batch of SOWEs, but the results obtained at laboratory level are applicable at pilot level. The processed wastewater and the filter cake from the process can be safely disposed into public sewage systems and at municipal waste landfills, respectively. The purification efficiency was higher than 98% with respect to total suspended solids, chemical oxygen demand and oil and grease, and was comparable to the known treatment processes based on coagulation/flocculation followed by sedimentation.

  4. Discussion on the Disinfection Method of Waste-water Treatment Plant%污水处理厂消毒方式探讨

    Institute of Scientific and Technical Information of China (English)

    扈庆; 李显芳

    2012-01-01

    针对国内城市污水处理厂出水消毒的现状,分别介绍了紫外线消毒、液氯消毒和二氧化氯消毒工艺的原理、优点和缺点,影响消毒效果的因素,以指导相关人员合理选择消毒工艺,提高污水消毒效率。%Aiming at the current situation for the disinfection in some waste-water treatment plants in China. The paper introduces the principles, advantage and disadvantage, influence factor for some disinfection crafts, including the ultraviolet disinfection, the chlorine disinfection, the chlorine dioxide disinfection. So as to direct the relative personnel selection disinfection craft reasonably and improve the disinfection efficiency.

  5. Influence of operating conditions for volatile fatty acids enrichment as a first step for polyhydroxyalkanoate production on a municipal waste water treatment plant.

    Science.gov (United States)

    Pittmann, Timo; Steinmetz, Heidrun

    2013-11-01

    This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production. The results demonstrated that although the substrate primary sludge differs in its consistence a stable composition of VFA could be achieved. Experiments with a semi-continuous reactor operation showed that a short RT of 4d and a small WD of 25% at pH=6 and around 30°C is preferable for high VFA mass flow (MF=1913 mg VFA/(Ld)) and a stable VFA composition.

  6. Advanced light water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Giedraityte, Zivile [Helsinki University of Technology, Otaranta 8D-84, 02150 Espoo (Finland)

    2008-07-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  7. Surface Disposal of Waste Water Treatment Plant Biosludge--an Important Source of Perfluorinated Compound Contamination in the Environment

    Science.gov (United States)

    What are “Biosolids”?- “Biosolids” are what remains after WWTP processing Sewage sludge probably a more accurate term - Could contain anything that comes down the pipe to the WWTP, varies greatly depending on community type, industry effluents, plant desig...

  8. Ecological Purification Efficiency of Several Aquatic Plants on Tail Water of Sewage Treatment Plant%不同水生植物对污水处理厂尾水的生态净化效果分析

    Institute of Scientific and Technical Information of China (English)

    张瑞斌

    2015-01-01

    通过构建小型水生生态系统,研究了旱伞草、美人蕉、伊乐藻、金鱼藻4种水生植物对太湖流域污水处理厂尾水中氮、磷等指标去除效能的差异. 结果表明,4种水生植物对污水中的氮、磷等均有明显的去除效果,其中,挺水植物旱伞草和沉水植物金鱼藻的综合净化效能较强,综合净化能力从强到弱依次为金鱼藻、旱伞草、伊乐藻、美人蕉.%Based on building the small aquatic ecosystem, the removal efficiency of nitrogen and phosphorus in sewage treatment plant tail water of Taihu Lake Basin by Cyperus alternifolius, Canna indica, Elodea Canadensis Michx.and Ceratophyllum demersum L.was studied.The results showed that these four plants had good removal efficiency for nitrogen and phosphorus in wastewater.The comprehensive purification ability of emerged plants Cyperus alternifolius and submerged plants Ceratophyllum demersum L.was higher than that of the others.The order of comprehensive purification ability from strong to weak was Ceratophyllum demersum L., Cyperus alternifolius, Elodea Canadensis Michx., Canna indica.

  9. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  10. Application of catalytic combustion technology in the treatment of foul gas from refinery waste water treatment plant%催化燃烧技术在炼油污水处理场恶臭治理中的应用

    Institute of Scientific and Technical Information of China (English)

    刘永斌; 程俊梅; 程彬彬

    2011-01-01

    介绍了催化燃烧技术在炼油污水处理场恶臭治理中的应用情况.工业应用表明,催化燃烧技术适用于处理石化炼油污水场总进水口、隔油池、浮选池等散发的恶臭气体,废气处理效果良好.恶臭治理设施运行后,对硫化物的去除率达95%以上,对硫化氢的去除率接近100%,对总烃的去除率达到85%以上,净化后的气体能够满足国家排放标准的要求.催化燃烧技术治理恶臭污染项目的实施,对同类型炼化装置将起到借鉴作用.%The application of catalytic combustion technology in the treatment of foul gas from refinery waste water treatment plant was introduced. The catalytic combustion technology was applicable for the treatment of foul gases from water inlet of refinery waste water treatment plant, API separator, flotation pit, etc with good results. After operation of foul gas treatment facilities, the sulfide removal rate is over 95% , the H2S removal rate is close to 100% and total hydrocarbons removal rate is more than 85%. The purified gas meets China national emission standards. The implementation of foul gas treatment facilities using catalytic combustion technology provides a good reference for the operation of similar refinery process units.

  11. Physic-Chemical treatment and demineralization by EDR to reutilize the effluent of an urban waste water treatment plant; Tratamiento fisico-quimico y desmineralizacion por electrodialisis reversible para reutilizar el efluente de una EDAR urbana

    Energy Technology Data Exchange (ETDEWEB)

    Torres Corral, M.; Pino, M.P. del; Gil Lodos, M.; Rodriguez Garcia, M.

    1998-12-01

    Etudes held at the research and development center DEREA placed at Gran Canaria, Canary islands, have proved the viability of regenerating urban waste waters treating the effluent of an urban waste water treatment plant (WWTP del surest) with a physic-chemical treatment followed by a demineralization by electrodialysis reversal. The physic-chemical system was composed of the following units: 1 coagulation tank, 3 floculators, 1 lamellar decanter, 1 pH neutralization system, 1 chlorination system, 1 multi bed filter with chemicals reservoir, dosifiers for lime, FeCl{sub 3} polielectrolytes, sulfuric acid, and NaOCl. The physic-chemical system treated daily about 250-300 cubic meters of the effluents of the EDAR del surest, without chlorination effluent, and worked with a 90% recovery (got 90 m``3 for each 100 feeded). (Author)

  12. Use of an ultrafiltration system in the Gundremmingen nuclear power plant for the treatment of nuclear process water; Einsatz einer Ultrafiltration im Kernkraftwerk Gundremmingen zur Aufbereitung von nuklearen Prozesswaessern

    Energy Technology Data Exchange (ETDEWEB)

    Krumpholz, Udo [Kernkraftwerk Gundremmingen GmbH, Gundremmingen (Germany). Teilbereich Ueberwachung - Chemie/Entsorgung; George, Carsten [Kernkraftwerk Gundremmingen GmbH, Gundremmingen (Germany). Teilbereich Technik - Maschinentechnik; Berger, Joerg [Gruenbeck Wasseraufbereitung GmbH, Hoechstaedt a.d. Donau (Germany). Energiezentralen

    2014-07-01

    Over the years, membrane filtration systems have successfully been used in conventional water treatment systems. The use of an ultrafiltration system has proven effective in the treatment of particle contaminated process water. In 2012 an ultrafiltration system was designed, installed and commissioned for the treatment of particle contaminated backwash and transport water from the condensate polishing system in the Gundremmingen nuclear power plant, units B and C. Performance data surpass the client's requirements with respect to permeate quality, flow-rate and backwash behaviour. The technology applied has proven well. (orig.)

  13. SCADA System and the APROL Monitor Conifguration Software in the Water Treatment Plant%SCADA系统和Aprol上位监控组态软件在净水厂中的应用

    Institute of Scientific and Technical Information of China (English)

    袁可

    2016-01-01

    本文通过分析净水厂对控制系统的功能要求,介绍了贝加莱工业自动化的基于PCC的SCADA系统和Aprol上位监控组态软件在净水厂的成功应用。%By analyzing the function requirements of control system in water treatment plant, this paper introduces the successful applications of the B&R industrial automation based on SCADA system and the APROL monitor configuration software in the water treatment plant.

  14. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  15. Sewerage Treatment Plants, Water Reclamation facilities, Published in 2007, 1:1200 (1in=100ft) scale, Town of Cary NC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Published Reports/Deeds information as of 2007. It is...

  16. Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry

    Directory of Open Access Journals (Sweden)

    Sedat Yayla

    2017-01-01

    Full Text Available The most widely utilized process of produced water treatment is considered to be use of coalescing or corrugated plate systems in the oil industry because these systems have promising results in the acceleration of the separation process. Even use of corrugated plate systems seem to be effective in separation processes, the geometrical parameters of the plate system could greatly influence the performance of separation process. In this study, a two-dimensional computational fluid dynamics model for coalescing plates was developed to investigate Reynolds number and plate hole shape on separation efficiency. Spacing between plates was set to 12 mm while fluid mixture’s Reynolds number varied between 5 and 45 for the computational model. Hole profile and dimensions were determined to be cylindrical, rectangular and ellipse shapes as 10, 15 and 20 mm based on hydraulic diameter definition, respectively. Furthermore, when hole profiles of coalescing plates were chosen to be ellipse and rectangular shapes, separation efficiency nearly stayed constant regardless of hole dimension. The study also reported that change of oil fraction from 5% to 15% caused approximately 30% increase in the separation efficiency. The investigation also revealed Reynolds number of the mixture was inversely proportional to the separation efficiency. It was also found that the highest separation efficiency was obtained for a cylindrical shape with a hole diameter of 15 mm when distance between plates was 12 mm and Reynolds number was 18.

  17. High prevalence of multidrug-resistant Escherichia coli and Enterococcus spp. in river water, upstream and downstream of a wastewater treatment plant.

    Science.gov (United States)

    Bessa, Lucinda J; Barbosa-Vasconcelos, Ana; Mendes, Angelo; Vaz-Pires, Paulo; Martins da Costa, Paulo

    2014-09-01

    In this study, microbial quality and antimicrobial resistance of faecal bacteria from a Portuguese river were assessed. River water samples collected upstream and downstream of a wastewater treatment plant, throughout a 3-month period, were used for the enumeration of Escherichia coli and Enterococcus spp. The highest numbers found for E. coli and enterococci were 1.1 × 10⁴ and 1.2 × 10⁴ colony forming units (CFU)/100 ml, respectively. In total, 144 isolates of E. coli and 144 of enterococci were recovered and tested for antimicrobial susceptibility; 104 E. coli and 78 Enterococcus spp. showed resistance to one or more antimicrobial drugs. Overall, 70 and 32 different resistance patterns were found for E. coli and enterococci, respectively. One E. coli showed resistance to imipenem and 29 isolates were extended spectrum β-lactamase-producers. Multidrug-resistant E. coli belonged mostly to groups A, B1 and group D. Enterococcus spp. were mostly resistant to rifampicin, tetracycline, azithromycin and erythromycin; six isolates showed resistance to vancomycin, presenting the VanA phenotype. The high levels of E. coli and enterococci and the remarkable variety of antimicrobial resistance profiles, reinforces the theory that these river waters can be a pool of antimicrobial resistance determinants, which can be easily spread among different bacteria and reach other environments and hosts.

  18. In situ biomonitoring of freshwater quality using the New Zealand mudsnail Potamopyrgus antipodarum (Gray) exposed to waste water treatment plant (WWTP) effluent discharges.

    Science.gov (United States)

    Gust, Marion; Buronfosse, Thierry; Geffard, Olivier; Mons, Raphael; Queau, Herve; Mouthon, Jacques; Garric, Jeanne

    2010-08-01

    Mollusk species have been shown to be sensitive to various endocrine disrupting compounds (EDC) at environmentally relevant concentrations. Waste water treatment plant (WWTP) effluents are a major source of potential or known EDC in the aquatic environment. The aim of this study was to develop an in situ exposure method using the New Zealand mudsnail Potamopyrgus antipodarum (Molluska, Hydrobiidea) to assess the impact of water quality on the life traits of this species, by focusing on its reproduction. The impact of three WWTP discharges on three different receiving rivers was studied. The effects of WWTP effluent on adult survival, weight, reproduction and vertebrate-like sex-steroid levels in snails were monitored for three to four weeks. Although the physicochemical and hydrological parameters varied greatly between the rivers, the caging experiments allowed us to detect significant impairment of the life traits of snails when exposed downstream of the WWTPs discharge. While adult survival was not affected by exposure, reproduction was significantly impacted downstream from the WWTP effluent discharges (60-70% decrease of embryos without shells after three to four weeks exposure) independently of the river. Modulations of steroid levels proved to be an informative parameter with an increase of testosterone downstream of the discharges, and increases and decreases of 17beta-estradiol levels according to site. The endpoints used proved to be an adapted method for field exposures and allowed the discrimination between upstream and downstream sites. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Design and evaluation of a novel wastewater treatment package plant

    OpenAIRE

    Mackley, Tim

    2007-01-01

    The objective of the project was to develop a novel package plant using available process technologies that would be competitive in the domestic waste water treatment market. A market analysis identified the business opportunity for Balmoral Tanks to develop a package plant with higher treatment capability than its current product. A customer survey and a review of Regulatory standards provided valuable input into the design considerations for the package plant. ...

  20. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    Science.gov (United States)

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  1. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    Science.gov (United States)

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  2. Clarification and filtration of the floculated partuicles suspension from a chemical treatment of waste oil-in-water emulsions from a non-ferrous metalworking plant

    Directory of Open Access Journals (Sweden)

    Lazarević Vesna B.

    2011-01-01

    Full Text Available The effects of the coagulation/floculation conditions on clarification and filtration of the floculated particle suspension obtained by the chemical treatment of the waste oil-in-water emulsion (OWE from a non-ferrous metalworking plant were studied. The treatment involved the addition of aluminum(III sulfate and lime to the OWE. The main goal was to define the optimum conditions for clarification and filtration of the floculated particle suspension. The factors involved were amounts lime (i.e. pH and filter aid added the OWE on clarification and filtration rates. At pH>10, the clarification rate was increased and the final volume of the concentrated suspension (sludge was reduced, while filter aid affected negatively the clarification rate. The filtration rate was also increased when the coagulation was carried out at pH>10. The floculated particle suspension should be concentrated before filtration in order to decrease the filtration duration. The most efficient filter aid was Celite standard super-cel, its optimum initial concentration being found to be 2 g/dm3.

  3. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Gibs, Jacob, E-mail: jgibs@usgs.gov [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Heckathorn, Heather A. [U.S. Geological Survey, 810 Bear Tavern Road, West Trenton, NJ 08628 (United States); Meyer, Michael T. [U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, KS 66049 (United States); Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert L. [New Jersey Department of Environmental Protection, PO Box 413, Trenton, NJ 08625 (United States)

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin–H{sub 2}O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin

  4. A pilot plant study using conventional and advanced water treatment processes: Evaluating removal efficiency of indicator compounds representative of pharmaceuticals and personal care products.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen; Axe, Lisa; Dyksen, John E; Raczko, Robert F

    2016-11-15

    With widespread occurrence of pharmaceuticals and personal care products (PPCPs) in the water cycle, their presence in source water has led to the need to better understand their treatability and removal efficiency in treatment processes. Fifteen indicator compounds were identified to represent the large number of PPCPs reported worldwide. Criteria applied to determine the indicator compounds included PPCPs widely used, observed at great frequency in aqueous systems, resistant to treatment, persistent in the environment, and representative of classes of organics. Through a pilot plant investigation to understand the optimal combination of unit process for treating PPCPs, 12 treatment trains with their additive and synergistic contributions were investigated; processes included dissolved air flotation (DAF), pre- and intermediate-ozonation with and without H2O2, intermediate chlorination, dual media filtration, granular activated carbon (GAC), and UV/H2O2. Treatment trains that achieved the greatest removals involved 1. DAF followed by intermediate ozonation, dual media filtration, and virgin GAC; 2. pre-ozonation followed by DAF, dual media filtration, and virgin GAC; and, 3. DAF (with either pre- or intermediate oxidation) followed by dual media filtration and UV/H2O2. Results revealed significant removal efficiencies for virgin GAC (preceded by DAF and intermediate ozonation) and UV/H2O2 with an intensity of 700 mJ/cm(2), where more than 12 of the compounds were removed by greater than 90%. Reduced PPCP removals were observed with virgin GAC preceded by pre-ozonation and DAF. Intermediate ozonation was more effective than using pre-ozonation, demonstrating the importance of this process targeting PPCPs after treatment of natural organic matter. Removal efficiencies of indicator compounds through ozonation were found to be a function of the O3 rate constants (kO3). For compounds with low O3 rate constants (kO3 < 10 M(-1)s(-1)), H2O2 addition in the O3 reactor

  5. The artificial water cycle: emergy analysis of waste water treatment.

    Science.gov (United States)

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  6. Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes).

    Science.gov (United States)

    Archana, G; Dhodapkar, Rita; Kumar, Anupama

    2017-08-10

    This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L(-1) in the surface water bodies, 12-373 μg L(-1) in the influent and 11-233 μg L(-1) in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be organism.

  7. Managing peatland vegetation for drinking water treatment

    Science.gov (United States)

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-11-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision.

  8. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting

  9. 某饮用水处理厂中5种抗生素的去除%Removal of five antibiotics from a drinking water treatment plant

    Institute of Scientific and Technical Information of China (English)

    姚宏; 王辉; 苏佳亮; 孙佩哲; 黄京华

    2013-01-01

    通过对美国某饮用水厂处理工艺和对象的介绍,研究各处理单元对克拉霉素(clarithromycin,CLA)、脱水红霉素(erythromycin-H2O,ERY)、左氧氟沙星(levofloxacin,LEV)、新诺明(sulfamethoxazole,SUL)和甲氧苄啶(trimethoprim,TRI)等5种目标抗生素的去除规律;从目标抗生素的残留和各处理单元的去除率角度分别分析时间和空间对去除规律的影响,并探讨抗生素和常规水质参数去除率间的相关关系.研究发现,原水中5种抗生素的平均浓度范围为0 ~ 26.8 ng/L,出水降至0 ~2.3 ng/L,该水厂工艺对5种抗生素的总去除率可达79.5%,其中CLA、ERY、LEV、SUL和TRI的去除率分别为92.8%、24%、100%、85.7%和53.2%;不同采样时间各采样点的抗生素浓度均呈现出秋季高的特点,但各处理单元的处理效率在不同的季节却表现出很大的差异;CLA可作为抗生素总量变化趋势预测的“指示抗生素”;抗生素的总量浓度和总去除率与UV254的浓度及去除率之间有很好的正相关性,可以通过对UV254值的测定和去除率的计算来预测抗生素浓度的大小和去除率变化趋势.该研究从抗生素去除角度为我国新建和改扩建饮用水厂工艺提供较好的理论依据.%The study showed the removal performance of the five target antibiotics (clarithromycin(CLA) , erythromycin-H2O(ERY) , levofloxacin( LEV) , sulfamethoxazole(SUL) and trimethoprim(TRI)) in each treatment process of drinking water treatment plants in the U. S. The removal efficiency was analysed via the influence of time and space, respectively, and the relationship between the removal rate of antibiotics and water quality parameters was discussed. The results showed that the average concentrations of the five antibiotics in source water ranged from 0 to 26. 8 ng/L, while 0 to 2. 3 ng/L in effluent. The total removal efficiency of the antibiotics in the water treatment processes was 79. 5% with CLA

  10. Sewerage Treatment Plants, File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer plants, sewer pumpstations, water plants, water tanks http://www.harfordcountymd.gov/gis/Index.cfm, Published in 2011, 1:600 (1in=50ft) scale, Harford County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Sewerage Treatment Plants dataset current as of 2011. File name = UTILITIES - PARTIAL Data is incomplete. Contains electric trans lines, electric substations, sewer...

  11. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment plants

  12. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment plants

  13. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Data.gov (United States)

    U.S. Environmental Protection Agency — Bacteria and fungi in source and treated drinking water. This dataset is associated with the following publication: King , D., S. Pfaller , M. Donohue , S. Vesper ,...

  14. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  15. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    Science.gov (United States)

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  16. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  17. Water treatment technologies for CBM water, including cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Makysmentz, B.; Lyon, F.L. [Newpark Resources Inc., Calgary, AB (Canada). Newpark Environmental Water Solutions

    2006-07-01

    The reasons for treating CBM water, end uses, reverse osmosis, pretreatment for reverse osmosis, and Newpark case studies are described. CBM water can be treated to make it suitable for injection, re-use, irrigation, or surface discharge. Usually the total dissolved solids (TDS) must be reduced by ion exchange or reverse osmosis with pretreatment. The concept of reverse osmosis and three types of applicable membrane processes are described: microfiltration and ultrafiltration, nanofiltration, and electrodialysis. The technologies used for pretreatment depend on the water quality and treatment goals, e.g. coagulation, flocculation and sand media filtration, softening, ion exchange, and nanofiltration. A Newpark case study is described for a water treatment plant at Boulder, Wyoming where evaporation was replaced by cavitation technology. The suitability of various treatment methods for Alberta CBM water is discussed. 21 figs., 1 tab.

  18. Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance.

    Science.gov (United States)

    Rosas, Irma; Salinas, Eva; Martínez, Leticia; Cruz-Córdova, Ariadnna; González-Pedrajo, Bertha; Espinosa, Norma; Amábile-Cuevas, Carlos F

    2015-10-01

    The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies.

  19. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  20. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  1. 全膜分离技术及其在电厂化学水处理中的应用%Whole Membrane Separation Technology and Its Application in Chemical Water Treatment of Power Plant

    Institute of Scientific and Technical Information of China (English)

    马福刚

    2011-01-01

    This paper introduces the definition, types and characteristics of membrane separation technology, and application instance of whole membrane separation treatment process (UF-RO-EDI) in power plant boiler feed water treatment.%介绍了膜分离技术的定义、种类、特点以及全膜分离处理工艺(UF-RO-EDI)在电厂锅炉补给水处理中的应用实例.

  2. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22 Section 305.22 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.22 Hot water immersion treatment schedules. (a) T102-d...

  3. Discussion How to Perfect Water Quality Management in the Urban Sewage Treatment Plant%浅谈如何完善城镇污水处理厂水质管理

    Institute of Scientific and Technical Information of China (English)

    顾国莲

    2012-01-01

    The current situation of water resources in our country and operation situation of cities and towns sewage treatment plant were are analyzed,the reasons of the effect which affected urban sewage treatment plant were Pointed out,and the corresponding rectification measures were put forward.%文章对我国水资源现状和城镇污水处理厂的运行现状进行分析,指出目前影响城镇污水处理厂处理效果的原因,并提出了相应的整改措施。

  4. The practice of chemical treatment of the water/steam circuits in plants with forced flow once-through boilers. Praxis der chemischen Konditionierung von Wasser-Dampfkreislaeufen in Anlagen mit Zwangdurchlaufkesseln

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, A. (Grosskraftwerk Mannheim AG (Germany)); Kittel, H. (VGB-Geschaeftsstelle, Essen (Germany))

    1992-02-01

    In 1990, a statistical survey was undertaken into the status of chemical treatment of water/steam circuits in plants with once-through forced-flow boilers. The results were reported at the VGB Conference on 'Chemistry in the Power Station 1990'. This paper imparts to the operators of plants with once-through forced-flow boilers additional information about the practice of chemical treatment. It contains guidelines concerning the chemicals used and also instructions about dosing points for individual materials and the type of dosing to be used in continuous operation. (orig.).

  5. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range. In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86% of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE, Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1 was resistant to 36 antibiotics, while P. rettgeri (OSR3 was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80% strains each, and 88/93 (95% strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides

  6. Prestudy: Anaerobic digestion with primary hydrolysis from increased methane production in waste water treatment plants band biogas plants; Foerstudie: Roetning med inledande hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin (BioMil AB, Lund (Sweden)); Carlsson, My; Uldal, Martina; Olsson, Lars-Erik (AnoxKaldnes AB, Lund (Sweden))

    2010-04-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrient and pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a

  7. An evaluation of Hanford water treatment practices

    Energy Technology Data Exchange (ETDEWEB)

    Touhill, C.J.

    1965-09-01

    An evaluation of Hanford reactor process water treatment practices was made in an effort to ascertain the reasons for variations in the effluent activity between reactors. Recommendations are made for improvements in unit processes as well as for the over-all treatment process based on field inspection of the water treatment plants. In addition, a research program is proposed to supplement the recommendations. The proposed research is designed to uncover methods of more efficient filtration as well as other procedures which might eventually lead to significant effluent activity reductions. The recommendations and research results will be applied toward process optimization.

  8. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  9. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    Science.gov (United States)

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  10. Effect of Magnetic Treatment of Water on Evapotranspiration of Tomato

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-02-01

    Full Text Available This study was conducted to determine the effect of magnetic treatment of water on the evapotranspiration of tomato plant. Evapotranspiration is important to plant for metabolic processes and it also cools the plant. Three magnetic flux densities of 124, 319 and 719 G produced from electromagnet (the treatments labelled as T1, T2 and T3 were used to treat the water and a control experiment (TC was also set up which was irrigated with non-magnetic treatment water. Equal amount of water was applied to all the tomato plant (variety UC82B at the same time. Each treatment was replicated seven times given a total of 28 buckets containing tomato plant. The tomato was planted in the 28 buckets in a transparent garden shed for 130 days (23/09/2014 – 30/01/2015. A complete randomized design (CRD experimental layout was used. The amount of water lost due to evapotranspiration per day was determined by weight lost in the bucket (lysimetric weighing method. The mean values of daily evapotranspiration for two stands of tomato plants per bucket over a period of 65 days for T1, T2, T3 and TC were 9.38, 9.28, 9.18 and 8.03 mm/day respectively. The result of the evapotranspiration due to mass of water lost from the buckets containing tomato plants irrigated with magnetic water were all higher than the values of evapotranspiration from non-magnetic water. This indicated that tomato plant irrigated with magnetic treatment of water absorbed more water from the soil easily and grew faster than the tomato plant irrigated with non-magnetic treatment water with the same quantity of water applied to the tomato plant.

  11. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water.

    Science.gov (United States)

    Conte, Danieli; Palmeiro, Jussara Kasuko; da Silva Nogueira, Keite; de Lima, Thiago Marenda Rosa; Cardoso, Marco André; Pontarolo, Roberto; Degaut Pontes, Flávia Lada; Dalla-Costa, Libera Maria

    2017-02-01

    Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of blaCTX-M (51/55, 92.7%) and blaSHV (8/55, 14.5%) ESBLs, and blaGES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may

  12. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  13. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  14. Plant water balance with tritiated water-tracing dynamical method

    Institute of Scientific and Technical Information of China (English)

    曾文炳; 颉红梅; 魏宝文; 陈荷生; 冯金朝; 董家伦

    1996-01-01

    The conception of "metabolic pool" is introduced and an ecosystem model consisting of sand body metabolic pool, plant metabolic pool, atmospheric pool and their corresponding channels is established. In addition, the input and output terms of water balance including plant transpiration etc. are measured by tritiated water-tracing dynamical method, etc. and thus a water balance table is obtained. Finally, the plant water balance in the steppified desert environment of the Shapotou area at southeastern fringe of Tengger Desert in China is comprehensively analysed.

  15. Contribution of Wastewater Treatment Plants to Concentrations of PBDEs, PFCs, PCBs, DDT and Synthetic Musks in Fish Tissue from U.S. Urban Waters

    Science.gov (United States)

    Wastewater treatment plants (WWTPs) are tasked with removing a wide variety of contaminants from influents, including BOD and nutrients from human waste as well as any and all other compounds that emanate from homes and commercial facilities in the communities they serve. Traces ...

  16. SimpleTreat: a spreadsheet-based box model to predict the fate of xenobiotics in a municipal waste water treatment plant

    NARCIS (Netherlands)

    Struijs J; van de Meent D; Stoltenkamp J

    1991-01-01

    A non-equilibrium steady state box model is reported, that predicts the fate of new chemicals in a conventional sewage treatment plant from a minimal input data set. The model, written in an electronic spreadsheet (Lotus TM 123), requires a minimum input: some basic properties of the chemical, its

  17. Development of a rapid and sensitive battery of bioassays for risk assessment of cyanobacterial microcystin-LR in drinking water of rural water treatment plants, South Africa

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2009-09-01

    Full Text Available : Cylindrospermopsins and Microcystins. CRC Press, Florida, USA, pp. 1-279. Gorczyca W, Tuziak T, Kram A, Melamed MR, Darzynkiewicz Z (1994). Detection of apoptosis-associated DNA strand breaks in fine-needle aspiration biopsies by in situ end labeling of fragmented... to monitor long-term coal tar contaminated sediment in the Cache la Poudre River, Colorado. Water Res. 39: 4913-4924. Oberholster PJ, Botha AM (2007). Use of PCR based technologies for risk assessment of a winter cyanobacterial bloom in Lake Midmar, South...

  18. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  19. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant.

    Science.gov (United States)

    Sala-Comorera, Laura; Vilaró, Carles; Galofré, Belén; Blanch, Anicet R; García-Aljaro, Cristina

    2016-10-01

    The study of bacterial communities throughout a drinking water treatment plant could provide a basic understanding of the effects of water processing that could then be used to improve the management of such plants. However, it is necessary to develop new analytical techniques that are sufficiently efficient, robust and fast for their effective and useful application in routine analysis. The aim of this study is therefore to assess the performance of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), as compared to the PhenePlate™ system, for routine analysis in a drinking water treatment plant. To this end we studied a total of 277 colonies isolated in different seasons and from different points throughout the water treatment process, including: raw water, sand filtration, ultrafiltration, reverse osmosis and chlorination. The colonies were analysed using MALDI-TOF MS by direct deposition of the cells on the plate. The colonies were also biochemically fingerprinted using the PhenePlate™ system, clustered according to their similarity and a representative strain was selected for 16S rRNA gene sequencing and API(®) gallery-based identification. The use of MALDI-TOF MS was reliable compared to the PhenePlate™ system and has the advantage of being faster and relatively cheap. Bacteria typing by MALDI-TOF MS is therefore a promising method to replace conventional routine phenotypic methods for the identification of bacteria in drinking water laboratories, thanks to its robustness. The major limiting factor for MALDI-TOF MS is the lack of a suitable mass spectra database; although each laboratory can develop its own library. This methodology will provide a tracking tool for companies to use in risk management and the detection of possible failures in both the water treatment processes and the distribution network, as well as offering characterization of the intrinsic microbial populations.

  20. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-07-01

    Full Text Available Population growth and intensification of industrial activities have increased the deterioration of natural resources. Industrial, hospital and residential wastes are dumped directly into landfills without processing, polluting soils. This action will have consequences later, because the liquid substance resulting from the putrefaction of organic material plows into the soil to reach water bodies. Cities arise without planning, industrial and household wastes are discharged into rivers, lakes and oceans without proper treatment, affecting water resources. It is well known that in the next century there will be fierce competition for fresh water on the planet, probably due to the scarcity of it. Demographic expansion has occurred without proper health planning, degrading oceans, lakes and rivers. Thus, a large percentage of world population suffers from diseases related to water pollution. Accordingly, it can be concluded that sewage treatment is essential to human survival, to preserve rivers, lakes and oceans. An Effluent Treatment Plant (ETP treats wastewater to reduce its pollution to acceptable levels before sending them to the oceans or rivers. To automate the operation of an ETP, motors, sensors and logic blocks, timers and counters are needed. These functions are achieved with programmable logic controllers (PLC and Supervisory Systems. The Ladder language is used to program controllers and is a pillar of the Automation and Control Engineering. The supervisory systems allow process information to be monitored, while the PLC are responsible for control and data acquisition. In the age we live in, process automation is used in an increasing scale in order to provide higher quality, raise productivity and improve the proposed activities. Therefore, an automatic ETP will improve performance and efficiency to handle large volumes of sewage. Considering the growing importance of environmental awareness with special emphasis

  1. Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  2. Case analysis of advanced treatment project design and operation of Ji'nan Quehua Water Treatment Plant%济南鹊华水厂深度处理改造工程设计及运行分析

    Institute of Scientific and Technical Information of China (English)

    李浩; 贾瑞宝; 刘衍波

    2012-01-01

    济南鹊华水厂以引黄调蓄水库为水源,原水存在低浊高藻高臭味等问题,水厂原有工艺难以有效处理.为适应国家《生活饮用水卫生标准》(GB 5749-2006)要求,水厂将“混凝—沉淀—过滤液氯消毒”工艺改造为“中置式高密度沉淀—臭氧催化氧化—上向流生物活性炭吸附—V型砂滤—液氯消毒”工艺,改造后的净水工艺对有机物、臭味等特征污染物去除效果明显,出厂水水质稳定达标.%The Yellow River reservoir is used as water source of Ji' nan Quehua Water Treatment Plant. The raw water is characterized by low turbidity, high algae concentration, and high odor, which is difficult to remove by existing process. In order to meet the Standards of drinking water quality (GB 5749-2006), the process of "coagulation-sedimentation-filtration-liquid chlorine disinfection" was reconstructed into "middle high concentration sedimentation-ozone catalytic oxidization-upward flow biological activated carbon adsorption-V type sand filter-liquid chlorine disinfection" process. The new process could remove the characterized pollutants effectively, such as organic matter and odor, and the effluent water quality could meet the standards stably.

  3. 不同水处理工艺的自来水出厂水中有机物的遗传毒性%Genotoxicity of organic extracts from finished water with different treatment process in six water plants

    Institute of Scientific and Technical Information of China (English)

    方道奎; 余淑苑; 张隽; 张振; 周国宏; 李思果; 吴辉; 翟卉; 唐非

    2011-01-01

    目的:检测和评价某市6家A,B,C,D,E和F厂采用不同水处理工艺自来水厂出厂水中有机物的遗传毒性.方法通过鼠伤寒沙门菌致突变实验、微核实验及微量波动实验检测与比较各水样中有机物的致突变性.结果:6家自来水厂出厂水中有机物的鼠伤寒沙门菌致突变实验结果均为阳性;各厂出厂水中有机物诱导的小鼠骨髓细胞微核率由高至低依次为:D>E=A>C>F>B;C厂后加氯单元出水中有机物在每板0.25L的剂量下,微量波动实验对于TA98,TA100均出现阳性结果,并且各剂量的阳性反应孔存在明显的剂量反应关系(P<0.05).结论:某市6家自来水厂出厂水中的有机物具有明显的致突变作用,且以移码突变为主;微核实验与Ames实验对水中有机物遗传毒性检测与评价结果基本一致;微量波动实验可提高对水中有机物致突变性检测的灵敏度.%OBJECTIVE To explore the genotoxicity of organic extracts from finished water in 6 water plants A, B, C, D, E and F in a particular city. METHODS The following in vitro and in vivo tests were conducted: Ames test with Salmonella typhimurium strains TA98 and TA100 with and without mammalian S9 activation component, microscale fluctuation test with S. typhimurium strains TA98 and TA100 without mammalian S9 activation component, and mouse micronucleus test in mice polychromatic erythrocyte (PCE) stem cells. RESULTS Positive results were obtained by Ames test and micronucleus assay from all the finished water samples in six water plants. The micronucleus frequency was shown in the following order: D > E = A > C > F > B. Microscale fluctuation test showed that at the concentration of 0.25 L every plate and after post-chlorination treatment of plant C, the positive results in TA98 ( - S9 ) and TA100 ( - S9 ) ( P < 0. 05 ) were obtained.CONCLUSION Mutagenicity of finished water from 6 water plants in this city is relatively high and the type of mutagenicity

  4. Costs of water treatment due to dimini