WorldWideScience

Sample records for water treatment adsorbents

  1. Fate of Trace Organic Compounds in Granular Activated Carbon (GAC Adsorbers for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Alexander Sperlich

    2017-06-01

    Full Text Available Granular activated carbon (GAC adsorbers for drinking water treatment were operated for approx. 14 months and the breakthrough of dissolved organic carbon (DOC and trace organic chemicals (TOrCs was monitored. Effluent concentration profiles of gabapentin and valsartan acid increase already at throughputs of <10,000 BV. The corresponding breakthrough curves flatten out without reaching the influent concentration level. This strongly indicates biological degradation of these substances in the GAC adsorbers under aerobic conditions, contributing to a more efficient use of GAC. The observed biodegradation in pilot GAC adsorbers also confirms recent reports of biodegradation of gabapentin and valsartan acid during managed aquifer recharge. Oxypurinol is comparatively well adsorbed and no breakthrough was observed during the experimental period. Adsorption capacity and breakthrough characteristics of oxypurinol appear very similar to carbamazepine. Breakthrough of GAC adsorbers operated with drinking water was compared to those of groundwater-fed adsorbers. The results show, that it is generally advisable to use previously aerated influents for GAC fixed-bed adsorbers because this can substantially improve biological removal of otherwise poorly adsorbable compounds and ensure full GAC accessibility for adsorbates by avoiding the undesirable formation of inorganic precipitates on adsorption sites.

  2. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inpelsac@bi.ehu.es; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  3. Retention of radium from thermal waters on sand filters and adsorbents

    International Nuclear Information System (INIS)

    Elejalde, C.; Herranz, M.; Idoeta, R.; Legarda, F.; Romero, F.; Baeza, A.

    2007-01-01

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research

  4. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.

    Science.gov (United States)

    Zhao, Yuanyuan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2013-08-07

    Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log Koc = 4.76-4.90) and a higher chlorpyrifos sorption capacity (KF = 5967 mg(1-n)·L·kg(-1)) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.

  5. Characteristics of pellet-type adsorbents prepared from water treatment sludge and their effect on trimethylamine removal

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Junghyun; Park, Nayoung; Kim, Goun; Lee, Choul Ho; Jeon, Jong-Ki [Kongju National University, Cheonan (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2014-04-15

    We optimized the preparation method of pellet-type adsorbents based on alum sludge with the aim of developing a high-performance material for the adsorption of gaseous trimethylamine. Effects of calcination temperature on physical and chemical properties of pellet-type adsorbents were investigated. The porous structure and surface characteristics of the adsorbents were studied using N{sub 2} adsorption and desorption isotherms, scanning electron microscope, X-ray diffraction, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The adsorbents obtained from the water treatment sludge are microporous materials with well-developed mesoporosity. The pellet-type adsorbent calcined at 500 .deg. C had the highest percentage of micropore volume and the smallest average pore diameter. The highest adsorption capacity in trimethylamine removal attained over the pellet-type adsorbent calcined at 500 .deg. C can be attributed to the highest number of acid sites as well as the well-developed microporosity.

  6. Treatment of Refinery Waste Water Using Environmental Friendly Adsorbent

    Science.gov (United States)

    Devi, M. Geetha; Al-Moshrafi, Samira Mohammed Khamis; Al Hudaifi, Alaa; Al Aisari, Buthaina Hamood

    2017-12-01

    This research evaluates the effectiveness of activated carbon prepared from walnut shell in the removal of pollutants from refinery waste water by adsorption technique. A series of batch experiments were carried out by varying the effluent solution pH, stirring time, stirring speed and adsorbent dosage in the reduction of pollutants from refinery effluent. Characterization of the adsorbent was performed using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) isotherm and Fourier Transform Infrared (FTIR) Spectroscopy. The best quality activated carbon was obtained with a particle size of 0.75 µm, activation temperature of 800 °C and activation time 24 h. The maximum BET surface area obtained was 165.2653 m2/g. The experimental results demonstrates that the highest percentage reduction in COD was 79%, using 0.6 g walnut shell powder at an optimum stirring speed of 100 rpm, at pH 6 and 120 min of contact time. The outcome of the result shows that walnut shell carbon is a potentially useful adsorbent for the removal of pollutants from refinery waste water.

  7. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  8. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  9. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    Directory of Open Access Journals (Sweden)

    Siti Hardianti

    2017-06-01

    Full Text Available Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% while sub-bituminous 49.05%. NaOH was used in chemical activation while heated at 400-500°C whereas physical activation was conducted at 800-1000°C. Activated carbon has high activity in adsorbing indicated by high iodine number resulted from analysis. SEM-EDS result confirmed that activated carbon made from coal has the quality in accordance to SNI and can be used as adsorbent in acid water treatment.

  10. Preparation and characterization of adsorbents for treatment of water associated with oil production

    KAUST Repository

    Sueyoshi, Mark

    2012-09-01

    Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800°C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330-1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample. © 2012 Elsevier B.V.

  11. Preparation and characterization of adsorbents for treatment of water associated with oil production

    KAUST Repository

    Sueyoshi, Mark; Al-Maamari, Rashid S.; Jibril, Baba Y.; Tasaki, Masaharu; Okamura, Kazuo; Kuwagaki, Hitoshi; Yahiro, Hidenori; Sagata, Kunimasa; Han, Yu

    2012-01-01

    Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800°C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330-1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample. © 2012 Elsevier B.V.

  12. Removal of radionuclides from acid mine waters by retention on adsorbing materials

    International Nuclear Information System (INIS)

    Nascimento, M.R.L.; Fukuma, H.T.; Costa da, W.C.; Quinelato, A.L.; Gomes, H.A.; Garcia, O.Jr.

    2006-01-01

    This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for 226 Ra, 228 Ra, and 210 Pb removal. Among the biosorbents, Sargassum sp. was superior in relation to its specific capacity to accumulate and remove 226 Ra. (author)

  13. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water

    Science.gov (United States)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Fok, Jason

    2017-12-01

    A novel iron oxide adsorbent with a high fluoride adsorption capacity was prepared by a facile wet-chemical precipitation method and ethanol treatment. The ethanol-treated adsorbent was amorphous and had a high specific surface area. The adsorption capacity of the treated adsorbent was much higher than that of untreated adsorbent. The Langmuir maximum adsorption capacity of the adsorbent prepared at a low final precipitation pH (≤9.0) and treated with ethanol reached 60.8 mg/g. A fast adsorption rate was obtained, and 80% of the adsorption equilibrium capacity was achieved within 2 min. The adsorbent had high fluoride-removal efficiency for water in a wide initial pH range of 3.5-10.3 and had a high affinity for fluoride in the presence of common co-anions. The ethanol treatment resulted in structure transformation of the adsorbent by inhibiting the crystallization of the nano-precipitates. The adsorption was confirmed to be ion exchange between fluoride ions and the hydroxyl groups on the adsorbent surface.

  14. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  15. Oil adsorbing package, also procedure to remove oil from a water surface

    Energy Technology Data Exchange (ETDEWEB)

    1971-05-01

    A method is given to remove oil from water to prevent water pollution. Use is made of an oil-adsorbing packet having a specific gravity which is lower than the specific gravity of water. The hull is manufactured from any material which is not a water-insoluble nonpolar material. The hull is partly permeable to water and encloses a solid oil-adsorbing compound having a large adsorbing surface. (10 claims)

  16. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  17. Treatment of water contaminated with gasoline using red mud as adsorbents; Tratamento de aguas contaminadas com gasolina utilizando lama vermelha como adsorvente

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, Ernesto B. da [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica. Lab. de Engenharia Ambiental e da Qualidade; Silva, Paula T.S. e [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Quimica Fundamental; Campos, Ronaldo J.A. [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica. Lab. de Cromatografia Instrumental; Schuler, Alexandre R.P.; Silva, Valdinete L. da; Motta Sobrinho, Mauricio A. da [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica

    2004-07-01

    The underground or superficial water contamination for oil derivatives, mainly gasoline, has attracted the attention, of the civil society and scientific community in function of the great risks that represent for the environment and the health human. On the other hand, the metallurgical industry has special interest in researches that look for applications commonly for the residue of the improvement of known aluminum as 'red mud'. Such element represents an environmental liability, generating considerable costs for treatment and final disposition adapted. The red mud has characteristics adsorbents thankfully. This work seeks to evaluate the potential of application of the red mud as adsorbent for the separation process between water and oil. In this sense the percentile oil removal was evaluated in a polluted water with gasoline, as well as the effects of the following variables: time of contact (t), amount of used red mud (M), concentration of present oil in the water (Ci) and amount of used polluted water (V) through a planning complete factorial type 24. The results presented here are not conclusive. However one argues which the reasons so that the objectives completely were not reached and if it considers solutions. (author)

  18. Treatment of water contaminated with gasoline using red mud as adsorbents; Tratamento de aguas contaminadas com gasolina utilizando lama vermelha como adsorvente

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, Ernesto B. da [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica. Lab. de Engenharia Ambiental e da Qualidade; Silva, Paula T.S. e [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Quimica Fundamental; Campos, Ronaldo J.A. [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica. Lab. de Cromatografia Instrumental; Schuler, Alexandre R.P.; Silva, Valdinete L. da; Motta Sobrinho, Mauricio A. da [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Engenharia Quimica

    2004-07-01

    The underground or superficial water contamination for oil derivatives, mainly gasoline, has attracted the attention, of the civil society and scientific community in function of the great risks that represent for the environment and the health human. On the other hand, the metallurgical industry has special interest in researches that look for applications commonly for the residue of the improvement of known aluminum as 'red mud'. Such element represents an environmental liability, generating considerable costs for treatment and final disposition adapted. The red mud has characteristics adsorbents thankfully. This work seeks to evaluate the potential of application of the red mud as adsorbent for the separation process between water and oil. In this sense the percentile oil removal was evaluated in a polluted water with gasoline, as well as the effects of the following variables: time of contact (t), amount of used red mud (M), concentration of present oil in the water (Ci) and amount of used polluted water (V) through a planning complete factorial type 24. The results presented here are not conclusive. However one argues which the reasons so that the objectives completely were not reached and if it considers solutions. (author)

  19. Arsenic removal from water using low-cost adsorbents: A comparative study

    Directory of Open Access Journals (Sweden)

    Rajaković Ljubinka V.

    2011-01-01

    Full Text Available Inorganic arsenic removal from water using low-cost adsorbents is presented in this paper. Selective removal of As(III and As(V from water was performed with natural materials (zeolite, bentonite, sepiolite, pyrolusite and limonite and industrial by-products (waste filter sand as a water treatment residual and blast furnace slag from steel production; all inexpensive and locally available. Kinetic and equilibrium studies were realized using batch system techniques under conditions that are likely to occur in real water treatment systems. The natural zeolite and the industrial by-products were found to be good and inexpensive sorbents for arsenic while bentonite and sepiolite clays showed little affinity towards arsenic. The highest maximum sorption capacities were obtained for natural zeolite, 4.07 mg As(V g-1, and waste iron slag, 4.04 mg As(V g-1.

  20. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  1. Selenium-Water Treatment Residual Adsorption And Characterization

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  2. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Extraction of uranium from sea water by means of fibrous complex adsorbents

    International Nuclear Information System (INIS)

    Miyamatsu, Tokuhisa; Oguchi, Noboru; Kanchiku, Yoshihiko; Aoyagi, Takanobu

    1982-01-01

    Fibrous complex adsorbents for uranium extraction from sea water were prepared by introducing titanic acid or basic zinc carbonate as effective constituents into fibrous ion exchangers. A fibrous chelate type adsorbent was also tested. Among the adsorbents examined, the following ones demonstrated excellent properties for the recovery of uranium from sea water. a) A fibrous, weakly acidic cation exchanger was treated with titanyl sulfate in aqueous sulfuric acid solution, which was followed by neutralization to afford a fibrous adsorbent containing titanic acid (QC-1f(Ti)). The adsorption capacity for uranium in sea water was estimated by extrapolation to be 50μg-U/g-Ad or 1170 μg-U/g-Ti. b) A fibrous, strongly acidic cation exchanger was treated in a similar way to afford another type of fibrous adsorbent with titanic acid incorporated (QCS-Ti). The adsorption capacity was estimated by extrapolation to be 20-30 μg-U/g-Ad. (author)

  4. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Unuabonah

    2017-08-01

    Full Text Available Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA1:5 (Chitosan: nHYCA = 1:5. This composite adsorbent had a maximum adsorption removal value of 4.07 × 106 cfu/mL for V. cholerae after 120 min, 1.95 × 106 cfu/mL for E. coli after ∼180 min and 3.25 × 106 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity (qmax of Ch-nHYCA1:5 composite adsorbent for the removal of E. coli with a qmax of 103.07 mg/g (7.93 × 107 cfu/mL and V. cholerae with a qmax of 154.18 mg/g (1.19 × 108 cfu/mL while the Sips model best described S. typhi adsorption by Ch-nHYCA1:5 composite with an estimated qmax of 83.65 mg/g (6.43 × 107 cfu/mL. These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA1:5 for water treatment.

  5. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  6. Lake Water Quality Improvement by Using Waste Mussel Shell Powder as an Adsorbent

    Science.gov (United States)

    Zukri, N. I.; Khamidun, M. H.; Sapiren, M. S.; Abdullah, S.; Rahman, M. A. A.

    2018-04-01

    Lake water in UTHM was slightly greenish in color indicating the eutrophication process. Eutrophication problem is due to excessive amount of nutrient in the lake water which causes nuisance growth of algae and other aquatic plant. The improvement of lake water quality should be conducted wisely in preventing from eutrophication problem by using a suitable water treatment method. Natural materials, agricultural wastes and industrial wastes are locally available sources can be utilized as low-cost adsorbents. The natural abundant source of waste mussel’s shells is advantages to use as basis material to produce the low cost adsorbent for water treatment. Batch experiments were carried out with the preparation 500 ml volume of lake water sample with the dosage of 2.5g, 7.5g and 12.5g. Then the solution shaking in an incubator with 200 rpm shaking speed. The various dosage of mussel shell greatly affected pollutants removal. Both of NH4+ and PO43- have a higher percentage removal with 31.28% and 21.74% at the 7.5g of sample dosage. Other parameters such as COD and TSS also shown good percentage of removal at 7.5g of dosage sample with 44.45% and 25% respectively. While, dosage at 2.5g was performed as a good adsorption capacity of NH4+, PO43-, COD and TSS as high as 0.142, 0.234, 7.6 and 20 mg/g, respectively. These experimental results suggested that the use of mussel shell powder as good basis material in removing pollutants from lake water.

  7. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    Science.gov (United States)

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, polymers (polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  9. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    Science.gov (United States)

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  10. Adsorption Characteristics of Different Adsorbents and Iron(III Salt for Removing As(V from Water

    Directory of Open Access Journals (Sweden)

    Josip Ćurko

    2016-01-01

    Full Text Available The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V from water: Bayoxide® E33 (granular iron(III oxide, Titansorb® (granular titanium oxide and a suspension of precipitated iron(III hydroxide. Results of As(V adsorption stoichiometry of two commercial adsorbents and precipitated iron(III hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V. Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V from water.

  11. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  12. Development of groundwater treatment methods using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report for 2008 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2011-02-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from the shafts during excavation of the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Center, shall be reduced to levels below the environmental standards for fluorine: 0.8mg/L and boron: 1mg/L. Coagulation and ion exchange methods are being applied for fluorine and boron, respectively, at the operating water treatment facility at the MIU. As well, collaborative research on groundwater treatment started in 2006 between the Environmental and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate on a novel method to remove the fluorine and boron. The Quantum Beam Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied the adsorbents to collect rare metals dissolved in hot springs and sea water. The results of previous testing indicated that the adsorbent was able to remove more than 95% of the boron and fluorine and that performance of adsorbent for boron removal was better than the performance using ion-exchange resin. It was also apparent that the pH of groundwater had an influence on the performance of the adsorbent with respect to boron removal. Therefore we reran the recycling tests using groundwater from the neutralization tank at the groundwater treatment facility were repeated. The results indicated that the performance of the adsorbent using neutral groundwater for boron removal was higher than using uncontrolled groundwater. However the bed volume (BV) with recycled adsorbent decreased compared to first use. It is thought that sulfur added at the groundwater treatment facility was retained by the adsorbent despite elution, and affected the performance such that repeat usage resulted in decreased efficiency. In addition, it is considered that the goals established in the first

  13. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    KAUST Repository

    Szlachta, Małgorzata

    2013-02-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion concentration, contact time, adsorbent dose, pH, solution temperature, and the presence of competitive anions, on the treatment performance. The high Se(IV) adsorptive capacity of the adsorbent (up to 41.02. mg/g at pH 4) was due to its high affinity for selenite, as reflected in the fast rate of uptake (batch studies) and an efficient long-term removal (column experiments). Although adsorption of anions traditionally decreases as pH increases, the mixed adsorbent was capable of purifying large volumes of Se(IV)-containing water (at pH 7) to reach concentrations lower than 10 μg/L, which meets the European Commission standards. The presence of sulphate and carbonate did not influence Se(IV) adsorption. However, high phosphate and silicate concentrations may have decreased the removal efficiency of Se(IV). Data from the batch and column adsorption experiments were fitted with a number of approved models, which revealed the adsorption mechanism and allowed for a comparison of the results. © 2012 Elsevier B.V.

  14. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co 60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm 2 ), stable ZrO 2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co 2+ adsorption capacity. And it was shown that the Co 2+ adsorption capacity of the TiO 2 -Al 2 O 3 adsorbents were found to have larger than that of ZrO 2 and Al 2 O 3 adsorbents in high-temperature water. ZrO 2 , Al 2 O 3 and TiO 2 -Al 2 O 3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  15. Radiolytic stability of gibbsite and boehmite with adsorbed water

    Energy Technology Data Exchange (ETDEWEB)

    Huestis, Patricia; Pearce, Carolyn I.; Zhang, X.; N' Diaye, Alpha T.; Rosso, Kevin M.; LaVerne, Jay A.

    2018-04-01

    Aluminum oxyhydroxide (boehmite, AlOOH) and aluminum hydroxide (gibbsite, Al(OH)3) powders with adsorbed water were irradiated with -rays and 5 MeV He ions (α-particles) in order to determine overall radiation stability and chemical modification to the surface. No variation in overall phase or crystallinity due to radiolysis was observed with X-ray diffraction (XRD) and Raman spectroscopy for doses up to 2 MGy with -rays and 175 MGy with α-particles. Temperature programed desorption (TPD) of the water from the surface to the gas phase indicated that the water was chemisorbed and strongly bound. Water adsorption sites are of similar energy for both gibbsite and boehmite. Observation of the water adsorbed on the surface of gibbsite and boehmite with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed broad peaks at 3100-3600 cm-1 due to OH stretching that slowly decreased on heating to 500oC, which corresponds well with the water vapor evolution observed with TPD. Both materials were found to be amorphous following heating to 500oC. X-ray photoelectron spectroscopy (XPS) indicated surface reduction of Al(III) to Al metal on radiolysis with α-particles. Complete loss of chemisorbed water and the formation of bulk O atoms was observed following radiolysis with α-particles.

  16. The synthesis of corncobs (zea mays) active charcoal and water hyacinth (eichornia crassipes) adsorbent to adsorb Pb(II) with it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Kurniastuti, D.

    2018-03-01

    This research aim to examine the effect of the combination between corncobs and water hyacinth to adsorb lead (II), the most effective combination have determined by compared the ratio of corncobs adsorbent and water hyacinth to the increasing adsorption of the Pb(II), prove the effectiveness of the solid-phase spectrophotometry (sps) to determine the levels of Pb(II) as the result of the corncobs active charcoal adsorption and water hyacinth in the level of µg/L. The research method used is experimental method. The data collecting technique is carried out by several stages, which are carbonization using muffle furnace at a temperature of 350°C for 1.5 hours, activation of the corncobs charcoal and water hyacinth using HCl 1M and HCl 5M activator, contacting the adsorbent of corncobs active charcoal and water hyacinth with liquid waste simulation of Pb(II) using variation of corncobns and water hyacinth, 1:0; 0:1; 1:1; 2:1; 1:2, analysis of Pb(II) using an sps, characterization of corncobs active charcoal adsorbent and water hyacinth using FTIR. Research results show that the combined effect of activated charcoal corncobs and water hyacinth can increase the ability of the adsorbent to absorb Pb(II), the optimum adsorbent mass ratio of 1:1 with the absorption level of 90.33%, SPS is an effective method to analyze the decreasing level of Pb(II) as the adsorbtion result of the corncobs active charcoal and water hyacinth in the level of µg/L, with the limit of detection (LOD) of 0.06 µg/L.

  17. Effect of γ-ray irradiation on adsorbents used in organic waste treatment

    International Nuclear Information System (INIS)

    Unsworth, T.J.; Krishma, R.; Pimblott, S.M.

    2015-01-01

    Radioactive organic liquids (ROLs) are waste that require specific treatment. The Arvia process, developed by Arvia Technology Ltd., combines adsorption of organic material with electrochemical oxidation. This work focuses on the effect of γ-rays on the performance of adsorbents used in the Arvia process. Adsorbents used in this experimental study were provided by Arvia Technology Ltd. Specifically, Nyex 1000, a flake like carbon-based adsorbent, and Nyex 2105, a carbon-based adsorbent with a granular morphology. The γ-ray irradiation experiments were carried out using a Co-60 irradiator. The impact of irradiation on the microstructure, the adsorption capacity and the leaching of the 2 adsorbents were studied. The results show that no significant changes were detected in terms of structure, adsorption capacity and leaching of ions. The results of this paper are promising for the use of Nyex 1000 and Nyex 2105 as adsorbents in electrochemical waste treatment processes which involve high levels of γ-rays. The article is followed by the slides of the presentation

  18. Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken?

    Science.gov (United States)

    Silva, Carla Patrícia; Jaria, Guilaine; Otero, Marta; Esteves, Valdemar I; Calisto, Vânia

    2018-02-01

    When adsorption is considered for water treatment, commercial activated carbon is usually the chosen adsorbent for the removal of pollutants from the aqueous phase, particularly pharmaceuticals. In order to decrease costs and save natural resources, attempts have been made to use wastes as raw materials for the production of alternative carbon adsorbents. This approach intends to increase efficiency, cost-effectiveness, and also to propose an alternative and sustainable way for the valorization/management of residues. This review aims to provide an overview on waste-based adsorbents used on pharmaceuticals' adsorption. Experimental facts related to the adsorption behaviour of each adsorbent/pharmaceutical pair and some key factors were addressed. Also, research gaps that subsist in this research area, as well as future needs, were identified. Simultaneously, this review aims to clarify the current status of the research on pharmaceuticals' adsorption by waste-based adsorbents in order to recognize if the right direction is being taken. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The development of an adsorbent for corrosion products in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co{sup 60} under PWR reactor coolant conditions (300 deg C, 160 kg/cm{sup 2}), stable ZrO{sub 2} adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co{sup 2+} adsorption capacity. And it was shown that the Co{sup 2+} adsorption capacity of the TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to have larger than that of ZrO{sub 2} and Al{sub 2}O{sub 3} adsorbents in high-temperature water. ZrO{sub 2}, Al{sub 2}O{sub 3} and TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author).

  20. Adsorbability Enhancement of Macroporous Resin by Dielectric Barrier Discharge Plasma Treatment to Phenol in Water

    Directory of Open Access Journals (Sweden)

    Shoufeng Tang

    2016-01-01

    Full Text Available In order to enhance the adsorption efficiency and economize the use of macroporous resin, we have treated it with the dielectric barrier discharge (DBD plasma to improve its adsorbing capacity for phenol. The effects of operation conditions, for instance, applied voltage, treated time, and air flow rate on resin, were investigated by adsorption kinetics and isotherms. Results showed that the adsorption data were in good agreement with the pseudo-second-order and Freundlich equation. Experimental results showed that the modified resin was 156.5 mg/g and 39.2% higher than the untreated sample, when the modified conditions were conducted for discharge voltage 20 kV, treatment time 45 min, and air flow rate 1.2 L/min. The resin was characterized by FTIR and nitrogen adsorption isotherms before and after the DBD processes. It was found that the reason for the enhancement of resin adsorbability was attributed to the DBD plasma changing the surface physical and chemical structure.

  1. Water Pollution and Treatments Part I: Evaluation of Organic, Inorganic and Marine Products as Adsorbents For Petroleum Pollutants Present In Aqueous Wastes

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Tamany, E.H.; El-Emary, M.M.

    2011-01-01

    The main objective of the present work is to perform a comparative laboratory study using an adsorption technique for oil removal from the waste water drained to sea from refineries, offshore and/or onshore petroleum installations. Different crushed adsorbent materials, namely, cotton fibers, charcoal, petroleum coke, agriculture wastes (such as, rice straws, wheat stems, milled dry leaves and lignin), inorganic adsorbents (such as sand, and bricks) and a marine Product (such as sponge) are included in this study. They were tested for oil recovery from laboratory prepared oily salt water samples. Two different Egyptian crude oils varying in their properties and several refined products (gasoline, kerosene, gas oil, diesel oil, fuel oil, lubricating oil) and skimmed oil were employed. Their adsorptive efficiencies were tested. Good results were obtained with sponge and cotton fibers. The used agricultural wastes show better adsorption compared with coke and inorganic adsorbents.

  2. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  3. Treatment of contaminated greywater using pelletised mine water sludge.

    Science.gov (United States)

    Abed, Suhail N; Almuktar, Suhad A; Scholz, Miklas

    2017-07-15

    Precipitated sludge (ochre) obtained from a mine water treatment plant was considered as an adsorbent substance for pollutants, since ochre is relatively free from problematic levels of toxic elements, which could impair on the quality of water to be treated. Artificially created ochre pellets from mixing Portland cement with raw ochre sludge were utilised to remediate either high (HC) or low (LC) contaminated synthetic greywater (SGW) in mesocosm-scale stabilisation ponds at 2-day and 7-day contact times under real weather conditions in Salford. After a specific retention time, treated SGW was agitated before sampling to evaluate pollutant removal mechanisms (other than sedimentation) such as adsorption by ochre pellets, before replacing the treated water with new inflow SGW. The results showed that cement-ochre pellets have a high ability to adsorb ortho-phosphate-phosphorous (PO 4 -P) significantly (p treatment for HC-SGW at 2- and 7-day contact times, respectively. Cadmium was still adsorbed significantly (p treatment of LC-SGW. However, the calcium (Ca) content decreased significantly (p < 0.05) within ochre pellets treating both types of greywaters due to mobilisation. The corresponding increases of Ca in greywater were significant (p < 0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  5. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  6. Examination of uranium recovery technique from sea water using natural components for adsorbent

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Masaki, Hiroyuki; Shimizu, Takao; Tokiwai, Moriyasu

    2010-01-01

    In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)

  7. Development of groundwater treatment method using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report on 2007 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Seko, Noriaki; Kasai, Noboru; Hoshina, Hiroyuki; Ueki, Yuji; Tamada, Masao

    2009-11-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from shafts during excavation at the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Centre, must be reduced to the levels below the environmental standards (fluorine:0.8mg/L, boron:1mg/L). Coagulation treatment and ion exchange treatment are applied for fluorine and boron at a current water treatment facility in MIU, respectively. A collaborative research on groundwater treatment for fluorine and boron was started by the Environment and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate in 2006. This is because the Quantum Beam Science Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied them to collect rare metals dissolved in hot springs and sea water. Boron adsorbent synthesized by grafting showed higher removal rate than that of the ion-exchange resin. Additionally, the durability and the repetitive use of the boron adsorbent were evaluated to estimate the capacity of the boron adsorption. Therefore we produced a test equipment to do scale-up test of the adsorbent. Effects of flow rate and the repetitive use on the adsorption capacity of boron were investigated. As a result, it concluded that the adsorption capacity of the boron adsorbent did not change even when the flow rate increased from SV 50h -1 to 100h -1 . In addition, enough durability was confirmed for the repetitive use of the adsorbent. The adsorption capacity of the adsorbent was affected by pH of the groundwater especially in high alkaline range above a pH of 10. (author)

  8. Recovery or removal of uranium contained in small quantity in waste water by tannic-group adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, Shigetoshi [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1991-12-01

    It was found that tannic compounds have a very strong affinity for uranium and thorium which are nuclear fuel materials, and the new uranium adsorbents composed mainly by tannic-group compounds were made. The solid-state refractory persimmon tannins in those compounds has the most superior capacity for uranium as high as 1.7 g of uranium on 1 g of the adsorbent. The tests adsorbing uranium on the adsorbent are carried out practically by using dam water of Ningyo-toge Works, PNC. Adsorption tests changed the pH or temperature of dam water, elution test, and adsorption-elution repeating test were performed, and it was found that uranium in dam water contained from ppb-level to ppm-level was recovered or removed with very excellent efficiency. (author).

  9. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  10. Removal of Lead from Water Using Calcium Alginate Beads Doped with Hydrazine Sulphate-Activated Red Mud as Adsorbent

    Directory of Open Access Journals (Sweden)

    A. Naga Babu

    2017-01-01

    Full Text Available Calcium alginate beads doped with hydrazine sulphate-treated red mud are investigated as adsorbent for extracting lead ions from water using batch methods of extraction. Different extraction conditions are optimised for maximum lead extraction. Substantial amount of lead is removed, and the adsorption ability is found to be 138.6 mg/g. Surface characterization using FTIR, EDX, and FESEM confirms that lead is “onto” the surface of the adsorbent. Thermodynamic parameters, adsorption isotherms, and kinetics of adsorption are analysed. Adsorption is “physisorption” in nature and spontaneous. The adsorbent developed can be regenerated using 0.1 M HCl. Thus regenerated adsorbent can be used as the adsorbent for further removal of lead at least 10 times, and this enables the complete removal of lead from water by repetitive use of the regenerated adsorbent. The beads facilitate the easy filtration. The methodology developed is successfully applied for removing lead from industrial waste waters.

  11. The potential use of rainwater as alternative source of drinking water by using laterite soil as natural adsorbent

    Science.gov (United States)

    Omar, Khairunnisa Fakhriah Mohd; Palaniandy, Puganeshwary; Adlan, Mohd Nordin; Aziz, Hamidi Abdul; Subramaniam, Ambarasi

    2017-10-01

    Generally, the rainwater has low concentration of pollutants, whereby it is applicable for domestic water supply. Due to the low concentration of pollutants, further treatment such as adsorption is necessary to treat the harvested rainwater as an alternative source of drinking water supply. Therefore, this research has been carried out to determine the quality of rainwater from different types of locations, which are; rural residential area, urban residential area, agricultural area, industrial area, and open surface. The rainwater sampling was carried out from September 2014 to December 2015. The parameters that have been analysed during the sampling process are chemical oxygen demand (COD), turbidity, heavy metals, and Escherichia coli (E.coli). The sampling results show that the rainwater provides low concentration of contaminants. Thus, it has high potential to be used as alternative source of potable and non potable water supply with a suitable treatment. Due to that, an experimental work contained of 86 of designated experiments for a batch study has been carried out to determine the performance of laterite soil as an adsorbent to remove pollutants that present in the rainwater (i.e. zinc, manganese, and E.coli). The operating factors involved in the experimental works are pH, mass of adsorbents, contact time, initial concentration of zinc, manganese, and E.coli. In this study, the experimental data of the batch study was analysed by developing regression model equation and analysis of variance. Perturbation plots were analysed to determine the effectiveness of the operating factors by developing response surface model, resulting that the high removals of zinc, manganese, and E.coli are 95.8%, 94.05% and 100%, respectively. Overall, this research works found out that the rainwater has a good quality as alternative source of drinking water by providing a suitable treatment. The application of laterite soil as natural adsorbent shows that it has potential to be

  12. Mixed waste: The treatment of organic radioactive waste by means of adsorbents

    International Nuclear Information System (INIS)

    Sanhueza-Mir, A.; Morales-Galarce, T.

    2001-01-01

    Full text: The work described in this paper has been carried in the radioactive waste treatment facilities of the Nuclear Research Center Lo Aguirre, CEN LA, which are operated by Radioactive Waste Management Unit, UGDR. This last, centralizes its activities in order to manage all radioactive waste generated in the country due to the nuclear development. Features of danger and risks presented by organic radioactive liquid waste, make the need to develop a practicable alternative for its treatment and to allow the conditioning towards a suitable final disposal The raw material for this work, is an organic liquid waste arising from scintillation techniques, contaminated with Tritium. This mixed waste has to be treated and then conditioned in a solid form within a 200 I container, according with actual acceptance criteria for our temporary store for radioactive waste. The best formulation which allows to immobilize the liquid waste was determined. The first step consists in the adsorption treatment that waste is humbled. From the available adsorbents, two types were studied: adsorption granulat and diatomaceous earth. From the waste management standpoint, results with diatomaceous earth present physical characteristics better than the other Following, the second stage is the immobilization, which is achieved in a cement matrix made with puzzolanic cement (Polpaico 400) made in Chile. Later, due to cost and availability in the country, the diatomaceous earth is selected for the study, in the form of celite which is comparatively economic. The best mixture, with regard to physical feature, has the following composition: a 0.35 (w/w) water/cement ratio, which represents the needed quantity to obtain workability in the mixture, and it is the minimum amount of water to hydrating the cement; a waste/adsorbent ratio of 0.5 (v/v), in which the organic liquid is completely adsorbed and it is incorporated into the crystalline system of the solid form; and an adsorbed waste

  13. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions

    International Nuclear Information System (INIS)

    Ahmadpour, A.; Zabihi, M.; Tahmasbi, M.; Bastami, T. Rohani

    2010-01-01

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L -1 solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g -1 . The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  14. Comparision of Chitosan Function as Adsorbent for Nitrate Removal Using Synthetic Aqueous Solution and Drinking Water

    Directory of Open Access Journals (Sweden)

    Mohammad Norisepehr

    2013-12-01

    Full Text Available Background & Objectives: Nitrate and nitrite compounds pollution of groundwater resources in recent years which recently their mean concentration due to enhancement of different kind of municipal, industrial and agriculture waste water, were increased. The most common source of nitrates entering the water include chemical fertilizers and animal manure in agriculture, septic tank effluent, wastewater, wastewater treatment plants, animal and plant residue analysis on the ground of non-sanitary disposal of solid waste and the use of absorbing wells for sewage disposal. Materials and methods: This experimental study is applied to the nitrate removal using chitosan in laboratory scale at ambient temperature and the design of the system was Batch. Effects of parameters such as pH, contact time, initial concentration and adsorbent concentration of nitrate on nitrate removal from aqueous solution was studied. Results: Function of chitosan in synthetic aqueous solution and drinking water according to the slurry system results, the optimum condition was obtained at pH=4, 20 min contact time and increasing the initial concentration of nitrate enhance the adsorption capacity of chitosan. Also optimum dosage of adsorbent was obtained at 0.5 g/l. The data obtained from the experiments of adsorbent isotherm were analyzed using Langmuir and Freundlich isotherm models. The Langmuir equation was found to be the best fitness with the experimental data (R2>0.93. Conclusion: Although efficiency of Nitrate removal in synthetic aqueous solution was better than drinking water, adsorption process using chitosan as an option for the design and selection nitrate removal should be considered in order to achieve environmental standards.

  15. Simulation of adsorber tube diameter's effect on new design silica gel-water adsorption chiller

    Science.gov (United States)

    Nasruddin, Taufan, A.; Manga, A.; Budiman, D.

    2017-03-01

    A new design of silica gel-water adsorption chiller is proposed. The design configuration is composed of two sorption chambers with compact fin tube heat exchangers as adsorber, condenser, and evaporator. Heat and mass recovery were adopted in order to increase the cooling capacity. Numerical modelling and calculation were used to show the performance of the chiller with different adsorber tube diameter. Under typical condition for hot water inlet/cooling water inlet/chilled water outlet temperatures are 90/30/7°C, respectively, the simulation results showed the best average value of COP, SCP, and cooling power are 0.19, 15.88 W/kg and 279.89 W using 3/8 inch tube.

  16. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    Science.gov (United States)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  17. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  18. Treatment of Fukushima contaminated waters TEPCO selected Areva and Veolia solution

    International Nuclear Information System (INIS)

    Seberac, Philippe; Paillard, Herve; Thierry, Jean-Marie; Bae, Ho-Il; Prevost, Thierry; Piot, Gregoire; Bertrand Ytournel

    2012-09-01

    The Actiflo-Rad TM system successfully contributed to treat the contaminated wastewaters from the damaged Fukushima Daiichi nuclear power plant. The decontamination system jointly designed by AREVA and Veolia Water treated about 77 500 m 3 of high activity wastewater (∼10 6 Bq/cm 3 ), combining radionuclides adsorbents developed by AREVA and the know-how of Veolia in water treatment for the settlement of the adsorbed radioactive elements, producing sludge with a weight concentration of 80 g/L. Both companies delivered the treatment facility quickly with an efficient joint organization - in a very complex environment. Assembled on Fukushima site - badly damaged by the tsunami following the earthquake of March 11 th - the system was designed, built and started in a record time of 2 month 1 / 2 , instead of several years in a classical nuclear engineering project. The Actiflo-Rad TM was a key equipment to achieve a stable situation of reactors, allowing treated water to be reused for core cooling. Commissioned with the on-site support of Veolia experts, the system reduced by 10 000 the Cs-activity of the wastewater even with significant salt content (seawater diluted twice) at a flow-rate slightly below the design value of 50 m 3 /hr. The implemented technologies are already used separately on AREVA sites (la Hague, fuel reprocessing plant) and for many water treatment projects by Veolia all over the world (Actiflo TM and Multiflo TM processes, using lamellar settling devices - in addition, the first one making use of micro-sand for a better floc quality). The complete treatment process selected by TEPCO features a physico-chemical treatment and water desalination, in five steps. After de-oiling, wastewater is primarily decontaminated through zeolite columns (Kurion process). This pre-decontaminated water is then treated on the AREVA-Veolia two stages system; at each stage, more than 30 minutes contact time with radionuclides adsorbents is needed, adsorbed

  19. Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters

    Science.gov (United States)

    Campos-Flores, Gaby; Castillo-Herrera, Alberto; Gurreonero-Fernández, Julio; Obeso-Obando, Aída; Díaz-Silva, Valeria; Vejarano, Ricardo

    2018-04-01

    The aim of the present work was to evaluate the feasibility of passion-fruit shell (PFS) biomass as adsorbent material to remove heavy metals from contaminated waters. Model mediums were used, which were composed of distilled water and the respective metal: lead (Pb), chromium (Cr) and copper (Cu), with a dose of 10g of dry PFSbiomass per liter of medium. The residual concentration of each metal was determined by Atomic Absorption Spectrophotometry (AAS). A good adsorption capacity was exhibited by this agro industrial waste, achieving removal levels of 96,93 and 82% for Pb, Cr and Cu, respectively. In addition, the results obtained showed an adequate fit to the Freundlich model (R2 > 0.91), on the basis of which, the following values of adsorption capacity (k: 1.7057, 0.6784, 0.3302) and adsorption intensity (n: 0.6869, 2.3474, 1.0499), for Pb, Cr and Cu respectively, were obtained. Our results suggest that Pb, Cr and Cu ions can be removed by more than 80% by using this agro industrial waste, which with a minimum treatment could be used as an adsorbent material in the treatment of metal-contaminated waters.

  20. The influence of white and blue silica gels as adsorbents in adsorptive-distillation of ethanol-water mixture

    Science.gov (United States)

    Megawati, Jannah, Reni Ainun; Rahayuningtiyas, Indi

    2017-01-01

    This research studied the difference of white and blue silica gels when used as an adsorbent for ethanol purification that is processed via Adsorptive-Distillation (AD) at 1 atm pressure. The effect of process duration to purification process is also recorded and studied to evaluate the performance of designed AD equipment. The experiment was conducted using boiling flask covered with a heating mantle and the temperature was maintained at 78°C. The vapour flowed into the adsorbent column and was condensed using water as a cooling medium. The initial ethanol concentration was 90.8% v/v and volume was 300 mL. Experiment shows that designed AD equipment could be used to purify ethanol. The average vapour velocity was about 39.29 and 45.91 m/s for white and blue silica gels, respectively, which is considered very high. Therefore the saturated adsorption could not be obtained. Highest ethanol concentration achieved using white silica gel is about 96.671% v/v after 50 minutes. Thus AD with white silica gel showed good performance and passed azeotropic point. But AD with blue silica gel showed a different result, the adsorption of blue silica gel failed to break the azeotropic point. The outlet average water concentration for white and blue silica gels is 3.54 and 3.42 mole/L. Based on the weight ratio of adsorbed water per adsorbent, at 55th minutes of time; this ratio of blue silica gel is about 0.053 gwater/gads. The time required by the blue silica to achieve 0.5 wwater-adsorbed/wwater-initial is 45 minutes, and the average outlet water concentration is 3.42 mole/L. Meanwhile, the time required by a white silica to complete 0.5 wwater-adsorbed/wwater-initial is 35 minutes, and the average outlet water level is 3.54 mole/L. Based on the results, the blue silica as an adsorbent for AD of ethanol-water mixture is better than white silica gel.

  1. Treatment of the oily produced water (OPW using coagulant mixtures

    Directory of Open Access Journals (Sweden)

    R. Hosny

    2016-09-01

    Full Text Available Treatment of the oily produced water (OPW before injection into oil reservoirs is necessary to reduce formation damage. This can be done using chemo-physical process to minimize the oil droplets in water. In this respect, this work aims to extract natural polymer (chitosan from shrimp shells and mix it with coagulants (chitosan/carboxy methyl cellulose and chitosan/aluminum sulfate to adsorb oil from OPW. Adsorption experiments were carried out in batch mode firstly to choose the best coagulants in water treatment, also to investigate the effects of pH on the adsorption uptake, adsorbent dosage, coagulant mixture doses and contact time. It was found that the oil removal by chitosan reached 96.35% and 59% at pH = 4 and pH = 9, respectively. The ability of chitosan to remove oil was increased after adding different coagulants CMC/or aluminum sulfate at average mixing time between 30 and 60 min. It was also found that the highest removal efficiency of chitosan/CMC is 99% at (90% chitosan: 10% CMC and chitosan/Al2(SO43 is 85% at (80% chitosan: 20% Al2(SO43. The SEM photographs of chitosan, chitosan/CMC and chitosan/Al2(SO43 mixture as oil removal showed that chitosan/Al2(SO43 lies between chitosan alone and chitosan/CMC mixture. Generally chitosan/CMC characterized significantly by its high ability to adsorb petroleum oil and suspended solids from OPW, additionally, reduces the economic cost of water treatment.

  2. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents

    Directory of Open Access Journals (Sweden)

    Ren-Jian Deng

    2017-10-01

    Full Text Available Antimony (Sb and its compounds are considered as global priority pollutants. Elevated concentrations of antimony in natural and industrial process wastewater are of global concern, particularly given interest in the potential toxicity and harm to the environment from aquatic exposure. Iron-based materials for treatment by adsorption are widely regarded to have potential merit for the removal of trace contaminants from water and especially in the search for efficient and low-cost techniques. In this paper, we review the application of iron-based materials in the sorption treatment of antimony contaminated water. The interaction of Sb is discussed in relation to adsorption performance, influencing factors, mechanism, modelling of adsorption (isotherm, kinetic and thermodynamic models, advantages, drawbacks and the recent achievements in the field. Although iron-based adsorbents show promise, the following three aspects are in need of further study. Firstly, a select number of iron based binary metal oxide adsorbents should be further explored as they show superior performance compared to other systems. Secondly, the possibility of redox reactions and conversion between Sb(III and Sb(V during the adsorption process is unclear and requires further investigation. Thirdly, in order to achieve optimized control of preferential adsorption sites and functional groups, the mechanism of antimony removal has to be qualitatively and quantitatively resolved by combining the advantages of advanced characterization techniques such as Fourier transform infrared spectroscopy(FTIR, X-ray photoelectron spectroscopy (XPS, Atomic force microscope(AFM, X-ray absorption near edge structure(XANES, and other spectroscopic methods. We provide details on the achievements and limitations of each of these stages and point to the need for further research.

  3. [Characteristics and comparative study of a new drinking-water defluoridation adsorbent Bio-F].

    Science.gov (United States)

    Zhu, Chi; Zhao, Liang-Yuan; Yuan, Heng; Yang, Han-Ying; Li, Ang; Wang, Peng; Yang, Shao

    2009-04-15

    To evaluate the application potentiality pf a new type drinking-water defluoridation adsorbent Bio-F, comparative study on the defluoridation characteristics of common adsorbents activated alumina (AA), bone char (BC), activated clinoptilolite (AC) with Bio-F was conducted. The defluoridation characteristics under different conditions, such as particle diameter, pH, retention time, fluorine concentration, regeneration stability, were investigated by continuous-flow column experiments and static tests. The defluoridation efficiency of high fluoride underground water by four types of adsorbents was also compared. The results showed that F(-) adsorption kinetics of Bio-F fitted the Lagergren First-order equation (R2 = 0.9580). F(-) adsorption by Bio-F was found to fit the Langmuir adsorption isotherm (R2 = 0.9992). The results indicated that the static defluoridation capacity (DC) of Bio-F was 4.0883 mg x g(-1), which was about 1.8 folds and 5.8 folds of those of AA and AC respectively. DC of all four adsorbents was positively correlated with F(-) concentration and negatively correlated with particle size. High concentration of CO3(2-) and HCO3(-) reduced the DC of Bio-F (p retention time of Bio-F was 3-4 min, which was less than that of AC (20 min) and AA (11 min). The DC of Bio-F remained relatively stable in pH 4.0-9.0 and in regeneration since the DC variation was not more than 15%. The above results indicated that Bio-F was superior to AA, BC and AC in drinking-water defluoridation.

  4. Removal of organic matter from dairy industry waste water using low-cost adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Bhole, A.G. [College of Engineering, Badnera (India). Civil Engineering Department

    2002-07-01

    The present study envisages the use of cost-effective adsorbents such as fly ash, bagasse, wheat straw dust, sawdust, and coconut coir for the reduction of the TDS (total dissolved solids) from dairy industry effluent waste water. PAC (powdered activated carbon) was also used and the results were compared. Sorption data have been correlated with both the Langmuir and the Freundlich adsorption isotherm models. The Freundlich static isotherm model is found applicable to all the six adsorbents for removing TDS from the dairy waste water. The order of selectivity is PAC, bagasse, fly ash, sawdust, wheat straw, coconut coir for the removal of TDS at optimum conditions. 8 refs., 6 figs., 3 tabs.

  5. Extraction of uranium from sea water with the granular composite adsorbent by using the fixed bed

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Kitamura, Takao

    1981-01-01

    To clarify the technical problems existing in the extraction process of uranium from sea water, uranium was extracted from natural sea water, with the granulated C-Ti-OH composite adsorbent. The adsorption of uranium from sea water was carried out by using the fixed bed that had been designed in our laboratory. The uranium recovery from the sea water was 13.9% in the adsorption process of 56 d. The adsorbed uranium was eluted from the adsorbent with 0.5 N NaHCO 3 -0.5N Na 2 CO 3 soln. at 70 0 C. The elution recovery was 97.4% for 35 h. The uranium contained in the eluate was concentrated twenty times as much as in the anion exchange process, and then 100 times in the solvent extraction process with oxine-chloroform and TOA-kerosene. About 0.7 g of yellow cake was prepared from natural sea water, and it was identified to be pure 2UO 2 .NH 3 .3H 2 O by X-ray diffraction method and X-ray fluorometry. (author)

  6. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Moattar, F.; Hayeripour, S.

    2004-01-01

    Two types of shrimp chitin derivatives and two types of Iranian natural zeolite derivates were studied for adsorption and treatment of low-level radioactive liquid waste. Chitin with lowers than 10% and chitosan with higher than 90% deacetylation factor were selected as neutral organic adsorbents. Natural clinoptilolite of Firuzkooh area and Na from derivates of it were selected as natural inorganic adsorbents. The static and dynamic ion exchange experimental results show that the ad adsorption efficiency depend on particle size, Ph, adsorbent type, deacetylation factor ( in chitin adsorbents) and cation type. The best Cs adsorption occurred in Na from clinoptilolite. Nevertheless chitin derivatives, particularly chitosan, are more efficient than zeolite adsorbents for removing of radionuclides such as 137 Cs, 54 Mn, 90 Sr and 60 Co. Adsorption performance was discussed and compared with each other

  7. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    For the production of 1 kg uranium from seawater about 10 9 kg seawater - depending on the extraction efficiency - have to be processed in a production plant. Such high seawater flows have to be put through adsorber beds the area of which depends on the flow velocity of the water in the bed. For a typical polyamidoxim (PAO) adsorber granulate with a grain size distribution of 0.3 to 1.2 mm the velocity in a fluidized bed is limited to about 1 cm/s in order to prevent carry out of the adsorber material. The consequences of this rather low bed velocity are large and expensive bed areas for technical production plants. The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the water before this is leaving the adsorption unit. This concept enables considerably higher seawater velocities thus reducing the bed area. Theoretical considerations are presented together with experimental results from field tests. (author)

  8. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    DEFF Research Database (Denmark)

    Homaeigohar, Shahin; Zillohu, Ahnaf; Abdelaziz, Ramzy

    2016-01-01

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption...

  9. Nanostructured Fe2O3/Al2O3 Adsorbent for removal of As (V from water

    Directory of Open Access Journals (Sweden)

    Faranak Akhlaghian

    2017-04-01

    Full Text Available The presence of arsenate in drinking water causes adverse health effects including skin lesions, diabetes, cancer, damage to the nervous system, and cardiovascular diseases. Therefore, the removal of As (V from water is necessary. In this work, nanostructured adsorbent Fe2O3/Al2O3 was synthesized via the sol-gel method and applied to remove arsenate from polluted waters. First, the Fe2O3 load of the adsorbent was optimized. The Fe2O3/Al2O3 adsorbent was characterized by means of XRF, XRD, ASAP, and SEM techniques. The effects of the operating conditions of the batch process of As (V adsorption such as pH, adsorbent dose, contact time, and initial concentration of As (V solution were studied, and optimized. The thermodynamic study of the process showed that arsenate adsorption was endothermic. The kinetic model corresponded to the pseudo-second-order model. The Langmuir adsorption isotherm was better fitted to the experimental data. The Fe2O3/Al2O3 adsorbent was immobilized on leca granules and applied for As (V adsorption. The results showed that the immobilization of Fe2O3/Al2O3 on leca particles improved the As (V removal efficiency.

  10. The role of adsorbed water on the friction of a layer of submicron particles

    Science.gov (United States)

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  11. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  12. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  13. An investigation of the sorption/desorption of organics from natural waters by solid adsorbents and anion exchangers

    International Nuclear Information System (INIS)

    Larin, B.M.; Sedlov, A.S.

    2006-01-01

    The results of laboratory and operational tests at thermal and nuclear power stations on anion exchangers and solid adsorbents of makeup water treatment plants with regard to the sorption/desorption of organic substances in natural water and condensate are presented. The resins Amberlite trademark IRA-67, IRA-900, IRA-958Cl, Purolite registered 2 A-500P, Dowex TM3 Marathon, and others were tested. Retention of up to 60-80% of the ''organic'' material on the anion exchangers and organic absorbers installed at different places in the technological scheme of the water processing unit was attained. The possibility of a partial ''poisoning'' of the resins and the degradation of the working characteristics over the first year of operation are discussed. (orig.)

  14. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants.

    Science.gov (United States)

    Homaeigohar, Shahin; Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Hedayati, Mehdi Keshavarz; Elbahri, Mady

    2016-10-19

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent's properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V₂O₅) nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  15. Raman spectroscopy of adsorbed water in clays: first attempt at band assignment

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, Dominique de; Guillaud, Emmanuel [Institut Lumiere Matiere, CNRS, Universite Lyon 1, 12 rue Ada Byron, 69622 Villeurbanne (France); Gailhanou, Helene; Blanc, Philippe [BRGM, Service D3E, 3 avenue Claude Guillemin, 45000 Orleans (France)

    2013-07-01

    Raman spectroscopy can be a useful tool to determine water content within clays, or even in highly saturated solutions. The following assignment is proposed for the OH region of SAz-2: the two large bands at 3260 and 3475 cm{sup -1} are assigned to water in pores, the first one to water molecules coordinated to the interlayer cations, and the second one to structural Al-OH groups The band at 3600 cm{sup -1} is therefore more likely related to adsorbed water on the clay surface. Simple intensity ratios of these different bands give good estimates of water content. (authors)

  16. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  17. Removal of lead and zinc ions from water by low cost adsorbents.

    Science.gov (United States)

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  18. Determination Of Adsorption And Paraffin Characterization Of Treatment To Adsorb Vegetable Oil

    International Nuclear Information System (INIS)

    Aminah, Neneng Siti; Mulijani, Sri; Sudirman; Ridwan

    2004-01-01

    Using vegetable oil repeatedly, beside affect on quality decline of food and the oil itself, it is harmful to human health. Some poisoning and carcinogenic symptom were founded with experiment using animals. According to that fact, the aim of the research is using paraffin and candle to adsorb used vegetable oil and to convert into solid sample, so it can be easily wasted. At first, 2 g of sample was poured into the heated oil, with gently stirrer until it turned cold and harden. Each sample and standard before and after treatment was characterized with Ftir, XRD, and DSc. The result shows that paraffins adsorbs 40 ml used vegetable oil with 2 g sample in proportion. That proportion is lower than the standard which can adsorb 66.67 ml vegetable oil in the same weight sample. The difference of paraffin and standard is caused by physical properties within that two materials, and it can be explained by Ftir, X-Ray Diffraction (XRD) and differential scanning calorimetry (DSc). Based on result of Ftir analysis, standard consented of saturated hydrocarbon compound (alkanes) whereas paraffin consisted of unsaturated hydrocarbon compound (alkenes). Infrared spectrum after treatment showed the changes of compound, O-H and esters group were formed and it shows characterised the adsorption process. The result of DSc analysis showed that crystalline the melting point of standard is 75,3 o C and paraffin is 54,17 o C. The result of analysis XRD, described that standard and paraffin before treatment are crystalline whereas after treatment are am orf

  19. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    OpenAIRE

    Siti Hardianti; Susila Arita Rachman; Harminuke E.H.

    2017-01-01

    Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% w...

  20. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md; Alezi, Dalal; Bhatt, Prashant; Shkurenko, Aleksander; Belmabkhout, Youssef; Aggarwal, Himanshu; Weselinski, Lukasz Jan; Alsadun, Norah Sadun; Samin, Umer; Hedhili, Mohamed N.; Eddaoudi, Mohamed

    2018-01-01

    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  1. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md

    2018-01-11

    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  2. Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair

    International Nuclear Information System (INIS)

    Anyanwu, E.E.; Ezekwe, C.I.

    2003-01-01

    The design, construction and test run of a solid adsorption solar refrigerator are presented. It used activated carbon/methanol as the adsorbent/adsorbate pair. The refrigerator has three major components: collector/generator/adsorber, condenser and evaporator. Its flat plate type collector/generator/adsorber used clear plane glass sheet of effective exposed area of 1.2 m 2 . The steel condenser tube with a square plan view was immersed in pool of stagnant water contained in a reinforced sandcrete tank. The evaporator is a spirally coiled copper tube immersed in stagnant water. Adsorbent cooling during the adsorption process is both by natural convection of air over the collector plate and tubes and night sky radiation facilitated by removing the collector box end cover plates. Ambient temperatures during the adsorbate generation and adsorption process varied over 18.5-34 deg. C. The refrigerator yielded evaporator temperatures ranging over 1.0-8.5 deg. C from water initially in the temperature range 24-28 deg. C. Accordingly, the maximum daily useful cooling produced was 266.8 kJ/m 2 of collector area

  3. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... of RuO2 and IrO2, while it is increased by similar to 0.4 eV for TiO2....

  4. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    Science.gov (United States)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2017-07-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  5. Design and performance prediction of a new generation adsorption chiller using composite adsorbent

    International Nuclear Information System (INIS)

    Gong, L.X.; Wang, R.Z.; Xia, Z.Z.; Chen, C.J.

    2011-01-01

    Research highlights: → Composite adsorbent 'employing lithium chloride in silica gel' and water as working pair. → A new type adsorbent bed is used to accommodate the composite adsorbent. → A dynamic model of the adsorption chiller is built. → The coefficient of performance (COP) and the cooling capacity will be improved. -- Abstract: This paper presents a novel adsorption chiller using composite adsorbent 'employing lithium chloride in silica gel' as adsorbent and water as adsorbate. A new type adsorbent bed is used to accommodate the composite adsorbent. The mass recovery between two adsorbent beds usually results in the adsorbate unbalance. So a novel auto water makeup unite is used to solve the problem. A dynamic model of the adsorption chiller is built based on the adsorption isotherms to predict the performance. The simulation result shows that the coefficient of performance (COP) and the cooling capacity will increase by using this new composite adsorbent. When the temperatures of hot water inlet, cooling water inlet, and chilled water inlet are 363, 303 and 293 K, COP will be 0.43, and the cooling capacity will be 5.295 kW. Also operation strategy is optimized. Different temperatures of hot water inlet, cooling water inlet and chilling water inlet will result in different COP and cooling capacity.

  6. Immobilized Tannin from Sanseviera trifasciata on Carbon as Adsorbent For Iron(II in Polluted Water Source

    Directory of Open Access Journals (Sweden)

    Irfan Hanafi Arif

    2016-03-01

    Full Text Available The organic-agricultural waste resulted from local farmer or community gardening recently paid public attention. The presence and easily grown of “Lidah Mertua” or Sanseviera trifasciata being focused on potency investigation for its prospecting application. It was reported contain some phenolic and also tannin extracted from aqueous solvents. This paper revealed recent investigation applying of its isolated tannin from leave part to modifying of activated carbon. The previous report published that carbon were able to adsorb some toxic heavy metals. However, it has some limitation including lower capacity adsorption. Impregnated or immobilized the tannin-isolated from S. trifasciata leaves was able to modify the carbon functionality, physical appearance, pores size, and it adsorption capacity. Both Langmuir and Freundlich adsorption mechanism model also disclosed the developed adsorbent mechanism of iron(II adsorption on the adsorbent tannin-immobolized on carbon. The real test using community well drilling water source also gave important finding on the concentration of iron(II contained on water source.

  7. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    Science.gov (United States)

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1986-01-01

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (∼80 0 C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  9. A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6.

    Science.gov (United States)

    Bhadra, Biswa Nath; Jhung, Sung Hwa

    2017-10-15

    A series of metal-azolate frameworks or MAFs-MAF-4, -5, and -6-were synthesized and pyrolyzed to prepare porous carbons derived from MAFs (CDM-4, -5, -6, respectively). Not only the obtained carbons but also MAFs were characterized and applied for the adsorption of organic contaminants of emerging concern (CECs, including pharmaceuticals and personal care products) such as salicylic acid, clofibric acid, diclofenac sodium, bisphenol-A, and oxybenzone (OXB) from water. CDM-6 was found to be the most remarkable adsorbent among the tested ones (including activated carbon) for all the adsorbates. OXB was taken as a representative adsorbate for detailed adsorption studies as well as understanding the adsorption mechanism. H-bonding (H-acceptor: CDM; H-donor: CECs) was suggested as the principal mechanism for the adsorption of tested adsorbates. Finally, CDMs, especially CDM-6, were suggested as highly efficient and easily recyclable adsorbents for water purification. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Kape barako (coffea liberica) grounds as adsorbent for the removal of lead in lead-enriched Marikina river water samples

    International Nuclear Information System (INIS)

    Valera, Florenda S.; Garcia, Jhonard John L.

    2015-01-01

    Kape Barako (Coffee liberica) grounds (residue left after brewing ground coffee) were used as adsorbent for the removal of lead in Marikina River water samples. The sundried coffee grounds showed 9.30% moisture after drying in the oven. The coffee grounds were determined using Shimadzu AA-6501S Atomic Adsorption Spectrometer. The lead concentration was determined to be 4.7 mg/kg in coffee grounds and below detection limit in the Marikina River water samples. The adsorption studies were done at room temperature, and the optimized parameters were a contact time of 3 hours, an adsorbent dose of 3.0 g/L and 4.0 mg/L Pb-enriched water samples. The maximum uptake capacity was found to be 14.2 mg of lead/g adsorbent. The adsorption studies were done at room temperature, and the optimized parameters were a contact time of 3 hours, an adsorbent dose of 3.0 g/L and 4.0 mg/L Pb-enriched water samples. Analyses of the coffee grounds before and after lead adsorption using Shimadzu IR-Affinity-I Fourier Transform Infrared Spectrometer showed marked difference in the spectra, indicating interaction between Pb and the functional groups of the coffee grounds. (author)

  11. Comparison of Analytical and Numerical Model of Adsorber/desorber of Silica Gel-Water Adsorption Heat Pump

    Directory of Open Access Journals (Sweden)

    Katarzyna Zwarycz-Makles

    2017-03-01

    Full Text Available In the paper comparison of an analytical and a numerical model of silica gel/water adsorber/desorber was presented. Adsorber/desorber as a part of the two–bed single–stage adsorption heat pump was discussed. The adsorption heat pump under consideration consists of an evaporator, two adsorber/desorber columns and a condenser. During operation of assumed adsorption heat pump only heat and mass transfer was taken into account. The both presented mathematical models were created to describe the temperature, heat and concentration changes in the adsorber/desorber and consequently to describe the performance of the adsorption heat pump. Adsorption equilibrium was described by the Dubinin-Astachov model. Adsorption and desorption process dynamics was described by application of the linear driving force model (LDF. In the analysis temperatures of evaporation and condensation were constant.

  12. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    Science.gov (United States)

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  13. Novel Anionic Clay Adsorbents for Boiler-Blow-Down Waters Reclaim and Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad Sahimi; Theodore Tsotsis

    2010-01-08

    Arsenic (As) and Selenium (Se) are found in water in the form of oxyanions. Relatively high concentrations of As and Se have been reported both in power plant discharges, as well as, in fresh water supplies. The International Agency for Research on Cancer currently classifies As as a group 1 chemical, that is considered to be carcinogenic to humans. In Phase I of this project we studied the adsorption of As and Se by uncalcined and calcined layered double hydroxide (LDH). The focus of the present work is a systematic study of the adsorption of As and Se by conditioned LDH adsorbents. Conditioning the adsorbent significantly reduced the Mg and Al dissolution observed with uncalcined and calcined LDH. The adsorption rates and isotherms have been investigated in batch experiments using particles of four different particle size ranges. As(V) adsorption is shown to follow a Sips-type adsorption isotherm. The As(V) adsorption rate on conditioned LDH increases with decreasing adsorbent particle size; the adsorption capacity, on the other hand, is independent of the particle size. A homogeneous surface diffusion model (HSDM) and a bi-disperse pore model (BPM) - the latter viewing the LDH particles as assemblages of microparticles and taking into account bulk diffusion in the intraparticle pore space, and surface diffusion within the microparticles themselves - were used to fit the experimental kinetic data. The HSDM estimated diffusivity values dependent on the particle size, whereas the BPM predicted an intracrystalline diffusivity, which is fairly invariant with particle size. The removal of As(V) on conditioned LDH adsorbents was also investigated in flow columns, where the impact of important solution and operational parameters such as influent As concentration, pH, sorbent particle size and flow rate were studied. An early breakthrough and saturation was observed at higher flow rates and at higher influent concentrations, whereas a decrease in the sorbent particle

  14. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  15. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the depleted water before this is leaving the adsorption unit. This concept enables high seawater velocities thus reducing the required bed area. Theoretical considerations are presented together with experimental results from field tests. (orig.) [de

  16. Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2018-02-01

    ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.

  17. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Tsezos, M.

    1983-01-01

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  18. Coconut-based biosorbents for water treatment--a review of the recent literature.

    Science.gov (United States)

    Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2010-10-15

    Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Ionic interchanges and adsorbents of interest in nuclear and environmental processes

    International Nuclear Information System (INIS)

    Olguin G, M. T.

    2010-01-01

    The ionic interchanges and the adsorbents are of special interest inside the water treatment processes (industrial or human consumption), as well as for the radionuclides generation, due to their structural characteristics and to their capacity to remove an extensive range of polluting species. In the ININ have been developed researches on these materials, with the purpose of generating new knowledge that serves like base inside radionuclides separation processes or polluted water treatment. The results obtained until the present have been published in different scientific magazines. (Author)

  20. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  1. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents

    Directory of Open Access Journals (Sweden)

    Mahatheva Kalaruban

    2018-01-01

    Full Text Available Excessive concentrations of nitrate in ground water are known to cause human health hazards. A submerged membrane adsorption hybrid system that includes a microfilter membrane and four different adsorbents (Dowex 21K XLT ion exchange resin (Dowex, Fe-coated Dowex, amine-grafted (AG corn cob and AG coconut copra operated at four different fluxes was used to continuously remove nitrate. The experimental data obtained in this study was simulated mathematically with a homogeneous surface diffusion model that incorporated membrane packing density and membrane correlation coefficient, and applied the concept of continuous flow stirred tank reactor. The model fit with experimental data was good. The surface diffusion coefficient was constant for all adsorbents and for all fluxes. The mass transfer coefficient increased with flux for all adsorbents and generally increased with the adsorption capacity of the adsorbents.

  2. Biological adsorbent for water decontamination from uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia); Fuska, J; Nemec, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10/sup -4/ M/dm/sup 3/. Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution.

  3. Biological adsorbent for water decontamination from uranium

    International Nuclear Information System (INIS)

    Jilek, R.; Fuska, J.; Nemec, P.

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10 -4 M/dm 3 . Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution. (author)

  4. Aging assessment of nuclear air-treatment system HEPA filters and adsorbers

    International Nuclear Information System (INIS)

    Winegardner, W.K.

    1993-08-01

    A Phase I aging assessment of high-efficiency particulate air (HEPA) filters and activated carbon gas adsorption units (adsorbers) was performed by the Pacific Northwest Laboratory (PNL) as part of the US Nuclear Regulatory Commission's (NRC) Nuclear Plant Aging Research (NPAR) Program. Information concerning design features; failure experience; aging mechanisms, effects, and stressors; and surveillance and monitoring methods for these key air-treatment system components was compiled. Over 1100 failures, or 12 percent of the filter installations, were reported as part of a Department of Energy (DOE) survey. Investigators from other national laboratories have suggested that aging effects could have contributed to over 80 percent of these failures. Tensile strength tests on aged filter media specimens indicated a decrease in strength. Filter aging mechanisms range from those associated with particle loading to reactions that alter properties of sealants and gaskets. Low radioiodine decontamination factors associated with the Three Mile Island (TMI) accident were attributed to the premature aging of the carbon in the adsorbers. Mechanisms that can lead to impaired adsorber performance include oxidation as well as the loss of potentially available active sites as a result of the adsorption of pollutants. Stressors include heat, moisture, radiation, and airborne particles and contaminants

  5. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    Science.gov (United States)

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  6. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    Science.gov (United States)

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  8. Sea-urchin-like iron oxide nanostructures for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Uk, E-mail: leeho@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Soon Chang [Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Young-Chul [Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Vrtnik, Stane; Kim, Changsoo; Lee, SangGap [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Young Boo; Nam, Bora [Jeonju Center, Korea Basic Science Institute, Jeonju 561-756 (Korea, Republic of); Lee, Jae Won [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of); Park, So Young; Lee, Sang Moon [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Jouhahn, E-mail: jouhahn@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of)

    2013-11-15

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} phase) nanostructures (called u-MFN) with large surface areas (94.1 m{sup 2} g{sup −1}) and strong magnetic properties (57.9 emu g{sup −1}) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g{sup −1}) and Cr(VI) (35.0 mg g{sup −1}) and the organic pollutant Congo red (109.2 mg g{sup −1}). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions.

  9. Sea-urchin-like iron oxide nanostructures for water treatment

    International Nuclear Information System (INIS)

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Vrtnik, Stane; Kim, Changsoo; Lee, SangGap; Lee, Young Boo; Nam, Bora; Lee, Jae Won; Park, So Young; Lee, Sang Moon; Lee, Jouhahn

    2013-01-01

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe 2 O 3 /Fe 3 O 4 phase) nanostructures (called u-MFN) with large surface areas (94.1 m 2 g −1 ) and strong magnetic properties (57.9 emu g −1 ) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g −1 ) and Cr(VI) (35.0 mg g −1 ) and the organic pollutant Congo red (109.2 mg g −1 ). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions

  10. Determination of Pb2+ metal ion level in liquid waste from adsorption process by combination adsorbent of rice husk and water hyacinth charcoal using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN

    2018-03-01

    This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.

  11. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Wai, Chien M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 USA; Kuo, Li-Jung [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Gill, Gary [Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington 98382 USA; Tian, Guoxin [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Rao, Linfeng [Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA; Das, Sadananda [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Mayes, Richard T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA; Janke, Christopher J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.

  12. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water.

    Science.gov (United States)

    Yu, Hongwen; Fugetsu, Bunshi

    2010-05-15

    A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Factor Affecting Textile Dye Removal Using Adsorbent From Activated Carbon: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Razi Mohd Adib

    2017-01-01

    Full Text Available Industrial company such as textile, leather, cosmetics, paper and plastic generated wastewater containing large amount of dye colour. The removal of dye materials are importance as the presence of this kind of pollutant influence the quality of water and makes it aesthetically unpleasant. As their chemical structures are complicated, it is difficult to treat dyes with municipal waste treatment operations. Even a small quantity of dye does cause high visibility and undesirability. There have been various treatment technique reviewed for the removal of dye in wastewater. However, these treatment process has made it to another expensive treatment method. This review focus on the application of adsorbent in dye removal from textile wastewater as the most economical and effective method, adsorption has become the most preferred method to remove dye. The review provides literature information about different basis materials used to produce activated carbon like agricultural waste and industrial waste as well as the operational parameters factors in term of contact time, adsorbent dosage, pH solution and initial dye concentration that will affect the process in removing textile dye. This review approach the low cost and environmental friendly adsorbent for replacing conventional activated carbon.

  14. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    Science.gov (United States)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  15. Development and Optimum Composition of Locally Developed Potable Water Treatment Tablets

    Directory of Open Access Journals (Sweden)

    Josiah Oladele BABATOLA

    2009-07-01

    Full Text Available Current high level of energy cost and operational cost of membrane technologies and couple with difficulties in obtaining chemicals for potable water treatment give rooms for development of local substance and low cost adsorbents for water treatment. This paper presents a follow-up study on an earlier work in which some water treatment Tablets were produced and tested. The current work was directed at establishing the optimum composition of the tablets. Alum, calcium hypochlorite and lime were combined in proportion and made into pastes and tablets. Residual chlorine contents of the tablets were determined. The quality of stream water samples treated with the tablets was measured by chlorine content, pH and turbidity removal. It is concluded that the best composition is one part alum, two parts hypochlorite and three parts lime and this produced treated water pH of 7.8, chlorine residual of 5.0 mg/l and settled water turbidity 3.0 NTU. The product is aimed for use in rural communities to reduce rampaging death from water borne diseases.

  16. Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.; Vliet, T. van; Cohen Stuart, M.A.; Jongh, H.H.J. de

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  17. Structure of mixed Beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.G.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  18. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  19. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2016-10-01

    Full Text Available In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES for removal of methylene blue (MB dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent’s properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5 nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  20. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  1. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2016-12-01

    The present study aims at exploring the potential of the seeds of a tropical weed, Argemone mexicana (AM), for the removal of a toxic xanthene textile dye, Rhodamine B (RHB), from waste water. Impact of pH, adsorbent dosage, particle size, contact time and dye concentration have been assessed during adsorption. The weed has been well characterized by several latest techniques thereby providing an indepth information of the mechanism during adsorption. About 80% removal has been attained with 0.06 g of adsorbent over the studied system. Thermodynamic and kinetic studies, followed by second order kinetic model, directed towards the endothermic nature of adsorption. The results obtained from batch experiments were modelled using Langmuir and Freundlich isotherm and were analysed on the basis of R 2 and six error functions for selection of appropriate model. Langmuir isotherm was found to be best fitted to the experimental data with high values of R 2 and lower values of error functions. Adsorption study revealed the affinity of AM seeds for the dye ions present in waste water, introducing a novel adsorbent in field of waste water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite

    Directory of Open Access Journals (Sweden)

    Luis Fioravanti Isernia

    2013-01-01

    Full Text Available The infrared spectroscopy study of zeolite samples, obtained by steam treatment at 560‑960 °C of the ZSM‑5 catalyst (framework Si/Al ratio of 13, suggests an association between adsorbed molecular water and extra‑framework aluminum hydroxyls generated after treatment. Moreover, infrared spectroscopy of adsorbed pyridine shows the reduction of the densities of Brönsted and Lewis sites, when treatment temperature rises, with contradicts the frequently accepted mechanism of the transformation of two bridged Si‑OH‑Al groups for each Lewis site generated. The gradual conversion of the octahedral extra-framework aluminum (Lewis‑associated in polymeric species with low acidity is the most probable cause of this behavior. On the other hand, the apparent decline of the acid Brönsted strength, with the increase in the temperature of the hydrothermal treatment, has two possible causes: a the decreasing accessibility, of the pyridine molecular probe to bridged Si-OH-Al groups with the strongest Brönsted acidity, inside the channels, and b the gradual transformation of these groups into extra framework species of weak acidity.

  3. FTIR study of the relation between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Isernia, Luis Fioravanti, E-mail: luis.isernia@gmail.com [Laboratorio de Tamices Moleculares, Universidad de Oriente - UO, Maturin, Monagas (Venezuela, Bolivarian Republic of)

    2013-11-01

    The infrared spectroscopy study of zeolite samples, obtained by steam treatment at 560-960 Degree-Sign C of the ZSM-5 catalyst (framework Si/Al ratio of 13), suggests an association between adsorbed molecular water and extra-framework aluminum hydroxyls generated after treatment. Moreover, infrared spectroscopy of adsorbed pyridine shows the reduction of the densities of Broensted and Lewis sites, when treatment temperature rises, with contradicts the frequently accepted mechanism of the transformation of two bridged Si-OH-Al groups for each Lewis site generated. The gradual conversion of the octahedral extra-framework aluminum (Lewis-associated) in polymeric species with low acidity is the most probable cause of this behavior. On the other hand, the apparent decline of the acid Broensted strength, with the increase in the temperature of the hydrothermal treatment, has two possible causes: a) the decreasing accessibility, of the pyridine molecular probe to bridged Si-OH-Al groups with the strongest Broensted acidity, inside the channels, and b) the gradual transformation of these groups into extra framework species of weak acidity. (author)

  4. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  6. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  7. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  8. Pilot Scale Testing of Adsorbent Amended Filters under High Hydraulic Loads for Highway Runoff in Cold Climates

    Directory of Open Access Journals (Sweden)

    Carlos Monrabal-Martinez

    2017-03-01

    Full Text Available This paper presents an estimation of the service life of three filters composed of sand and three alternative adsorbents for stormwater treatment according to Norwegian water quality standards for receiving surface waters. The study conducted pilot scale column tests on three adsorbent amended filters for treatment of highway runoff in cold climates under high hydraulic loads. The objectives were to evaluate the effect of high hydraulic loads and the application of deicing salts on the performance of these filters. From previous theoretical and laboratory analysis granulated activated charcoal, pine bark, and granulated olivine were chosen as alternative adsorbent materials for the present test. Adsorption performance of the filters was evaluated vis-à-vis four commonly found hazardous metals (Cu, Pb, Ni and Zn in stormwater. The results showed that the filters were able to pass water at high inflow rates while achieving high removal. Among the filters, the filters amended with olivine or pine bark provided the best performance both in short and long-term tests. The addition of NaCl (1 g/L did not show any adverse impact on the desorption of already adsorbed metals, except for Ni removal by the charcoal amended filter, which was negatively impacted by the salt addition. The service life of the filters was found to be limited by zinc and copper, due to high concentrations observed in local urban runoff, combined with moderate affinity with the adsorbents. It was concluded that both the olivine and the pine bark amended filter should be tested in full-scale conditions.

  9. Characterization and Cadmium Ion-Removing Property of Adsorbents Synthesized from Inorganic Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ooishi, Kou; Ogino, Kana; Nishioka, Hiroshi; Muramatsu, Yasuji, E-mail: hnisioka@eng.u-hyogo.ac.jp [Department of Material Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo (Japan)

    2011-10-29

    Adsorbents for removing cadmium ions from water were synthesized from inorganic wastes such as oyster shells, drinking-water-treatment sludge (DWTS), and waste glass. The oyster shells and DWTS were pretreated by heating for 2 h at 1173 K before hydrothermal synthesis was started. The Al/(Al+Si) ratio was adjusted, and then, the mixture of pretreated materials was hydrothermally treated in a sodium hydroxide solution for 72 h at 423 K to synthesize the adsorbents. The synthesized adsorbent specimens were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) measurements, and scanning electron microscopy (SEM). The main components of these specimens were aluminum-substituted tobermorite and sodalite. The formation of sodalite was dependent on the mass ratio of DWTS to glass. The maximum amount of cadmium ions were removed when the mass ratio of the pretreated material was 1:1:1. In the cadmium removal test, the adsorbent with this mass ratio removed almost 100% of the cadmium in a solution with a concentration of 10 mg L-1. Even in the presence of a 1000-fold excess of potassium ions or 10000-fold excess of sodium ions, approximately 80% of the cadmium ions were removed.

  10. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  11. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  12. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  13. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  14. Mixed functional monomers-based monolithic adsorbent for the effective extraction of sulfonylurea herbicides in water and soil samples.

    Science.gov (United States)

    Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia

    2018-01-05

    Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    Science.gov (United States)

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from

  16. Use of Drinking Water Sludge as Adsorbent for H2S Gas Removal from Biogas

    Directory of Open Access Journals (Sweden)

    Sucheela Polruang

    2017-01-01

    Full Text Available This paper reports the results of a research project, which attempts to produce a low-cost adsorbent material from waste (drinking water sludge. The main objective of this work is to study the characteristics of drinking water sludge for its adsorptive properties including morphology, surface area, porosity and chemical composition. The effect of activation conditions on H2S gas adsorption efficiency of drinking water sludge was experimented. In this study, raw drinking water sludge was divided into 3 groups. In the first group, drinking water sludge was only oven dried at 105°C. For the other 2 groups, drinking water sludge was soaked in 2.5 M NaOH solution. After soaking, the sludge was divided into 2 groups (group 2 and 3. The second group was washed with distilled water until pH 7; while the third group was not. Biogas from a swine farm was used with an initial H2S gas concentration in the range of 2,000 - 4,000 ppm. The material analysis showed that more surface area and total volume of sludge can be obtained after activated with NaOH. From the adsorption experiments, it was found that the highest adsorption capacity (qe of 87.94 mg H2S/g adsorptive material can be achieved by using sludge from the third group. Moreover, by adding of 20 wt% iron filing into sludge of the third group the adsorption capacity increased to 105.22 mg H2S/g adsorptive material. Drinking water sludge can be considered as a high potential energy saving and low cost adsorbent for removal of H2S.

  17. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    International Nuclear Information System (INIS)

    Santos, Sílvia C.R.; Boaventura, Rui A.R.

    2015-01-01

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD 5 removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD 5 removals above 91% and average color removals of 60–69%

  19. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  20. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J. [Nanjing University, Nanjing (China)

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  1. Comparative study of adsorbents for the removal of fluoride ions from water use and consumption in Mexico

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2014-01-01

    Although fluoride is essential for health many studies have shown it is associated with some health problems, such as fluoro sis, thyroid disorder, neurological disease, Alzheimer, pineal gland and cancer. One of the major routes of exposure is through drinking water. The World Health Organization (Who) allows only 1.5 mg/L as a safe limit for fluoride ions in drinking water and the EPA U. S. Environmental Protection Agency has recently proposed 0.7 mg/L. In some cases, the water extracted from deep wells has concentrations of fluoride ions above 1.5 mg/L (NOM-127-SSA1-2000) which is the permissible limit of water for human use and consumption (whuc). In several countries, there are high concentrations of fluoride ions due to the geological distribution of fluorine-rich rocks. In our country we can find several states that have concentrations higher than 1.5 mg/L of fluoride ions in water, such as Aguascalientes, Zacatecas, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Jalisco and San Luis Potosi. Various technologies have been proposed to remove fluoride ions from water, such as adsorption, ion exchange, reverse osmosis, nano filtration, electrodialysis, dialysis and electrocoagulation. Sorption is superior to other techniques in terms of initial cost, simplicity of design and ease of operation. In this work systematic studies were done considering the aspects mentioned above, in order to determine the adsorbents properties and most suitable conditions for the removal of fluoride ions from whuc. It is important to note that to date no adsorption treatments for the removal of fluoride ions from water for human use and consumption in our country is done, although there are established methodologies, they have not been implemented because of their high costs. In this work an integral study was done on the removal of fluoride ions from water for human use and consumption. A comparative study of hematite, calcite and zeolite as adsorbents was performed to develop a

  2. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  3. Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Di Bitonto, Luigi; Volpe, Angela; Pagano, Michele; Bagnuolo, Giuseppe; Mascolo, Giuseppe [CNR-IRSA, Via de Blasio 5, 70132 Bari (Italy); La Parola, Valeria [CNR-ISMN, Via U. La Malfa, 153, 90146 Palermo (Italy); Di Leo, Paola [CNR-IMAA, Via S. Loja, Tito Scalo (PZ) (Italy); Pastore, Carlo, E-mail: carlo.pastore@ba.irsa.cnr.it [CNR-IRSA, Via de Blasio 5, 70132 Bari (Italy)

    2017-02-15

    Highlights: • Amorphous B-doped sodium titanates hydrates were mildly synthesized. • These compounds resulted efficiently used in removing Pb{sup 2+} from natural water. • Adsorption occurs with a partial ionic exchange mechanism. • Adsorbents were easily recoverable and reusable for further new cycles. - Abstract: Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb{sup 2+} from water. The use of sodium borohydride (NaBH{sub 4}) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298 K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb{sup 2+} adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb{sup 2+} was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb{sup 2+} and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385 mg/g. The effect of solution pH and common ions (i.e. Na{sup +}, Ca{sup 2+} and Mg{sup 2+}) onto Pb{sup 2+} sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb{sup 2+} (50 ppb).

  4. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  5. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    International Nuclear Information System (INIS)

    Le Cloirec, P.

    2005-01-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  6. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  7. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    International Nuclear Information System (INIS)

    Sannino, Filomena; Ruocco, Silvia; Marocco, Antonello; Esposito, Serena; Pansini, Michele

    2012-01-01

    Highlights: ► Bringing agrochemical concentration below the law limit allowed in wastewaters. ► Regenerating the adsorbent which can be used again in the cyclic process. ► Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm 3 , the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 °C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  8. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  9. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  11. Behavior of gadolinium-based diagnostics in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cyris, Maike

    2013-04-25

    determined, however, it is strongly assumed that the anthropogenic gadolinium fraction is present as chelate. Adsorption characteristics were evaluated by bottle point isotherm experiments on different activated carbon types and activated polymer based sorbents. The Freundlich coefficients vary between 0.013 and 2.83 (μmol kg{sup -1})(L μmol{sup -1}){sup 1/n} for Gd-BT-DO3A, on Chemviron RD 90 {sup registered} and on the best synthetic adsorbent, respectively. Lab scale experiments with small adsorber columns in a drinking water matrix gave insight in the behavior during fixed-bed adsorption processes. The breakthrough was described successfully by the Linear Driving Force model. Modeling has shown that a description of experimental results is only possible by including dissolved organic carbon isotherm results from drinking water in the model, to describe an additional competitive adsorption effect within the fixed-bed adsorber, different from direct competition. First investigations in a wastewater treatment plant proved a poor adsorption of gadolinium similar to iodinated X-ray contrast media such as iopamidole. Therefore, gadolinium will hardly be removed from wastewater by implementation of a further adsorptive treatment step. However, gadolinium may be utilized as indicator substance for breakthrough. Rate constants of the chelates with ozone and hydroxyl radicals have been determined under pseudo-first-order conditions. Rate constants for the ozone reaction were determined to be < 50 M{sup -1}s{sup -1} for all tested chelates. Hence, the chelates may be considered ozone refractory. For determination of hydroxyl radical rate constants different methods were applied. Radicals were generated either by pulse radiolysis, in this case rate constant were determined directly and by competition with thiocyanate, or by the peroxone process, where only competition kinetics were applied (para-chlorobenzoic acid and tert-butanol as competitors). From pulse radiolysis

  12. Behavior of gadolinium-based diagnostics in water treatment

    International Nuclear Information System (INIS)

    Cyris, Maike

    2013-01-01

    , however, it is strongly assumed that the anthropogenic gadolinium fraction is present as chelate. Adsorption characteristics were evaluated by bottle point isotherm experiments on different activated carbon types and activated polymer based sorbents. The Freundlich coefficients vary between 0.013 and 2.83 (μmol kg -1 )(L μmol -1 ) 1/n for Gd-BT-DO3A, on Chemviron RD 90 registered and on the best synthetic adsorbent, respectively. Lab scale experiments with small adsorber columns in a drinking water matrix gave insight in the behavior during fixed-bed adsorption processes. The breakthrough was described successfully by the Linear Driving Force model. Modeling has shown that a description of experimental results is only possible by including dissolved organic carbon isotherm results from drinking water in the model, to describe an additional competitive adsorption effect within the fixed-bed adsorber, different from direct competition. First investigations in a wastewater treatment plant proved a poor adsorption of gadolinium similar to iodinated X-ray contrast media such as iopamidole. Therefore, gadolinium will hardly be removed from wastewater by implementation of a further adsorptive treatment step. However, gadolinium may be utilized as indicator substance for breakthrough. Rate constants of the chelates with ozone and hydroxyl radicals have been determined under pseudo-first-order conditions. Rate constants for the ozone reaction were determined to be < 50 M -1 s -1 for all tested chelates. Hence, the chelates may be considered ozone refractory. For determination of hydroxyl radical rate constants different methods were applied. Radicals were generated either by pulse radiolysis, in this case rate constant were determined directly and by competition with thiocyanate, or by the peroxone process, where only competition kinetics were applied (para-chlorobenzoic acid and tert-butanol as competitors). From pulse radiolysis determinations (rate constants > 10 9 M -1 s -1

  13. Effect of shape and size of amidoxime-group-containing adsorbent on the recovery of uranium from sea water

    International Nuclear Information System (INIS)

    Omichi, H.; Kataki, A.; Sugo, T.; Okamoto, J.; Katoh, S.; Sakane, K.; Sugasaka, K.; Itagaki, T.

    1987-01-01

    An amidoxime-group-containing adsorbent for the recovery of uranium from sea water was synthesized by radiation-induced graft polymerization of acrylonitrile onto polypropylene fiber of round and cross-shaped sections. The tensile strength and elongation of the synthesized adsorbent, both of which were one-half those of the raw material, were not affected by the shape of the fiber. The deterioration of the adsorption ability induced by immersing the adsorbent in HCl was negligible because of the short immersion time required for the desorption with HCl. The concentration factors for uranium and transition metals in 28 days were in the order of 10 5 , while those for alkali metals and alkaline earth metals were in the order 10 -1 -10 1 . The recovery of uranium with the cross-shaped adsorbent was superior to that of the round-shaped one. XMA line profiles show that the distribution of uranium is much restricted to the surface layer when compared with that of alkaline earth metals. Diminishing the diameter or increasing the surface area was effective for increasing the adsorption of uranium

  14. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  15. Removal of calcium and magnesium ions from hard water using modified Amorphophallus campanulatus skin as a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Lestari Ajeng Yulianti Dwi

    2018-01-01

    Full Text Available Low cost adsorbent from Amorphophallus campanulatus skin has successfully synthesized to remove calcium and magnesium ions in the syntetic hard water. A. campanulatus skin were dried, crushed into powder form and modified by acid modification. A batch experiment with various parameters was used in this research. Various isotherm models were applied to fit the experimental data. Adsorption capacity of Ca and Mg on KB and KM adsorbents in 100 ppm solution respectively 10,85 mg/g, 27,64 mg/g, 1,79 mg/g and 20,1 mg/g. It was found out that the adsorption behavior of hard mineral ions by adsorbents match well with the Dubinin Radushkevich isotherm model. Based on the result, it can be concluded that a acid modified A. campanulatus skin is quite potential as a new low cost adsorbent which is expected to be applied to Indonesian groundwater which have high degree of hardness.

  16. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  17. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  18. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    Science.gov (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biodegradation of Medium Chain Hydrocarbons by Acinetobacter venetianus 2AW Immobilized to Hair-Based Adsorbent Mats (Postprint)

    Science.gov (United States)

    2010-09-01

    open- water oil spills or treatment of large contaminated volumes such as ballast water or holding ponds. The practi- cal application of the mat is...SS, Al-Hasan RH, Salamah S, Al-Dabbous A. Biore- mediation of oily sea water by bacteria immobilized in biofilms coating macroalgae . Int Biodeter...adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. acinetobacter

  20. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Ruocco, Silvia [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Marocco, Antonello; Esposito, Serena; Pansini, Michele [Laboratorio Materiali - Dipartimento di Meccanica, Strutture, Ambiente e Territorio - Universita di Cassino - Via Di Biasio 43 - 03043 Cassino (Italy)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Bringing agrochemical concentration below the law limit allowed in wastewaters. Black-Right-Pointing-Pointer Regenerating the adsorbent which can be used again in the cyclic process. Black-Right-Pointing-Pointer Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm{sup 3}, the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 Degree-Sign C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  1. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    Science.gov (United States)

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  3. Investigation of A-3 adsorbent-ditolylmethane two-phase system

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1988-01-01

    Compatibility of A-3 adsorbent, produced on the basis of palygoskite clay, with organic coolant of nuclear reactors-ditolylmethane (DTM)- and the possibility to use the given adsorbent for DTM purification from surfactant impurities are investigated. Compatibility of the adsorbent with DTM was evaluated by the concentration of its constituents in liquid phase. Sufactant adsorption was observed by the change in acid number of coolant, optical density at λ=396 nm and adsorbate mass in the adsorbent. From spent adsorbent the coolant was washed out by n-heptane, and the adsorbate - by methylene chloride, othanol and water in succession. On the basis of the results obtained the conclusion is made that A3 possesses a high chemical stability in DTM medium, i.e. it is compatible with DTM and can be used for its purification from surfactant impurities sorbed on heat-transferring surface

  4. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  5. Adsorption of Mefenamic Acid From Water by Bentonite Poly urea formaldehyde Composite Adsorbent

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdel Majeed

    2017-07-01

    Full Text Available Poly urea formaldehyde –Bentonite (PUF-Bentonite composite was tested as new adsorbent for removal of mefenamic acid (MA from simulated wastewater in batch adsorption procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by using condensation polymerization. Adsorption experiments were carried out as a function of water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of sharing surface with other analgesic pharmaceuticals at different pH also studied. The adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the mean free energy (E was calculated and the value of 5 KJ/mole indicated that the main mechanism governing the adsorption of MA on PUF-Bentonite composite was physical in nature. The kinetics of adsorption tested for first order, pseudo second order models and Elovich’s equation, results showed the adsorption followed the pseudo-second-order model

  6. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    Science.gov (United States)

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (pretention capacity in soils. Copyright © 2015. Published by Elsevier B.V.

  7. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  8. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    Science.gov (United States)

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hydrogen bond dynamical properties of adsorbed liquid water monolayers with various TiO2 interfaces

    Science.gov (United States)

    English, Niall J.; Kavathekar, Ritwik S.; MacElroy, J. M. D.

    2012-12-01

    Equilibrium classical molecular dynamics (MD) simulations have been performed to investigate the hydrogen-bonding kinetics of water in contact with rutile-(110), rutile-(101), rutile-(100), and anatase-(101) surfaces at room temperature (300 K). It was observed that anatase-(101) exhibits the longest-lived hydrogen bonds in terms of overall persistence, followed closely by rutile-(110). The relaxation times, defined as the integral of the autocorrelation of the hydrogen bond persistence function, were also longer for these two cases, while decay of the autocorrelation function was slower. The increased number and overall persistence of hydrogen bonds in the adsorbed water monolayers at these surfaces, particularly for anatase-(101), may serve to promote possible water photolysis activity thereon.

  11. Irradiation Degradation of Adsorbents for Minor Actinides Recovery

    International Nuclear Information System (INIS)

    Watanabe, S.; Sano, Y.; Kofuji, H.; Takeuchi, M.; Koizumi, T.

    2015-01-01

    Extraction chromatography is one of the promising technologies for minor actinides (MA: Am and Cm) recovery from high-level liquid waste. The degradation behaviour of the organic species in the adsorbents under radiation exposure is important to discuss the safety and durability of the adsorbent in the extraction chromatography process. In this study, gamma-ray irradiation experiments on TODGA/SiO 2 -P adsorbent were carried out to investigate the degradation products from radiolysis of the adsorbent. The degraded organic species eluted from the adsorbent and those remaining inside the adsorbent were thoroughly identified by GC/MS, FT-IR and NMR analyses. The species suspected as hydrolysis products of TODGA were mainly detected from the analyses. Since some radicals such as.H or.OH are generated by the gamma-ray irradiation on water molecules, it was discussed that the radicals products from radiolysis of HNO 3 solution are related to the degradation reaction of the extractants. (authors)

  12. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    Shimokawa, Nobuhiro.

    1996-01-01

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  14. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    Science.gov (United States)

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  15. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.

    Science.gov (United States)

    Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei

    2017-06-01

    More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic

  16. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  17. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates.

    Science.gov (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš

    2017-05-01

    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml -1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l -1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  18. Creation of the technical adsorbent from local raw materials

    International Nuclear Information System (INIS)

    Isobaev, M.D.; Davlatnazarova, M.D.; Abdullaev, T.H.

    2016-01-01

    The results showed the possibility of obtaining effective adsorbents of walnut shell and the sunflower for environmental purposes, in particular for the purification of polluted waters from heavy metals. It has been shown, that 1 g of walnut shell adsorbent can adsorb on its surface ions of lead in amount of 47% by weight. The dependence of the adsorption activity of the semi-coke received from walnut shell from particle size and concentration of the solution. (author)

  19. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.

    Science.gov (United States)

    Myers, Michelle A; Johnson, Nicholas W; Marin, Erick Zerecero; Pornwongthong, Peerapong; Liu, Yun; Gedalanga, Phillip B; Mahendra, Shaily

    2018-06-04

    1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low K oc and K ow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that

  20. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  1. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat transfer in heating (desorption) or cooling (adsorption) processes of the batch-operated cycles, with undesirable performance parameters such as higher footprint of plants, low coefficient of performance (COP) of AD cycles and higher capital cost of the machines. The motivation of present work is to mitigate the heat and mass "bottlenecks" of fin-tube heat exchangers by using a powdered-adsorbent cum binder coated onto the fin surfaces of exchangers. Suitable adsorbent-binder pairs have been identified for the silica gel adsorbent with pore surface areas up to 680 m2/g and pore diameters less than 6 nm. The parent silica gel remains largely unaffected despite being pulverized into fine particles of 100 μm, and yet maintaining its water uptake characteristics. The paper presents an experimental study on the selection and testing processes to achieve high efficacy of adsorbent-binder coated exchangers. The test results indicate 3.4-4.6 folds improvement in heat transfer rates over the conventional granular-packed method, resulting a faster rate of water uptake by 1.5-2 times on the suitable silica gel type. © 2015 Elsevier Ltd. All rights reserved.

  2. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  3. Nano porous Adsorbent from Chitosan Interacted Montmorillonite for Dye-containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Siriphannon, P.; Monvisade, P.

    2011-01-01

    Chitosan intercalated montmorillonite (Chi-MMT) was prepared by mixing 2 wt% of chitosan solution with sodium mont-morillonite (Na + -MMT) suspension at 60 degree Celsius for 24 hours. The Na + ions in Na + -MMT were completely exchanged with -NH 3 + ions of chitosan, resulting in the intercalation of chitosan into the MMT layer. The chitosan intercalation brought about the expansion of d 001 of Na + -MMT from 1.23 nm to 1.42 - >2.21 nm of the Chi-MMT. The existence of the intercalated-chitosan and large pore size could significantly increase the adsorption capacity of Chi-MMT from those of the starting materials, for example Na + -MMT and chitosan. The adsorption capacity of Chi-MMT adsorbent was equal to 4.9 mg/ g for acid red 91 (AR91) with initial dye concentration of 50 mg/ L, 45.9 mg/ g for basic yellow 1 (BY1) and 15.0 mg/ g for reactive orange 16 (RO16) with initial dye concentration of 500 mg/ L. These results indicated the competency of Chi-MMT nano porous adsorbent for treatment of wastewater containing various kinds of dyestuffs. (author)

  4. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  5. Treatment of discharge water from hydrostatic testing of natural gas pipelines. Volume 4. Topical report, January 1989-June 1992

    International Nuclear Information System (INIS)

    Tallon, J.T.; Lee-Ryan, P.B.; Volpi, K.A.; Fillo, J.P.

    1992-06-01

    The report presents results developed from bench- and full-scale treatment testing conducted on discharge water from hydrostatic testing of natural gas pipelines. Bench-scale testing examined sedimentation with and without chemical coagulants for reducing iron and total suspended solids, aeration for removal of volatile organics, and activated carbon adsorption for removal of organic constituents. Treatment results are provided for a full-scale treatment process, which utilized a hay bale structure and adsorbent booms for removing suspended solids and oil from the discharge water. Detailed characterization results are presented for test water collected before and after treatment. Results developed from an economic analysis of other potential treatment/disposal alternatives are also presented. A total of eight approaches that may be applied for managing constituents present in hydrostatic test waters are examined. The report is Volume 4 of a five-volume report series

  6. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    Science.gov (United States)

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The state of physically adsorbed substances in microporous adsorbents

    International Nuclear Information System (INIS)

    Fomkin, A.A.

    1987-01-01

    Xe, Kr, Ar, CF 3 Cl, CH 4 adsorption in NaX microporous zeolite of 0.98 Na 2 OxAl 2 O 3 x2.36SiO 2 x0.02H 2 O is studied. Some properties of adsorbates (density, coefficients of expansion, enthalpy, heat capacity) are determined and discussed. The adsorbate in the microporous adsorbent is shown to be a particular state of a substance. Liniarity of adsorption isosteres and sharp changes during isosteric heat capacity of the adsorbate points to the fact that in microporous adsorbents phase transformations of the second type are possible

  8. Produced water treatment using polymeric resins; Resinas polimericas para tratamento da agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Freire, Norma de Oliveira [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Queiros, Yure Gomes de Carvalho; Silva, Carla Michele Frota da; Barros, Cintia Chagas; Lucas, Elizabeth Fernandes [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The treatment and disposal of oily waters from oil production and refining processes represent an important technological pass for attendance of the ambient legislation and to the politics of the Cia of search of the environmental excellence. The reuse or reinjection of the co-produced water has been considered an interesting strategical alternative, however, the water quality requirement for these processes demands a pretreatment step, considering the exit effluent from primary and secondary treatment processes currently used. This work presents resulted of the polymeric resin development for tertiary treatment of oily waters with low oil and grasses content and fine solids, including the dissolved fraction. These resins can adsorb, in reversible form, organic components. Its high adsorption capacity is determined by the polarity, superficial area, range of porosity and a wide distribution of particle size and pore. Another important characteristic is the possibility of its use in some cycles of work due to its weak forces of interaction between the contaminants and the surface of the resin. Regeneration can be carried through of diverse forms, including the use of solvent, with or without the variation of temperature and/or pH. The gotten results indicated a high resin adsorption capacity, with concentrated oily water treatment volume 10,000 times the volume of resin used. (author)

  9. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    Freni, Angelo; Bonaccorsi, Lucio; Calabrese, Luigi; Caprì, Angela; Frazzica, Andrea; Sapienza, Alessio

    2015-01-01

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T = 30–150 °C and pH 2 O = 11 mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1 mm thick and a metal/adsorbent mass ratio = 6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675 W/kg ads specific cooling power with a cycle time of 5 min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: • Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. • Silane-zeolite coatings morphology, and mechanical properties were studied. • The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. • The coated AdHEx was tested in a lab scale adsorption chiller

  10. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  11. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  12. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 1

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The rate of desorption of uranium did not vary in the range of concentration from 0.3 to 0.5 N, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10 %, the percentage of dissolved titanium (DTI) was below 0.38 % with sulfuric acid, below 0.7 % with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85 %. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  13. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1983-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  14. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  15. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting...

  16. Ground water pollution by arsenic and its effects on health. Removal of arsenic from water; Suichu karano hiso no jokyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, S.

    1997-07-10

    Recently environmental standard for ground water is established. It is pointed out that the need of arsenic`s removal from water is expected in high level. Present condition of removal techniques of inorganic nitrogen and problems are explained. For example, ferro (III) chloride method is effective in As(V) and most suitable range is pH4{approx}5. Removal is possible until 0.005 when initial concentration is 0.2 mg{center_dot}l{sup -1}. As far as secondary problems are, there are dry treatment of generated sludge and disposal. Earth adsorbent as a new adsorbent is adsorption method is expected. Lanthanum and yttrium compounds possess adsorption for As(III) and As(V) and re-generation use is also possible. For example, removal of As(V) with initial concentration 19 mg{center_dot}l{sup -1} until 0.01 is possible at pH5{approx}77 range when hydroxide lanthanum is used as an adsorbent. Further special characteristics of each method are explained. It is concluded that a good removal method should be selected by considering raw water`s quality, capacity of treatment water, use of treatment water and economics. 29 refs., 2 figs.

  17. Characterization of novel adsorbents for radiostrontium reduction in foods

    International Nuclear Information System (INIS)

    Puziy, A.M.; Bengtsson, G.B.; Hansen, H.S.

    1999-01-01

    Distribution coefficients, pH dependence, isotherms, kinetics and breakthrough curves of Sr binding have been measured on several types of adsorbents (carbons modified with titanium silicate, crystalline titanium silicate, mixed titanium-manganese oxide, and synthetic zeolites A4 and P) from different water solutions. It is concluded that acid-base properties of the adsorbent is very important for Sr binding. Titanium silicate based adsorbents had reduced chemical stability in an artificial food fluid below pH 2, the mixed titanium manganese oxide below pH 6, zeolite A4 below pH 5 and zeolite P below pH 7. Consideration is given to the feasibility of the adsorbents for food decontamination. (author)

  18. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications

    International Nuclear Information System (INIS)

    Fischer, Fabian; Laevemann, Eberhard

    2015-01-01

    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan. (paper)

  19. Comparative removal of congo red dye from water by adsorption on grewia asiatica leaves, raphanus sativus peels and activated charcoal

    International Nuclear Information System (INIS)

    Rehman, R.; Abbas, A.; Murtaza, S.; Mahmud, T.; Waheed-uz-Zaman; Salman, M.; Shafiq, U.

    2012-01-01

    Water treatment by adsorption methodology is being evolved in recent years. Various researchers are searching new adsorbents for water treatment which can replace activated charcoal. In the following study, the efficiency of removing Congo Red dye from water using two novel adsorbents, i.e. Raphanus sativus (Radish) peels and Grewia asiatica (Phalsa) leaves was evaluated and compared with activated charcoal. The adsorption process is carried out batch wise by using different concentrations of the aqueous dye solution with different adsorbent doses, agitation rate, varying contact time intervals, at a range of initial pH values and at different temperatures. Various chemicals were used for enhancing the adsorption capacity of adsorbents. The suitability of the adsorbent for using it is tested by fitting the adsorption data on Langmuir isotherm. The results showed that the Phalsa leaves powder is more effective adsorbent than Reddish peels for removing Congo Red dye from water. It can be used for removing Congo Red dye from waste water. (author)

  20. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  1. Methyl iodide tests on used adsorbents

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1993-01-01

    This paper discusses the history of events leading to the current problems in radioiodine test conditions. These radioiodine tests are performed in the adsorbent media from both safety and non-safety related Nuclear Air Treatment Systems (NATS). The main problem addressed is that currently there are still numerous plant technical specifications for NATS which reference outdated test protocols for the surveillance testing of the radioactive methyl iodide performance of the adsorbents. Recommendations for correcting the test condition problems are presented. 7 refs

  2. Studies on some influential factors of the zinc-activated carbon composite adsorbent on adsorptivity for uranium

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Kitamura, Takao; Takagi, Norio; Katoh, Shunsaku; Miyazaki, Hidetoshi

    1978-01-01

    Factors, which influence the uranium adsorption of powdery composite adsorbent of basic zinc carbonate and activated carbon were studied. In the range studied, zinc content of the adsorbent was the most influential factor on the uranium adsorption, and the second influential factor was sea water volume and the third factor was adsorption period. Interactive effects were observed between zinc content and sea water volume, and between zinc content and adsorption period, and it was deduced that there existed the optimum value of sea water volume and adsorption period respectively for the zinc content of the adsorbent. Maximum uranium adsorption of adsorbent with 40% zinc content was observed at sea water volume of 15 liters and adsorption period of 25 hrs. As for temperature in the range of 15 - 35 0 C, the lower the temperature, the larger amount of adsorbed uranium was. The powdery adsorbent was made into granule, and its strength and its uranium adsorptivity were studied in relation to the granulating conditions. By use of PVA with degree of polymerization above 1,700 as binder, the granular adsorbent with the same strength as commercial granular activated carbon was obtained. PVA amount and its degree of polymerization gave only small effect on uranium adsorption of the adsorbent. Effect of granule size on the uranium adsorption rate in the range of 1 - 4 mm was that the uranium adsorption rate changed proportionally to surface area of assumed sphere. As a test for practical use, five times repetitions of adsorption and desorption were carried out on the same granular adsorbent. During the repetition the amount of adsorbed uranium rather increased, and desorption ratio of adsorbed uranium was constant at 91 - 93%. The weight loss of the adsorbent in a cycle of adsorption and desorption was about 3%. (author)

  3. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  4. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  5. Sustainable conversion of agro-wastes into useful adsorbents

    Science.gov (United States)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2017-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  6. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  7. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    International Nuclear Information System (INIS)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W.P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-01-01

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  8. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  9. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  10. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  11. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    Science.gov (United States)

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.

    Science.gov (United States)

    Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi

    2016-01-01

    Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and

  13. Preparation of hydrogenated-TiO2/Ti double layered thin films by water vapor plasma treatment

    International Nuclear Information System (INIS)

    Pranevicius, L.L.; Milcius, D.; Tuckute, S.; Gedvilas, K.

    2012-01-01

    Highlights: ► We investigated reaction of water plasma with nanocrystalline TiO 2 films. ► Simultaneous oxidation and hydrogenation of Ti was observed during plasma treatment. ► Water plasma treatment forms hydrogenated nanocrystalline TiO 2 in the shallow surface. - Abstract: We have investigated the structural and compositional variations in 200–500 nm thick Ti films deposited by magnetron sputter-deposition technique and treated in water vapor plasma at different processing powers. It was found that the upper layer of treated film with the thickness of 110 nm was changed into the black hydrogenated-TiO 2 with around 16 nm sized nanocystals during 10 min for dissipated power 200 W at room temperature. Analysis of the experimental results is used to obtain insights into the effects of water layer adsorbed on hydrophilic oxidized titanium surfaces exposed to plasma radiation.

  14. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  15. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Rajput, Shalini; Singh, Vinod K.; Steele, Philip H.; Pittman, Charles U.

    2011-01-01

    Oak wood and oak bark chars were obtained from fast pyrolysis in an auger reactor at 400-450 deg. C. These chars were characterized and utilized for Cr(VI) remediation from water. Batch sorption studies were performed at different temperatures, pH values and solid to liquid ratios. Maximum chromium was removed at pH 2.0. A kinetic study yielded an optimum equilibrium time of 48 h with an adsorbent dose of 10 g/L. Sorption studies were conducted over a concentration range of 1-100 mg/L. Cr(VI) removal increased with an increase in temperature (Q Oakwood o : 25 deg. C = 3.03 mg/g; 35 deg. C = 4.08 mg/g; 45 deg. C = 4.93 mg/g and Q Oakbark o : 25 deg. C = 4.62 mg/g; 35 deg. C = 7.43 mg/g; 45 deg. C = 7.51 mg/g). More chromium was removed with oak bark than oak wood. The char performances were evaluated using the Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models. The Sips adsorption isotherm model best fits the experimental data [high regression (R 2 ) coefficients]. The overall kinetic data was satisfactorily explained by a pseudo second order rate expression. Water penetrated into the char walls exposing Cr(VI) to additional adsorption sites that were not on the surfaces of dry char pores. It is remarkable that oak chars (S BET : 1-3 m 2 g -1 ) can remove similar amounts of Cr(VI) as activated carbon (S BET : ∼1000 m 2 g -1 ). Thus, byproduct chars from bio-oil production might be used as inexpensive adsorbents for water purification. Char samples were successfully used for chromium remediation from contaminated surface water with dissolved interfering ions.

  16. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.

    Science.gov (United States)

    Mohan, Dinesh; Rajput, Shalini; Singh, Vinod K; Steele, Philip H; Pittman, Charles U

    2011-04-15

    Oak wood and oak bark chars were obtained from fast pyrolysis in an auger reactor at 400-450 °C. These chars were characterized and utilized for Cr(VI) remediation from water. Batch sorption studies were performed at different temperatures, pH values and solid to liquid ratios. Maximum chromium was removed at pH 2.0. A kinetic study yielded an optimum equilibrium time of 48 h with an adsorbent dose of 10 g/L. Sorption studies were conducted over a concentration range of 1-100mg/L. Cr(VI) removal increased with an increase in temperature (Q(Oak wood)(°): 25 °C = 3.03 mg/g; 35 °C = 4.08 mg/g; 45 °C = 4.93 mg/g and Q(Oakbark)(°): 25 °C = 4.62 mg/g; 35 °C = 7.43 mg/g; 45 °C = 7.51 mg/g). More chromium was removed with oak bark than oak wood. The char performances were evaluated using the Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models. The Sips adsorption isotherm model best fits the experimental data [high regression (R(2)) coefficients]. The overall kinetic data was satisfactorily explained by a pseudo second order rate expression. Water penetrated into the char walls exposing Cr(VI) to additional adsorption sites that were not on the surfaces of dry char pores. It is remarkable that oak chars (S(BET): 1-3m(2)g(-1)) can remove similar amounts of Cr(VI) as activated carbon (S(BET): ∼ 1000 m(2)g(-1)). Thus, byproduct chars from bio-oil production might be used as inexpensive adsorbents for water purification. Char samples were successfully used for chromium remediation from contaminated surface water with dissolved interfering ions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shiliang; Wang, Zhenhua; Ding, Ning [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Elaine Wong, Y.-L. [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Chen, Xiangfeng, E-mail: xiangfchensdas@163.com [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Qiu, Guangyu [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Dominic Chan, T.-W., E-mail: twdchan@cuhk.edu.hk [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2016-09-14

    The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π–π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography–tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24–0.50 ng L{sup −1}; signal-to-noise ratio = 3:1), low limits of quantification (0.79–1.56 ng L{sup −1}; signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2–1000 ng L{sup −1}, and good precision (relative standard deviation < 12%). The PCBs concentration in environmental water samples was determined by the developed method. This results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants. - Highlights: • The hexagonal boron nitride nanosheets were synthesized. • The nanosheets were used as adsorbent for solid-phase extraction. • The h-BN demonstrates remarkable adsorption of PCBs from water samples. • The method was successfully applied in determination of PCBs in water samples.

  18. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool

    International Nuclear Information System (INIS)

    Huang, Chun-Ping; Lin, Tzung-Yi; Chiao, Ling-Huan; Chen, Hong-Bin

    2012-01-01

    Highlights: ► Deal with a practical radioactive contamination in Taiwan Research Reactor spent fuel pool water. ► Identify the properties of radioactive contaminants and performance test for water treatment materials. ► The radioactive solids were primary attributed by ruptured spent fuels, spent resins, and metal debris. ► The radioactive ions were major composed by uranium and fission products. ► Diatomite-based ceramic depth filter can simultaneously removal radioactive solids and ions. - Abstract: There were approximately 926 m 3 of water contaminated by fission products and actinides in the Taiwan Research Reactor's spent fuel pool (TRR SFP). The solid and ionic contaminants were thoroughly characterized using radiochemical analyses, scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES) in this study. The sludge was made up of agglomerates contaminated by spent fuel particles. Suspended solids from spent ion-exchange resins interfered with the clarity of the water. In addition, the ionic radionuclides such as 137 Cs, 90 Sr, U, and α-emitters, present in the water were measured. Various filters and cation-exchange resins were employed for water treatment trials, and the results indicated that the solid and ionic contaminants could be effectively removed through the use of <0.9 μm filters and cation exchange resins, respectively. Interestingly, the removal of U was obviously efficient by cation exchange resin, and the ceramic depth filter composed of diatomite exhibited the properties of both filtration and adsorption. It was found that the ceramic depth filter could adsorb β-emitters, α-emitters, and uranium ions. The diatomite-based ceramic depth filter was able to simultaneously eliminate particles and adsorb ionic radionuclides from water.

  19. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  20. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water.

    Science.gov (United States)

    Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad

    2018-07-15

    The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Comprehensive reuse of drinking water treatment residuals in coagulation and adsorption processes.

    Science.gov (United States)

    Jung, Kyung-Won; Hwang, Min-Jin; Park, Dae-Seon; Ahn, Kyu-Hong

    2016-10-01

    While drinking water treatment residuals (DWTRs) inevitably lead to serious problems due to their huge amount of generation and limitation of landfill sites, their unique properties of containing Al or Fe contents make it possible to reuse them as a beneficial material for coagulant recovery and adsorbent. Hence, in the present study, to comprehensively handle and recycle DWTRs, coagulant recovery from DWTRs and reuse of coagulant recovered residuals (CRs) were investigated. In the first step, coagulant recovery from DWTRs was conducted using response surface methodology (RSM) for statistical optimization of independent variables (pH, solid content, and reaction time) on response variable (Al recovery). As a result, a highly acceptable Al recovery of 97.5 ± 0.4% was recorded, which corresponds to 99.5% of the predicted Al recovery. Comparison study of recovered and commercial coagulant from textile wastewater treatment indicated that recovered coagulant has reasonable potential for use in wastewater treatment, in which the performance efficiencies were 68.5 ± 2.1% COD, 97.2 ± 1.9% turbidity, and 64.3 ± 1.0% color removals at 50 mg Al/L. Subsequently, in a similar manner, RSM was also applied to optimize coagulation conditions (Al dosage, initial pH, and reaction time) for the maximization of real cotton textile wastewater treatment in terms of COD, turbidity, and color removal. Overall performance revealed that the initial pH had a remarkable effect on the removal performance compared to the effects of other independent variables. This is mainly due to the transformation of metal species form with increasing or decreasing pH conditions. Finally, a feasibility test of CRs as adsorbent for phosphate adsorption from aqueous solution was conducted. Adsorption equilibrium of phosphate at different temperatures (10-30 °C) and initial levels of pH (3-11) indicated that the main mechanisms of phosphate adsorption onto CRs are endothermic and chemical

  2. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...... bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions...

  3. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube

  5. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    Science.gov (United States)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  6. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Lee, Seung Kon; Lee, Su Seung; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of); Kim, Sang Wook [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    {sup 99} Mo is extracted from the filtrate solution through column-based multistep separation and purification process. In the process, removal of radio-impurities from the solution is essential to acquire high-quality fission {sup 99} Mo. Iodine is the main impurity having about 15% of total radioactivity among the whole fission products. Most of the iodine exists in the caustic dissolution as iodide form. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Compound is dried again. After heating ascorbic acid solution, solution is added to dried compound. Heat the mixture. After removing supernatant, the mixture is washed with hot distilled water and then cool distilled water in the order named. Finally, the mixture is heated and then recovering by using the sieve. In this study, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Silver-doped DAW-70 alumina by using silver mirror reaction is less impurities and simpler than method using ascorbic acid.

  7. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    Science.gov (United States)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  8. Type of adsorbent and column height in adsorption process of used cooking oil

    Science.gov (United States)

    Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila

    2015-12-01

    The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.

  9. Predictors of aortic growth in uncomplicated type B aortic dissection from the Acute Dissection Stent Grafting or Best Medical Treatment (ADSORB) database

    DEFF Research Database (Denmark)

    Kamman, Arnoud V; Brunkwall, Jan; Verhoeven, Eric L

    2017-01-01

    BACKGROUND: The high-risk patient cohort of uncomplicated type B aortic dissections (uTBADs) needs to be clarified. We compared uTBAD patients treated with best medical treatment (BMT), with and without aortic growth, from the Acute Dissection Stent Grafting or Best Medical Treatment (ADSORB) tri...

  10. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  11. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    Science.gov (United States)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  12. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  13. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  14. Paper pulp-based adsorbents for the removal of pharmaceuticals from wastewater: A novel approach towards diversification.

    Science.gov (United States)

    Oliveira, Gonçalo; Calisto, Vânia; Santos, Sérgio M; Otero, Marta; Esteves, Valdemar I

    2018-08-01

    In this work, two pulps, bleached (BP) and raw pulp (RP), derived from the paper production process, were used as precursors of non-activated and activated carbons (ACs). In the case of non-ACs, the production involved either pyrolysis or pyrolysis followed by acid washing. For ACs production, the pulps were impregnated with K 2 CO 3 or H 3 PO 4 , and then pyrolysed and acid washed. After production, the materials were physically and chemically characterized. Then, batch adsorption tests on the removal of two pharmaceuticals (the anti-epileptic carbamazepine (CBZ) and the antibiotic sulfamethoxazole (SMX)) from ultra-pure water and from Waste Water Treatment Plant (WWTP) effluents were performed. In ultra-pure water, non-ACs were not able to adsorb CBZ or SMX while ACs showed good adsorption capacities. In WWTP effluents, although ACs satisfactorily adsorbed CBZ and SMX, they showed lower adsorption capacities for the latter. Tests with WWTP effluents revealed that the best adsorption capacities were achieved by carbons produced from BP and activated with H 3 PO 4 : 92±19mgg -1 for CBZ and 13.0±0.6mgg -1 for SMX. These results indicate the potential of paper pulps as precursors for ACs that can be applied in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Assessing the Effectiveness of Limestone from Oterkpolu Area in the Eastern region of Ghana as a Suitable Adsorbent for Water Defluoridation

    International Nuclear Information System (INIS)

    Droepenu, Eric Kwabena

    2016-07-01

    Fluoride-contamination of groundwater [above the World Health Organization (WHO) recommended limit of 1.5 mg/L] in the Upper East and Northern regions of Ghana is a well-known problem. Fluoride is, however, beneficial to humans if present in drinking water at levels between 0.7 – 1.5 mg/L. Although, there are some efficient methods for defluoridation of drinking water using various adsorbents, the magnitude of the problem has made it imperative to develop economically viable water defluoridation techniques using readily available natural resource as adsorbent. This will complement the existing defluoridation techniques in order to alleviate the difficulty faced by inhabitants of the affected communities. In addition, a method which is cost effective, easy to use by a layman, does not add other contaminants to water, and efficient in the long term is highly desirable. In this study, the effectiveness of readily available limestone from Oterkpolu (Yilo-Krobo district, Eastern region of Ghana) as fluoride adsorbent was assessed. A drinking water defluoridation technique was subsequently developed using the limestone with various grain sizes (i.e., 500 – 1000 μm, 1000 – 2000 μm and 2000 – 6350 μm) through Batch Adsorption Experiment (using NaF solution concentrations of 1, 5 and 10 mgF"-/L), followed by Column Adsorption Experiment using fluoride contaminated groundwater water samples from Bongo district. This was achieved through the geochemical and mineralogical characterization of Oterkpolu limestone using X-ray Powder Diffraction (XRD) and Petrographic Thin Section (PTS). In addition, the radiological risk associated with the use of the limestone for water defluoridation was assessed through the determination of the activity concentration of the Naturally-Occurring Radioactive Materials (NORMs) using a High-Purity Germanium (HPGe) γ-ray detector [γ-ray spectrometry], and computed Annual Effective Dose (AED). The study also evaluated the fluoride

  16. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen

    2010-11-24

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  17. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen; Bollini, Praveen; Didas, Stephanie A.; Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.

    2010-01-01

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  18. An eco-friendly approach for heavy metal adsorbent regeneration using CO2-responsive molecular octopus.

    Science.gov (United States)

    Bai, Yu; Liang, Yen Nan; Hu, Xiao

    2017-10-01

    Perennial problems of adsorption in wastewater treatment include adsorbent recycling, generation of waste sludge and secondary pollution because harmful concentrated acids, bases or strong chelators are often used for adsorbent regeneration and adsorbate recovery. We report, for the first time, an eco-friendly regeneration concept demonstrated with a CO 2 -responsive octopus-like polymeric adsorbent. Various heavy metals can be scavenged at very high Q e by such adsorbent through coordination. Most importantly, the rapid and complete regeneration of the adsorbent and recovery of the heavy metal ions can be readily achieved by CO 2 bubbling within a few minutes under mild conditions, i.e., room temperature and atmospheric pressure. The adsorbent can then be restored to its adsorptive state and reused upon removal of CO 2 by simply bubbling another gas. This eco-friendly, effective, ultra-fast and repeatable CO 2 -triggered regeneration process using CO 2 -responsive adsorbent with versatile structure, morphology or form can be incorporated into a sustainable closed-loop wastewater treatment process to solve the perennial problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    Science.gov (United States)

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  20. Ionic interchanges and adsorbents of interest in nuclear and environmental processes; Intercambiadores ionicos y adsorbentes de interes en procesos nucleares y ambientales

    Energy Technology Data Exchange (ETDEWEB)

    Olguin G, M. T., E-mail: teresa.olguin@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The ionic interchanges and the adsorbents are of special interest inside the water treatment processes (industrial or human consumption), as well as for the radionuclides generation, due to their structural characteristics and to their capacity to remove an extensive range of polluting species. In the ININ have been developed researches on these materials, with the purpose of generating new knowledge that serves like base inside radionuclides separation processes or polluted water treatment. The results obtained until the present have been published in different scientific magazines. (Author)

  1. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chun-Ping, E-mail: chunping@iner.gov.tw [Institute of Nuclear Energy Research, 1000, Wenhua Road, Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC (China); Lin, Tzung-Yi; Chiao, Ling-Huan; Chen, Hong-Bin [Institute of Nuclear Energy Research, 1000, Wenhua Road, Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Deal with a practical radioactive contamination in Taiwan Research Reactor spent fuel pool water. Black-Right-Pointing-Pointer Identify the properties of radioactive contaminants and performance test for water treatment materials. Black-Right-Pointing-Pointer The radioactive solids were primary attributed by ruptured spent fuels, spent resins, and metal debris. Black-Right-Pointing-Pointer The radioactive ions were major composed by uranium and fission products. Black-Right-Pointing-Pointer Diatomite-based ceramic depth filter can simultaneously removal radioactive solids and ions. - Abstract: There were approximately 926 m{sup 3} of water contaminated by fission products and actinides in the Taiwan Research Reactor's spent fuel pool (TRR SFP). The solid and ionic contaminants were thoroughly characterized using radiochemical analyses, scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES) in this study. The sludge was made up of agglomerates contaminated by spent fuel particles. Suspended solids from spent ion-exchange resins interfered with the clarity of the water. In addition, the ionic radionuclides such as {sup 137}Cs, {sup 90}Sr, U, and {alpha}-emitters, present in the water were measured. Various filters and cation-exchange resins were employed for water treatment trials, and the results indicated that the solid and ionic contaminants could be effectively removed through the use of <0.9 {mu}m filters and cation exchange resins, respectively. Interestingly, the removal of U was obviously efficient by cation exchange resin, and the ceramic depth filter composed of diatomite exhibited the properties of both filtration and adsorption. It was found that the ceramic depth filter could adsorb {beta}-emitters, {alpha}-emitters, and uranium ions. The diatomite-based ceramic depth filter was able to simultaneously

  2. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples.

    Science.gov (United States)

    Tokalıoğlu, Şerife; Yavuz, Emre; Demir, Selçuk; Patat, Şaban

    2017-12-15

    In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. The surface area of MOF-545 was found to be 2192m 2 /g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. The optimal experimental conditions were as follows: the amount of MOF-545, 10mg; pH of sample, 7; adsorption and elution time, 15min; and elution solvent, 2mL of 1molL -1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78μgL -1 , 125 and 2.6%, respectively. The adsorption capacity of the adsorbent for lead was found to be 73mgg -1 . The method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Natural gas adsorption on coal in anhydrous and in water saturated conditions: study of the adsorbed quantities and of the isotopic fractionation

    International Nuclear Information System (INIS)

    Caja, M.

    2000-02-01

    In order to understand the influence of adsorption in the migration of natural gas in sedimentary basins. we have developed an experimental device to measure the quantity of gas adsorbed on organic matter. We quantify the isotopic and chemical fractionation due to adsorption of natural gas on coal at representative gas field conditions (20 - 200 deg C and 1 - 1000 bar). These effects are investigated for gas / solid systems and for gas dissolved in water/water saturated solid systems. The solid sample considered in this work is a natural coal of Carboniferous age, taken from a mine in Lorraine, France. Its maturity corresponds to the end of the diagenesis zone. A first set of high pressure methane adsorption experiments on dry coal are compared with measurements done by another laboratory on the same solid. This allowed us to validate the experimental procedure. This measurements performed in the presence of water have shown that methane adsorption is significant even in presence of water. We have developed a simple adsorption model (Langmuir model in which fugacity is used in stead of partial pressure) in order to represent this phenomena. For a depth profile we compare the part of methane adsorbed on sedimentary rocks organic matter to methane dissolved in pore water. A second set of experiments realised on a multicomponent gas (C1, C2, C3, C4, CO 2 ) shows a preferential adsorption of carbon dioxide, but no significant fractionation on hydrocarbon gases of the mixture has been observed. Adsorption experiments of methane on dry medium and on water saturated medium yield on the same result: adsorption equilibrium do not induce a significant isotopic fractionation between 13 CH 4 and 12 CH 4 . However, we observe a significant fractionation during gas desorption. The interpretation is that we are not at equilibrium and diffusion phenomena is superimposed on adsorption. From this study two important geological consequences can be drawn. First. for rocks containing

  4. Iodine and fluorine removal of the water using two synthetic adsorbents of great fixation capacity

    International Nuclear Information System (INIS)

    Neri G, M.; Badillo A, V. E.

    2012-10-01

    In this work is studied the affinity of two synthetic adsorbents of great fixation capacity, the alumina and the hydroxyapatite, as alternative for the removal of two halogens, iodine and fluorine of the water; the first of importance in the radioactive wastes management and the second of interest in public health. This study was carried out applying the technique of radioactive tracers, with 131 I and the radionuclide 18 F (it produced in the unit PET-cyclotron of the UNAM). The affinity of the synthetic adsorbents for the halogens is expressed in terms of the distribution coefficient and of the retention percent in function of the solution ph. The results obtained for the iodine and fluorine in the synthetic solids are markedly different; in the case of the iodine, the retention is worthless in the whole interval of studied ph while for the fluorine high distribution coefficient and fixation percentages are presented of until 100%. Also for the fluorine in hydroxyapatite high distribution coefficients and superiors are obtained in relation to those that are obtained in the alumina. In both solids the fluorine retention diminishes as the ph of the solution increases, what shows the competition with the hydroxyl ions for the active places in surface. (Author)

  5. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    Science.gov (United States)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  6. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai [China Medical University, Taichung (Taiwan). Department of Risk Management

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  7. Magnetic adsorbent constructed from the loading of amino functionalized Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2016-06-15

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model, which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.

  8. Citrus paradisi: an effective bio-adsorbent for arsenic (v) remediation

    International Nuclear Information System (INIS)

    Khaskheli, M.I.; Memon, S.Q.; Parveen, S.

    2014-01-01

    In the present study As(V) was removed by citrus paradise (grape fruit) peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradise peel adsorbent. The maximum measured uptake capacity of citrus paradise was 37.76 mg.g/sup -1/ at pH 4. FT-IR characterization of unloaded and As (V) loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO) and hydroxyl (OH) groups in adsorption process. The proposed citrus paradis peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples. (author)

  9. Viscosity of bound water and model of proton relaxation in fine-dispersed substances at the presence of adsorbed paramagnetic ions

    International Nuclear Information System (INIS)

    Fedodeev, V.I.

    1975-01-01

    A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods

  10. Viscosity of bound water and model of proton relaxation in fine-dispersed substances at the presence of adsorbed paramagnetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Fedodeev, V I

    1975-09-01

    A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods.

  11. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  12. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  13. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  14. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    Science.gov (United States)

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  15. Development of adsorbent for C-14 Gas trapping and characteristics evaluation

    International Nuclear Information System (INIS)

    Park, Geun Il; Kim, I. T.; Kim, K. W.

    2006-08-01

    Desorption characteristics of C-14 adsorbed on spent resin as H 14 CO 3 ion type by applying various stripping solutions were analyzed, and some experiments for gasification of C-14 to CO 2 gas with were also performed. Based on these results, the process concept for spent resin treatment was suggested. Real spent resin was prepared from sampling in storage tank in site 1 of Wolseung Nuclear Power Plant. Desorption characteristics of C-14 and cations of Cs, Co from spent IRN-150 resin was evaluated. Desorption efficiency of C-14 from spent resin by using H 3 PO 4 desorption solution was over 96% regardless of C-14 amount on initial spent resin when comparing a activity of C-14 on initial spent resin. Also, desorption percent of cation of Cs, Co from anion ion-exchange resin (IRN-77) showed that Co-60 was below 1%, Cs-134, 137 was in a range of 2 ∼ 5%. Fundamental studies include an development of adsorbent manufacturing technology and its performance evaluation for C-14 gas trapping, the adsorption process by adopting gas circulation method was suggested for the design of 14 CO 2 gas treatment system generated from spent resin treatment process. In order to predict adsorbent performance of CO 2 trapping, modelling was carried out to verify the breakthrough curves of CO 2 trapping by using soda lime adsorbent. The effect of humidity on CO 2 trapping by using soda lime adsorbent was modelled via chemical reaction in porous media. Assessment of the state-of-the-arts on the solidification of the used adsorbent showed that the cement matrix would be the best-available binder from the view points of the matrix compatibility, properties of the final waste form, simplicity of the process and relatively low cost

  16. Experimental Evaluation Use of Semifluidized Bed Adsorber for the Treatment of P-chlorophenol and O-cresol in Wastewater using Activated Carbon as Adsorbent

    Directory of Open Access Journals (Sweden)

    Saad Hanash Ammar

    2015-12-01

    Full Text Available In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol and o-cresol (2-methylphenol was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s, and retaining grid (sometimes referred to as adsorbent loading to initial static bed height ratio (from 3-4.5. Inlet phenols concentration (50-400 mg/l and initial pH of the liquid solutions feed (from 4 to 10 were also studied. The experimental semifluidized adsorber unit was designed and constructed in Chem. Eng. labs at Al-Nahrain University (consisted of a QVF glass tube 2.54 cm inside diameter, and 70cm length. The results showed that the initial percent removal of phenolic compounds (P-chlorophenol and o-cresol decrease with increasing the superficial liquid velocity while the time required reaching equilibrium state decreased. Also it slightly affected with the increase in the retaining grid height and the time required to reach the equilibrium value decreased.

  17. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    Science.gov (United States)

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  18. Arsenic removal from water using iron-coated seaweeds.

    Science.gov (United States)

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    Science.gov (United States)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transient desorption characteristics of fibrous organic adsorbent; Sen'ikei yuki kyuchakuzai no katoteki dacchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Ozaki, K.; Horibe, A. [Okayama University, Okayama (Japan). Faculty of Engineering; Shimoyama, R. [Okayama University, Okayama (Japan); Kida, T. [Japan Exlan Co. Ltd., Osaka (Japan)

    1999-11-25

    An experimental investigation was performed to determine time transient desorption characteristics of a fibrous type organic adsorbent, which was composed of the bridged complex of sodium polyacrylate as a new kind of adsorbent. The test fibrous adsorbent was packed in a cylindrical vessel, and dry air was passed through it. The experiments were conducted under various conditions of air velocity, temperature, relative humidity and vessel length. As a result, time pressure loss for the packed bed of the test fibrous adsorbent showed a similar tendency to that for the packed bed of spherical particles. The mass transfer data was correlated by the modified Sherwood number, the Reynolds number, the Schmidt number, the ratio of desorbed water vapor mass to fibrous absorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. Fourier number for the nondimensional temperature and the ratio of desorbed water vapor mass to fibrous adsorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. (author)

  1. Development of Molybdenum Adsorbent for 99Mo/99mTc Radioisotope Generator Based on Irradiated Natural Molybdenum

    International Nuclear Information System (INIS)

    Rohadi Awaludin; Hotman Lubis; Sriyono; Abidin; Herlina; Endang Sarmini; Indra Saptiama; Hambali

    2011-01-01

    Preparation of 99 Mo/ 99m Tc radioisotope generator using irradiated natural molybdenum requires an adsorbent with high absorption capacity. Zirconium-based materials (ZBM), adsorbent with adsorption capacity of about 183 mg(Mo) / g(adsorbent), has been successfully synthesized. However, the adsorbent was easily broken in the Mo adsorption process due to many fractures in the grain. To increase the hardness, the material was immersed in tetraethyl orthosilicate (TEOS) and coated by TEOS flow in a column. The hardness test results showed that the ZBM with TEOS treatment was not broken when immersed into the Mo solution. Observations using SEM showed that the fractures formed on the ZBM were successfully removed by TEOS treatment. Measurements using EDS showed that after TEOS treatment, the silicon was detected and the oxygen content increased in the material surface. Adsorption test results showed that the TEOS immersion decreased the adsorption capacity of molybdenum from 183 to 79.8 mg of Mo per gram of adsorbent. The TEOS flow-in a column gave material with relatively high adsorption capacity, 140 mgMo per gram adsorbent. The content of Silicon in the surface was lower than that of adsorbent immersed in TEOS. (author)

  2. Citrus paradisi: An Effective bio-adsorbent for Arsenic (V Remediation

    Directory of Open Access Journals (Sweden)

    Mazhar I. Khaskheli

    2014-06-01

    Full Text Available In the present study As (V was removed by citrus paradisi (grape fruit peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradisi peel adsorbent. The maximum measured uptake capacity of citrus paradisi was 37.76 mg.g-1 at pH 4. FT-IR characterization of unloaded and As (V loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO and hydroxyl (OH groups in adsorption process. The proposed citrus paradisi peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples.

  3. Evaluation of charred porous polymers as a method of storm water pollution prevention for shipyards

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.E.

    1998-08-01

    Most shipyards have viable Best Management Practices (BMPs) in place to mitigate the transport of heavy metals to surface waters by storm water. Despite aggressive efforts to control storm water, shipyards have come under increased regulatory pressure to further reduce concentrations of heavy metals, such as copper and nickel, in storm water discharges. The tightening of regulatory requirements warrants research into additional BMPs. The objectives of this research project were to: (1) determine the feasibility of placing a replaceable cartridge of adsorbent material within a storm water collection system; and (2) evaluate two commercially available charred porous polymer adsorbents for the removal of heavy metals from storm water. The results indicated that there are commercially available storm water treatment components which could be adapted to house a cartridge of porous adsorbent material.

  4. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  5. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  6. ADSORPTIVE REMOVAL OF FLUORIDE FROM WATER USING ...

    African Journals Online (AJOL)

    Preferred Customer

    Currently available treatment methods for removal of excess fluoride from water are broadly divided into three ... the application of nanoparticles as sorbents for fluoride removal. Sundaram [26] studied the ... Characterization of adsorbent.

  7. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  9. Study of the elimination of fluorine from drinking water using adsorbent materials

    International Nuclear Information System (INIS)

    Flores de la Torre, J.A.; Badillo A, V.E.; Badillo A, V.; Lopez D, F.A.

    2004-01-01

    With the purpose of diminishing the levels of fluorine in the water in certain areas geographical of the country, the interaction of the fluorine is studied, with a Mexican natural clay, called kaolinite and a synthetic apatite called hydroxyapatite. Due to the discharges concentrations of this element in waters of human consumption cause fluorosis dental and osseous, it is important to propose adsorbent materials able to diminish those elevated concentrations of fluorine. In this investigation work the retention of the fluorine is studied in mineral phases using the tracer radioactive 8 F. This retention is expressed in terms of the fixed percent of 18 F, in a natural kaolinite in solution of NaCl 0.01 M, and in a synthetic hydroxyapatite setting in contact with a solution of NaF 0.01 M and a solution of NaH 2 PO 4 0.01 M, all in function of the value of the p H of the solution. The results demonstrate that the influence of the p H is remarkable in the retention of the fluoride in both minerals, demonstrating that the hydroxyapatite (calcium phosphate) it retains in a lot of bigger proportion to the fluorine that the kaolinite (aluminosilicate), all this to values of acid p H, diminishing as the value of the p H increases. (Author)

  10. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  11. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  12. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification.

    Science.gov (United States)

    Chen, Jian; Han, Wenyan; Chen, Jie; Zong, Wenhui; Wang, Weichao; Wang, Yue; Cheng, Guanghui; Li, Chunran; Ou, Lailiang; Yu, Yaoting

    2017-02-01

    A multi-functional polystyrene based adsorbent (NKU-9) with a unique mesoporous and a high surface area was prepared by suspension polymerization for removal of therapeutic toxins in blood purification. The adsorbent produced had an almost equal amount of mesopore distribution in the range from 2 to 50 nm. The adsorption of serum toxins with different molecular weights were examined by in vitro adsorption assays and compared with some clinical currently used adsorbents such as HA-330, Cytosorb and BL-300 which are produced by China, America and Japan, respectively. Test results indicated that the adsorption rate for pentobarbital by NKU-9 was 81.24% which is nearly as high as HA-330 (81.44%). The latter adsorbent is currently used for acute detoxification treatment in China. To reach adsorption equilibrium, NKU-9 was faster than HA-330, which implies short treatment time. For the removal of middle molecular toxins such as β2-microglobulin (98.88%), NKU-9 performed better adsorptive selectivity than Cytosorb (92.80%). In addition, NKU-9 showed high performance for the removal of albumin-bound toxins (e.g., bilirubin), and its adsorption rate for total bilirubin (80.79%) in plasma was 8.4% higher than that of anion exchange resin BL-300 which is currently used to eliminate bilirubin in clinic. Therefore, our results indicate that the newly developed adsorbent with a wide distribution and almost equal amount of mesopores is a multifunctional adsorbent for high efficient removal of serum toxins with different molecular weights which might be an excellent blood purification adsorbent especially to treat diseases that conventional medical methods are low or not efficient.

  13. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  14. Application of natural adsorbents as decontamination agents for the elimination of the consequences of the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Tarasevich, Yu.I.

    1996-01-01

    The scientific foundations of using natural adsorbents as ion exchangers,filtering media and adagulants for water purification ase presented. The results showing the efficiency of practical application of natural adsorbents for the decontamination of water, clothes, machinery, construction materials, etc. during the elimination of the consequences of the Chernobyl reactor accident in 1986-1987 are presented

  15. Adsorptivity of uranium by aluminium-activated carbon composite adsorbent

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sugasaka, Kazuhiko; Fujii, Ayako; Takagi, Norio; Miyai, Yoshitaka

    1976-01-01

    To research the adsorption process of uranium from sea water by aluminium-activated carbon composite adsorbent (C-Al-OH), the authors examined the effects of temperature, pH and carbonate ion concentration of the solution upon the adsorption of uranium, using sodium chloride solution and natural sea water. The continued mixing of the solution for the duration of two to four hours was required to attain the apparent equilibrium of adsorption. The adsorption velocity at an early stage and the uptake of uranium at the final stage showed an increase in proportion to a rise in the adsorption temperature. In the experiment of adsorption for which sodium chloride solution was used, the linear relationship between the logarithm of the distribution coefficient (K sub(d)) and the pH of the solution was recognized. The uptake of the uranium from the solution at the pH of 12 increased as the carbonate ion concentration in the solution decreased. The uranyl ion in the natural sea water was assumed to be uranyl carbonate complex ion (UO 2 (CO 3 ) 3 4- ). As the result of the calculation conducted by using the formation constants for uranyl complexes in literature, it was found that uranyl hydroxo complex ion (UO 2 (OH) 3 - ) increased in line with a decrease of the carbonate ion concentration in the solution. The above results of the experiment suggested that the adsorption of uranium by the adsorbent (C-Al-OH) was cationic adsorption or hydrolysis adsorption being related with the active proton on the surface of the adsorbent. (auth.)

  16. Characterisation of lignite as an industrial adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ying Qi; Andrew F.A. Hoadley; Alan L. Chaffee; Gil Garnier [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-04-15

    An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity. 63 refs., 3 figs., 7 tabs.

  17. Sol-Gel Derived Adsorbents with Enzymatic and Complexonate Functions for Complex Water Remediation

    Directory of Open Access Journals (Sweden)

    Roman P. Pogorilyi

    2017-09-01

    Full Text Available Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations. In this work, we avoided inactivation of immobilized urease by Cu (II and Cd (II ions using magnetic nanoparticles provided with additional complexonate (diethylene triamine pentaacetic acid or DTPA functions. Obtained nanomaterials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. According to TGA, the obtained Fe3O4/SiO2-NH2-DTPA nanoadsorbents contained up to 0.401 mmol/g of DTPA groups. In the concentration range Ceq = 0–50 mmol/L, maximum adsorption capacities towards Cu (II and Cd (II ions were 1.1 mmol/g and 1.7 mmol/g, respectively. Langmuir adsorption model fits experimental data in concentration range Ceq = 0–10 mmol/L. The adsorption mechanisms have been evaluated for both of cations. Crosslinking of 5 wt % of immobilized urease with glutaraldehyde prevented the loss of the enzyme in repeated use of the adsorbent and improved the stability of the enzymatic function leading to unchanged activity in at least 18 cycles. Crosslinking of 10 wt % urease on the surface of the particles allowed a decrease in urea concentration in 20 mmol/L model solutions to 2 mmol/L in up to 10 consequent decomposition cycles. Due to the presence of DTPA groups, Cu2+ ions in concentration 1 µmol/L did not significantly affect the urease activity. Obtained magnetic Fe3O4/SiO2-NH2-DTPA-Urease nanocomposite sorbents revealed a high potential for urease decomposition, even in presence of heavy metal ions.

  18. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent

    International Nuclear Information System (INIS)

    Zeng Xiaowei; Fan Yunge; Wu Guolin; Wang Chunhong; Shi Rongfu

    2009-01-01

    A novel post-crosslinked polymeric adsorbent PDM-2 was prepared by Friedel-Crafts reaction of pendant vinyl groups without external crosslinking agent. Both the specific surface area and the pore volume of starting copolymer PDM-1 increased significantly after post-crosslinking. Batch adsorption runs of phenol from aqueous solution onto PDM-1 and PDM-2 were investigated. Commercial macroporous resins XAD-4 and AB-8 were chosen as the comparison. Experimental results showed that isotherms of phenol adsorption onto these four polymeric adsorbents could be represented by Freundlich model reasonably. PDM-2 exhibited higher adsorption capacity of phenol than other three adsorbents, which resulted from synergistic effect of larger specific surface area and polar groups on the network. The adsorption process for phenol was proved to be exothermic and spontaneous in nature. Thermodynamic parameters such as Gibb's free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) were calculated. Kinetics studies indicated that phenol uptake onto PDM-1 and PDM-2 followed the pseudo-second order model and the intraparticle diffusion process was a rate-controlling step. Column adsorption runs demonstrated that nearly 100% regeneration efficiency for PDM-2 by 3 BV industrial alcohol and the adsorbate phenol can be easily recovered by further distilling. Continuous column adsorption-regeneration cycles indicated negligible capacity loss of PDM-2 during operation.

  19. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    Science.gov (United States)

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  20. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  1. Influence of preseasonal treatment with L-tyrosine-adsorbed allergoids on IgE-mediated histamine release from basophils of children suffering from allergic diseases.

    Science.gov (United States)

    Wegner, F; Fenkes, A; Stemmann, E A; Reinhardt, D

    1981-04-01

    In 10 children suffering from allergic pollinosis and/or asthma, a preseasonal hyposensitization scheme with 3 weekly injections of a glutaraldehyde-modified, tyrosine-adsorbed grass-pollen allergen reduced the histamine release from basophils in response to increasing concentrations of antigen. The decrease in histamine release which occurred 1 week after the injection course was even maintained during the pollen season. The inhibition was only obtained when basophils were incubated with the serum of patients, but not with the serum of normals, indicating that blocking antibodies may have occurred. In contrast to what has been observed in the treated patients' group, 5 patients, who were not included in the hyposensitization scheme, showed identical histamine release curves during the whole investigation period. Specific IgE did not increase after the treatment course and shows the same behaviour as the untreated patients. Thus, as treatment with glutaraldehyde modified, tyrosine-adsorbed allergoids is safe to administer, requires only 3 injections, reduces histamine release from basophils by production of "blocking" antibodies, it appears to be a useful tool in the hyposensitization treatment.

  2. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  3. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  4. Determination of Cr and Cd concentration adsorbed by chicken feathers

    International Nuclear Information System (INIS)

    Lopez M, A.; Cuapio O, L.A.; Cardenas P, S.; Balcazar, M.; Jauregui, V.; Bonilla P, A.

    2008-01-01

    In this work the results of the samples analysis of chicken feathers are presented, used as adsorber of the heavy metals Cd and Cr present in water solutions with well-known concentrations of these metals. It was used the Neutron Activation Analysis technique (AAN), using the TRIGA Mark-III reactor of the Nuclear Center of Mexico. The obtained results they show the advantages of having a versatile installation for the analysis of this type of samples. By means of the analysis of the results, it was determined the feasibility of using chicken feathers like adsorber of these metals present in polluted waters, additionally, it was detected the presence of others polluting elements in the inputs to prepare the reference solutions as well as in the processes, so much of preparation of the feathers like of the metals adsorption. (Author)

  5. Fruit stones from industrial waste for the removal of lead ions from polluted water.

    Science.gov (United States)

    Rashed, M N

    2006-08-01

    Lead, one of the earliest metals recognized and used by humans, has a long history of beneficial use. However, it is now recognized as toxic and as posing a widespread threat to humans and wildlife. Treatment of lead from polluted water and wastewater has received a great deal of attention. Adsorption is one of the most common technologies for the treatment of lead-polluted water. This technique was evaluated here, with the goal of identifying innovative, low-cost adsorbent. This study presents experiments undertaken to determine the suitable conditions for the use of peach and apricot stones, produced from food industries as solid waste, as adsorbents for the removal of lead from aqueous solution. Chemical stability of adsorbents, effect of pH, adsorbents dose, adsorption time and equilibrium concentration were studied. The results reveal that adsorption of lead ions onto peach stone was stronger than onto apricot stone up to 3.36% at 3 h adsorption time. Suitable equilibrium time for the adsorption was 3-5 h (% Pb adsorption 93% for apricot and 97.64% for peach). The effective adsorption range for pH in the range was 7-8. Application of Langmuir and Freundlich isotherm models show high adsorption maximum and binding energies for using these adsorbents for the removal of lead ions from contaminated water and wastewater.

  6. Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations

    KAUST Repository

    Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee; Chua, Kian Jon Ernest

    2017-01-01

    This paper presents the evaluation of a solid desiccant dehumidifier equipped with adsorbent powder coated heat exchangers (PCHX). The main component of the solid desiccant dehumidifier includes two heat exchangers that are coated with silica gel RD type powders in order to increase water adsorption uptake by improving its heat and mass transfer. A series of experiment are conducted to evaluate two key performance indices, namely, moisture removal capacity (MRC) and thermal coefficient performance (COPth), under various hot and humid air conditions. Conventional granular adsorbent packed heat exchangers (GPHX) are employed to benchmark the performance of the adsorbent coated heat exchanger (PCHX). Results reveal that the PCHX exhibits higher uptake performance due to better heat and mass transfer. It is found that the moisture removal capacity increases from 7.4 g/kg to 11.0 g/kg with air flow rates of 35 kg/h, resulting in the extended contact time of the water vapor. Experiments also demonstrate that the moisture removal capacity is highly affected by inlet air humidity ratio. In addition, marked improvement in COPth can be achieved by a lowered hot water regeneration temperature.

  7. Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations

    KAUST Repository

    Oh, Seung Jin

    2017-03-10

    This paper presents the evaluation of a solid desiccant dehumidifier equipped with adsorbent powder coated heat exchangers (PCHX). The main component of the solid desiccant dehumidifier includes two heat exchangers that are coated with silica gel RD type powders in order to increase water adsorption uptake by improving its heat and mass transfer. A series of experiment are conducted to evaluate two key performance indices, namely, moisture removal capacity (MRC) and thermal coefficient performance (COPth), under various hot and humid air conditions. Conventional granular adsorbent packed heat exchangers (GPHX) are employed to benchmark the performance of the adsorbent coated heat exchanger (PCHX). Results reveal that the PCHX exhibits higher uptake performance due to better heat and mass transfer. It is found that the moisture removal capacity increases from 7.4 g/kg to 11.0 g/kg with air flow rates of 35 kg/h, resulting in the extended contact time of the water vapor. Experiments also demonstrate that the moisture removal capacity is highly affected by inlet air humidity ratio. In addition, marked improvement in COPth can be achieved by a lowered hot water regeneration temperature.

  8. Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.

    Science.gov (United States)

    Steiner, M; Boller, M

    2006-01-01

    Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.

  9. COMBINATION OF MOLECULAR ADSORBENT RECIRCULATING SYSTEM AND RADIOIODINE FOR THE TREATMENT OF CONCURRENT HYPERTHYROIDISM AND SEVERE LIVER DYSFUNCTION: A RETROSPECTIVE COHORT STUDY.

    Science.gov (United States)

    Zhang, Qing; Guan, Yanxing; Xiang, Tianxin; Liu, Shaozheng; Chen, Qingjie; Zhang, Qing

    2017-02-01

    The treatment of hyperthyroidism associated with severe liver dysfunction (LD) is a clinical challenge, and there has been no unified examination of this problem. The objective of this study was to assess the efficacy and safety of radioiodine ( 131 I) in combination with a molecular adsorbent recirculating system (MARS) for the treatment of hyperthyroidism complicated by severe liver LD. A total of 116 hyperthyroidism patients with concomitant LD who received MARS treatment were studied retrospectively. The patients were grouped according to whether or not they also received 131 I treatment: Group 1 (59 patients) received 131 I following MARS treatment, while Group 2 (57 cases) received only MARS. Clinical outcomes, including thyroid hormone levels, liver function parameters, and therapeutic efficacy were calculated. The overall response rate was significantly greater in Group 1 than in Group 2 (Ptreatment compared with before treatment (Ptreatments (Ptreatment of hyperthyroidism complicated by severe LD was effective and safe. The use of this system could rapidly improve liver function and metabolism, allowing 131 I therapy to be applied as early as possible with a shortened recovery time of liver function. ALSS = artificial liver support system ALT = alanine transaminase AST = aspartate transaminase ATD = antithyroid drugs DBil = direct bilirubin FT3 = free tri-iodothyronine FT4 = free thyroxine 131 I = radioiodine INR = international normalized ratio LD = liver dysfunction MARS = molecular adsorbent recirculating system MELD = model for end-stage liver disease PT = prothrombin time TBil = total bilirubin TSH = thyroid-stimulating hormone.

  10. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    Science.gov (United States)

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Magnetic-supported cucurbituril: A recyclable adsorbent for the ...

    Indian Academy of Sciences (India)

    Administrator

    removal of humic acid from simulated water. QIN YANG* ... The commonly used adsorbents are activated carbon. (Deng and Bai ... Q[n] is practically insoluble in all common organic solvents. ... Q[n] has other advantages such as its strong rigid structure .... and it does not result in the phase change of Fe3O4. In addition ...

  12. Using Adsorption Isotherm Studies to Determine Crosslinked Polymeric Adsorbent Performance in Heavy Metals Removal from Water

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2015-01-01

    Full Text Available Polymeric adsorbents are useful tools for removing heavy metals from aqueous solutions. Adsorption models are efficient tools for accurate prediction and evaluation of the practical adsorption process in real situation. In this study, the two isotherms of Langmuir and Dubinin-Radushkevich models were employed to investigate the absorption performance of chitosan, PVA, and chitosan/PVA blend (with a weight ratio of 1:1 in the removal of Mn (II and Ni (II from aqueous solutions. The PVA adsorbent was crosslinked by both chemical and radiation methods while the others were crosslinked only chemically due to Chitosan’s lack of resistance to radiation. The results showed that the Langmuir model fitted the experimental data better than the Dubinin-Radushkevich one for both metals. The maximum adsorption capacity (qmax of the Langmuir model showed that the PVA/Chitosan adsorbent had the best adsorption compared to other adsorbents, with 52.63 mg/g for Ni and 30.30 mg/g for Mn (evidently more Ni was absorbed than Mn. Also, maximum adsorption by the chemically crosslinked PVA was 38.46 mg/g for Ni and 19.23 mg/g for Mn, which exhibits a higher level than adsorption by the radiation crosslinked PVA The results indicate that absorption capacity depends on the type of adsorbed metal, absorbent structure, and the crosslinking method employed.

  13. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting

    International Nuclear Information System (INIS)

    Qiu Jingyi; Wang Ziyue; Li Huibo; Xu Ling; Peng Jing; Zhai Maolin; Yang Chao; Li Jiuqiang; Wei Genshuan

    2009-01-01

    Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5-5.0. Furthermore, even in strong acidic (4.0 mol/L HNO 3 ) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.

  14. Experimental study on the basic characteristics of a novel silica-based CMPO adsorbent

    International Nuclear Information System (INIS)

    Wei, Yuezhou; Arai, Tsuyoshi; Zhang, Anyun; Hoshi, Harutaka; Koma, Yoshikazu; Watanabe, Masayuki

    2002-01-01

    In order to establish the extraction chromatography process for recovery of minor actinides from HLLW with a novel silica-based CMPO (octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide) adsorbent, some basic characteristics, such as dissolving behavior of CMPO from the adsorbent, thermal decomposition of the adsorbent and treatment method of organic wastes, were examined. It was found that the leakage of CMPO from the adsorbent in contact with an aqueous solution is the result of the solubility of CMPO in the solution. About 40-50 ppm of CMPO constantly leaked into the effluent from the adsorbent packed column using 0.01 M (M=mol/dm 3 ) HNO 3 as a mobile phase. The leakage of CMPO from the adsorbent could be effectively depressed with the utilization of the aqueous solution saturated by CMPO. TG-DTA thermal analysis results indicate that CMPO in the adsorbent decomposed at 20degC and the SDB-polymer at 290degC. The impregnated CMPO could be completely dissolved out from the support with acetone. Furthermore, the organic wastes such as CMPO, oxalic acid and DTPA those come from the elution procedure could be effectively decomposed with the Fenton reagent. (author)

  15. Molecular Adsorbent Recirculating System Can Reduce Short-Term Mortality Among Patients With Acute-on-Chronic Liver Failure-A Retrospective Analysis.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Hüsing-Kabar, Anna; Wilms, Christian; Maschmeier, Miriam; Kabar, Iyad; Torner, Josep; Pavesi, Marco; Arroyo, Vicente; Banares, Rafael; Schmidt, Hartmut H J

    2017-10-01

    Acute-on-chronic liver failure is associated with numerous consecutive organ failures and a high short-term mortality rate. Molecular adsorbent recirculating system therapy has demonstrated beneficial effects on the distinct symptoms, but the associated mortality data remain controversial. Retrospective analysis of acute-on-chronic liver failure patients receiving either standard medical treatment or standard medical treatment and molecular adsorbent recirculating system. Secondary analysis of data from the prospective randomized Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial by applying the recently introduced Chronic Liver Failure-criteria. Medical Departments of University Hospital Muenster (Germany). This analysis was conducted in two parts. First, 101 patients with acute-on-chronic liver failure grades 1-3 and Chronic Liver Failure-C-Organ Failure liver subscore equals to 3 but stable pulmonary function were identified and received either standard medical treatment (standard medical treatment, n = 54) or standard medical treatment and molecular adsorbent recirculating system (n = 47) at the University Hospital Muenster. Second, the results of this retrospective analysis were tested against the Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial. Standard medical treatment and molecular adsorbent recirculating system. Additionally to improved laboratory variables (bilirubin and creatinine), the short-term mortality (up to day 14) of the molecular adsorbent recirculating system group was significantly reduced compared with standard medical treatment. A reduced 14-day mortality rate was observed in the molecular adsorbent recirculating system group (9.5% vs 50.0% with standard medical treatment; p = 0.004), especially in patients with multiple organ failure (acute-on-chronic liver failure grade 2-3). Concerning the

  16. Adsorbed Organic Material and Its Control on Wettability

    DEFF Research Database (Denmark)

    Matthiesen, Jesper; Hassenkam, Tue; Bovet, Nicolas Emile

    2017-01-01

    salinity. Here we quantified the response of sandstone core plug material in its preserved state (i.e., after storage in kerosene) and after the same core plug material was treated with ethanol and ozone to remove adsorbed organic compounds. We used the chemical force microscopy (CFM) mode of atomic force...... surfaces in artificial seawater (ASW; 35,600 ppm) and in ASW diluted to ∼1,500 ppm (ASW-low). Both before and after the ethanol/ozone treatment, and for both the alkane and the carboxylate functionalized tips, the adhesion was lower in ASW diluted to ∼1,500 ppm than in ASW. For both alkane and carboxylate...... ethanol/ozone treatment, to be a result of the loss of the organic material that was originally adsorbed on these surfaces, which adds to the charge density and thereby to the salinity dependent EDL force. Investigating the same area on the same pore surface, before and after removal of the organic...

  17. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  18. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    International Nuclear Information System (INIS)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-01-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn_6O_4(OH)_4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn_6O_4(OH)_4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn_6O_4(OH)_4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)_3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO_2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ("2C) and monodentate ("1V) geometries, at the expense of the present bidentate mononuclear ("2E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn_6O_4(OH)_4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the "2C and "1V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn_6O_4(OH)_4 • Sn_6O_4(OH)_4 transformation to SnO_2 after Cr(VI) reduction to Cr(III) • Strong Cr(III) sorption onto SnO_2 by formation of inner sphere complexes • Cr(III) sorption

  19. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri; Jeong, Sanghyun; Choi, Youngkwon; Vigneswaran, Saravanamuthu

    2016-01-01

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  20. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri

    2016-11-29

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  1. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Foti, G.; Nagy, L.G.; Moravcsik, G.; Schay, G.

    1981-01-01

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22 Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  2. Eco-friendly waste water treatment by cow dung powder (adsorption studies of Cr(III), Cr(VI) and Cd(II) using tracer technique)

    International Nuclear Information System (INIS)

    Bagla, Hemlata; Barot, Nisha

    2010-01-01

    A rising quality of life with high rate of resource consumption have an unintended and negative impact on environment, generating waste hulk with far beyond handling capacities of mankind. The threat of water famine looms greatest as our rivers are poisoned due to urbanization and industrialization. To combat against water pollution and to find sustainable solution for the same, globally, we have embraced Green chemistry approach which is one of the Waste Management and Treatment Strategies. In the present investigation we have studied different parameters for the effective adsorption of heavy metal pollutant employing dry cow dung powder as a natural adsorbent. (author)

  3. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  4. Adsorption behavior of radionuclide in water containing sea salts

    International Nuclear Information System (INIS)

    Kani, Yuko; Kamoshida, Mamoru; Asano, Takashi; Tamata, Shin

    2012-01-01

    Waste water caused by the Fukushima Dai-ichi Nuclear Reactor accident contains high level radioactive material with impurities of sea water origin, such as chloride, sodium and magnesium. These impurities have the potential to inhibit the adsorption reaction of radioactive cesium and strontium to adsorbents. We have studied adsorption behavior of radioactive cesium and strontium to adsorbents to measure distribution coefficients (Kd) in the condition of different sea water concentrations. For cesium adsorption, the dependence of Kd on the sea water concentration was affected by the adsorption mechanism of adsorbent; the adsorbents which adsorbed cesium by intercalation showed less dependence of Kd on the sea water concentration, while those adsorbed cesium by ion exchange had smaller Kd with increasing the sea water concentration. For strontium adsorption, Kd decreased as the sea water concentration increased for both adsorbents which adsorbed strontium by intercalation and by ion exchange. The inhibition of intercalation and ion exchange reaction of strontium by calcium ion, that exists high concentration in sea water (400 ppm) and similar hydrated ionic radius with strontium, will cause the decrease of Kd for strontium in the sea water with higher concentration. (author)

  5. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  6. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Tusseyev, T.

    2004-01-01

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  7. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  8. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  9. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  10. Iodine removal adsorbent histories, aging and regeneration

    International Nuclear Information System (INIS)

    Hunt, J.R.; Rankovic, L.; Lubbers, R.; Kovach, J.L.

    1976-01-01

    The experience of efficiency changes with life under various test conditions is described. The adsorbents were periodically removed from both standby and continuously operating systems and tested under various test methods for residual iodine adsorption efficiency. Adsorbent from several conventional ''sampler'' cartridges versus the bulk adsorbent was also tested showing deficiency in the use of cartridge type sampling. Currently required test conditions were found inadequate to follow the aging of the adsorbent because pre-equilibration of the sample acts as a regenerant and the sample is not tested in the ''as is'' condition. The most stringent test was found to be the ambient temperature, high humidity test to follow the aging of the adsorbent. Several methods were evaluated to regenerate used adsorbents; of these high temperature steaming and partial reimpregnation were found to produce adsorbents with near identical properties of freshly prepared adsorbents

  11. Application of a new adsorbent for fluoride removal from aqueous solutions

    International Nuclear Information System (INIS)

    Srivastav, Arun Lal; Singh, Prabhat K.; Srivastava, Varsha; Sharma, Yogesh C.

    2013-01-01

    Highlights: • A new adsorbent has been prepared. • The adsorbent is non-toxic and easy to synthesize. • HBO 1 has displayed best capacity for the removal of fluoride. • Unlike most adsorbents, HBO 1 is suitable for the removal of fluoride from water. • The process of removal has been optimized. -- Abstract: Hydrous bismuth oxides (HBOs) have been investigated as a possible adsorbent for fluoride removal from water. Apart from bismuth trioxide (Bi 2 O 3 ) compound, three additional HBOs, named as HBO 1 , HBO 2 , and HBO 3 were synthesized in the laboratory and examined for their relative potentials for fluoride removal from aqueous solutions. HBO 1 was observed to have highest fluoride removal at 10 mg/L initial concentration in aqueous environment. Among competitive anions, sulfate and chloride affect the fluoride removal by HBO 1 more adversely than bicarbonate. Characterization of HBOs using X-ray diffraction (XRD) pattern analyses indicated crystalline structures, and the broad chemical composition of materials showed successive increase of Bi(OH) 3 from HBO 1 to HBO 3 , with decrease of BiOCl in the same order. Fourier Transform Infrared (FTIR) spectroscopy analyses indicated presence of Bi-O bond and successively increasing number of peaks corresponding to OH ion from HBO 1 to HBO 3 . Scanning Electron Microscopic (SEM) images of HBOs show rough and porous structure of the materials. Presence of higher proportion of chloride compound in HBO 1 with respect to others appears to be the factor responsible for its better performance in fluoride removal from aqueous solutions

  12. Development of Composite Adsorbents for LLW Treatment and Their Adsorption Properties for Cs and Sr - 13127

    Energy Technology Data Exchange (ETDEWEB)

    Susa, Shunsuke; Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Sendai, 980-8579 (Japan); Ito, Yoshiyuki; Saito, Yasuo [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirone, Naka-gun, Ibaraki, 319-1195 (Japan)

    2013-07-01

    In this study, the composite adsorbents (KCoFC-NM (NM: natural mordenite), KCoFC-SG (SG: porous silica gel), AMP-SG and so on) were prepared by impregnation-precipitation methods. As for the distribution properties, the largest K{sub d,Cs} value of 3.8 x 10{sup 4} cm{sup 3}/g was obtained for KCoFC-SG (Davi.) composite. KCoFC-SG (NH, MB5D) and T-KCFC also had relatively large K{sub d,Cs} values above 1.0 x 10{sup 4} cm{sup 3}/g. The uptake rate of Cs{sup +} ions was examined by batch method. KCoFC-SG (NH, MB5D) and AMP-SG (Davi.) had relatively large uptake rate of Cs{sup +}, and the uptake attained equilibrium within 1 h. The maximum uptake capacity of Cs{sup +} ions was estimated to be above 0.5 mmol/g for KCoFC-NM and KCoFC-CP composites. KCoFC-X composite had a relatively large uptake capacity of Cs{sup +} ions (0.23 mmol/g > 0.17 mmol/g (T-KCFC)) and this composite also had a selectivity towards Sr{sup 2+} ions; KCoFC-X is effective adsorbent for both Cs{sup +} and Sr{sup 2+} ions. The largest value of K{sub d,Sr} was estimated to be 218 cm{sup 3}/g for titanic acid-PAN. Titanic acid-PAN had the largest uptake rate of Sr{sup 2+} ions, and the uptake attained equilibrium within 8 h. Adsorbability of other nuclides was further examined by batch method. All adsorbents had adsorbability for Rb{sup +} and RuNO{sup 3+} ions. KCoFC-SG (NH), KCoFC-CP and T-KCFC had higher selectivity towards Cs{sup +} than other adsorbents; these adsorbents had adsorbability to Cs{sup +} ions even in the presence of Ba{sup 2+}, Ca{sup 2+} and Mg{sup 2+} ions. The separation factor of K{sub d,Sr}/K{sub d,Ba} for titanic acid-PAN was about 1, indicating that the K{sub d,Sr} for titanic acid-PAN tends to decrease with Ba{sup 2+} concentration. As for the breakthrough properties, the largest 5 % breakpoint and 5 % breakthrough capacity of Cs{sup +} ions were estimated to be 47.1 cm{sup 3} and 0.07 mmol/g for the column of KCoFC-SG (NH), respectively. The order of 5 % breakthrough capacity

  13. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride Hybrid Material as an Adsorbent for Water Purification

    Directory of Open Access Journals (Sweden)

    Guido Panzarasa

    2018-01-01

    Full Text Available Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride (P(E-alt-MA. Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye for a wide pH range (from pH 2 to 12 and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA, the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  14. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  15. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  16. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 2

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    The desorption of uranium from the granular titanium-activated carbon composite adsorbent (concentration of uranium: 25.5 mg/1-Ad), which adsorbed uranium from natural sea water, was examined by the column process with acidic eluent at room temperature. The column operation was able to be carried out without destruction of the granular adsorbent by the generation of the carbon dioxide, and free from disturbance of the eluent flow by precipitate of calcium sulfate dihydrate with sulfuric acid eluent. The amount of acid consumption by the adsorbent was 0.87 eq/1-Ad. The alkaline earth metals were eluted in the range of elution volume below 2 1/1-Ad, whereas uranium, iron, and titanium were eluted above 2 1/1-Ad. Therefore, uranium was separable from the alkaline earth metals which were adsorbed in the most quantity in the adsorbent. In the range of elution volume 2 to 12 1/1-Ad, the percentage of desorbed uranium and the concentration ratio of uranium were 80 %, 680 with 0.5 N sulfuric acid, and 59 %, 490 with 0.5 N hydrochloric acid, respectively. The percentage of dissolved titanium (DTI) was 0.3 % with 0.5 N sulfuric acid, 0.26 % with 0.5 N hydrochloric acid in the same range. (author)

  17. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  18. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  19. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  20. STATISTICAL INVESTIGATION OF ADSORPTION OF TWO REACTIVE TEXTILE DYES BY VARIOUS ADSORBENTS

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    2002-03-01

    Full Text Available Textile industry, in which uses the dyestuffs containing coloured and complex chemical compounds, is both water consumer and water pollutant. The removal of these compounds from the wastewaters is one of the most important problems in the textile industry. In this study, the adsorption of two reactive dyes (Red Px and Yellow P onto Aşkale and Balkaya lignites, Bensan clay and powdered active carbon (PAC from aqueous solution was statistically investigated. The adsorption time, dye concentration, solid/liquid ratio and mixing rate were chosen as parameters. The effects of these parameters on the amount of dye adsorbed by the adsorbents were determined. The results obtained have been statistically evaluated by using the stepwise method and SPSS Sortware version (9.1. The experimental observations and statistical evaluations shown that the effective parameters on the adsorption are equilibrium dye concentration and solid/liquid ratio. It was found that the adsorptive behaviours of both lignites and clay are similar to each other, but powdered active carbon displays different adsorptive behaviour. Finally, the empirical equations showing the relation between amount of dye adsorbed and the effective parameters were developed.

  1. Separation of Co(II) from dilute aqueous solutions by precipitate and adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Aziz, M.; Benyamin, K.; Shakir, K.; Atomic Energy Establishment, Cairo

    1993-01-01

    Ion, precipitate and adsorbing colloid flotation of cobalt(II) have been investigated at different pH values, using N-dodecylpyridinium chloride (DPCl). A strong cationic surfactant, and sodium lauryl sulfate (NaLS), a strong anionic surfactant, as collectors. In case of adsorbing colloid flotation, hydrous manganese dioxide was used as an adsorbent. The precipitate flotation curves experimentally obtained with the two tested collectors were compared with the corresponding theoretical one calculated from the data published for Co(II) hydrolysis. The effects of the collector concentration, ageing of the water-MnO 2 -Co(II) system, bubbling time period, cobalt(II) concentration and foreign salts on the percent removal of Co(II) by adsorbing colloid flotation using DPCl as collector were determined. Removals approaching 100% could be achieved under the optimum conditions. (author) 44 refs.; 6 figs

  2. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  3. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  4. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    Wajima, Takaaki; Munakata, Kenzo; Uda, Tatsuhiko

    2012-01-01

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn 2 O 4 ) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn 2 O 4 ) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn 2 O 4 , can be synthesized from LiOH·H 2 O and Mn 3 O 4 , from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ΔG 0 , ΔH 0 and ΔS 0 , indicate that adsorption is an endothermic and spontaneous process. (author)

  5. The obtainment of carbon adsorbents and their compositions for cleaning industrial wastewater

    OpenAIRE

    JUMAEVA DILNOZA JURAYEVNA; TOIROV OLIMJON ZUVUROVICH

    2016-01-01

    The novel coal adsorbents based on Angren coal have been elaborated. They are the following: a) composite material obtained by addition in coal carbonates of alkaline-earth metals, allowing to rise sorption capacity adsorbent by 70-80% and use it can be used for sewage purification from some ions of inorganic impurities and decreasing of the water rigidity from 16.4 to 0.5 mg∙eq/l; b) heat-treated at 550 °C, with hydrophobic properties (wetting angle α = 99°), a porosity of 30%, capacity to k...

  6. Determination of adsorbable organic halogens in surface water samples by combustion-microcoulometry versus combustion-ion chromatography titration.

    Science.gov (United States)

    Kinani, Aziz; Sa Lhi, Hacène; Bouchonnet, Stéphane; Kinani, Said

    2018-03-02

    Adsorbable Organic Halogen (AOX) is an analytical parameter of considerable interest since it allows to evaluate the amount of organohalogen disinfection by-products (OXBPs) present in a water sample. Halogen speciation of AOX into adsorbable organic chlorine, bromine and iodine, respectively AOCl, AOBr and AOI, is extremely important since it has been shown that iodinated and brominated organic by-products tend to be more toxic than their chlorinated analogues. Chemical speciation of AOX can be performed by combustion-ion chromatography (C-IC). In the present work, the effectiveness of the nitrate wash according to ISO 9562 standard method protocol to eliminate halide ions interferences was firstly examined. False positive AOX values were observed when chloride concentration exceeded 100 ppm. The improvements made to the washing protocol have eliminated chloride interference for concentrations up to 1000 ppm. A C-IC method for chemical speciation of AOX into AOCl, AOBr, and AOI has been developed and validated. The most important analytical parameters were investigated. The following optimal conditions were established: an aqueous solution containing 2.4 mM sodium bicarbonate/2.0 mM sodium carbonate, and 2% acetone (v/v) as mobile phase, 2 mL of aqueous sodium thiosulfate (500 ppm) as absorption solution, 0.2 mL min -1 as water inlet flow rate for hydropyrolysis, and 10 min as post-combustion time. The method was validated according to NF T90-210 standard method. Calibration curves fitted through a quadratic equation show coefficients of determination (r 2 ) greater than 0.9998, and RSD less than 5%. The LOQs were 0.9, 4.3, and 5.7 μg L -1 Cl for AOCl, AOBr, and AOI, respectively. The accuracy, in terms of relative error, was within a ± 10% interval. The applicability of the validated method was demonstrated by the analysis of twenty four water samples from three rivers in France. The measurements reveals AOX amounts above 10

  7. Method of removing tritium in exhaust water in a nuclear equipment

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, T

    1976-05-12

    A method is claimed to increase the efficiency of removing tritium from waste water through adsorption treatment. Steam is produced by heating waste water containing tritium, and it is passed through a tube filled with an adsorbent such as activated alumina, silica gel or zeolite. When a control limiting value is reached by the concentration of tritium within the steam, the flow of steam is stopped, and the adsorption tube is removed from the path of steam flow. Thereafter, another adsorption tube containing the afore-said adsorbent is provided in the steam flow path, and the steam is then allowed to flow again.

  8. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    Science.gov (United States)

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  9. Application of neem (Azadirachta indica) as biological pesticides in cocoa seed (Theobroma cacao) storage using various local adsorbent media

    Science.gov (United States)

    Mardiyani, S. A.; Sunawan; Pawestri, A. E.

    2018-03-01

    Cocoa seeds are recalcitrant (the water content is more than 40%) that require special handling. The use of adsorbent media to reduce the decrease in the quality of cocoa seeds and extend their shelf life in this storage has not been widely done. Local adsorbent media such as sawdust, sand and ash have the potential to maintain the viability of cocoa seeds. The objective of this research was to determine the interaction of the application of neem (Azadirachta indica) as biological pesticides and the use of various natural adsorbent media in the storage of cocoa seeds (Theobroma cacao). It was an experimental study with a factorial design composed of three factors. The first factor was the medium adsorbent type for the storage of cocoa seed, which consists of three levels (river sand, ash, and sawdust). The second factor was the concentration of neem leaves for pre-storage treatment with three levels (10, 20, and 30%). The third factor was the storage time (10 and 20 days). The results of the study indicated that the combination of the three factors showed a significant interaction in the height of the plant and the diameter of the stem of the seedling at 28 days after sowing. The fresh weight of the seedlings of the seeds that were stored in ash media gave a better result than the seedlings of seeds that had been stored in the river sand and the sawdust as adsorbent media. The application of 20% extract of neem leaves gave the best influence for the seeds that were stored for 20 days.

  10. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  11. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  12. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1980-01-01

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  13. Phosphate adsorption on aluminum-impregnated mesoporous silicates : surface structure and behavior of adsorbents

    Science.gov (United States)

    Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell

    2004-01-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...

  14. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  15. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    Energy Technology Data Exchange (ETDEWEB)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  16. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    International Nuclear Information System (INIS)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-01-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K d s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K d s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K d s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K d s and it was used for

  17. Mine water treatment in Donbass

    Energy Technology Data Exchange (ETDEWEB)

    Azarenkov, P A; Anisimov, V M; Krol, V A

    1980-10-01

    About 2,000,000 m$SUP$3 of mine water are discharged by coal mines yearly to surface waters in the Donbass. Mine water in the region is rich in mineral salts and suspended matter (coal and rock particles). The DonUGI Institute developed a system of mine water treatment which permits the percentage of suspended matter to be reduced to 1.5 mg/l. The treated mine water can be used in fire fighting and in dust suppression systems in coal mines. A scheme of the water treatment system is shown. It consists of the following stages: reservoir of untreated mine water, chamber where mine water is mixed with reagents, primary sedimentation tanks, sand filters, and chlorination. Aluminium sulphate is used as a coagulation agent. To intensify coagulation polyacrylamide is added. Technical specifications of surface structures in which water treatment is carried out are discussed. Standardized mine water treatment systems with capacities of 600 m$SUP$3/h, with 900, 1200, 1500, 1800 and 2100 m$SUP$3/h capacities are used. (In Russian)

  18. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  19. Green Adsorbents for Wastewaters: A Critical Review

    Science.gov (United States)

    Kyzas, George Z.; Kostoglou, Margaritis

    2014-01-01

    One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i) dyes; (ii) heavy metals; (iii) phenols; (iv) pesticides and (v) pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i) agricultural sources and by-products (fruits, vegetables, foods); (ii) agricultural residues and wastes; (iii) low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources). These “green adsorbents” are expected to be inferior (regarding their adsorption capacity) to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc.), but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful) topics such as: (i) adsorption capacity; (ii) kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes) and (iii) critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry) with economic analysis and perspectives of the use of green adsorbents. PMID:28788460

  20. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    Science.gov (United States)

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  1. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    Science.gov (United States)

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  2. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    International Nuclear Information System (INIS)

    Shin, Eun-Jae; Lauve, Alexander; Carey, Maxwell; Bukovsky, Eric; Ranville, James F.; Evans, Robert J.; Herring, Andrew M.

    2008-01-01

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully

  3. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Jae [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)], E-mail: eshin@mines.edu; Lauve, Alexander; Carey, Maxwell [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Bukovsky, Eric; Ranville, James F. [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Evans, Robert J.; Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2008-03-15

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully.

  4. Neutron scattering from adsorbed species

    International Nuclear Information System (INIS)

    Shuwang An

    1998-01-01

    Neutron reflection has been used to investigate the structure of layers of water-soluble diblock copolymers poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate (poly(DMAEMA-b-MMA)) (70 mol% DMAEMA, M n = 10k, 80 mol% DMAEMA, M n = 10k, and 70 mol% DMAEMA, M n = 20k) adsorbed at the air-liquid and solid-liquid interfaces. The surface tension behaviour of these copolymers at the air-liquid interface has also been investigated. The study of the structure of layers of poly(DMAEMA-b-MMA) adsorbed at the air-water interface forms the main part of the thesis. The surface structure, the effects of pH and ionic strength, and the effects of composition and molecular weight of the copolymers have been studied systematically. For the 70%-10k copolymer at pH 7.5, the adsorption isotherm shows that there is a surface phase transition. The concentration of copolymer at which the phase transition occurs is close to that at which micellar aggregation in the bulk solution also occurs. At low concentrations (below the CMC), the two blocks of the copolymer are approximately uniformly distributed in the direction normal to the interface and the layer is partially immersed in water. At high concentrations (above the CMC), the adsorbed layer has a cross-sectional structure resembling that expected for a micelle with the majority of the MMA blocks forming the core. The outer layers, comprising predominantly DMAEMA blocks, are not equivalent, being more highly extended on the aqueous side of the interface. The effects of pH and added electrolyte on the structure of layers of the 70%-10k copolymer show that the layered structure is promoted by any changes in the bulk solution that enhance the surface coverage but is inhibited by an increase in the fractional charge on the polyelectrolyte part of the copolymer. The effect of lowering the pH is to increase the positive charge on the weak polyelectrolyte block. Addition of electrolyte generally enhances the amount adsorbed and

  5. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  6. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, Fani; Kaprara, Efthimia [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos [Aristotle University of Thessaloniki, School of Physics, Department of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, Manassis, E-mail: manasis@eng.auth.gr [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn{sub 6}O{sub 4}(OH){sub 4}) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn{sub 6}O{sub 4}(OH){sub 4} for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn{sub 6}O{sub 4}(OH){sub 4} can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH){sub 3} precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO{sub 2}, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ({sup 2}C) and monodentate ({sup 1}V) geometries, at the expense of the present bidentate mononuclear ({sup 2}E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn{sub 6}O{sub 4}(OH){sub 4} in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the {sup 2}C and {sup 1}V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn{sub 6}O{sub 4}(OH){sub 4} • Sn{sub 6}O{sub 4}(OH){sub 4} transformation to SnO{sub 2} after Cr

  7. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.

    Science.gov (United States)

    Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar

    2012-06-01

    Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated

  8. Cu II Removal from Industrial Wastewater Using Low Cost Adsorbent

    Directory of Open Access Journals (Sweden)

    Salwa Hadi Ahmed

    2018-01-01

    Full Text Available Study the possibility of utilization of waste tires rubber ash (WTRA as a low-cost adsorbent and are available as a type of solid waste for the removal of copper ions from industrial wastewater. Depending on batch adsorption experiments, the effect of different parameters including pH, adsorbent dosage WTRA, contact time, initial concentration of the ion and shacking speed were studied. Results showed that the highest removal Cu+2 ions was 97.8% at pH equal to 6, 120 min contact time, dose WTRA 1.5 g/L, shacking speed 150 rpm. The experimental data were analyzed using the Freundlich and Langmuir isotherm models showed great compatibility with Langmuir model (R2=0.923. Adsorption kinetics was studied and the data was showed agree with Pseudo-first-order equation where the value of (kt=0.5115/min. The study also showed the possibility of using WTRA efficiently as adsorbent and low cost in the removal of copper ions from industrial waste water. DOI: http://dx.doi.org/10.25130/tjes.24.2017.17

  9. Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal

    Czech Academy of Sciences Publication Activity Database

    Angelova, R.; Baldíková, E.; Pospíšková, K.; Maděrová, Z.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 137, November (2016), s. 189-194 ISSN 0959-6526 Institutional support: RVO:60077344 Keywords : Sargassum horneri * brown seaweed * magnetic adsorbent * microwave synthesis * magnetic iron oxide Subject RIV: DJ - Water Pollution ; Quality Impact factor: 5.715, year: 2016

  10. Magnetically modified Posidonia oceanica biomass as an adsorbent for organic dyes removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Ashoura, N.; Maděrová, Z.; Pospíšková, K.; Baldíková, E.; Šafaříková, Miroslava

    2016-01-01

    Roč. 17, č. 2 (2016), s. 351-358 ISSN 1108-393X Institutional support: RVO:60077344 Keywords : Posidonia oceanica * Neptune balls * magnetic biomass * organic dyes * adsorbent Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.683, year: 2016

  11. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  13. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    Science.gov (United States)

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adsorption de l'eau dissoute dans les mélanges supercarburant-alcools en vue de leur stabilisation. Comparaison entre adsorbants classiques et résines échangeuses d'ions Adsorption of Dissolved Water in Premium-Fuel/Alcohol Blends with a View to Their Stabilization. Comparison Between Conventional Adsorbents and Ion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Bernasconi C.

    2006-11-01

    Full Text Available Une réponse possible au problème de la déstabilisation par démixtion des mélanges supercarburant-alcools est l'abaissement de leur teneur en eau par adsorption physique. La forte affinité pour l'eau des résines échangeuses d'ions de type polystyrène sulfonate permet d'envisager leur utilisation dans ce cas spécifique d'application. Le principal intérêt de ce nouveau matériau adsorbant est de pouvoir se régénérer avec des calories de bas niveau (100-120°C. Nous avons donc étudié, du point de vue capacité d'adsorption et cinétique d'adsorption, le comportement de cet adsorbant et comparé ses performances à celles d'adsorbants plus classiques tels que le silicagel, l'alumine et le tamis moléculaire 3 Å. Les formes ioniques de la résine mises en oeuvre sont les formes : K+, Na+ et Mg2+. Sur le plan de la capacité totale d'adsorption, la résine, quelle que soit sa forme ionique, présente des performances supérieures à celles de l'alumine et du silicagel. Seule la forme Mg2+ adsorbe autant d'eau que le tamis moléculaire. L'efficacité de la résine est sensible à la nature de l'alcool du mélange considéré et augmente selon la séquence méthanol A possible answer to the problem of destabilization by the segregation of premium-fuel/alcohol blends lies in decreasing their water content by physical adsorption. The strong affinity of water for ion-exchange resins of the polystyrene sulfonate type suggests their use for this specific application. The main advantage of this newadsorbent material is that it can be regenerated with low-level heat (100-120°C. We thus investigated the behavior of this adsorbent from the standpoint of its adsorption capacity and adsorption kinetics. Its performances were compared to those of more conventional adsorbents, such as silicagel, alumina and a 3Å molecular sieve. The ionic forms of the resin used are in the form of K+, Na+ and Mg2+. From the standpoint of total adsorption capacity

  15. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    Science.gov (United States)

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Use of activated carbon adsorption in conjunction with radiation treatment processes

    International Nuclear Information System (INIS)

    Dickson, L.W.; Lopata, V.J.; Toft-Hall, A.; Kremers, W.; Singh, A.

    1988-01-01

    This report presents the results of an assessment of the potential applications of combined adsorption-irradiation treatment processes. The rationale for the study was to determine whether the cost of radiation treatment could be reduced by concentrating target species on an adsorbent in the radiation field. Several different studies on adsorption-irradiation treatment were identified in the literature, and experimental work was done on both the conversion of sulphur dioxide to elemental sulphur, and the removal of trihalomethanes from water by adsorption on activated carbon and subsequent irradiation. Adsorption-irradiation treatment would appear to be less costly than irradiation alone for radiolytic decomposition of target species at low concentration in liquid streams, in the presence of high-surface-area, electrically insulating adsorbents. 116 refs

  17. Adsorption Studies of Heavy Metals by Low-Cost Adsorbents | Okoli ...

    African Journals Online (AJOL)

    In this study, removal of toxic metals Cr(VI) from artificially contaminated water has been investigated with the aim of detoxifying industrial effluents before their safe disposal onto land or into the river. Two low-cost natural adsorbents, Palm Kernel fiber and Coconut husks, were used to remove Cr(VI) ion from synthesized ...

  18. Preparation of Fly ash Based Adsorbents for Removal Active Red X-3B from Dying Wastewater

    Directory of Open Access Journals (Sweden)

    Li Jinping

    2016-01-01

    Full Text Available Fly ash with a large number of active sites can occur with the adsorbent chemical and physical adsorption, and therefore have a strong adsorption capacity. The original fly ash and raw fly ash compared to the physical and chemical properties to a significant change. On the fly ash in industrial water treatment application were outlined. The purpose is to focus on the modification methods of fly ash and comparison of raw fly ash and fly ash in the effect of dyeing wastewater. Single factor test method; select the appropriate modifier to study the dosage, pH, stirring time on the modification of adsorption properties of fly ash before and after. The results showed that the modified fly ash was better than the adsorption. Greatly improves on active red X-3B dye wastewater removal capacity, pH = 5, 6, dosage is 5g / L, the mixing time is 30min, COD removal rate reached 73.07%. This modified material can be used as adsorbent for pre-treating dying wastewater.

  19. Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Hedegård, Per; Heinz, T. F.

    1995-01-01

    a systematic theoretical treatment of this coupling process in the language of an electronic friction, which generates Langevin noise in the adsorbate center-of-mass degrees of freedom, while the electronic degrees of freedom are at a high temperature. Starting from an influence-functional path...

  20. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  1. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-01-01

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations

  2. Application of carbon nanotube technology for removal of contaminants in drinking water: A review

    International Nuclear Information System (INIS)

    Upadhyayula, Venkata K.K.; Deng, Shuguang; Mitchell, Martha C.; Smith, Geoffrey B.

    2009-01-01

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  3. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  4. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  5. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  6. Application of cryptocrystalline magnesite-bentonite clay hybrid for defluoridation of underground water resources: implication for point of use treatment

    Directory of Open Access Journals (Sweden)

    V. Masindi

    2017-09-01

    Full Text Available A new synthesis method was established to fabricate a nanocomposite material comprising of cryptocrystalline magnesite and bentonite clay that has high adsorption capacity for ionic pollutants. To synthesize the composite at 1:1 weight (g: weight (g ratio, a vibratory ball mill was used. Batch adsorption experiments were carried out to determine optimum conditions for fluoride adsorption. Parameters optimized included: time, dosage, concentration and pH. Optimum conditions for defluoridation were found to be 30 min of agitation, 0.5 g of dosage, 0.5:100 solid to liquid (S/L ratios and 25 mg L−1 of initial fluoride ions. Fluoride removal was independent of pH. The adsorption kinetics and isotherms were well fitted by pseudo-second-order and Langmuir models, respectively, indicating chemical and monolayer adsorption. Findings illustrated that the newly synthesized adsorbent was a promising adsorbent for the environmental pollution clean-up of excess fluoride in underground water and it can be used as a point source treatment technology in rural areas of South Africa and other developing countries.

  7. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  8. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  9. Coordination structure of adsorbed Zn(II) at Water-TiO2 interfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, G.; Pan, G.; Zhang, M.; Waychunas, G.A.

    2011-01-15

    The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO{sub 2} interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average {approx}4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.

  10. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  11. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 3D Oxidized Graphene Frameworks: An Efficient Adsorbent for Methylene Blue

    Science.gov (United States)

    Pandey, Abhishek; Deb, Madhurima; Tiwari, Shreya; Pawar, Pranav Bhagwan; Saxena, Sumit; Shukla, Shobha

    2018-04-01

    Extraordinary properties of graphene and its derivatives have found application in varied areas such as energy, electronics, optical devices and sensors, to name a few. Large surface area along with specialized functional groups make these materials attractive for removal of dye molecules in solution via adsorption. Industrial effluents contain large amounts of toxic chemicals resulting in pollution of water bodies, which pose environmental hazards in general. Here we report application of 3D oxidized graphene frameworks in the efficient removal of cationic dye molecules such as methylene blue via adsorption. Systematic parametric studies investigating the effect of the initial dye concentration, pH and contact time have been performed. Spectroscopic analysis of the filtrate suggests that tortuous paths in 3D oxidized graphene frameworks result in efficient removal of dye molecules due to enhanced interaction. The hydroxyl groups retained in these 3D oxidized graphene frameworks facilitate adsorption of the dye molecules while passing through the adsorbent. pH studies suggest that maximum removal efficiency for methylene blue was achieved at pH value of 9. The results suggest that these 3D oxidized graphene frameworks can be used for purification of large volumes of contaminated water from cationic dyes in waste water treatment plants.

  13. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    Nixon, P.G.; Tsukamoto, T.; Brose, D.J.

    2001-01-01

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  14. Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse.

    Science.gov (United States)

    de Abreu Domingos, Rodrigo; da Fonseca, Fabiana Valéria

    2018-05-15

    The oil refinery industry seeks solutions to reduce its water uptake and consumption by encouraging the reuse of internal streams and wastewater from treatment systems. After conventional treatment the petroleum refinery wastewater still contains a considerable quantity of recalcitrant organics and the adsorption on activated carbon is currently used in Brazilian refineries, although it is still expensive due to the difficulty of its regeneration. This study evaluated the use of adsorbent and ion exchange resins for the removal of organic matter from refinery wastewater after conventional treatment in order to verify its feasibility, applying successive resin regenerations and comparing the results with those obtained for activated carbon process. Adsorption isotherms experiments were used to evaluate commercial resins, and the most efficient was subjected to column experiments, where absorbance (ABS) and total organic carbon (TOC) removal were measured. The adsorption isotherm of the best resin showed an adsorptive capacity that was 55% lower than that of activated carbon. On the other hand, the column experiments indicated good removal efficiency, and the amount of TOC in the treated wastewater was as good as has been reported in the literature for activated carbon. The regeneration efficiency of the retained organics ranged from 57 to 94%, while regenerant consumption ranged from 12 to 79% above the amount recommended by the resin supplier for the removal of organic material from natural sources, showing the great resistance of these recalcitrant compounds to desorption. Finally, an estimate of the service life of the resin using intermediate regeneration conditions found it to be seven times higher than that of activated carbon when the latter is not regenerated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  16. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  17. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  19. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    Marano, M.; Torreiro, Y.

    2014-01-01

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  20. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  1. Transformation of adsorbed aflatoxin B1 on smectite at elevated temperatures

    Science.gov (United States)

    Aflatoxins cause liver damage and suppress immunity. Smectites can be used to reduce the bioavailability of aflatoxins through adsorption. To further reduce the toxicity of aflatoxins and to eliminate the treatments of aflatoxin-loaded smectites, degrading the adsorbed aflatoxin to nontoxic or less ...

  2. Nanofiber-Based Materials for Persistent Organic Pollutants in Water Remediation by Adsorption

    Directory of Open Access Journals (Sweden)

    Elise des Ligneris

    2018-01-01

    Full Text Available Fresh water is one of the most precious resources for our society. As a cause of oxygen depletion, organic pollutants released into water streams from industrial discharges, fertilizers, pesticides, detergents or consumed medicines can raise toxicological concerns due to their long-range transportability, bio-accumulation and degradation into carcinogenic compounds. The Stockholm Convention has named 21 persistent organic pollutants (POP so far. As opposed to other separation techniques, adsorption, typically performed with activated carbons, offers opportunities to combine low operation costs with high performance as well as fast kinetics of capture if custom-designed with the right choice of adsorbent structure and surface chemistry. Nanofibers possess a higher surface to volume ratio compared to commercial macro-adsorbents, and a higher stability in water than other adsorptive nanostructures, such as loose nanoparticles. This paper highlights the potential of nanofibers in organic pollutant adsorption and thus provides an up-to-date overview of their employment for the treatment of wastewater contaminated by disinfectants and pesticides, which is benchmarked with other reported adsorptive structures. The discussion further investigates the impact of adsorbent pore geometry and surface chemistry on the resulting adsorption performance against specific organic molecules. Finally, insight into the physicochemical properties required for an adsorbent against a targeted pollutant is provided.

  3. A Novel GH-92 Nano-Adsorbent Using the Sponge from the Persian Gulf for Lead and Cadmium Removal

    Directory of Open Access Journals (Sweden)

    Hossein Ghafourian

    2015-05-01

    Full Text Available Removing pollutants from aquatic ecosystems, especially from drinking water, has always been a major concern for scientists. Recent decades have witnessed the widespread application of natural compounds used as adsorbents to remove various pollutants. On the other hand, studies have proved nanotechnology to be an effective way of removing pollutants. A new type of sponge belonging to the family Demospongiae that has nano holes and is native to the Persian Gulf was investigated for the first time in the present study for use as an adsorbent to remove calcium, magnesium, cobalt, cadmium, and lead ions from water. For this purpose, adbsorption in sponges of different aggregate sizes, contact time, particle size, and ambient pH were measured. The results showed that the proposed sponge is capable of adsorbing the above-mentioned metal ions to various degrees. While small amounts of calcium, magnesium, and cobalt were adsorbed by this sponge, cadmium recorded a higher adsorption of 2.37 mg/g at pH=5. The highest adsorption level of 79.19 mg per gram of adsorbent was recorded for lead at a pH range of 4.5-5 with a mesh size of 230. This is the highest adsorption ever recorded for lead in the literature on selective separation of lead from the other ions.

  4. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    Science.gov (United States)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  5. pH-controlled quaternary ammonium herbicides capture/release by carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents: Mechanisms and application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Wang, Peng [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China); Shen, Zhigang [Zhong Nong Fa Seed Industry Group Co. Ltd, Beijing 600313 (China); Liu, Xueke; Zhou, Zhiqiang [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China); Liu, Donghui, E-mail: liudh@cau.edu.cn [Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193 (China)

    2015-12-11

    In our work, the pH-controlled magnetic solid phase extraction for the determination of paraquat and diquat was introduced firstly. Furthermore, to clarify the mechanism of carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents, we studied the pH-responsive supramolecular interaction between carboxymethyl-β-cyclodextrin (CM-β-CD) and paraquat/diquat by ultraviolet–visible (UV–vis) spectroscopy and nuclear magnetic resonance (NMR) experiment, and the energy-minimized structures were also obtained. Then, the functional group CM-β-CD was modified on the surface of magnetic materials to synthesize the adsorbent. The Fourier transform infrared spectrum (FT-IR) results proved the successful modification of CM-β-CD. Thus, this absorbent was applied for the determination of paraquat and diquat in water. Under the optimal condition, limits of detection (LODs) of paraquat and diquat were 0.8 μg L{sup −1} and 0.9 μg L{sup −1}, relative standard deviations (RSD) and recoveries varied 0.7–4.6% and 86.5–106.6%, respectively. Good recoveries (70.2–100.0%) and low RSD (1.7–9.6%) were achieved in analyzing spiked water samples. Furthermore, with the capillary electrophoresis (CE) as the analyser, the whole analytical process did not need the attendance of organic solvents. - Highlights: • The carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents were synthesized. • The adsorbents could capture or release quaternary ammonium herbicides by changing pH. • The adsorbents were applied in the analysis of real water samples. • There is no attendance of organic solvents in the whole analysis process.

  6. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  7. Influence of TiO{sub 2} Surface Properties on Water Pollution Treatment and Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Min [Southwest Univ. of Science and Technology, Mianyang (China)

    2013-03-15

    The titania surface showed different characteristics depending on the charge of the dye molecules. Compared with the MB molecules, the negatively charged MO molecules strongly adsorbed on the titania surface. Furthermore, the decomposition kinetics of the dye molecules by the photocatalytic activity also deepened with the charge of the dye molecules. The relation between the UV irradiation time and the molar ratio of the decomposed dye molecules followed the Avrami equation. According to the results of the analysis by using the Avrami equation, the MO molecules were decomposed on the titania particle surface. In contrast, the MB molecules were decomposed in the aqueous solution. The difference in kinetics was related to the interaction of the dye molecules and the titania surface. These preferential adsorption and decomposition characteristics will improve its applications in water pollution treatment.

  8. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Science.gov (United States)

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  9. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  10. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  11. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    Science.gov (United States)

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  12. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  13. Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent

    Science.gov (United States)

    Yang, Yanju; Wang, Juanjuan; Qian, Xiaoqing; Shan, Yuhua; Zhang, Haipeng

    2018-01-01

    Excess phosphate discharge into water bodies can lead to severe eutrophication. Adsorption has been considered as one of the most effective approaches for phosphate removal and recovery. A new aminopropyl-functionalized mesoporous carbon CMK-3 (denoted as APTMS-CMK-3) was prepared and the materials were used as adsorbents for the removal of phosphate in water. The structure, functional groups and surface charge of the materials were characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption-desorption, elemental analysis, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and zeta potential measurements. The effects of contact time, initial phosphate concentration, solution pH, coexisting anions and dissolved humic acid were studied. The adsorption capacity of APTMS-CMK-3 was 38.09 mg g-1 at the equilibrium concentration of 49.06 mg L-1, and the adsorption data were well fitted with the Freundlich model. As for the reuse of APTMS-CMK-3, a relatively stable adsorption performance was observed after five adsorption-desorption cycles. Therefore, the way of grafting aminopropyl groups on the CMK-3 efficiently enhanced the capability for phosphate adsorption, indicating that it could be used as potential adsorbents for the removal of phosphate in water.

  14. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039 (Turkey); Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri 38039 (Turkey); Ozdemir, Nalan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey)

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L{sup −1} and 8.8 μg L{sup −1}, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. - Highlights: • The synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers is reported. • The nanoflowers were utilized for solid phase microextraction of

  15. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water

    Directory of Open Access Journals (Sweden)

    Mahboubeh Saeidi

    2016-12-01

    Full Text Available Methoxy polyethylene glycol modified magnetite nanoparticles (PEGMNs were synthesized and characterized by scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, and X-ray diffraction (XRD. The adsorption of diazinon onto PEGMNs was investigated by UV-Vis spectrophotometry at 236 nm, through batch experiments. The effects of adsorbent dosage, solution pH, contact time, solution temperature and water impurities on the adsorption of diazinon onto PEGMNs were investigated. The process of adsorption was increased rapidly in the first contact period of 10 min. The adsorption at equilibrium (qe was found to increase with increasing pH. The results of diazinon removal at various PEGMNs dosages demonstrated that the optimum dose of PEGMNs was 1mg. The amount of adsorption of diazinon at equilibrium increased with an increasing temperature from 15°C to 45°C that indicateds an endothermic process. Therefore, PEGMNs were used as an efficient absorbent for the removal of diazinon.

  16. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2009-01-01

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  17. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    Science.gov (United States)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  18. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  19. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  20. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents

    International Nuclear Information System (INIS)

    Lin, Ligang; Wang, Andong; Dong, Meimei; Zhang, Yuzhong; He, Benqiao; Li, Hong

    2012-01-01

    Graphical abstract: Membrane adsorption process is proposed for sulfur removal. Three-dimensional network structure is key to fulfill adsorption function of MMMs, which adsorption/desorption behavior is markedly related with binding force with sulfur molecules. Highlights: ► Membrane adsorption process is proposed for sulfur removal. ► Three-dimensional network structure of MMMs is key to fulfill adsorption function. ► Adsorption/desorption behavior is markedly related with binding force. - Abstract: A novel membrane adsorption process was proposed for the sulfur removal from fuels. The mixed matrix membranes (MMMs) adsorbents composed of polyimide (PI) and various Y zeolites were prepared. By the detailed characterization of FT-IR, morphology, thermal and mechanical properties of MMMs adsorbents, combining the adsorption and desorption behavior research, the process–structure–function relationship was discussed. Field-emission scanning electron microscope (FESEM) images show that the functional particles are incorporated into the three-dimensional network structure. MMMs adsorbents with 40% of zeolites content possess better physical properties, which was confirmed by mechanical strength and thermo stability analysis. Influence factors including post-treatment, content of incorporated zeolites, adsorption time, temperature, initial sulfur concentration as well as sulfur species on the adsorption performance of MMMs adsorbents have been evaluated. At 4 wt.% zeolites content, adsorption capacity for NaY/PI, AgY/PI and CeY/PI MMMs adsorbents come to 2.0, 7.5 and 7.9 mg S/g, respectively. And the regeneration results suggest that the corresponding spent membranes can recover about 98%, 90% and 70% of the desulfurization capacity, respectively. The distinct adsorption and desorption behavior of MMMs adsorbents with various functional zeolites was markedly related with their various binding force and binding mode with sulfur compounds.

  1. Natural adsorbents of dyes from aqueous solution

    Science.gov (United States)

    Rahmani, Meryem; El Hajjaji, souad; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Contamination of natural waters is a current environmental problem and lot of work has been done to find methods for its, prevention and remediation such as ionic exchange, adsorption on active carbon, filtration, electrolysis, biodegradation …etc. Adsorption is one of the most applied methods according to its effectiveness and easy management. Some adsorbents with good properties such as active alumina, zeolites, crop residues … etc, are suitable to substitute usual active carbon. This study aimed at the removal of dyes using oil shale as natural support, and its optimization by factorial experiment. Three factors were considered namly:pollutant concentration, pH and weight of the adsorbent. Tests have been performed with cationic and anionic dyes. Experimental results show that pseudo-first-order kinetic model provided the best fit to the experimental data for the adsorption by the oil shale. Langmuir, Freundlich and Temkin isotherm models were tested to fit experimental data, the adsorption equilibrium was well described by Freundlich isotherm for methylorange and Temkin for methyl blue. Analysis were completed by oil shale characterization educing XRD, IR, XRF techniques, and cationic exchange capacity.

  2. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    Science.gov (United States)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  3. Isotopic exchange of 65Zn with stable Zn adsorbed on reference clay minerals

    International Nuclear Information System (INIS)

    Bourg, A.C.M.; Filby, R.H.

    1976-01-01

    For reference clays of low organic content, Zn adsorbed on the clay minerals is in kinetic equilibrium with 65 Zn in solution. Thus the specific activity approach applied to the transport of 65 Zn(II) at the water-reference clay interface is intrinsically valid. (author)

  4. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  5. Zeolites for nitrosamine and pharmaceutical removal from demineralised and surface water: Mechanisms and efficacy

    KAUST Repository

    De Ridder, David J.; Verberk, J. Q J C; Heijman, Sebastiaan G J; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Zeolites with a high Si/Al ratio can be used as selective adsorbents in water treatment, targeting organic micropollutants which are removed poorly with activated carbon. Due to size exclusion, many Natural Organic Matter (NOM) components cannot

  6. Arsenic adsorption in pre-treatment natural zeolite with magnesium oxides

    International Nuclear Information System (INIS)

    Mejia Z, F.; Valenzuela G, J. L.; Aguayo S, S.; Meza F, D.

    2009-01-01

    A methodology was developed to modify a natural zeolite (chabazite) with magnesium oxide in order to remove arsenic (As +5 ) from water for human consumption. It is proposed a magnesium oxide while regarded as an efficient adsorbent for removing metals in water. X-ray diffraction analyses show significant changes in the chabazite due to the presence of oxides and amorphous hydroxides incorporated during the pre-treatment. Experimental design results show an efficiency greater than 90% of As +5 adsorbed in five minutes. The results indicate that the most significant variables affecting the adsorption of As +5 are the initial concentration of As and the solid/liquid ratio. Experimental data fitted better to Freundlich isotherm with a 20.17 mg/g adsorption capability. (Author)

  7. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  8. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  9. Treatment and Recycling of the Process Water in Iron Ore Flotation of Yuanjiacun Iron Mine

    Directory of Open Access Journals (Sweden)

    Wen-li Jiang

    2017-01-01

    Full Text Available Coagulating sedimentation and oxidation treatment of process water in iron ore flotation of Yuanjiacun iron mine had been studied. The process water of this mine carried residual polyacrylamide (PAM, poly(diallyldimethylammonium chloride (PDADMAC, and Ca2+ from the flotation and caused decrease of the iron flotation recovery or grade of the concentrate. The studies on high-intensity magnetic separation (HIMS tailings for coagulating sedimentation showed that the settling performance of coagulant (named CYH was better than that of PDADMAC. The analyses of FTIR spectra and zeta potential demonstrated that CYH is adsorbed mainly through electrostatic attraction onto HIMS tailings. Sodium hypochlorite was adopted to oxidize the residual organics in tailings wastewater. When sodium hypochlorite is at the dosage of 1.0 g/L, reaction temperature is of 20°C, and reaction time is of 30 minutes, the removal rates of PAM, COD, and Ca2+ were 90.48%, 83.97%, and 85.00%, respectively. Bench-scale flotation studies on the treated tailings wastewater indicated that the iron recovery and grade of concentrate were close to those of freshwater.

  10. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K; Yuhara, J; Ishigami, R [Nagoya Univ. (Japan). School of Engineering; and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  11. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

    Directory of Open Access Journals (Sweden)

    Élise Euvrard

    2016-08-01

    Full Text Available In this study, a polymer, prepared by crosslinking cyclodextrin (CD by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH and three alkylphenols (AP, the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent.

  12. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  13. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  14. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  15. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Furusaki, Shintaro.

    1987-01-01

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  16. Evaluation of Macronet polymeric adsorbents for removal of PAHs from contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Lao, C.; Farran, A.; Cortina, J.L.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent the largest group of compounds that are mutagenic, carcinogenic, and teratogenic and are included in the priority pollutants lists. Despite their widespread distributions, PAHs can be ultimately deposited and persisted in bed sediments in the aquatic system. This is due largely to the fact that most PAHs sorb strongly to sediments because of their high hydrophobicity, and are resistant to bacterial degradation under anoxic environment. When environmental conditions become favourable PAHs will be released to the overlying water as a long-term source and pose potential threat to water quality and aquatic ecosystem via bioaccumulation in food chains. Faced with these problems adsorption processes are one of the alternatives for PAHs retention. The adsorption of hydrophobic organic contaminants from aqueous phases generally increases with decreasing solubility of the compound and increasing organic carbon content of the aquifer solids. Natural materials with high organic carbon content such as coals or bituminous shales cause significant retardation of organic contaminants from groundwater. Such materials with high sorption capacities have been postulated and used for passive removal of hydrophobic contaminants in groundwater such as PAHs. Much more efficient is adsorption onto activated carbon, which is already a well-established technology for ex situ treatment of drinking water, polluted groundwater or waste water. One major advantages lies in the fact that the persistent compounds are removed from the ground water rather then being converted to still potentially dangerous metabolites as those generated by oxidation or reductive steps. One of the biggest disadvantages of the adsorption processes is the need to dispose or regenerate the adsorbent. In the case of activated carbon, it needs thermal desorption of the sorbed pollutants and thermal activation of the adsorbent. One of the possibilities to overcome this

  17. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  18. Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Seko, N.; Bang, L.T.; Tamada, M.

    2007-01-01

    Glycidyl methacrylate (GMA) which was precursor monomer for the synthesis of metal ion adsorbent was emulsified by surfactant of Tween 20 (Tw-20). The emulsion of 5% GMA in the water was stable for 48 h at Tw-20 concentration of 0.5%. Graft polymerization of GMA on polyethylene fiber was carried out in the emulsion state at various pre-irradiation doses. Degree of grafting (Dg) reached 103%, 301% and 348% for 1 h grafting at 40 deg. C with pre-irradiation of 10, 30 and 40 kGy, respectively. But the Dg was depressed when the pre-irradiation dose was over 50 kGy since cross-linking occurred simultaneously in the trunk polymer. Dg decreased with increment of Tw-20 concentration in emulsion of 5% GMA at pre-irradiation of 40 kGy. The three kinds of amine-type adsorbents were synthesized by reacting diethylenetriamine (DETA), triethylenetetramine (TETA) and ethylenediamine (EDA) with GMA-grafted polyethylene fiber. The synthesized EDA-type adsorbent had the highest selectivity against U ion and the distribution coefficient was 2.0 x 10 6

  19. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  20. Comparing dissolved reactive phosphorus measured by DGT with ferrihydrite and titanium dioxide adsorbents

    DEFF Research Database (Denmark)

    Panther, Jared G.; Teasdale, Peter R.; Bennett, William W.

    2011-01-01

    Two adsorbents (Metsorb and ferrihydrite) used in binding layers with the diffusive gradients in a thin film technique were evaluated for the measurement of dissolved reactive phosphorous (DRP) in synthetic and natural waters. Possible interferences were investigated with Cl- (up to 1.35molL-1) a...

  1. One-pot preparation of magnetic carbon adsorbent derived from pomelo peel for magnetic solid-phase extraction of pollutants in environmental waters.

    Science.gov (United States)

    Huang, Youfang; Peng, Jinghe; Huang, Xiaojia

    2018-04-20

    In this work, magnetic carbon material derived from pomelo peels (MCMPs) was conveniently fabricated utilizing one-pot synthesis method and employed as adsorbent of magnetic solid-phase extraction (MSPE). Several characterized measures including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer were used to investigate the morphology, spectroscopic and magnetic properties of prepared adsorbent. Apolar parabens and polar fluoroquinolones (FQs) were used to investigate the extraction performance of MCMPs. Under the optimized extraction conditions, the MCMPs displayed satisfactory extraction performance for target analytes. At the same time, the MCMPs/MSPE was combined with HPLC-DAD for the sensitive determination of parabens and FQs in real-life water samples. Results showed that the limits of detection (S/N = 3) for parabens and FQs were in the ranges of 0.011-0.053 μg/L and 0.012-0.46 μg/L, respectively. The spiked recoveries were in the range of 76.6-116% for parabens and 80.2-114% for FQs with good repeatability (relative standard deviations less than 10%). In comparison to reported methods, the developed MCMPs/MSPE-HPLC-DAD showed some merits including low-cost, simplicity, satisfactory sensitivity and green non-pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  3. Regularities of radiolysis of carbon dioxide adsorbed on Zeokar-2 catalyst

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Kurbanov, M.A.; Kerimov, V.K.; Musaeva, P.F.

    1982-01-01

    Kinetics of CO formation, effect of dose rate and adsorbed water on CO yield during heterogeneous gamma-radiolysis of CO 2 have been studied. Radiation-chemical yields of the products are determined. The mechanism of reactions is discussed. It is shown that the catalyst plays the role of acceptor of active intermediate particles (O - and others) and acts as a chemical reagent

  4. Scheme for analysis of oily waters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I.; Rushworth, R.; Melvold, R.; Russell, E.C.

    1980-01-01

    A scheme is described for gross and detailed chemical characterization of oily waters. Total, suspended, and dissolved organic content and hydrocarbon levels of the sample are determined. Volatile and water-soluble fractions are characterized in greater detail. Lower aliphatic and aromatic hydrocarbons are separated from the water by nitrogen sparging and are collected in an activated carbon absorption column. They are then extracted into carbon disulfide and analyzed gas chromatographically. The water-soluble fraction is extracted into chloroform or adsorbed on Amberlite XAD type of resin. Class characterization of this fraction is performed using the HPLC procedure. GC-MS-C is used for detailed analysis. The methodology was used for studying the effectiveness of bilge and ballast water treatments.

  5. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  6. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Science Lab.; Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); LCW Supercritical Technologies, Seattle, WA (United States); Pan, H. B. [Univ. of Idaho, Moscow, ID (United States)

    2016-09-28

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method to strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The

  8. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V b ) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel's color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber

  9. Vibrational spectroscopy and molecular dynamics of water monomers and dimers adsorbed on polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Simon, Aude; Rapacioli, Mathias; Mascetti, Joëlle; Spiegelman, Fernand

    2012-05-21

    This paper reports structures, energetics, dynamics and spectroscopy of H2O and (H2O)2 systems adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). On-the-fly Born-Oppenheimer molecular dynamics simulations are performed for temperatures T varying from 10 to 300 K, on a potential energy surface obtained within the self-consistent-charge density-functional based tight-binding (SCC-DFTB) approach. Anharmonic infrared (IR) spectra are extracted from these simulations. We first benchmark the SCC-DFTB semi-empirical hamiltonian vs. DFT (Density Functional Theory) calculations that include dispersion, on (C6H6)(H2O)1,2 small complexes. We find that charge corrections and inclusion of dispersion contributions in DFTB are necessary to obtain consistent structures, energetics and IR spectra. Using this Hamiltonian, the structures, energetics and IR features of the low-energy isomers of (C24H12)(H2O)1,2 are found to be similar to the DFT ones, with evidence for a stabilizing edge-coordination. The temperature dependence of the motions of H2O and (H2O)2 on the surface of C24H12 is analysed, revealing ultra-fast periodic motion. The water dimer starts diffusing at a higher temperature than the water monomer (150 K vs. 10 K respectively), which appears to be consistent with the binding energies. Qualitative and quantitative analyses of the effects of T on the IR spectra are performed. Anharmonic factors in particular are derived and it is shown that they can be used as signatures for the presence of PAH-water complexes. Finally, this paper lays the foundations for the studies of larger (PAH)m(H2O)n clusters, that can be treated with the efficient computational approach benchmarked in this paper.

  10. WATER CONDITIONING FOR FOOD INDUSTRY USES

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2011-03-01

    Full Text Available Water conditioning for food industry uses. Tap (drinkingwater from many localities of Moldova doesn’t always correspond to the “Sanitarystandards for drinking water quality” or to the requirements of the “Regulation fornon-alcoholic beverages”, requiring the need for additional purification/conditioning. This paper presents research regarding the removal/adsorption of themain pollutants in tap water (iron, manganese, aluminum, humic substances,trihalomethanes on supports of local carbon adsorbents made from vegetableproducts (stones of peach and plum, walnut shells. Experiments were performedin dynamic conditions in columns of carbon adsorbents. As work solutions wasused tap water where pollutants have been introduced in amounts equivalent to 3maximum allowable concentrations. Carbonaceous adsorbents used forremoval/adsorption of pollutants in dynamic conditions, reveal a capacity of up to1:400 volumes adsorbent: solution before breakthrough. Combined filter, utilizingactive carbons, was constructed and tested for conditioning of tap water forbeverage and food production. The results demonstrated efficient remove oforganic substances and heavy metals by filtering of about 700 volumes of waterper volume of filter.

  11. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  12. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    Science.gov (United States)

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  13. Characterization of commercial ceramic adsorbents and its application on naphthenic acids removal of petroleum distillates

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Silva

    2007-06-01

    Full Text Available The mixture of carboxylic acids present in petroleum oil and directly responsible for its acidity and corrosiveness in liquid phase during the refine process is denominated "naphthenic acids". These acids are also present in distilled fraction of petroleum, causing several problems in final products quality. A possible way to remove the carboxilic acids from petroleum distilled fractions is the adsorption in porous materials. However, the results obtained until now indicate that ion exchange resins would be the best adsorbents for this process, which would probably increase its cost. In this work, two commercial adsorbents (clay and activated alumina were characterized by a set of physical-chemistry techniques and evaluated concerning their capacity of removing naphthenic acids from a light petroleum fraction. It was verified the influence of a thermal treatment previous to the adsorption in its physical-chemistry characteristics and its properties. A high reduction of the TAN values was verified in the residual oils from both adsorbent, although there was a competition among all the compounds present in the light oil fraction for the adsorption sites, which can be probably related to the thermal pre-treatment. These results were related to corrosion yield experiments, and it was observed that the adsorbent pretreatment also affected the reduction in corrosion yields for both alumina and clay.

  14. Lithium adsorptive properties of a new selective adsorbent derived from Li1.33Mn1.67O4

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Ooi, Kenta; Nishimura, Tomonobu; Kumamoto, Jyunji.

    1994-01-01

    A new selective adsorbent was prepared by the acid treatment of Li 1.33 Mn 1.67 O 4 with spinel structure, followed by granulation with PVC as a binder. The adsorbent showed the highest capacities for lithium from seawater ; the equilibrium lithium uptakes reached 25.5 mg·g -1 by the powdered adsorbent and 18 mg·g -1 by the granulated one at 25degC. The column adsorption study with the granulated adsorbent (diameter 0.7-1.4mm) showed that the lithium uptake reached about 14 mg·g -1 by passing seawater for 30 days. This lithium content is nearly equal to that of lithium ore. Although the lithium adsorption capacity of the granulated adsorbent decreased slightly by repeating the adsorption-desorption cycle, it kept a high capacity as well as a high strength abrasion during the repetition of 10 cycles. (author)

  15. Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Maliyekkal, Shihabudheen Mundampra [School of Mechanical and Building Sciences, VIT University, Chennai Campus, Chennai 600048 (India); Pradeep, Thalappil, E-mail: pradeep@iitm.ac.in [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-02-15

    Highlights: ► Facile strategy to make graphenic materials from cheaper precursor such as asphalt. ► Material can be made in solution; also as anchored on solid substrates. ► The synthesized material, GSC, was found to be excellent for water purification. ► The applicability was demonstrated through batch and laboratory columns experiments. ► The capacity was compared to other similar adsorbents and was found to be superior. -- Abstract: An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm{sup −1} and 1345 cm{sup −1} in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

  16. STUDIES ON THE EFFICIENCY OF GRUNDWATER TREATMENT PROCESS WITH ADSORPTION ON ACTIVATED ALUMINA

    Directory of Open Access Journals (Sweden)

    Ewa Szatyłowicz

    2017-07-01

    Full Text Available The one of inorganic sorbents used in water treatment technology is activated alumina. Recommended by the European Commission to remove inorganic impurities, such as arsenic, fluoride, selenium and silicates. The adsorbent is usually applied in granular form, under flow conditions. It can become absorbent material increasingly used due to the presence of arsenic beside iron and manganese in groundwater intakes. The aim of the study was to evaluate the effectiveness of groundwater treatment in the technological system containing adsorption on activated alumina. The experiment was performed on test model CE 581 manufactured by G.U.N.T. Hamburg, in which can extract four treatment stages. The first stage is used in a gravel filter of grain size 1-2 mm, in the second sand filter of grain size 0.4-0.8 mm. The third and fourth phase includes two adsorbers. The first adsorber comprises activated alumina (Al2O3 and the other comprises a granular activated carbon. The study was conducted at different speeds of filtration: 5, 10 and 15 m/h. In the raw water samples and the purified water samples after each treatment step were determined the following parameters: pH, O2 concentration, electrolytic conductivity, SO42-, concentration, NO3- concentration, PO43- concentration, Cl-concentration, color, turbidity, iron and manganese concentration, CODMn, total hardness, calcium hardness, magnesium hardness, content of dissolved substances. Conducted research indicates that optimum filtration rate for most pollution is 15 m/h. Moreover, the presence of activated alumina has contributed to increasing the efficiency of nitrate (V and phosphate (V ions removal.

  17. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  18. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung [Chonnam National Univ., Gwangju (Korea, Republic of); Lim, Yongkyun; Park, Eun Nam [Microfilter Co., Ltd, Seoul (Korea, Republic of)

    2013-02-15

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

  19. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung; Lim, Yongkyun; Park, Eun Nam

    2013-01-01

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  20. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  1. Penicillium sp. strain that efficiently adsorbs lignosulfonate in the presence of sulfate ion.

    Science.gov (United States)

    Aoyama, Akihisa; Kurane, Ryuichiro; Nagai, Kazuo

    2013-03-01

    Lignin is one of the major water insoluble substances that support the physical properties of plants and can be solubilized by sulfite or alkaline treatment in accordance with pulpification. The lignin derivatives produced by both the sulfite and the kraft processes are called lignosulfonate (LS) and kraft lignin (KL), respectively, and both derivatives show a broad spectrum of optical absorbance from ultraviolet to visible light. When the spore suspension of an isolated Penicillium sp., Penicillium sp. A, was inoculated to a medium containing 0.1% commercial LS, absorbance at 480 nm (A480) almost completely disappeared after 5 days of cultivation. Maximum decolorization of the culture broth was observed when the microbe was cultured in the 0.8% LS medium reaching 88%, and the amount of LS removed was calculated to be 7 g/L. In a similar assay with the dark-liquid containing KL, 80% of the A480 of a 20% (v/v) dark-liquid medium disappeared after 5 days of culturing and the amount of KL removed was calculated to be 2.9 g/L. These values significantly exceeded the previously reported amounts with respect to substrate concentration and decolorization. Furthermore, since similar results were obtained in the cases of both LS and KL, it is expected that the present strain is able to non-specifically adsorb a wide range of lignin derivatives, because most of the colored substances were recovered in the culture sediments. Thus, the strain can be used to clean up waste fluids containing water soluble lignin derivatives, adsorb lignin derivatives in waste fluids before dehydration. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    Science.gov (United States)

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Kamitaka, Y.; Kano, K. [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto (Japan)

    2007-12-15

    Bioelectrocatalytic reduction of O{sub 2} into water was archived at diffusion-controlled rate by using enzymes (laccase from Trametes sp. and bilirubin oxidase from Myrothecium verrucaria, which belong to the family of multi-copper oxidase) adsorbed on mesoporous carbon aerogel particle without a mediator. The current density was predominantly controlled by the diffusion of dissolved O{sub 2} in rotating-disk electrode experiments, and reached a value as large as 10 mA cm{sup -2} at 1 atm O{sub 2}, 25 C, and 8,000 rpm on the laccase-adsorbed electrode. The overpotential of the bioelectrocatalytic reduction of O{sub 2} was 0.4-0.55 V smaller than that observed on a Pt disk electrode. Without any optimization, the laccase-adsorbed biocathode showed stable current intensity of the O{sub 2} reduction in an air-saturated buffer at least for 10 days under continuous flow system. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1985-07-01

    The application of inorganic ion exchangers and adsorbents to both waste treatment and the recovery of fission products and actinides were of primary concern at this meeting. The meeting covered the two major fields of fundamental studies and industrial applications

  5. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun-Hai [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Wang, You-Qun [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Zhang, Zhi-Bin, E-mail: zhangnjut@163.com [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Hua, Rong [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China)

    2013-05-15

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N{sub 2} adsorption–desorption, Fourier transform-infrared spectra (FT-IR) and acid–base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Zn{sup 2+} and Mn{sup 2+}). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  6. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    Science.gov (United States)

    Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong

    2013-05-01

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  7. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model.

    Science.gov (United States)

    Harm, Stephan; Gabor, Franz; Hartmann, Jens

    2015-01-01

    Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation.

  8. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the adsorber loop concept for the contact between seawater and the adsorber granulate enables the employment of considerably higher seawater velocities in the adsorber bed in comparison with a fluidized bed thus reducing the necessary bed area. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores on high seas in tropical or subtropical waters. For this range of operation an ordinary ships hull is preferred for the basic structure to some new more sophisticated but unproven design. Depending on the effective flow rate in the adsorption units one or a few ships with standard dimensions (i.e. large container ships of about 50000 BRT; 290 m length; 40 m width) are able to produce the intended amount of 100 tU per year. Besides some information on the theoretical background the essential engineering considerations are presented. (author)

  9. Comparative study of adsorbents for the removal of fluoride ions from water use and consumption in Mexico; Estudio comparativo de adsorbentes para la remocion de iones fluoruro del agua de uso y consumo en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Teutli S, E. A.

    2014-07-01

    Although fluoride is essential for health many studies have shown it is associated with some health problems, such as fluoro sis, thyroid disorder, neurological disease, Alzheimer, pineal gland and cancer. One of the major routes of exposure is through drinking water. The World Health Organization (Who) allows only 1.5 mg/L as a safe limit for fluoride ions in drinking water and the EPA U. S. Environmental Protection Agency has recently proposed 0.7 mg/L. In some cases, the water extracted from deep wells has concentrations of fluoride ions above 1.5 mg/L (NOM-127-SSA1-2000) which is the permissible limit of water for human use and consumption (whuc). In several countries, there are high concentrations of fluoride ions due to the geological distribution of fluorine-rich rocks. In our country we can find several states that have concentrations higher than 1.5 mg/L of fluoride ions in water, such as Aguascalientes, Zacatecas, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Jalisco and San Luis Potosi. Various technologies have been proposed to remove fluoride ions from water, such as adsorption, ion exchange, reverse osmosis, nano filtration, electrodialysis, dialysis and electrocoagulation. Sorption is superior to other techniques in terms of initial cost, simplicity of design and ease of operation. In this work systematic studies were done considering the aspects mentioned above, in order to determine the adsorbents properties and most suitable conditions for the removal of fluoride ions from whuc. It is important to note that to date no adsorption treatments for the removal of fluoride ions from water for human use and consumption in our country is done, although there are established methodologies, they have not been implemented because of their high costs. In this work an integral study was done on the removal of fluoride ions from water for human use and consumption. A comparative study of hematite, calcite and zeolite as adsorbents was performed to develop a

  10. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    Science.gov (United States)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water

  11. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    Science.gov (United States)

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  12. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    Science.gov (United States)

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  14. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  15. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  16. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    Hara, C.D.C.P.; Honorio-Frana, A.C.; Fagundes, D.L.G.; Guimares, P.C.L.; Franca, E.L.

    2013-01-01

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  17. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    Directory of Open Access Journals (Sweden)

    Cristiane de Castro Pernet Hara

    2013-01-01

    Full Text Available The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  18. Reuse of worn-out medicaments with adsorbent properties for the removal of manganese

    International Nuclear Information System (INIS)

    Millan C, E.

    2005-01-01

    The current investigations on the treatment of worn-out medicaments in Mexico, reveal that most of these treatments are carried out with the purpose to reduce the packing and diminish the toxic level that presents each one of those medicaments. That it reach to reuse of them is their packing material and/or their cover. Once treated, the worn-out medicaments move to a sanitary filler. With relationship to the investigation works that have been carried out for the manganese removal in solution, they show a great number of materials that they are used for this end, as well as the parameters that influence in the process, such as the concentration of the element, the solution type in that is content and the pH. However, it is not mentioned in none of them the reuse of the worn-out medicaments (Talcid and Melox), as adsorbent materials for the removal of metals from the water. To carry out the present investigation they were selected therefore, to the one Talcid and the Melox because its present adsorbent properties, with the purpose to remove the manganese like water pollutant. Once that the worn-out medicaments were obtained, they put on in contact with different organic solvents, to obtain the active principle, due to the pharmaceutical presentation of the two medicaments that was obtained was in suspension. The active principles of the two medicaments were characterized by means of high vacuum scanning electron microscopy (SEM), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part consisted in putting in contact manganese solutions with the active principles of the worn-out medicaments, varying the time of contact and the concentration. The manganese quantification in the liquid phase carried out by means of atomic absorption spectroscopy (AAS). It was found that the kinetic model that better describes the sorption process of manganese in both worn-out medicaments (Talcid and Melox) it is that of pseudo second order. Those results of

  19. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  20. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  1. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose.

    Science.gov (United States)

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-01-01

    Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC). In particular, the adsorption capability of the PLC was effective over a wider pH range. This could be owing to its higher point of zero charge, which is more favorable for the uptake of the anionic dye. Adsorption isotherm models suggested a monolayer adsorption was predominant. The mean free energy of adsorption (E(DR)) was found to have values between 8 and 16 kJ mol(-1) which suggests that an electrostatic mechanism of adsorption predominated over other underlying mechanisms. The adsorption process was also found to be spontaneous, with increasing negative free energy values observed at higher temperatures. Chemisorption process was supported by the changes in enthalpy above 40 kJ mol(-1) and by the results of desorption studies. This new adsorbent was also reusable and regenerable over four successive adsorption-desorption cycles. The single stage adsorber design revealed that PLC can be applicable as an effective biosorbent for the treatment of industrial effluents containing EY dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fabrication of a new polysaccharide-based adsorbent for water purification.

    Science.gov (United States)

    Qi, Xiaoliang; Wei, Wei; Su, Ting; Zhang, Jianfa; Dong, Wei

    2018-09-01

    Expanding the application of polysaccharide material has attracted tremendous attention in the fields of wastewater treatment, agriculture and biomedical engineering, on account of its tunable and unique properties. Herein, we employ a water-soluble, sustainable and low cost bacterial polysaccharide, salecan as a matrix, poly(acrylamide-co-itaconic acid) (PAI) as a synthetic component to synthesize salecan-g-PAI hydrogels through a simple chemical crosslinking method. Their physicochemical properties were fully characterized by various methods including Fourier transformed infrared spectroscopy, X-ray diffraction, thermogravimetry, scanning electron microscope and rheometry. We found that salecan not only acted as the interaction sites to regulate the water content of the developing hydrogels, but also endowed them with tailorable morphology. The designed salecan-g-PAI hydrogels exhibited excellent adsorption properties toward methylene blue (MB) dye, and the adsorption process could be well described by the pseudo-second-order kinetic and Freundlich isotherm models. Altogether, this study broadens the application of salecan polysaccharides and provides a new device for dye decontamination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  4. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  5. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  7. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  8. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  9. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  10. Metals extraction from sea water

    International Nuclear Information System (INIS)

    Chryssostomidis, C.; Larue, G.J.; Morgan, D.T.

    1981-01-01

    A method and system for continuously extracting metals from sea water by deploying adsorber sheets in a suitable current of sea water, recovering the adsorber sheets after they become loaded with metal and eluting the metal from the recovered sheets. The system involves the use of hollow, perforated bobbins on which the sheets are rolled as they are recovered and through which elutant is introduced

  11. A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Tan, Yang; Su, Kang; Zhao, Junjie; Yang, Chen; Sang, Lingling [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2015-05-15

    Highlights: • NiO nanosheets were synthesized via a facile homogeneous precipitation method. • The NiO nanosheets have a large surface area. • This preparation method was low-cost, simple equipments, easy preparation, short reaction time and better repeatability. • The product also showed a favourable ability to remove Cr(VI) and Congo red (CR) in water treatment. - Abstract: NiO nanosheets were successfully synthesized by a facile homogeneous precipitation method with the assistance of ethanol amine. The sample was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption techniques. The results demonstrated that the as-prepared product was cubic NiO nanosheets with a large surface area of 170.1 m{sup 2} g{sup −1}. Further, the as-prepared product was used to investigate its potential application for wastewater treatment. The maximum adsorption capacity for Cr(VI) and Congo red (CR) on NiO nanosheets has been determined using the Langmuir equation and found to reach up to 48.98 and 167.73 mg g{sup −1}, respectively. It could be concluded that NiO nanosheets with special surface features had the potential as adsorbents for wastewater treatment.

  12. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  13. Insolubilization of Chestnut Shell Pigment for Cu(II Adsorption from Water

    Directory of Open Access Journals (Sweden)

    Zeng-Yu Yao

    2016-03-01

    Full Text Available Chestnut shell pigment (CSP is melanin from an agricultural waste. It has potential as an adsorbent for wastewater treatment but cannot be used in its original state because of its solubility in water. We developed a new method to convert CSP to insolubilized chestnut shell pigment (ICSP by heating, and the Cu(II adsorption performance of ICSP was evaluated. The conversion was characterized, and the thermal treatment caused dehydration and loss of carboxyl groups and aliphatic structures in CSP. The kinetic adsorption behavior obeyed the pseudo-second-order rate law, and the equilibrium adsorption data were well described with both the Langmuir and the Freundlich isotherms. ICSP can be used as a renewable, readily-available, easily-producible, environmentally-friendly, inexpensive and effective adsorbent to remove heavy-metal from aquatic environments.

  14. Targeted adsorption of molecules in the colon with the novel adsorbent-based medicinal product, DAV132: A proof of concept study in healthy subjects.

    Science.gov (United States)

    de Gunzburg, Jean; Ducher, Annie; Modess, Christiane; Wegner, Danilo; Oswald, Stefan; Dressman, Jennifer; Augustin, Violaine; Feger, Céline; Andremont, Antoine; Weitschies, Werner; Siegmund, Werner

    2015-01-01

    During antibiotic treatments, active residuals reaching the colon profoundly affect the bacterial flora resulting in the emergence of resistance. To prevent these effects, we developed an enteric-coated formulated activated-charcoal based product, DAV132, meant to deliver its adsorbent to the ileum and neutralize antibiotic residues in the proximal colon. In a randomized, control, crossover study, the plasma pharmacokinetics of the probe drugs amoxicillin (500 mg) absorbed in the proximal intestine, and sulfapyridine (25 mg) metabolized from sulfasalazine in the cecum and rapidly absorbed, were compared after a single administration in 18 healthy subjects who had received DAV132, uncoated formulated activated charcoal (FAC) or water 16 and 8 hours before, concomitantly with the probe drugs, and 8 hours thereafter. The AUC0-96 h of amoxicillin was reduced by more than 70% when it was taken with FAC, but bioequivalent when it was taken with water or DAV132. By contrast, the AUC0-96 h of sulfapyridine was reduced by more than 90% when administered with either FAC or DAV132 in comparison with water. The results show that DAV132 can selectively adsorb drug compounds in the proximal colon, without interfering with drug absorption in the proximal small intestine, thereby constituting a proof of concept that DAV132 actually functions in humans. © 2014, The American College of Clinical Pharmacology.

  15. Accelerator Analysis of Tributyltin Adsorbed onto the Surface of a Tributyltin Resistant Marine Pseudoalteromonas sp. Cell

    OpenAIRE

    Mimura, Haruo; Sato, Ryusei; Sasaki, Yu; Furuyama, Yuichi; Taniike, Akira; Yoshida, Kazutoshi; Kitamura, Akira

    2008-01-01

    Tributyltin (TBT) released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship’s ballast water. The isolate (109.3 ± 0.2 colony-forming units mL-1) adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 108.2. The value was reduced to about one-fif...

  16. Cs-selective mineral adsorbents in columns: physico-chemical properties and modeling

    International Nuclear Information System (INIS)

    Michel, Caroline

    2015-01-01

    Following the nuclear disaster in Fukushima Dai-Ichi, thousands of tons of fresh water and seawater were used for cooling the reactors or contaminated as a result of groundwater seepage. Decontamination of these waters is complicated by the presence of other cations (Na + , K + , Ca 2+ , Mg 2+ ) naturally present in these waters. Decontamination process in columns packed was studied in this context with two types of mineral adsorbents: the TERMOXID 35 and the SORBMATECH 202. The first one is a commercial adsorbent and consists of mixed ferrocyanide K/Ni impregnated over a solid matrix Zr(OH) 4 . The second one was synthesized in CEA and is composed of ferrocyanide K/Cu impregnated over a solid matrix SiO 2 . Both materials have shown a high efficiency for Cs decontamination in seawater with K(d,Cs) of about 10 5 mL/g. Batch studies conducted in different solutions (pure water, fresh water and seawater) allowed determining sorption kinetics and ion exchange mechanisms responsible for the sorption of Cs + , taking into account competitive effects of the natural water cations (Na + , K + , Ca 2+ , Mg 2+ ). Modelling of batches was performed with the geochemical code CHESS considering competitive effects according to the Vanselow formalism and selectivity coefficients, developing a specific thermodynamic database. The performances of these materials were then tested in column. The operating parameters such as Darcy's velocity and the H/D ratio were studied for a proper functioning of this process. The T35 has proven to be less efficient mainly because of the slow diffusion of Cs in the pores of the material. The S 2 O 2 has proven to be a good candidate for the application of high flow rates. The breakthrough curves obtained in fresh water have been modelled with the reactive transport codes HYTEC and OPTIPUR using the CHESS thermodynamic database. This approach will eventually help to support the design of a decontamination unit by the operator. (author) [fr

  17. Oil and grease (O&G) removal from commercial kitchen waste water using carbonised grass as a key media

    OpenAIRE

    Rahmat Siti Nazahiyah; Mohd Ali Ahmad Zurisman; Wan Ibrahim Mohd Haziman; Alias Nur Azrena

    2017-01-01

    Oil and grease (O&G) are usually found in kitchen waste water. O&G are poorly soluble in water and can cause serious problems during the wastewater treatment. Adsorption is a fundamental process in the treatment of kitchen waste water and very economical. Activated carbon is the most effective adsorbent for this application. Therefore, the aim of the current study is to determine the potential of four materials (i.e. sand, gravel, carbonised grass (CG) and clay powder) as filter media for O&G...

  18. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    Wirth, H.

    1976-01-01

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.) [de

  19. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  20. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan.

    Science.gov (United States)

    Quintela, S; Villarán, M C; López De Armentia, I; Elejalde, E

    2012-01-01

    The ability of several oenological fining agents to remove ochratoxin A (OTA) from red wine was studied. The adsorbents tested were activated sodium bentonite, egg albumin, allergen-free adsorbents (complex PVPP, plant protein and amorphous silica (complex) and high molecular weight gelatine), and the non-toxic biodegradable polymers (chitin and chitosan). Several dosages within the oenological use range were tested and the wine pH, colour parameters and polyphenol concentration impact associated with each fining agent were studied. Generally, OTA removal achieved in all treatments was higher when the adsorbent dosage increased, but the impact on wine quality also was higher. Chitin at 50 g hl(-1) removed 18% the OTA without affecting significantly the wine-quality parameters. At the highest dosage tested the gelatine and complex treatments achieved greater OTA removal (up to 39-40%) compared with bentonite, egg albumin and chitin. Moreover, the gelatine and the complex had a lower impact on colour parameters and polyphenol concentration compared with chitosan, whilst OTA was reduced to around 40%. Chitosan achieved the greatest OTA removal (67%), but it strongly affected the wine-quality parameters. Otherwise, bentonite showed a relative efficiency to remove OTA, but the CI value decreased considerably. The egg albumin treatment only removed OTA up to 16% and moreover affected strongly the CI value and CIELab parameters. The results of this survey showed that the non-toxic chitin adsorbent and the allergen-free adsorbents tested could be considered as alternative fining agents to reduce OTA in red wine.

  1. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  2. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  3. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  4. Investigation of Adsorbed Gases Content in Coal Beds in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Sadadinovic, J.

    2008-09-01

    Full Text Available Investigation of the gas fraction in coal beds in Bosnia & Herzegovina has been performed systematically since 1988. Gas in coal beds can be present in free or adsorbed form, and dissolved in water. Methods of investigation are based on the direct approach, according to which the gas fraction is determined in the undisturbed coal bed.The quantity of the adsorbed and free gas in the coal bed is directly proportional to the gas pressure. Dependence is hyperbolic. The quantity of the free gas in mining conditions is being determined by measurement of the desorption index (Δp2. The desorption index for the Srednjobosanski coal basin ranges to 1571 Pa, and the free gas pressure in this coal basin amounts up to 3.75 MPa. The desorption index for coal beds in “Kreka” and “Banoviće” coal basins has negative values, which means that the free gas fraction within the coal beds is negligible, while separation of adsorbed gases is diffuse. The free gas pressure in the mentioned coal basins is below 0.1 MPa. Adsorbed gases within the coal are connected by physical adsorption according to Langmuir’s isothermal adsorption curve. Langmuir’s quantities, for coal bed conditions, ranges as follows: am from 0.826 to 9.52 m3 t–1 pcs, and b from 6.65 10–3 to 0.247 MPa–1. Adsorbed gas within Miocene coal beds contains methane in amounts of 1.49 m3 t–1 čus CH4 andcarbon(IVoxide in amounts of 0.15 m3 t–1 čus CO2. Adsorbed gas within Pliocene coal beds, without methane, dominant is content of carbon(IVoxide.The investigation of the gas content in coal beds of BiH conducted in this article reveal that the coal beds primarily contain methane, while others hydrocarbons such as ethane, ethene, propane, propene and butane are present sporadically in fraction below φ/10–6. Based on the investigation results conducted in this article, simple mathematical forms were obtained for quick calculation of the free gas quantity by measurement of the

  5. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  6. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  7. Magnetically modified sheaths of Leptothrix sp as an adsorbent for Amido black 10B removal

    Czech Academy of Sciences Publication Activity Database

    Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava; Šafařík, Ivo

    2017-01-01

    Roč. 427, April (2017), s. 314-319 ISSN 0304-8853 Institutional support: RVO:60077344 Keywords : Leptothrix sp. * sheaths * magnetic fluid * magnetic iron oxide * magnetic adsorbent * Amido black 10B Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Materials engineering Impact factor: 2.630, year: 2016

  8. Negative chromatography of hepatitis B virus-like particle: Comparative study of different adsorbent designs.

    Science.gov (United States)

    Lee, Micky Fu Xiang; Chan, Eng Seng; Tan, Wen Siang; Tam, Kam Chiu; Tey, Beng Ti

    2016-05-06

    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  10. Self-assembled magnetic nanoparticle supported zeolitic imidazolate framework-8: An efficient adsorbent for the enrichment of triazine herbicides from fruit, vegetables, and water.

    Science.gov (United States)

    Zhou, Lian; Su, Ping; Deng, Yulan; Yang, Yi

    2017-02-01

    Zeolitic imidazolate frameworks have positive surface charges and high adsorption capabilities. In this work, zeolitic imidazolate frameworks-8 and negatively charged magnetic nanoparticles were self-assembled by electrostatic attraction under sonication. The extraction performance of the synthesized hybrid material was evaluated by using it as a magnetic adsorbent for the enrichment of triazine herbicides in various sample matrices prior to analysis using ultrafast liquid chromatography. The main parameters, that is, extraction time, adsorbent dosage, salt concentration, and desorption conditions, were evaluated. Under the optimum conditions, good linear responses from 2.5 to 200 ng/mL for atrazine (simazine) and 1 to 200 ng/mL for prometryn (ametryn), with correlation coefficients (R 2 ) higher than 0.9992 were obtained. The detection limits of the method (S/N = 3) were 0.18-0.72 ng/mL. The proposed method was successfully used to determine triazine herbicides in six samples, namely, apple, pear, strawberry, pakchoi, lettuce, and water. The amounts of simazine in all the fruit and vegetable samples were 10.8-25.2 ng/mL. The recoveries of all the analytes were 88.0-101.9%, with relative standard deviations of less than 8.8%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of composite adsorbent synthesis and characterization for the removal of Cs in the high-salt and high-radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jimin; Lee, Keun Young; Kim, Kwang Wook; Lee, Eil Hee; Chung, Dong Yong; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hyun, Jae Hyuk [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with CoCl{sub 2} and K{sub 4}Fe (CN){sub 6} solutions. When CHA, with average particle size of more than 10 μm, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than 10{sup 4} mL·g{sup -1}) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

  12. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  13. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  14. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  15. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  16. In-situ quartz crystal microgravimetric studies of molecular adsorbates containing thiol and hydroquinone moieties bound to Au(111) surfaces in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Y.; Sukenik, C.; Sandifer, M. [Case Western Univ., Cleveland, OH (United States); Barriga, R.J.; Soriaga, M.P.; Scherson, D. [Texas A& M Univ., College Station, TX (United States)

    1995-12-01

    The microgravimetric properties of monolayers of 2, 5-dihydroxythiophenol, 2,5-dihydroxybenzyl mercaptan, and 2, 5-dihydroxy-4-methylbenzyl mercaptan adsorbed on Au(111) single crystal electrodes were examined by in situ quartz crystal microbalance techniques in aqueous perchloric acid electrolytes. The results obtained are consistent with the reversible loss of an average of about three waters per adsorbed molecule as the layers are oxidized and subsequently reduced. These observations provide evidence for discrete changes in the extent of bound water within the hydroquinone/quinone layer as the oxidation state of the monolayer is changed. 9 refs., 4 figs.

  17. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  18. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  19. A new polymeric adsorbent developing for uranium recovering and richment from aqueous media

    International Nuclear Information System (INIS)

    Gueler, H.; Aycik, G. A.; Sahiner, N.; Gueven, O.

    1997-01-01

    Using adsorbents is thought to be the most effective method for recovering the low concentrations of uranium in the aqueous media because of their fast and selective uptake of uranium, a sufficient adsorption capacity and high physical and chemical stability against the media. In this study, a new polymeric adsorbent bearing both hydrophilic groups providing swelling in water and amidoxime groups for chelating with uranyl ions (UO 2 ''2+) has been developed and its adsorptive ability for uranium from aqueous media has been investigated. The polymers obtained by irradiating the solution of polyethylene glycol (PEG) in acrylonitrile (AN) are defined as Interpenetrating Polymer Networks (IPNs) and the adsorbent has been obtained by applying the amidoximation reaction to the IPNs with a conversion of % 60 approximately. Kinetics of the conversion reaction of nitrile (CN) group to amidoxime (HONCNH 2 ) group has been studied by reacting with hydroxylamine (NH 2 OH) solution at a molar ratio of NH 2 OH/CN=1.25 in aqueous media at different temperatures, 30,40,50''0C, for 3-4 days. The degree of amidoximation was determined by UO 2 ''2+ ion adsorption and FTIR spectrometer and the UO 2 ''2+ ion adsorption values were found by both UV and gamma spectrometry and also by gravimetry. It was found that the polymeric adsorbent has a very high adsorption ability for uranium (∼ 540 mg U/g IPN/day)

  20. Ordered mesoporous carbon coating on cordierite: Synthesis and application as an efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ying, E-mail: ywan@shnu.edu.cn [Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Cui, Xiangting; Wen, Zhentao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2011-12-30

    Highlight: Black-Right-Pointing-Pointer Surfactant self-assembly of ordered mesoporous carbon coating on honeycomb cordierite. Black-Right-Pointing-Pointer Carbon coating with opened, hexagonally ordered pore arrays. Black-Right-Pointing-Pointer Honeycomb adsorbents for removal of p-chlorophenol. Black-Right-Pointing-Pointer The adsorbents exhibit large processing volume, and great advantages in reusability. - Abstract: Ordered mesoporous carbon coating on the honeycomb cordierite substrate has been prepared using low-polymerized phenolic resins as carbon sources and triblock copolymer F127 as the structure directing agent via the evaporation induced self-assembly route. The high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), and nitrogen sorption techniques prove the hexagonally ordered pore arrays of carbon coating on the cordierite. The honeycomb monolith adsorbents coated by ordered mesoporous carbons are directly used without any activation, and exhibit adsorption capacities for chlorinated organic pollutants in water with 200 mg/g for p-chlorophenol and 178 mg/g for p-chloroaniline (with respect to the net carbon coating), high adsorption ratio for low-concentration pollutants, large processing volumes and reusability. More than 200 repeated times can be achieved without obvious loss in both adsorption capacity and weight.