WorldWideScience

Sample records for water transport evidence

  1. Corruption and concession renegotiations. Evidence from the water and transport sectors in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Guasch, J. Luis [World Bank (United States); University of California, San Diego (United States); Straub, Stephane [Toulouse School of Economics, ARQADE (France); University of Edinburgh (United Kingdom)

    2009-06-15

    Numerous renegotiations have plagued water and transport concession contracts in Latin America. Using a panel dataset of over 300 concession contracts from Latin America between 1989 and 2000, we show that country-level corruption is a significant determinant of these renegotiations and that the effect of corruption varies depending on the type of renegotiations considered. While a more corrupt environment clearly leads to more firm-led renegotiations, it significantly reduces the incidence of government-led ones. The paper then discusses and tests the likely channels through which these different effects of corruption arise, looking in particular at the interactions between country-level corruption and relevant microeconomic institutions. (author)

  2. New evidence and modeling studies of cross-tropopause transport of water substance by deep convective storms

    Science.gov (United States)

    Wang, P. K.

    2016-12-01

    Water vapor in the stratosphere can intercept substantial amount of terrestrial infrared radiation, thus causing exasperation of global warming at the surface due to increasing CO2. It also serves as the source material for making stratospheric odd hydrogen species that may cause ozone depletion through certain catalytic cycles. It is therefore very important to identify the process via which water vapor is transported across the tropopause into the stratosphere. Transport of water substance into the stratosphere by deep convective storms have been investigated by the author since around 2000, and in 2003 he proposed that it is the internal gravity wave breaking at the storm top that causes the water substance to penetrate through the tropopause and enter the stratosphere. Since then increasing evidence, including the observation of above-anvil cirrus plumes, jumping cirrus at the storm top, and the so-called pancake clouds, have been suggested as the manifestation of this wave breaking phenomenon. Cloud-resolving model studies did show the clear connection between these phenomena and wave breaking. Still there are several unresolved questions such as whether or not the jumping cirrus eventually evolves into plumes and whether the pancake clouds really exist. In this paper, I will show new aircraft and satellite observational evidence that confirm the above questions. These evidence demonstrate that the jumping cirrus can indeed evolve into plumes as observed by satellite storm images and that new rapid scan satellite storm images reveal the existence of the pancake clouds. New high resolution model simulations show cloud top features that match the observation very well and thus vindicating the role of gravity wave breaking in this process. Model results also give an estimate of the cross-tropopause transport of water substance that is much larger than previously thought.

  3. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  4. Water-transporting proteins.

    Science.gov (United States)

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  5. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.

    Science.gov (United States)

    Lee, Hee Dae; Kim, Hyo Won; Cho, Young Hoon; Park, Ho Bum

    2014-07-09

    As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties.

  6. Water transport in brain:

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Hamann, Steffan; Zeuthen, Thomas

    2004-01-01

    It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both...... the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic......(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia...

  7. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    Science.gov (United States)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  8. Studies on water transport through the sweet cherry fruit surface. 10. Evidence for polar pathways across the exocarp.

    Science.gov (United States)

    Weichert, Holger; Knoche, Moritz

    2006-05-31

    (-)(1)) than for the dissociated NAA (pH 6.2, P(d) = 1.1(+/-0.2) x 10(-8) m s(-1), E(a) = 51.8 +/- 1.9 kJ mol(-)(1)). The activation energy for penetration of the dissociated NAA was closely related to the stomatal density (R( 2) = 0.84, P < 0.0001) but less so for the non-dissociated NAA (R(2) = 0.30, P < 0.03). These data provide evidence for the presence of polar pathways through the sweet cherry fruit exocarp that allow water uptake by viscous flow. These pathways offer a potentially useful target for strategies to reduce water uptake and fruit cracking, provided that a technique is identified that selectively "plugs" these pathways.

  9. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...

  10. Students' Conceptions of Water Transport

    Science.gov (United States)

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  11. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    by toolbox, available in MIKE software, by predicting the water elevation using the four major constituents M2, S2, K1 and O1 at the coastal tidal stations Okha and Godia (International Hydrographic Bureau, Spec. Pub, Monaco). Subsequently the tidal...-gulf is the highest compared to that on the northern and southern coasts. References Panvelkar, J.S., Bendre, V.M. and A.S.Barve (1986). ?Software for harmonic and spectral analysis of tidal data?, Proc. 3rd Indian Conference on ocean engineering, IIT Bombay, Dec...

  12. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Macaulay, Nanna; Knepper, Mark A;

    2009-01-01

    in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S...... demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating...

  13. The impact of ENSO on water vapor isotopologues in the tropical pacific: Evidence for changes in long-range transport and convective activity

    Science.gov (United States)

    Jonson Sutanto, Samuel; Hoffmann, Georg; Scheepmaker, Remco A.; Röckmann, Thomas

    2014-05-01

    ENSO (El Niño-Southern Oscillation) is characterized by quasi-periodic changes of tropical sea surface temperature (SST), near-global atmospheric circulation and associated changes in precipitation patterns. Due to the profound effects of ENSO on the global water cycle and on the associated fractionation processes of the water isotopologues, many isotope-based studies have been carried out to study the ENSO variability in the tropics. These studies conclude that "the isotope amount effect'' is a key factor controlling the isotopic signature of water vapor and precipitation close to the surface. The goal of this study is to investigate the hydrologic processes governing the changes in isotopic composition of water vapor at the surface and at higher altitudes during ENSO events. We used the isotopic composition of water vapor modeled by an isotope-enabled GCM (ECHAM4), and measured by the TES (Tropospheric Emission Spectrometer) instrument onboard the Aura satellite. The isotopic composition of precipitation was modeled by ECHAM4 and observed by the GNIP network (Global Network of Isotopes in Precipitation). The amount of precipitation was modeled by ECHAM4 and ERA-Interim (ECMWF Re-Analysis), and measured by the TRMM (Tropical Rainfall Measuring Mission) satellite. Our results agree with previous studies focusing on the lower atmosphere: rainout processes, less rain re-evaporation of falling droplets, and increase of convective updrafts and diffusive exchange within the convective systems (all these processes contribute to "the isotope amount effect'') isotopically deplete the water vapor during wet conditions (e.g. El Niño in Central Pacific and La Niña in West Pacific). However, we find that the isotope signal of water vapor at higher altitudes (e.g. 500 hPa) associated with ENSO events diverges from the near surface signature. Analysis suggests that at higher altitudes, transport of enriched water vapor from lower atmospheric layers through convective updrafts

  14. Burning water: The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims to replace 10 percent of total transport fuels by biofuels by 2020. This study calculates the water footprint (WF) of different transport modes using bio-ethanol, biodiesel or

  15. News and views on mitochondrial water transport.

    Science.gov (United States)

    Gena, Patrizia; Fanelli, Elena; Brenner, Catherine; Svelto, Maria; Calamita, Giuseppe

    2009-01-01

    The osmotic movement of water into and out of the mitochondrial matrix underlies the extraordinary plasticity that characterizes mitochondria, a feature of pivotal importance to cell bioenergetics and signaling, and of critical relevance to life-and-death cell decision. However, the biophysics and identity of mitochondrial water transport had remained mostly unexplored, until recent works suggesting high water permeability and the presence of multiple facilitated pathways of water diffusion in liver mitochondria. Here, we attempt to summarize our current view of the mechanisms of mitochondrial water transport and possible relevance of the channel-mediated pathways created by mitochondrial permeability transition, aquaporins and protein/lipid specializations. Assessing the molecular bases and dynamics of mitochondrial water permeability will help to answer the much-debated question over the role of mitochondria.

  16. Water transport into bile and role in bile formation.

    Science.gov (United States)

    Calamita, Giuseppe; Ferri, Domenico; Gena, Patrizia; Liquori, Giuseppa E; Marinelli, Raúl A; Meyer, Giuliano; Portincasa, Piero; Svelto, Maria

    2005-06-01

    Formation of bile and generation of bile flow are driven by the active secretion of bile salts (BS), lipids and electrolytes into the canalicular and bile duct lumens followed by the osmotic movement of water. Although the transporting proteins involved in solute secretion have been cloned and their coordinated interplay defined both in health and disease, boosted by the discovery of the aquaporin water channels, only recently has considerable attention been addressed to the mechanism by which water, the major component of bile (> 95%), moves across the hepatobiliary epithelia. This review summarizes the novel acquisitions in liver membrane water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Emerging evidences suggesting involvement of aquaporins in the metabolic homeostasis of the hepatobiliary tract are also discussed.

  17. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from...... the changes in oocyte volume in response to osmotic gradients. The specific SGLT1 and GAT1 Lp values were obtained by measuring Lp in the presence and absence of blockers (phlorizin and SKF89976A). In the presence of the blockers, the Lp values of oocytes expressing SGLT1 and GAT1 were indistinguishable from...... the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro...

  18. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  19. Spatial correlations in bed load transport: evidence, importance, and modelling

    CERN Document Server

    Heyman, J; Mettra, F; Ancey, C

    2016-01-01

    This article examines the spatial {dynamics of bed load particles} in water. We focus particularly on the fluctuations of particle activity, which is defined as the number of moving particles per unit bed {length}. Based on a stochastic model recently proposed by \\citet{Ancey2013}, we derive the second moment of particle activity analytically; that is the spatial correlation functions of particle activity. From these expressions, we show that large moving particle clusters can develop spatially. Also, we provide evidence that fluctuations of particle activity are scale-dependent. Two characteristic lengths emerge from the model: a saturation length $\\ell_{sat}$ describing the length needed for a perturbation in particle activity to relax to the homogeneous solution, and a correlation length $\\ell_c$ describing the typical size of moving particle clusters. A dimensionless P\\'eclet number can also be defined according to the transport model. Three different experimental data sets are used to test the theoretica...

  20. Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis

    National Research Council Canada - National Science Library

    Morelle, Johann; Sow, Amadou; Hautem, Nicolas; Bouzin, Caroline; Crott, Ralph; Devuyst, Olivier; Goffin, Eric

    2015-01-01

    ...) characterized by extensive fibrosis of the peritoneum. Changes in peritoneal water transport may precede EPS, but the mechanisms and potential predictive value of that transport defect are unknown...

  1. Understanding transport in model water desalination membranes

    Science.gov (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  2. Geohydrology and possible transport routes of polychlorinated biphenyls in Haiku Valley, Oahu, Hawaii. Water resources investigation

    Energy Technology Data Exchange (ETDEWEB)

    Izuka, S.K.; Hill, B.R.; Shade, P.J.; Tribble, G.W.

    1991-01-01

    The report discusses geohydrologic evidence of ground-water and surface-water movement and sediment transport in an effort to identify routes by which water-borne contaminants may be transported within and beyond Haiku Valley. Specifically, the report describes the geologic framework of the valley and the bearing it has on the movement of ground water, and water budget of the Haiku Valley basin, the exchange between ground water and surface water, and the movement of sediment by surface water. The concentration of PCBs carried in suspended stream sediment is also described.

  3. Transport properties of supercooled confined water

    Science.gov (United States)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  4. Polyacrylamide Transport in Water Delivery Canals

    Science.gov (United States)

    Chen, L.; Zhu, J.; Young, M.

    2007-12-01

    Linear, anionic polyacrylamide (PAM) is being considered in the western United States as a technology to reduce seepage in unlined water delivery canals. A broad laboratory and field testing program has been undertaken to understand the benefits and potential environmental impacts of PAM use. The ability to predict the fate and transport of PAM in water delivery canals could prove to be a useful planning tool for PAM application. However, one key area of uncertainty of this type of canal treatment is the hydration, reaction, and settling rates of PAM after the dry powder is added to the canal water. In this study, we have developed a model that incorporates a number of known physical and chemical processes that can affect PAM transport, such as convection, dispersion, dissolution, flocculation, and settling, while solving the governing convection-dispersion transport equation. The model uses a mixed analytical and advanced numerical approach, and implements a transient partitioning of PAM mass between the canal water, the substrate soil, and potentially to open water bodies downstream of the application point. All source terms are modeled based on physical and chemical mechanisms as well as laboratory or field determined parameters. To more closely simulate field treatment of some canals, where PAM application moves upstream in time, the model is capable of implementing either a fixed or mobile upper boundary. In the latter treatment, the PAM can be added discretely or continuously in both time and space. A number of test situations have been simulated thus far, including theoretical and hypothetical cases for a wide range of conditions. The model also performed well when predicting PAM concentrations from a full-scale canal treatment experiment. The model provides a useful tool for predicting PAM fate and transport in water delivery canals, and therefore can play an important role in evaluating the efficacy of PAM application for water resources management

  5. Electronic transport in partially ionized water plasmas

    Science.gov (United States)

    French, Martin; Redmer, Ronald

    2017-09-01

    We use ab initio simulations based on density functional theory to calculate the electrical and thermal conductivities of electrons in partially ionized water plasmas at densities above 0.1 g/cm3. The resulting conductivity data are then fitted to analytic expressions for convenient application. For low densities, we develop a simple and fully analytic model for electronic transport in low-density plasmas in the chemical picture using the relaxation-time approximation. In doing so, we derive a useful analytic expression for electronic transport cross sections with neutral particles, based on a model potential. In the regime of thermal ionization, electrical conductivities from the analytic model agree with the ab initio data within a factor of 2. Larger deviations are observed for the thermal conductivity, and their origin is discussed. Our results are relevant for modeling the interior and evolution of water-rich planets as well as for technical plasma applications.

  6. The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2011-01-01

    The EU target to replace 10 percent of transport fuels by renewables by 2020 requires additional water. This study calculates water footprints (WFs) of transport modes using first generation bio-ethanol, biodiesel or bio-electricity and of European transport if 10 percent of transport fuels is bio-e

  7. Water transport in graphene nano-channels

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices dueto their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate...... between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced...... by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip...

  8. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.

    Science.gov (United States)

    Devuyst, O

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  9. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  10. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  11. Transportation technology transitions and macroeconomic growth -- Contemporary evidence

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D.J.

    1994-12-31

    This paper presents international and temporal extensions of evidence for a theory developed by the author concerning the interaction of transportation technology transitions and macroeconomic growth. The period 1970 to the present is examined for the nations of Japan, the US, and Europe (France, Germany, Italy and the United Kingdom collectively). An addition to the abstract logic supporting the general arguments of the theory is also presented. The theory has been developed concerning the role of significant transportation technology transitions as a cause of significant macroeconomic declines in nations for which the manufacture of transportation vehicles (ships, locomotives, and automobiles) is a dominant economic activity. The theory offers an explanation for periods of pronounced multiyear decline in economic growth rate--sometimes called depressions and sometimes called stagnations. One purpose of this paper is to explore whether or not Japan and Europe have each recently experienced a multiyear event of this type. In the theory and the evidence presented for it, environmental regulation of transportation vehicles has been shown to be an initiating cause of significant technical change, with sharp, sustained fuel price increases being a second frequent initiating cause. These causes of significant technical change, and their possible consequences, are potentially important considerations for those proposing policies to deal with global warming, since both fuel economy regulation and fuel price increases have been recommended by policy analysts as means to reduce transportation`s contribution to global warming. The theory has been offered and supported by publications developing mathematical models and examining US historical evidence consistent with the theory.

  12. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  13. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter.

    Science.gov (United States)

    Parker, Joanne L; Mindell, Joseph A; Newstead, Simon

    2014-12-02

    Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane.

  14. Heterogeneous water flow and pesticide transport in cultivated sandy soils : description of model concepts

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2011-01-01

    There is ample experimental evidence that complications in water flow and pesticide transport can occur in cultivated humic-sandy and loamy-sandy soils. As a result, pesticide leaching to groundwater and water courses can be higher than expected. We made an inventory of mechanistic/deterministic mod

  15. Water electrolyte transport through corrugated carbon nanopores.

    Science.gov (United States)

    Moghimi Kheirabadi, A; Moosavi, A

    2014-07-01

    We investigate the effect of wall roughness on water electrolyte transport characteristics at different temperatures through carbon nanotubes by using nonequilibrium molecular dynamics simulations. Our results reveal that shearing stress and the nominal viscosity increase with ion concentration in corrugated carbon nanotubes (CNTs), in contrast to cases in smooth CNTs. Also, the temperature increase leads to the reduction of shearing stress and the nominal viscosity at moderate degrees of wall roughness. At high degrees of wall roughness, the temperature increase will enhance radial movements and increases resistance against fluid motion. As the fluid velocity increases, the particles do not have enough time to fully adjust their positions to minimize system energy, which causes shearing stress and the nominal viscosity to increase. By increasing roughness amplitude or decreasing roughness wavelength, the shearing stress will increase. Synergistic effects of such parameters (wall roughness, velocity, ion concentration, and temperature) inside corrugated CNTs are studied and compared with each other. The molecular mechanisms are considered by investigating the radial density profile and the radial velocity profile of confined water inside modified CNT.

  16. Water transport between CNS compartments: contributions of aquaporins and cotransporters

    DEFF Research Database (Denmark)

    MacAulay, N; Zeuthen, T

    2010-01-01

    review we introduce another family of transport proteins as water transporters, namely the cotransporters and the glucose uniport GLUT1. In direct contrast to the aquaporins, these proteins have an inherent ability to transport water against an osmotic gradient. Some of them may also function as water...... or hydrocephalus. The molecular pathways by which water molecules cross the cell membranes of the brain are not well-understood, although the discovery of aquaporin 4 (AQP4) in the brain improved our understanding of some of these transport processes, particularly under pathological conditions. In the present...

  17. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins......The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...

  18. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M;

    2000-01-01

    This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...... was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume....... This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na...

  19. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M

    2000-01-01

    was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume....... This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na......This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...

  20. Water Transport and the Evolution of CM Parent Bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-01-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well

  1. K9 water searches: scent and scent transport considerations.

    Science.gov (United States)

    Osterkamp, Tom

    2011-07-01

    Increased use of water search dogs for detecting submerged bodies has created the need for a better understanding of scent emanating from the bodies and how it transits the water to the dog's nose. A review of recent literature identifies likely scent sources, potential scent transport processes, and research needs. Scent sources include gases in bubbles or dissolved in the water, liquids as buoyant plumes and droplets or dissolved in the water, and solids consisting of buoyant particulates with secretions, bacteria, and body fluids. Potential transport processes through the water include buoyancy, entrainment, and turbulence. Transport processes from the water surface into the air include volatilization and evaporation enhanced by bubble bursting, breaking waves, splashing, and wind spray. Implications for the use of water search dogs are examined. Observations of submerged, decomposing bodies are needed to quantify the physical and chemical characteristics of the scent and scent transport processes.

  2. Sediment Transport in Rivers and Coastal Waters

    Institute of Scientific and Technical Information of China (English)

    杨树清; 余建星; 王元战

    2003-01-01

    Following Bagnold′s approach, a relationship between sediment transport and energy dissipation is developed. The major assumption made in the study is that the near bed velocity plays a dominant role in the process of sediment transport. A general relationship between energy dissipation and sediment transport is first proposed. Then the equations for total sediment transport are derived by introducing the appropriate expression of energy dissipation rate under different conditions, such as open channel flows, combination of wave and current, as well as longshore sediment transport. Within the flows investigated, the derived relationships are fairly consistent with the available data over a wide range of conditions.

  3. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  4. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  5. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  6. Evidence for a Homodimeric Structure of Human Monocarboxylate Transporter 8

    Science.gov (United States)

    Visser, W. Edward; Philp, Nancy J.; van Dijk, Thamar B.; Klootwijk, Wim; Friesema, Edith C. H.; Jansen, Jurgen; Beesley, Philip W.; Ianculescu, Alexandra G.; Visser, Theo J.

    2009-01-01

    The human monocarboxylate transporter 8 (hMCT8) protein mediates transport of thyroid hormone across the plasma membrane. Association of hMCT8 mutations with severe psychomotor retardation and disturbed thyroid hormone levels has established its physiological relevance, but little is still known about the basic properties of hMCT8. In this study we present evidence that hMCT8 does not form heterodimers with the ancillary proteins basigin, embigin, or neuroplastin, unlike other MCTs. In contrast, it is suggested that MCT8 exists as monomer and homodimer in transiently and stably transfected cells. Apparently hMCT8 forms stable dimers because the complex is resistant to denaturing conditions and dithiothreitol. Cotransfection of wild-type hMCT8 with a mutant lacking amino acids 267–360 resulted in formation of homo-and heterodimers of the variants, indicating that transmembrane domains 4–6 are not involved in the dimerization process. Furthermore, we explored the structural and functional role of the 10 Cys residues in hMCT8. All possible Cys>Ala mutants did not behave differently from wild-type hMCT8 in protein expression, cross-linking experiments with HgCl2 and transport function. Our findings indicate that individual Cys residues are not important for the function of hMCT8 or suggest that hMCT8 has other yet-undiscovered functions in which cysteines play an essential role. PMID:19797118

  7. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  8. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  9. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  10. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel

    Energy Technology Data Exchange (ETDEWEB)

    Wilmes, Anja, E-mail: Anja.Wilmes@i-med.ac.at; Aschauer, Lydia; Limonciel, Alice; Pfaller, Walter; Jennings, Paul

    2014-09-01

    Claudins are the major proteins of the tight junctions and the composition of claudin subtypes is decisive for the selective permeability of the paracellular route and thus tissue specific function. Their regulation is complex and subject to interference by several factors, including oxidative stress. Here we show that exposure of cultured human proximal tubule cells (RPTEC/TERT1) to the immunosuppressive drug cyclosporine A (CsA) induces an increase in transepithelial electrical resistance (TEER), a decrease in dome formation (on solid growth supports) and a decrease in water transport (on microporous growth supports). In addition, CsA induced a dramatic decrease in the mRNA for the pore forming claudins -2 and -10, and the main subunits of the Na{sup +}/K{sup +} ATPase. Knock down of claudin 2 by shRNA had no discernable effect on TEER or dome formation but severely attenuated apical to basolateral water reabsorption when cultured on microporous filters. Generation of an osmotic gradient in the basolateral compartment rescued water transport in claudin 2 knock down cells. Inhibition of Na{sup +}/K{sup +} ATPase with ouabain prevented dome formation in both cell types. Taken together these results provide strong evidence that dome formation is primarily due to transcellular water transport following a solute osmotic gradient. However, in RPTEC/TERT1 cells cultured on filters under iso-osmotic conditions, water transport is primarily paracellular, most likely due to local increases in osmolarity in the intercellular space. In conclusion, this study provides strong evidence that claudin 2 is involved in paracellular water transport and that claudin 2 expression is sensitive to compound induced cellular stress. - Highlights: • Cyclosporine A increased TEER and decreased water transport in RPTEC/TERT1 cells. • Claudins 2 and 10 were decreased in response to cyclosporine A. • Knock down of claudin 2 inhibited water transport in proximal tubular cells. • We

  11. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo.

  12. Household water saving: Evidence from Spain

    Science.gov (United States)

    Aisa, Rosa; Larramona, Gemma

    2012-12-01

    This article focuses on household water use in Spain by analyzing the influence of a detailed set of factors. We find that, although the presence of both water-saving equipment and water-conservation habits leads to water savings, the factors that influence each are not the same. In particular, our results show that those individuals most committed to the adoption of water-saving equipment and, at the same time, less committed to water-conservation habits tend to have higher incomes.

  13. Transports and pathways of overflow water in the Rockall Trough

    Science.gov (United States)

    Johnson, Clare; Sherwin, Toby; Cunningham, Stuart; Dumont, Estelle; Houpert, Loïc; Holliday, N. Penny

    2017-04-01

    Water mass analysis reveals a persistent core of deep overflow water within the Rockall Trough which hugs the northern and western boundaries of the basin. Mean speeds within this overflow are 10-15 cm s-1 giving a transport time from the Wyville Thomson Ridge to the central basin of banks, we suggest that the volume transport will likely increase as the flow pathway is traced back around the boundary of the Rockall Trough towards the Wyville Thomson Ridge.

  14. Impact of inflow transport approximation on light water reactor analysis

    Science.gov (United States)

    Choi, Sooyoung; Smith, Kord; Lee, Hyun Chul; Lee, Deokjung

    2015-10-01

    The impact of the inflow transport approximation on light water reactor analysis is investigated, and it is verified that the inflow transport approximation significantly improves the accuracy of the transport and transport/diffusion solutions. A methodology for an inflow transport approximation is implemented in order to generate an accurate transport cross section. The inflow transport approximation is compared to the conventional methods, which are the consistent-PN and the outflow transport approximations. The three transport approximations are implemented in the lattice physics code STREAM, and verification is performed for various verification problems in order to investigate their effects and accuracy. From the verification, it is noted that the consistent-PN and the outflow transport approximations cause significant error in calculating the eigenvalue and the power distribution. The inflow transport approximation shows very accurate and precise results for the verification problems. The inflow transport approximation shows significant improvements not only for the high leakage problem but also for practical large core problem analyses.

  15. The coordinated development of China' s inland water transport%The coordinated development of China' s inland water transport

    Institute of Scientific and Technical Information of China (English)

    Deng Aimin; Tian Feng; Haasis H.D; Mao Lang; Cai Jia

    2012-01-01

    The coordinated development is the core of sustainable development and the hot issue of international research. Inland water transport (IWT) is an important part of the water resources exploiting system and comprehensive transport system under socio-economic context of river basin, and also the country' s sustainable development priorities to achieve resource-conserving and environment-friendly strategy. Based on the coordinated development content, the paper combined Germany' s successful development experience, explored the elements and problem of the coordinated development of IWT system of China' s national economic strategy and basin economy, water resourse system, comprehensive transport system, and system itself, and their countermeasures and suggestions, in order to facilitate rapid and coordinated development of China' s inland water transport.

  16. Water transport and the evolution of CM parent bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-07-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H_2O or OH) among both the main-belt and near-Earth asteroids is important for understanding a wide range of solar-system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar-system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-μm bands indicative of bound OH or H_2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections [1]. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0--25°C for less than 15 Myr after asteroid formation [2]. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 % of the asteroid's volume rising to 150°C and higher[3,4], due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high-porosity, water-saturated asteroid, very limited liquid water flow is predicted (distances of 100's μ m at most) [5]. This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and

  17. Coherent water transport across the South Atlantic

    CERN Document Server

    Wang, Y; Beron-Vera, F J

    2015-01-01

    The role of mesoscale eddies in transporting Agulhas leakage is investigated using a recent technique from nonlinear dynamical systems theory applied on geostrophic currents inferred from the over two-decade-long satellite altimetry record. Eddies are found to acquire material coherence away from the Agulhas retroflection, near the Walvis Ridge in the South Atlantic. Yearly, 1 to 4 coherent material eddies are detected with diameters ranging from 40 to 280 km. A total of 23 eddy cores of about 50 km in diameter and with at least 30% of their contents traceable into the Indian Ocean were found to travel across the subtropical gyre with minor filamentation. No more than 5\\% of such cores pour their contents on the North Brazil Current. While ability of eddies to carry Agulhas leakage northwestward across the South Atlantic is supported by our analysis, this is more restricted than suggested by earlier ring transport assessments.

  18. Water footprint of U.S. transportation fuels.

    Science.gov (United States)

    Scown, Corinne D; Horvath, Arpad; McKone, Thomas E

    2011-04-01

    In the modern global economy, water and energy are fundamentally connected. Water already plays a major role in electricity generation and, with biofuels and electricity poised to gain a significant share of the transportation fuel market, water will become significantly more important for transportation energy as well. This research provides insight into the potential changes in water use resulting from increased biofuel or electricity production for transportation energy, as well as the greenhouse gas and freshwater implications. It is shown that when characterizing the water impact of transportation energy, incorporating indirect water use and defensible allocation techniques have a major impact on the final results, with anywhere between an 82% increase and a 250% decrease in the water footprint if evaporative losses from hydroelectric power are excluded. The greenhouse gas impact results indicate that placing cellulosic biorefineries in areas where water must be supplied using alternative means, such as desalination, wastewater recycling, or importation can increase the fuel's total greenhouse gas footprint by up to 47%. The results also show that the production of ethanol and petroleum fuels burden already overpumped aquifers, whereas electricity production is far less dependent on groundwater.

  19. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  20. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  1. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  2. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  3. Sediment Transport at Density Fronts in Shallow Water

    Science.gov (United States)

    2012-09-30

    in the Hudson occurred at multiple locations along the salinity gradient rather than a single interface between salty and fresh water . The fronts in...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water ...suspended sediment concentration at density fronts in shallow water (< 1 m), - characterize flow and suspended sediment at a density front through the

  4. Kinetics of proton transport in water

    DEFF Research Database (Denmark)

    Kornyshev, A.A.; Kuznetsov, A.M.; Spohr, E.

    2003-01-01

    The excess proton mobility in water has attracted scientific attention for more than a century. Detailed theoretical concepts and models are also presently in strong focus in efforts toward understanding this ubiquitous phenomenon. In the present report, we discuss a theoretical framework...... for rationalizing the excess proton mobility, based on computer simulations, theory of proton transfer (PT) in condensed media, and analysis of classical proton conductivity experiments over broad temperature ranges. The mechanistic options involved are (i) classical hydrodynamic motion of the hydronium ion (H3O......+), (ii) proton transfer from hydronium to a neighboring water molecule, and (iii) structural diffusion of the Zundel complex (H5O2+), the processes all controlled by orientational fluctuations or hydrogen bond breaking in neighboring hydration shells. Spontaneous conversion of excess proton states...

  5. National Waterways Study. Commercial Water Transportation Users.

    Science.gov (United States)

    1981-08-01

    AUTHORIZED BY CONGRESS IN SECTION 158 OF THE WATER RESOURCES DEVELOPMENT ACT OF 1976 (PUBLIC LAW 94-587). THE STUDY WAS CONDUCTED BY THE US ARMY ENGINEER...attractive business for rail carriers. In seeking to handle this bussiness , barge carriers face sig- nificant competition from train-loading stations...expected to ex- amine other alternatives to compliance, such as increased use of pipelines, if these proposals become law . 2. Environmental Protection Agency

  6. Transport Behavior of Engineered Nanosized Photocatalytic Materials in Water

    Directory of Open Access Journals (Sweden)

    Guang’an He

    2013-01-01

    Full Text Available Engineered nanoparticles (ENPs possess unique properties and are employed in many sectors, and thus their release into environment remains. The potential risks of ENPs have been confirmed by an increasing number of studies that necessitate a better knowledge to the fate and transport of ENPs. One important application of ENP is photocatalysis for production of H2 as energy and pollutant decomposition. Engineered photocatalytic nanoparticles (PCNPs can also easily enter the environment with the rapid increase in its manufacture and use. This review focuses on the transport of PCNPs in water by addressing the important factors that determine the transport of PCNPs, such as particle size, pH value, ionic strength (IS, ionic valence, and organic matter. The transport of PCNPs in natural water systems and wastewater systems is also presented with an attempt to provide more abundant information. In addition, the state of the art of the detection technologies of PCNPs has been covered.

  7. Possible Evidence for Stripes in the Transport Properties of PLCCO

    Science.gov (United States)

    Ando, Yoichi

    2004-03-01

    It is now recognized that the charged stripes exist surely in La_1.6-xNd_0.4Sr_xCuO_4, probably in La_2-xSr_xCuO4 (LSCO), and possibly in YBa_2Cu_3O_y. It is also recognized that an intrinsic electronic inhomogeneity exists in Bi_2Sr_2CaCu_2O_8. These observations naturally lead to a notion that some form of electron self-organization might be fundamentally related to the high-Tc superconductivity. In this context, of particular interest is whether stripes (or some electron self-organizations) exist in electron-doped cuprates as well. To investigate this issue, we took notice of two peculiar features in lightly hole-doped LSCO: (1) It was demonstrated that the anisotropic phonon heat transport is a good probe of the stripe formation in lightly-doped LSCO; namely, the spin stripes in this system are well-ordered in the CuO2 planes but are disordered along the c axis, which causes the c-axis phonons alone to be anomalously scattered [X. F. Sun et al., PRB 67, 104503 (2003)]. (2) It was also demonstrated that the in-plane resistivity ρ_ab of lightly-doped LSCO crystals shows metallic behavior (dρ_ab/dT > 0) even in the long-range-ordered Néel state, where the hole mobility is surprisingly similar to that in optimally-doped samples; such an unusual metallic behavior can naturally be understood if doped holes form self-organized ``rivers" whose distance changes with doping [Y. Ando et al., PRL 87, 017001 (2001)]. Taking these features as signatures of stripes, we examined the transport properties of lightly electron-doped Pr_1.3-xLa_0.7Ce_xCuO4 (PLCCO). It was found that both of the above unusual features are observed also in lightly-doped PLCCO, which gives possible evidence for stripes in electron-doped cuprates.

  8. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  9. Computational study of effect of water finger on ion transport through water-oil interface

    Science.gov (United States)

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  10. Water Transport Models of Moisture Absorption and Sweat Discharge Yarns

    Institute of Scientific and Technical Information of China (English)

    WANG Fa-ming; ZHOU Xiao-hong; WANG Shan-yuan

    2008-01-01

    An important property of moisture absorption and sweat discharge yams is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yams were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.

  11. Aquarius, a reusable water-based interplanetary human spaceflight transport

    Science.gov (United States)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  12. Kinetics of proton transport in water

    DEFF Research Database (Denmark)

    Kornyshev, A.A.; Kuznetsov, A.M.; Spohr, E.

    2003-01-01

    for rationalizing the excess proton mobility, based on computer simulations, theory of proton transfer (PT) in condensed media, and analysis of classical proton conductivity experiments over broad temperature ranges. The mechanistic options involved are (i) classical hydrodynamic motion of the hydronium ion (H3O......+), (ii) proton transfer from hydronium to a neighboring water molecule, and (iii) structural diffusion of the Zundel complex (H5O2+), the processes all controlled by orientational fluctuations or hydrogen bond breaking in neighboring hydration shells. Spontaneous conversion of excess proton states...... between Zundel and hydrated hydronium states and between hydrated and bare hydronium states are the crucial parts of the scheme. A comparison between experimental data and molecular dynamics (MD) simulations shows that prototropic structural diffusion is determined by comparable contributions...

  13. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    Science.gov (United States)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  14. Experimental evidence of water formation on interstellar dust grains

    CERN Document Server

    Dulieu, F; Fillion, J-H; Matar, E; Momeni, A; Pirronello, V; Lemaire, J L

    2009-01-01

    The synthesis of water is one necessary step in the origin and development of life. It is believed that pristine water is formed and grows on the surface of icy dust grains in dark interstellar clouds. Until now, there has been no experimental evidence whether this scenario is feasible or not. We present here the first experimental evidence of water synthesis under interstellar conditions. After D and O deposition on a water ice substrate (HO) held at 10 K, we observe production of HDO and DO. The water substrate itself has an active role in water formation, which appears to be more complicated than previously thought. Amorphous water ice layers are the matrices where complex organic prebiotic species may be synthesized. This experiment opens up the field of a little explored complex chemistry that could occur on interstellar dust grains, believed to be the site of key processes leading to the molecular diversity and complexity observed in our universe.

  15. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    Science.gov (United States)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  16. Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gi Suk [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering; Kaviany, Massoud [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering; Gostick, Jeffrey T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Kientiz, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Kim, Moo Hwan [Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Dept. of Mechanical Engineering

    2011-04-07

    In this paper, using molecular simulations and a bimodal-domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. Finally, the water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties.

  17. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  18. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    Science.gov (United States)

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  19. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes

    Science.gov (United States)

    Fasano, Matteo; Humplik, Thomas; Bevilacqua, Alessio; Tsapatsis, Michael; Chiavazzo, Eliodoro; Wang, Evelyn N.; Asinari, Pietro

    2016-10-01

    A comprehensive understanding of molecular transport within nanoporous materials remains elusive in a broad variety of engineering and biomedical applications. Here, experiments and atomistic simulations are synergically used to elucidate the non-trivial interplay between nanopore hydrophilicity and surface barriers on the overall water transport through zeolite crystals. At these nanometre-length scales, these results highlight the dominating effect of surface imperfections with reduced permeability on the overall water transport. A simple diffusion resistance model is shown to be sufficient to capture the effects of both intracrystalline and surface diffusion resistances, thus properly linking simulation to experimental evidence. This work suggests that future experimental work should focus on eliminating/overcoming these surface imperfections, which promise an order of magnitude improvement in permeability.

  20. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  1. Water Transport in Trees--An Artificial Laboratory Tree

    Science.gov (United States)

    Susman, K.; Razpet, N.; Cepic, M.

    2011-01-01

    Water transport in tall trees is an everyday phenomenon, seldom noticed and not completely understood even by scientists. As a topic of current research in plant physiology it has several advantages for presentation within school physics lectures: it is interdisciplinary and clearly shows the connection between physics and biology; the…

  2. Water Transport in Trees--An Artificial Laboratory Tree

    Science.gov (United States)

    Susman, K.; Razpet, N.; Cepic, M.

    2011-01-01

    Water transport in tall trees is an everyday phenomenon, seldom noticed and not completely understood even by scientists. As a topic of current research in plant physiology it has several advantages for presentation within school physics lectures: it is interdisciplinary and clearly shows the connection between physics and biology; the…

  3. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  4. Superconductivity and Fast Proton Transport in Nanoconfined Water

    CERN Document Server

    Johnson, K H

    2016-01-01

    A real-space molecular-orbital description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc = 230 degK (-43 degC).

  5. Physical Hydrography and Algal Bloom Transport in Hong Kong Waters

    Institute of Scientific and Technical Information of China (English)

    KUANG Cui-ping; LEE Joseph H.W.

    2005-01-01

    In sub-tropical coastal waters around Hong Kong, algal blooms and red tides are usually first sighted in the Mirs Bay, in the eastern waters of Hong Kong. A calibrated three-dimensional hydrodynamic model for the Pearl River Estuary (Delft3D) has been applied to the study of the physical hydrography of Hong Kong waters and its relationship with algal bloom transport patterns in the dry and wet seasons. The general 3D hydrodynamic circulation and salinity structure in the partially-mixed estuary are presented. Extensive numerical surface drogue tracking experiments are performed for algal blooms that are initiated in the Mirs Bay under different seasonal, wind and tidal conditions. The probability of bloom impact on the Victoria Harbour and nearby urban coastal waters is estimated. The computations show that: I) In the wet season (May~August), algal blooms initiated in the Mirs Bay will move in a clockwise direction out of the bay, and be transported away from Hong Kong due to SW monsoon winds which drive the SW to NE coastal current; ii) In the dry season (November~April), algal blooms initiated in the northeast Mirs Bay will move in an anti-clockwise direction and be carried away into southern waters due to the NE to SW coastal current driven by the NE monsoon winds; the bloom typically flows past the east edge of the Victoria Harbour and nearby waters. Finally, the role of hydrodynamic transport in an important episodic event - the spring 1998 massive red tide - is quantitatively examined. It is shown that the strong NE to E wind during late March to early April, coupled with the diurnal tide at the beginning of April, significantly increased the probability of bloom transport into the Port Shelter and East Lamma Channel, resulting in the massive fish kill. The results provide a basis for risk assessment of harmful algal bloom (HAB) impact on urban coastal waters around the Victoria Habour.

  6. The Effects of Water Markets: Evidence from the Rio Grande.

    Science.gov (United States)

    Debaere, P.; Li, T.

    2016-12-01

    The Effects of Water Markets: Evidence from the Rio GrandePeter Debaere, University of Virginia Tianshu Li, University of Virginia The Rio Grande water market is one of the oldest water markets in the United States. Employing techniques from the social sciences, we present the first difference-in-difference analysis of the actual impact of water markets on production. We compare from 1954 to 2012 the crop composition in counties in the Rio Grande water market with those in their neighboring control counties before and after the water market was established in 1971. We provide evidence that water markets can facilitate a shift from crops that are on average more to ones that are less water intensive, or, alternatively, from crops that are on average less to ones that are more productive in terms of $ generated per unit of water. In addition, we find that such reallocations are especially prevalent in times of drought. Our findings supports water markets as a tool to manage water more effectively, which is one of the main challenges of an increasingly water-strapped world.

  7. Water transport in limestone by X-ray CAT scanning

    Science.gov (United States)

    Mossoti, Victor G.; Castanier, Louis M.

    1989-01-01

    The transport of water through the interior of Salem limestone test briquettes can be dynamically monitored by computer aided tomography (commonly called CAT scanning in medical diagnostics). Most significantly, unless evaporation from a particular face of the briquette is accelerated by forced air flow (wind simulation), the distribution of water in the interior of the briquette remains more or less uniform throughout the complete drying cycle. Moreover, simulated solar illumination of the test briquette does not result in the production of significant water gradients in the briquette under steady-state drying conditions.

  8. Channel morphology effect on water transport through graphene bilayers

    Science.gov (United States)

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  9. Numerical Evidence for Robustness of Environment-Assisted Quantum Transport

    CERN Document Server

    Shabani, A; Rabitz., H; Lloyd, S

    2014-01-01

    Recent theoretical studies show that decoherence process can enhance transport efficiency in quantum systems. This effect is known as environment-assisted quantum transport (ENAQT). The role of ENAQT in optimal quantum transport is well investigated, however, it is less known how robust ENAQT is with respect to variations in the system or its environment characteristic. Toward answering this question, we simulated excitonic energy transfer in Fenna-Matthews-Olson (FMO) photosynthetic complex. We found that ENAQT is robust with respect to many relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy, bath frequency cutoff, temperature, and initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. Our study suggests that the ENAQT phenomenon can be exploited in robust design of highly efficient quantum transport systems.

  10. Numerical evidence for robustness of environment-assisted quantum transport.

    Science.gov (United States)

    Shabani, A; Mohseni, M; Rabitz, H; Lloyd, S

    2014-04-01

    Recent theoretical studies show that decoherence process can enhance transport efficiency in quantum systems. This effect is known as environment-assisted quantum transport (ENAQT). The role of ENAQT in optimal quantum transport is well investigated; however, it is less known how robust ENAQT is with respect to variations in the system or its environment characteristic. Toward answering this question, we simulated excitonic energy transfer in Fenna-Matthews-Olson photosynthetic complex. We found that ENAQT is robust with respect to many relevant parameters of environmental interactions and Frenkel-exciton Hamiltonians, including reorganization energy, bath-frequency cutoff, temperature, initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. Our study suggests that the ENAQT phenomenon can be exploited in robust design of highly efficient quantum transport systems.

  11. Strain Engineering Water Transport in Graphene Nano-channels

    CERN Document Server

    Xiong, Wei; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui

    2011-01-01

    Using equilibrium and non-equilibrium molecular dynamic (MD) simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nano-channels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nano-channel devices.

  12. Evidence For Diffusion Dominant Solute Transport In The Ordovician Sediments Of The Michigan Basin

    Science.gov (United States)

    Sykes, J. F.; Normani, S. D.; Yin, Y.

    2011-12-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste has been proposed by Ontario Power Generation for the Bruce site near Tiverton, Ontario, 225 km northwest of Toronto. The DGR concept envisions a repository excavated at a depth of 680 m within the low permeability (less than 10e-14 m/s) limestone Cobourg Formation beneath 200 m of Ordovician age shale. The attributes of the hydrogeologic environment for the DGR, and the potential for solute transport from a repository, were assessed using numerical models for hypothesis testing and numerical experiments. Data for the analyses included Westbay pressure measurements from the DGR site investigation boreholes. These data indicate that the Cambrian sandstone and the Niagaran Group in the Silurian are over-pressured relative to density corrected hydrostatic levels while the Ordovician limestone and shale are significantly under-pressured. The abnormal pressures provide evidence that solute transport in the low permeable Ordovician sediments is diffusion dominant. Sedimentary basins, when at hydrological equilibrium, normally show a near-hydrostatic pressure distribution. Under certain conditions, some excess pressure or pressure greater than hydrostatic can develop in low-permeability layers or other hydraulically isolated parts of systems. The processes commonly invoked to explain these over-pressures are compaction, hydrocarbon migration, diagenesis, tectonic stress or more simply topographic effects. Explanations of abnormal under-pressures include osmosis, exhumation, glaciation unloading, crustal flexure and the presence of a non-wetting gas phase in pores. A requirement of both abnormal over-pressures and under-pressures is low hydraulic conductivity in either the formation in which the abnormal pressures are observed, or in the overlying and underlying formations. Hydraulic conductivity estimates from straddle packer tests in the DGR boreholes confirm that the hydraulic

  13. Ion and water transport in charge-modified graphene nanopores

    Institute of Scientific and Technical Information of China (English)

    裘英华; 李堃; 陈伟宇; 司伟; 谭启檐; 陈云飞

    2015-01-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly infl uence fl uid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase–decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5%and 90.2%when the nanopores are negatively and positively charged, respectively. The Cl−ion current increases and reaches a plateau, and the Na+current decreases as the charge amount increases in systems in which Na+ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges.

  14. Evidence for Recent Liquid Water on Mars

    Science.gov (United States)

    2000-01-01

    Gullies eroded into the wall of a meteor impact crater in Noachis Terra. This high resolution view (top left) from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) shows channels and associated aprons of debris that are interpreted to have formed by groundwater seepage, surface runoff, and debris flow. The lack of small craters superimposed on the channels and apron deposits indicates that these features are geologically young. It is possible that these gullies indicate that liquid water is present within the martian subsurface today. The MOC image was acquired on September 28, 1999. The scene covers an area approximately 3 kilometers (1.9 miles) wide by 6.7 km (4.1 mi) high (note, the aspect ratio is 1.5 to 1.0). Sunlight illuminates this area from the upper left. The image is located near 54.8S, 342.5W. The context image (above) shows the location of the MOC image on the south-facing wall of an impact crater approximately 20 kilometers (12 miles) in diameter. The context picture was obtained by the Viking 1 orbiter in 1980 and is illuminated from the upper left. The large mound on the floor of the crater in the context view is a sand dune field. The Mars Orbiter Camera high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s. A brief description of how the color was generated: The MOC narrow angle camera only takes grayscale (black and white) pictures. To create the color versions seen here, we have taken much lower resolution red and blue images acquired by the MOC's wide angle cameras, and by the Viking Orbiter cameras in the 1970s, synthesized a green image by averaging red and blue, and created a pallete of colors that represent the range of colors on Mars. We then use a relationship that correlates color and brightness to assign a color to each gray level. This is only a crude approximation of

  15. Barriers to Superfast Water Transport in Carbon Nanotube Membranes

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Ritos, Konstantinos; Cruz-Chu, Eduardo R.

    2013-01-01

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each...... other by orders of magnitude. We perform large scale molecular dynamics simulations emulating for the first time the micrometer thick CNTs membranes used in experiments. We find transport enhancement rates that are length dependent due to entrance and exit losses but asymptote to 2 orders of magnitude...

  16. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2014-03-01

    The shortage of clean and fresh water is one of most pervasive problems afflicting human being's life in the world. Desalination is one viable solution to produce clean water, since 98% of the available water in the form of salty water. Using molecular dynamics simulations, we demonstrate that graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. In addition, Graphyne sheets also are mechanically robust with high tolerance to deformation. Especially, γ-graphyne-4 has the best performance with 100% slat rejection and an unprecedented water permeability of ~ 13L/cm2/day/MPa. 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~ 10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore area. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membrane.

  17. Structural basis of water-specific transport through the AQP1 water channel

    Science.gov (United States)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  18. Water generation and transport below Europa's strike-slip faults

    Science.gov (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2016-12-01

    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  19. The evolution of water transport in plants: an integrated approach.

    Science.gov (United States)

    Pittermann, J

    2010-03-01

    This review examines the evolution of the plant vascular system from its beginnings in the green algae to modern arborescent plants, highlighting the recent advances in developmental, organismal, geochemical and climatological research that have contributed to our understanding of the evolution of xylem. Hydraulic trade-offs in vascular structure-function are discussed in the context of canopy support and drought and freeze-thaw stress resistance. This qualitative and quantitative neontological approach to palaeobotany may be useful for interpreting the water-transport efficiencies and hydraulic limits in fossil plants. Large variations in atmospheric carbon dioxide levels are recorded in leaf stomatal densities, and may have had profound impacts on the water conservation strategies of ancient plants. A hypothesis that links vascular function with stomatal density is presented and examined in the context of the evolution of wood and/or vessels. A discussion of the broader impacts of plant transport on hydrology and climate concludes this review.

  20. Distribution and transportation of nitrogen in Miyun reservoir waters

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiujuan; XIAO Changlai; YANG Tianxing; WANG Jing; LIU Xiaoduan

    2005-01-01

    The Miyun reservoir is an important water supply for Beijing city. The distribution laws of nitrogen in the Miyun reservoir waters and the transportation factors have been systematically analyzed in space and time by using water monitoring data sampled in the high-water and low-flow periods in 2001 and 2002. The nitrogen in east and west reservoir waters is distributed differently in space. It shows the change characteristics in high-water and low-flow periods and is affected by the source of nitrogen, runoff conditions, hydrodynamic conditions, precipitation and the control of bed mud, of which the source of nitrogen controls the change of concentration of nitrogen, the peripheral runoff controls the distribution law of nitrogen, bed mud controls the vertical distribution of nitrogen, and the contents of nitrogen and its change in the surrounding environment directly cause the change of concentration of total nitrogen in the waters. The improvement and protection of the waters in the Miyun reservoir basically rests with the amelioration of the peripheral environment.

  1. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  2. Evidence for rotational contribution to protein-facilitated proton transport.

    Science.gov (United States)

    Gros, G; Lavalette, D; Moll, W; Gros, H; Amand, B; Pochon, F

    1984-01-01

    Two modes of molecular motion of carrier molecules can, in principle, lead to a facilitated transport of a substrate: translational and rotational diffusion. In the present study, which deals with the mechanism of the facilitated diffusion of H+ and O2 in solutions of earthworm hemoglobin, examples for both types of facilitation are presented. Only translational, not rotational, diffusion of earthworm hemoglobin appears to lead to a facilitated O2 flux. In contrast, substantial facilitated H+ fluxes of comparable size arise from rotational diffusion as well as from translational diffusion of this large protein. This is derived from measurements of facilitated H+ and O2 fluxes in earthworm hemoglobin solutions and determinations of the rotational and translational diffusion coefficients of earthworm hemoglobin with the help of a theoretical treatment of facilitated diffusion by rotational carrier diffusion. H+ transport by rotational protein diffusion appears to be a case where the often-postulated mechanism of facilitated transport by rotation of a carrier lends itself to experimental verification. Images PMID:6324213

  3. First evidence of epithelial transport in tardigrades: a comparative investigation of organic anion transport.

    Science.gov (United States)

    Halberg, Kenneth Agerlin; Møbjerg, Nadja

    2012-02-01

    We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 μmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.

  4. Molecular level water and solute transport in reverse osmosis membranes

    Science.gov (United States)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  5. Transporting Evidence-Based Therapy for Adolescent Depression to the School Setting

    Science.gov (United States)

    Crisp, Heather L.; Gudmundsen, Gretchen R.; Shirk, Stephen R.

    2006-01-01

    This paper describes the Adolescent Mood Project (Project AMP), a study transporting an evidence-based, cognitive-behavioral treatment (CBT) for adolescent depression from the university lab setting to a school-based setting. Extant research on the psychosocial treatment of adolescent depression is reviewed and rationale for transporting evidence…

  6. Water, heat and salt transport through the Strait of Otranto

    Science.gov (United States)

    Yari, Sadegh; Gačić, Miroslav; Kovačević, Vedrana; Cardin, Vanessa

    2010-05-01

    The water, heat and salt transports through the Strait of Otranto are estimated applying direct method to historical current and hydrographical data (from December 94 through November 95). A variational inverse method based on a variational principle and a finite element solver is used to reconstruct the current, temperature and salinity fields across the Strait section from sparse measurements. The mean annual inflow and outflow water transport rates are estimated as 0.901±0.039 Sv and -0.939±0.315 Sv, respectively, and the net transport for the period of study is equal to -0.032±0.208 Sv. Thus, on a yearly time interval, the inflow and the outflow are practically compensated. The heat and salt transports due to advection process are estimated for five monthly periods, namely December 1994, February, May, August and November 1995. Considering these five periods representative of the seasonal cycle during the year, their average values show that there is a net heat advection into the Adriatic Sea on a yearly basis. The estimated value of advected heat and the corresponding error are 2.408±0.490 TW, which is equivalent to a heat gain of 17.37±3.53 W m-2 for the whole basin. This value is compared to the heat loss of -36±152 (std) W m-2 through the air-sea interface calculated by means of bulk formulas over the Adriatic Sea. The two values are expected to be balance each other in order to close the heat budget of the basin. The possible reasons for this difference to occur are discussed. On a yearly basis, the salt transport is estimated as an input of salt equal to 0.05×106 Kg s-1. The average annual fresh water budget is estimated as -0.002 Sv, equivalent to the mass of fresh water of 2.00×106Kg s-1 or to the level of 0.45 m yr-1 for the entire Adriatic Sea. The import of salt that is less than the gain of fresh water is in agreement with the fact that the Adriatic Sea is a dilution basin.

  7. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  8. The evidence for non-local transport in TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, K.W.; Bravenec, R.V.; Cima, G. [and others

    1996-11-11

    The electron temperature response of a tokamak to rapid edge cooling has characteristics difficult to reconcile with local transport analysis. The initial observations in TEXT have been extended to a wider range of plasma and perturbation parameters, including auxiliary heating, and the associated turbulence changes have been measured across the plasma radius. The fast edge temperature drops and core temperature increases are quantified by more extensive analysis. A perturbation complementary to edge cooling, edge heating by a fast current ramp, evokes a completely complementary plasma response.

  9. Cytopathological evidence for transport of phytoplasma in infected plants

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available Pleomorphic phytoplasmas were observed in sieve tubes, companion cells and in phloem parenchyma of Tagetes patula L., Helichrysum bracteatum Willd. and Gladiolus sp. L. plants with morphological changes typical for phytoplasma infection. In the pores of the sieve plate phytoplasma cells were seen which suggests that the vertical transport of this pathogen goes in the sieve tubes of infected plants throughout the sieve tube pores. The contact of the sieve tube with the neighbouring cells goes through the plasmodesmata, but no changes of the plasmodesmata were observed in the phloem of infected plants. The size and structure of unchanged plasmodesmata does not allow passing through such big structures like phytoplasma. Instead close contact between phytoplasma cells and vertical sieve tube walls takes place. Damages to the cell wall were observed forming cavities in which the phytoplasma cells were present. The damages of parenchyma and companion cells walls also were seen. In cells where the damages of the walls were observed phytoplasmas were present. The phytoplasma cells were sporadically seen also in the intercellular spaces of parenchyma. These data suggest that horizontal transport depends on damages to the infected plant cell walls caused by the phytoplasma itself.

  10. Experimental evidence of interhemispheric transport from airborne carbon monoxide measurements

    Science.gov (United States)

    Newell, R. E.; Gauntner, D. J.

    1979-01-01

    During the period 28-30 October 1977, a Pan American 747-SP aircraft flew around the world with an automated instrument package that included measurements of atmospheric CO made every 4 sec. The flight path extended from San Francisco, over the North Pole to London, south to Capetown, over the South Pole to Auckland, and back to San Francisco. The data collected show large changes with longitude, which are interpreted as direct evidence of interhemispheric mixing. Possible sources for CO are discussed.

  11. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment

    Directory of Open Access Journals (Sweden)

    H.-J. Vogel

    2006-01-01

    Full Text Available A classical transport experiment was performed in a field plot of 2.5 m2 using the dye tracer brilliant blue. The measured tracer distribution demonstrates the dominant role of the heterogeneous soil structure for solute transport. As with many other published experiments, this evidences the need of considering the macroscopic structure of soil to predict flow and transport. We combine three different approaches to represent the relevant structure of the specific situation of our experiment: i direct measurement, ii statistical description of heterogeneities and iii a conceptual model of structure formation. The structure of soil layers was directly obtained from serial sections in the field. The sub-scale heterogeneity within the soil horizons was modelled through correlated random fields with estimated correlation lengths and anisotropy. Earthworm burrows played a dominant role at the transition between the upper soil horizon and the subsoil. A model based on percolation theory is introduced that mimics the geometry of earthworm burrow systems. The hydraulic material properties of the different structural units were obtained by direct measurements where available and by a best estimate otherwise. From the hydraulic structure, the 3-dimensional velocity field of water was calculated by solving Richards' Equation and solute transport was simulated. The simulated tracer distribution compares reasonably well with the experimental data. We conclude that a rough representation of the structure and a rough representation of the hydraulic properties might be sufficient to predict flow and transport, but both elements are definitely required.

  12. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity.

    Science.gov (United States)

    Zhang, Shi-Bao; Sun, Mei; Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin

    2014-01-01

    Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns.

  13. Vapour transport of rare earth elements (REE) in volcanic gas: Evidence from encrustations at Oldoinyo Lengai

    Science.gov (United States)

    Gilbert, C. D.; Williams-Jones, A. E.

    2008-10-01

    Fumarolic encrustations and natrocarbonatite lava from the active crater of Oldoinyo Lengai volcano, Tanzania, were sampled and analysed. Two types of encrustation were distinguished on the basis of their REE content, enriched (~ 2800-5600 × [REE chondrite]) and depleted (~ 100-200 × [REE chondrite]) relative to natrocarbonatite (1700-1900 × [REE chondrite]. REE-enriched encrustations line the walls of actively degassing fumaroles, whereas REE-depleted encrustations occur mainly along cracks in and as crusts on cooling natrocarbonatite lava flows; one of the low REE encrustation samples was a stalactite from the wall of a possible fumarole. The encrustations are interpreted to have different origins, the former precipitating from volcanic gas and the latter from meteoric/ground water converted to steam by the heat of the overlying lava flow(s). REE-profiles of encrustations and natrocarbonatite are parallel, suggesting that there was no preferential mobilization of specific REE by either volcanic vapour or meteoric water vapour. The elevated REE-content of the first group of encrustations suggests that direct REE-transport from natrocarbonatite to volcanic vapour is possible. The REE trends observed in samples precipitating directly from the volcanic vapour cannot be explained by dry volatility based on the available data as there is no evidence in the encrustation compositions of the greatly enhanced volatility predicted for Yb and Eu. The observed extreme REE-fractionation with steep La/Sm slopes parallel to those of the natrocarbonatite reflects solvation and complexation reactions in the vapour phase that did not discriminate amongst the different REE or similar transport of REE in both the natrocarbonatite magma and its exsolving vapour. The low concentrations of REE in the encrustations produced by meteoric vapour suggest that the temperature was too low or that this vapour did not contain the ligands necessary to permit significant mobilization of the REE.

  14. Unsaturated water flow and tracer transport modeling with Alliances

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Alina, E-mail: alina.constantin@nuclear.ro [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania); Genty, Alain, E-mail: alain.genty@cea.fr [CEA Saclay, DM2S/SFME/LSE, Gif-sur-Yvette 91191 cedex (France); Diaconu, Daniela; Bucur, Crina [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania)

    2013-12-15

    Highlights: • Simulation of water flow and solute transport at Saligny site, Romania was done. • Computation was based on the available experimental data with Alliances platform. • Very good results were obtained for the saturation profile in steady state. • Close fit to experimental data for saturation profile at 3 m in transient state. • Large dispersivity coefficients were fitted to match tracer experiment. - Abstract: Understanding water flow and solute transport in porous media is of central importance in predicting the radionuclide fate in the geological environment, a topic of interest for the performance and safety assessment studies for nuclear waste disposal. However, it is not easy to predict transport properties in real systems because they are geologically heterogeneous from the pore scale upwards. This paper addresses the simulation of water flow and solute transport in the unsaturated zone of the Saligny site, the potential location for the Romanian low and intermediate level waste (LILW) disposal. Computation was based on the current available experimental data for this zone and was performed within Alliances, a software platform initially jointly developed by French organizations CEA, ANDRA and EDF. The output of the model developed was compared with the measured values in terms of saturation profile of the soil for water movement, in both steady and transient state. Very good results were obtained for the saturation profile in steady state and a close fit of the simulation over experimental data for the water saturation profile at a depth of 3 m in transient state. In order to obtain information regarding the solute migration in depth and the solute lateral dispersion, a tracer test was launched on site and dispersivity coefficients of the solute were fitted in order to match the experimental concentration determined on samples from different locations of the site. Results much close to the experiment were obtained for a longitudinal

  15. Ion and water transport in charge-modified graphene nanopores

    CERN Document Server

    Qiu, Yinghua; Chen, Weiyu; Si, Wei; Tan, Qiyan; Chen, Yunfei

    2016-01-01

    Porous graphene has high mechanical strength and atomic layer thickness, which make it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solution are a kind of strong long-range interaction which may have great influence on the fluid transport through nanopores. Here, molecular dynamics simulations were conducted to investigate ion and water transport through a 1.05-nm-in-diameter monolayer graphene nanopore with its edge charge-modified. From the results, it is found that the nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonously decrease. The co-ions rejection can reach 75% and 90% when the nanopores are negatively and positively charged, respectively. Cl ions current increases and reaches a plateau, and Na+ current decreases with the charge amount in the systems where they act as counterions. Beside...

  16. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  17. Evidence for particle transport between alveolar macrophages in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  18. Deglacial intermediate water reorganization: new evidence from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    S. Romahn

    2013-07-01

    Full Text Available The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Antarctic Intermediate Water (AAIW is thought to have acted as an active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in AAIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from a site in the western Indian Ocean. Our data suggest that AAIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial AAIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.

  19. Molecular-dynamics of water transport through membranes - water from solvent to solute

    NARCIS (Netherlands)

    BERENDSEN, HJC; MARRINK, SJ

    1993-01-01

    An application of Molecular Dynamics computer simulation (MD) to the process of transport of water through a lipid bilayer membrane is described. The permeation process is far too slow to be modeled by straightforward MD. In stead the inverse of the permeability coefficient is expressed as an

  20. Projections of Horizontal Water Vapor Transport across Europe

    Science.gov (United States)

    Lavers, D. A.

    2015-12-01

    With a warming Earth's atmosphere, the global water cycle is expected to intensify, a process that is likely to yield changes in the frequency and intensity of hydrological extremes. To quantify such changes over Europe, most previous research has been based upon precipitation scenarios. However, seldom has the horizontal water vapor transport (integrated vapor transport IVT) been investigated, a key variable responsible for heavy precipitation events and one that links water source and sink regions. It is hence the aim of this study to assess the projections of IVT across Europe. The Climate Model Intercomparison Project Phase 5 (CMIP5) is the source of the climate model projections. The historical simulations (1979-2005) and two emissions scenarios (2073-2099), or representative concentration pathways (RCP4.5 and RCP8.5) from 22 global circulation models were retrieved and evaluated. In particular, at model grid points across Europe the mean, standard deviation, and the 95th percentile of IVT were calculated for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean closely resembles the ECMWF ERA-Interim reanalysis. In the future under the two emissions scenarios, the IVT increases in magnitude, with the highest percentage changes occurring in the extreme emissions (RCP8.5) scenario; for example, multi-model mean IVT increases of 30% are found in the domain. An evaluation of the low-altitude moisture and winds indicates that higher atmospheric water vapor content is the primary cause of these projected changes.

  1. Transport Phenomena of Water in Molecular Fluidic Channels

    Science.gov (United States)

    Vo, Truong Quoc; Kim, Bohung

    2016-09-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices.

  2. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  3. How Does Leaf Anatomy Influence Water Transport outside the Xylem?

    Science.gov (United States)

    Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren

    2015-08-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function.

  4. Structure and Water Transport in Nafion Nanocomposite Membranes

    Science.gov (United States)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  5. Investigating evidence of geologically recent liquid water on Mars

    Science.gov (United States)

    Kolb, Kelly Jean

    2009-06-01

    Geologically young gullies have been proposed to be evidence of recent liquid water on Mars. This dissertation details work I have done to address issues surrounding the Martian gullies and recent water on Mars. In order to determine the elevations at which gullies occur, I created a set of Interactive Data Language programs and Unix C-shell scripts to coregister Mars Orbiter Laser Altimeter topography with high resolution Mars images. My scripts represent the first public method that does this. Recently, the Mars Orbiter Camera detected changes in the form of new bright deposits in two gullies. The High Resolution Imaging Science Experiment (HiRISE) camera detected more gullies with bright deposits. I used my scripts to identify some of the best candidates for liquid water formation based on their shallow average slopes. A Digital Elevation Model (DEM) was produced using HiRISE stereo images of my selected candidates in Hale Crater. I model two gullies with bright slope deposits in Hale Crater and find that both water- rich and sediment-rich flows could reproduce the bright deposits' locations and morphologies. Since liquid water is rarely stable on Mars today, I suggest that dry flows formed the bright deposits. The channel gradient where flows deposit, the apex slope, can tell us whether a flow was likely dry and non-fluidized (slopes ~21°) or fluidized (shallower slopes). I measured the apex slope of 75 gullies located in five HiRISE DEMs. I find that 72% of the gullies studied were likely emplaced by a fluidized flow. I also find that modified gullies are more likely to have a fluidized emplacement than relatively fresh gullies. My results suggest that there is no evidence requiring water-rich flows in gullies today. Understanding the concept of water on Mars is crucial to understanding NASA's Mars Exploration Strategy, "Follow the Water." I undertook a study investigating alternative conceptions about water on Mars held by middle school science teachers to

  6. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Boisen, A M Z; Amstrup, J; Novak, I;

    2003-01-01

    While the zebrafish is commonly used for studies of developmental biology and toxicology, very little is known about their osmoregulatory physiology. The present investigation of Na(+) and Cl(-) transport revealed that the zebrafish is able to tolerate extremely low ambient ion concentrations...... and that this is achieved at least in part by a greatly enhanced apparent uptake capacity and affinity for both ions. Zebrafish maintain plasma and whole body electrolyte concentrations similar to most other freshwater teleosts even in deionized water containing only 35 microM NaCl, i.e soft water. We recorded an extremely...... inhibitor was more variable. Differential response of Na(+) uptake to amiloride depending on acclimation medium suggests that different Na(+) transport mechanisms are employed by zebrafish acclimated to soft and hard water....

  7. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  8. Lack of cross-shelf transport of sediments on the western margin of India: Evidence from clay mineralogy

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.

    transported long distances along the shelf, cross-shelf transport appears to be minimal. Confirmatory evidence of qualitative differences in outer and inner shelf clays is provided by sediment trap clay mineralogy on the outer shelf. Clay bound pollutant...

  9. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  10. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    James, Shelley A; Meinzer, Frederick C; Goldstein, Guillermo; Woodruff, David; Jones, Timothy; Restom, Teresa; Mejia, Monica; Clearwater, Michael; Campanello, Paula

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single individual of Anacardium excelsum, Ficus insipida, Schefflera morototoni, and Cordia alliodora during two consecutive dry seasons. Vessel lumen diameter and vessel density did not exhibit a consistent trend axially from the base of the stem to the base of the crown. However, lumen diameter decreased sharply from the base of the crown to the terminal branches. The ratio of vessel lumen area to sapwood cross-sectional area was consistently higher at the base of the crown than at the base of the trunk in A. excelsum, F. insipida and C. alliodora, but no axial trend was apparent in S. morototoni. Radial profiles of the preceding wood anatomical characteristics varied according to species and the height at which the wood samples were obtained. Radial profiles of sap flux density measured with thermal dissipation sensors of variable length near the base of the crown were highly correlated with radial profiles of specific hydraulic conductivity (k(s)) calculated from xylem anatomical characteristics. The relationship between sap flux density and k(s) was species-independent. Deuterium oxide (D(2)O) injected into the base of the trunk of the four study trees was detected in the water transpired from the upper crown after only 1 day in the 26-m-tall C. alliodora tree, 2 days in the 28-m-tall F. insipida tree, 3 days in the 38-m-tall A. excelsum tree, and 5 days in the 22-m-tall S. morototoni tree. Radial transport of injected D(2)O was detected in A. excelsum, F. insipida and S. morototoni, but not C. alliodora. The rate of axial D(2)O transport, a surrogate for maximum sap velocity, was positively correlated

  11. Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes.

    Science.gov (United States)

    He, Fei; Liu, Weirong; Zheng, Shengchao; Zhou, Li; Ye, Benlan; Qi, Zhi

    2012-01-01

    It is well known that dimethyl sulphoxide (DMSO) increases membrane permeability, which makes it widely used as a vehicle to facilitate drug delivery across biological membranes. However, the mechanism of how DMSO increases membrane permeability has not been well understood. Recently, molecular dynamics simulations have demonstrated that DMSO can induce water pores in biological membranes, but no direct experimental evidence is so far available to prove the simulation result. Using FluxOR Tl⁺ influx assay and intracellular Ca²⁺ imaging technique, we studied the effect of DMSO on Tl⁺ and Ca²⁺ permeation across cell membranes. Upon application of DMSO on CHO-K1 cell line, Tl⁺ influx was transiently increased in a dose-dependent manner. The increase in Tl⁺ permeability induced by DMSO was not changed in the presence of blockers for K⁺ channel and Na⁺-K⁺ ATPase, suggesting that Tl⁺ permeates through transient water pores induced by DMSO to enter into the cell. In addition, Ca²⁺ permeability was significantly increased upon application of DMSO, indicating that the transient water pores induced by DMSO were non-selective pores. Furthermore, similar results could be obtained from RAW264.7 macrophage cell line. Therefore, this study provided experimental evidence to support the prediction that DMSO can induce transient water pores in cell membranes, which in turn facilitates the transport of active substances across membranes.

  12. Field-scale water flow and solute transport : Swap model concepts, parameter estimation and case studies

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale level. The ma

  13. Experimental Study of Water Transport through Hydrophilic Nanochannels

    Science.gov (United States)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2015-11-01

    In this paper, we investigate one of the fundamental aspects of Nanofluidics, which is the experimental study of water transport through nanoscale hydrophilic conduits. A new method based on spontaneous filling and a novel hybrid nanochannel design is developed to measure the pure mass flow resistance of single nanofluidic channels/tubes. This method does not require any pressure and flow sensors and also does not rely on any theoretical estimations, holding the potential to be standards for nanofluidic flow characterization. We have used this method to measure the pure mass flow resistance of single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our experimental results quantify the increased mass flow resistance as a function of nanochannel height, showing a 45% increase for a 7nm channel compared with classical hydrodynamics, and suggest that the increased resistance is possibly due to formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. It has been further shown that this method can reliably measure a wide range of pure mass flow resistances of nanoscale conduits, and thus is promising for advancing studies of liquid transport in hydrophobic graphene nanochannels, CNTs, as well as nanoporous media. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  14. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  15. Measurements and simulations of water transport in maize plants

    Science.gov (United States)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  16. Effects of water wave motion on pollutant transport in shallow coastal water

    Institute of Scientific and Technical Information of China (English)

    陶建华; 韩光

    2002-01-01

    Based on the study of the wave propagation, breaking, longshore current and the effect of wave on current structure in the near shore area with a mild bottom slope, the wave is considered to be an important dynamic factor for pollutant transportation in the coastal water. Numerical simulation shows that the pollutant will transfer along shore when the incident wave is at an angle to the shoreline. This phenomenon is very significant if the outfall is located in the surfzone. Therefore, in the design of sea outfall, to improve near shore environment, the water wave should be considered as an important hydrodynamic factor.

  17. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems.

  18. Evidence of water molecules--a statistical evaluation of water molecules based on electron density.

    Science.gov (United States)

    Nittinger, Eva; Schneider, Nadine; Lange, Gudrun; Rarey, Matthias

    2015-04-27

    Water molecules play important roles in many biological processes, especially when mediating protein-ligand interactions. Dehydration and the hydrophobic effect are of central importance for estimating binding affinities. Due to the specific geometric characteristics of hydrogen bond functions of water molecules, meaning two acceptor and two donor functions in a tetrahedral arrangement, they have to be modeled accurately. Despite many attempts in the past years, accurate prediction of water molecules-structurally as well as energetically-remains a grand challenge. One reason is certainly the lack of experimental data, since energetic contributions of water molecules can only be measured indirectly. However, on the structural side, the electron density clearly shows the positions of stable water molecules. This information has the potential to improve models on water structure and energy in proteins and protein interfaces. On the basis of a high-resolution subset of the Protein Data Bank, we have conducted an extensive statistical analysis of 2.3 million water molecules, discriminating those water molecules that are well resolved and those without much evidence of electron density. In order to perform this classification, we introduce a new measurement of electron density around an individual atom enabling the automatic quantification of experimental support. On the basis of this measurement, we present an analysis of water molecules with a detailed profile of geometric and structural features. This data, which is freely available, can be applied to not only modeling and validation of new water models in structural biology but also in molecular design.

  19. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  20. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  1. A computerized coal-water slurry transportation model

    Energy Technology Data Exchange (ETDEWEB)

    Ljubicic, B.R.; Trostad, B. [Univ. of North Dakota, Grand Forks, ND (United States); Bukurov, Z.; Cvijanovic, P. [Univ. of Novi Sad (Yugoslavia)

    1995-12-01

    Coal-water fuel (CWF) technology has been developed to the point where full-scale commercialization is just a matter of gaining sufficient market confidence in the price stability of alternate fossil fuels. In order to generalize alternative fuel cost estimates for the desired combinations of processing and/or transportation, a great deal of flexibility is required owing to the understood lack of precision in many of the newly emerging coal technologies. Previously, decisions regarding the sequential and spatial arrangement of the various process steps were made strictly on the basis of experience, simplified analysis, and intuition. Over the last decade, computer modeling has progressed from empirically based correlation to that of intricate mechanistic analysis. Nomograms, charts, tables, and many simple rules of thumb have been made obsolete by the availability of complex computer models. Given the ability to view results graphically in real or near real time, the engineer can immediately verify, from a practical standpoint, whether the initial assumptions and inputs were indeed valid. If the feasibility of a project is being determined in the context of a lack of specific data, the ability to provide a dynamic software-based solution is crucial. Furthermore, the resulting model can be used to establish preliminary operating procedures, test control logic, and train plant/process operators. Presented in this paper is a computerized model capable of estimating the delivered cost of CWF. The model uses coal-specific values, process and transport requirements, terrain factors, and input costs to determine the final operating configuration, bill of materials, and, ultimately, the capital, operating, and unit costs.

  2. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Transport of thermal water from well to thermal baths

    Science.gov (United States)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2

  4. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  5. Review on the development of unidirectional water-transport fibers and fabrics

    Directory of Open Access Journals (Sweden)

    Yaqian XIAO

    2017-08-01

    Full Text Available Unidirectional water-transport fabric is a kind of functional fiber assembles used to realize unidirectional conduction of liquid water, and it could be used for the design and development of clothing with the function of thermal-wet comfort. The development of unidirectional water-transport fabrics from the mechanism of the unidirectional water-transport, selection of fiber and preparation method is summarized. Five key methods to achieve the unidirectional water-transport effect have been reviewed, including the designing of fabric structure, chemical finishing, plasma treatment, electro spinning and photocatalytic treatment. According to the current problems in the research on unidirectional water-transfer fabric, it is proposed that multi-functional unidirectional water-transfer fabrics should be developed by post-treatment finishing technology with adding special functional additives to expand the practical applications.

  6. Modelling Water Flow and Solute Transport for Horticultural and Environmental Management

    NARCIS (Netherlands)

    Feddes, R.A.; Dam, van J.C.

    2002-01-01

    During the past 10 years, the simulation model SWAP (Soil, Water, Atmosphere, Plant) was developed by the Sub-Department Water Resources of Wageningen University jointly with the Department Water and Environment of Alterra Green World Research. SWAP simulates vertical transport of water, solutes and

  7. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  8. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Koumoutsakos, Petros

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate, ...

  9. Coupling water table fluctuation to mercury speciation and transport in wetland ecosystems

    Science.gov (United States)

    Branfireun, B. A.; Mitchell, C. P.

    2008-12-01

    Hydrological processes exert a first-order control over both the conditions required for mercury methylation to occur, and the transport of methylmercury from sites of production. In the recent literature, evidence has been presented that a relationship exists between water level fluctuation and mercury levels in aquatic organisms. These observations have led to the conclusion that this fluctuation is stimulating mercury methylation in littoral sediments and wetland ecosystems through the creation of favourable biogeochemical conditions. Using data from a range of wetland ecosystems, and several experiments that subjected wetland soils to fluctuating water levels, a relationship between water table fluctuation frequency and methylmercury production will be presented. Experimental data show that longer frequency wetting and drying periods result in greater methylmercury production relative to a static or high frequency fluctuation. It was also found that mercury methylation processes in wetland soils are able to sustain elevated pore water concentrations over repeated wetting and draining events. These data suggest that methylmercury export from wetlands is likely limited by the degree of hydrological connectivity rather than biogeochemical processes, highlighting the need to better understand the nature of hydrological linkages among wetlands and adjacent ecosystems.

  10. A Review of Evidence for Corrosion of Copper by water

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J. (Monitor Scientific LLC (United Kingdom)); Bennett, David G. (TerraSalus Limited (United Kingdom)); Saario, Timo (VTT Materials and Building (Finland))

    2009-09-15

    The planned spent nuclear fuel repository in Sweden relies on a copper cast iron canister as the primary engineered barrier. The corrosion behaviour of copper in the expected environment needs to be thoroughly understood as a basis for the post-closure safety analysis. It has been shown that corrosion may indeed be the primary canister degradation process during the utilised assessment period of 1 million years (this period is the longest time for which risk calculations will be needed according guidelines issued by the Swedish Radiation Safety Authority). Previous analysis work has been based on that copper is corroded during the initial oxic environment as well as by sulphide in groundwater once reducing conditions have been restored. The quantitative analyses of these processes consider upper-bound amounts of atmospheric oxidation as well as representative sulphide concentrations coupled with the transport limitation of the bentonite buffer and of the surrounding bedrock. A group of researchers at the Royal Institute of Technology (KTH), Stockholm, Sweden suggest, based on published experimental results, that disposed canisters will also be corroded by water itself under hydrogen evolution. The purpose of the project is to evaluate the findings of the KTH research group based on an assessment of their experimental methods and chemical analysis work, thermodynamic models, and a discussion of reaction mechanisms as well as comparison with the analogue behaviour of native copper. As a background, the authors also provide a brief overview of other corrosion processes and safety assessment significance. The authors conclude that the KTH researchers have not convincingly demonstrated that copper will indeed be corroded by pure water and that it is in any case very unlikely that this process will be dominant under the reducing chemical conditions that are expected in the repository environment. How-ever, the authors do not completely rule out that copper may corrode

  11. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    Science.gov (United States)

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  12. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  13. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, David J. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [American Association for the Advancemetn of Science (AAAS), Washington, DC (United States)

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  14. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    OpenAIRE

    Walther, Jens Honore; Koumoutsakos, Petros

    2011-01-01

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate, for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simula...

  15. Sediment Transport Dynamics in River Networks: A Model for Higher-Water Seasons

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Zhang, Jin-Feng

    A dynamical model is proposed to study sediment transport in river networks in higher-water seasons. The model emphasizes the difference between the sediment-carrying capability of the stream in higher-water seasons and that in lower-water seasons. The dynamics of sediment transport shows some complexities such as the complex dependence of the sediment-carrying capability on sediment concentration, the response of the channel(via erosion or sedimentation) to the changes of discharge.

  16. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  17. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminates (GOAL) Sub-nanometer-spacing and Water Transport.

    Science.gov (United States)

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad David

    2017-03-23

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example is graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties, in particular the GO chemistry, can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photo-reduction and sonication techniques and were quantitatively correlated offering a valuable tool to speed up characterization. Chemical GO modification allows for fine control of GO oxidation state enabling control of a GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOAL characterized by different GOAL chemistry and morphology, and indicate that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (>1000s nm2) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GO and can be used to rationally design more effective and efficient GO membranes.

  18. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  19. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  20. Water poverty and rural development: Evidence from South Africa

    CSIR Research Space (South Africa)

    Matshe, I

    2013-08-01

    Full Text Available link between household water and economic poverty of rural households, with households’ total monthly income used as an indicator of economic poverty. An adaptation of a comprehensive water poverty index, which considers water access, quality, use...

  1. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available BACKGROUND: P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS: The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and

  2. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in ...

  3. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Science.gov (United States)

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  4. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  5. 1/ f Fluctuations of amino acids regulate water transportation in aquaporin 1.

    Science.gov (United States)

    Yamamoto, Eiji; Akimoto, Takuma; Hirano, Yoshinori; Yasui, Masato; Yasuoka, Kenji

    2014-02-01

    Aquaporins (AQPs), which transport water molecules across cell membranes, are involved in many physiological processes. Recently, it is reported that the water-water interactions within the channel are broken at the aromatic/arginine selectivity filter (ar/R region), which prevents proton transportation [U. K. Eriksson et al., Science 340, 1346 (2013)]. However, the effects of the conformational fluctuations of amino acids on water transportation remain unclear. Using all-atom molecular dynamics simulations, we analyze water transportation and fluctuations of amino acids within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of long-term memory. Moreover, we find that water molecules crossing the ar/R region obey a non-Poisson process. To investigate the effect of 1/f fluctuations on water transportation, we perform restrained molecular dynamics simulations of AQP1 and simple Langevin stochastic simulations. As a result, we confirm that 1/f fluctuations of amino acids contribute to water transportation in AQP1. These findings appreciably enhance our understanding of AQPs and suggest possibilities for developing biomimetic nanopores.

  6. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  7. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, J.; Mulder, M.H.V.; Wessling, M.

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol ab

  8. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd₃As₂.

    Science.gov (United States)

    He, L P; Hong, X C; Dong, J K; Pan, J; Zhang, Z; Zhang, J; Li, S Y

    2014-12-12

    We report the quantum transport properties of Cd₃As₂ single crystals in a magnetic field. A large linear quantum magnetoresistance is observed near room temperature. With decreasing temperature, the Shubnikov-de Haas oscillations appear in both the longitudinal resistance R(xx) and the transverse Hall resistance R(xy). From the strong oscillatory component ΔR(xx), a linear dependence of the Landau index n on 1/B is obtained, and it gives an n-axis intercept between 1/2 and 5/8. This clearly reveals a nontrivial π Berry's phase, which is a distinguished feature of Dirac fermions. Our quantum transport results provide bulk evidence for the existence of a three-dimensional Dirac semimetal phase in Cd₃As₂.

  9. Coupling of water and carbon transport in trees: -Could water limitations of phloem transport speed up carbon starvation and tree mortality?

    Science.gov (United States)

    Sevanto, S.; McDowell, N. G.; Dickman, L. T.; Pangle, R.; Pockman, W.

    2011-12-01

    Understanding the mechanisms behind tree mortality is increasingly important because climate change appears to be increasing drought severity and duration worldwide, with concomitant increases in mortality. Carbon starvation is one of the mechanisms suggested to be responsible for mortality, especially for species that close stomata at low xylem water tensions. Such plants would be under negative carbon balance during drought. Carbohydrate transport in plants relies on the availability of apoplastic water and therefore, shortage of water could lead to inability to distribute sugars and speed up carbon starvation even if carbohydrate reserves existed. To test these ideas we conducted a greenhouse study where pinon pine (Pinus edulis) trees were killed using two treatments: water limitation (complete drought) and carbon limitation (complete darkness). We collected tissue samples for non-structural carbohydrate content analysis weekly and monitored changes in xylem and phloem water potentials using stem diameter variation measurements. To follow changes in the physiological status of the trees we measured shoot gas exchange, leaf water potential and sap flow rate. Carbon-limited trees continued respiring at relatively high rates and maintained both xylem and phloem transport despite rapidly diminishing carbohydrate pools. Water-limited trees, on the other hand, exhibited reduced respiration and xylem and phloem transport rates as soon as drought inhibited stomatal opening; even before any significant drop in leaf water potential. This suggests that respirationmetabolic rate is strongly controlled by soil water availability, and instead of speeding up mortality, reduced carbohydrate transport and utilization rate may be a valuable strategy to enhance tree survival during long droughts.

  10. Soil water repellency affects production and transport of CO2 and CH4 in soil

    Science.gov (United States)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  11. Water as a transport medium for waste out of towns

    DEFF Research Database (Denmark)

    Harremoës, P.

    1999-01-01

    The historical background for centralised water management in the cities of the developed world is outlined in order to give the rationale for the technical solutions we have inherited from the last century. The key element is maintaining the hygienic conditions in the cities. The success...... is illustrated by the absence of water-borne diseases in the modem developed city. A new paradigm is introduced based on added concern for the use of resources, pollution of the environment and the concern for the welfare of the coming generations. The water resource is not the unsustainable aspect of urban...... water use, because water is not lost, but polluted, which can be abated. Water can be re-routed and recycled. There are many attractive local solutions for better handling of urban water. (C) 1999 IAWQ Published by Elsevier Science Ltd.-All rights reserved....

  12. Ultrafast, Unimpeded Liquid Water Transport Through Graphene-Based Nanochannels Measured by Isotope Labelling

    CERN Document Server

    Sun, Pengzhan; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    Graphene-based laminates, with ultralong and tortuous nanocapillaries formed by simply stacking graphene flakes together, have great promises in filtration and separation. However, the information on liquid water trans-membrane permeation is lacking, which is the most fundamental problem and of crucial importance in solution-based mass transport. Here, based on isotope labelling, we investigate the liquid water transportation through graphene-based nanocapillaries under no external hydrostatic pressures. Liquid water can afford an unimpeded permeation through graphene-based nanochannels with a diffusion coefficient 4~5 orders of magnitude larger than through sub-micrometer-sized polymeric channels. When dissolving ions in sources, the diffusion coefficient of ions through graphene channels lies in the same order of magnitude as water, while the ion diffusion is faster than water, indicating that the ions are mainly transported by fast water flows and the delicate interactions between ions and nanocapillary wa...

  13. Effect of hourglass-shaped nanopore length on osmotic water transport

    Science.gov (United States)

    Shahbabaei, Majid; Kim, Daejoong

    2016-09-01

    In the present research, molecular dynamic (MD) simulations are utilized in order to examine the water transport properties through hourglass-shaped pore structures with various lengths. The length elongates in a range of 100-200 Å, while the size of the narrowest diameter remains constant at 3 Å. The results show that the defect effect can be substantially diminished as the length increases, so that the fluctuations of the energy barrier reaches zero inside 200 Å pore structure, which is an indication of rapid increase of water transport rate. The flux increases with length, suggesting a reduction in hydrodynamic resistance, that water molecules are able to easily enter the pore. The axial diffusivity and permeability are increased once the length increments, which indicate a fast water transport. It is concluded that the thermal fluctuations of water molecules inside reservoir affect the motion of water molecules inside the pore as length decreases.

  14. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    Science.gov (United States)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  15. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  16. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro-osmotic...... drag (EOD) with counter diffusion and/or hydraulic permeation is flawed, and that any net transport of water through the membrane is caused by diffusion. Depending on the effective drag the cathode side of the membrane may experience a lower hydration than the anode side. The effect of a water......-uptake layer on the net water transport will also be pictured. Finally, the effect of EOD is visualized using “Newton’s cradle”....

  17. Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Mathew, B.

    Geostrophic velocities are computed across meridians 37 degrees E and 105 degrees E using hydrographic data. The estimated mass transport is represented on a temperature - salinity diagram. The characteristics of the water within the Antarctic...

  18. Physics behind Water Transport through Nanoporous Boron Nitride and Graphene.

    Science.gov (United States)

    Garnier, Ludovic; Szymczyk, Anthony; Malfreyt, Patrice; Ghoufi, Aziz

    2016-09-01

    In this work, molecular dynamics simulations were used to determine the surface tension profile of water on graphene and boron nitride (BN) multilayers and to predict water permeation through nanoporous graphene and BN membranes. For both graphene and BN multilayers, a decrease in surface tension (γ) was evidenced as the number of layers increased. This lessening in γ was shown to result from a negative surface tension contribution due to long-range wetting of water, which also contributes to lower water permeation through a two-layer membrane with respect to permeation through a monolayer. We also showed that a decrease in water surface tension on a BN monolayer with regards to graphene was at the origin of an increase in water permeation through BN. Our findings suggest that nanoporous BN membranes could be attractive candidates for desalination applications.

  19. Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport

    Science.gov (United States)

    Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Falcieri, F. M.; Sclavo, M.; Langone, L.; Carniel, S.

    2014-11-01

    The paper describes formation and spreading of dense shelf waters in the Adriatic Sea (North Adriatic Dense Water, NAdDW) during the winter of 2012 as a consequence of an intense and long cold air outbreak of northeasterly Bora winds. As a result, during February 2012 northern Adriatic Sea water temperature dropped to about 6 °C and density exceeded 1030 kg/m3, most likely the maximum value since 1929. NAdDW dynamics has been investigated by means of a 3-D ocean-wave coupled model running on a high resolution and eddy-permitting grid. The numerical experiments have relied on the Coupled-Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) system forced one-way with atmospheric forcings provided by the model COSMO-I7. A suite of observational data has been used to characterize the Bora event and evaluate numerical model performance. At sub-basin scales, the newly formed waters flowing southerly have produced a water renewal of the northern Adriatic, as more than 50% of water volumes have left the basin. Dense waters volume transports, evaluated through different Adriatic cross-sections, have been modulated by tides (damped for the densest water masses) and reached about 1 Sv. The contribution of wave-induced forcings has been quantified and examined, indicating that these represent a major driving mechanism during NAdDW production and spreading phases. This work provides evidence that NAdDW is spread accordingly with two different mechanisms: at early stages of its formation, the wind-driven ocean circulation pushes newly formed waters to leave the northern basin with relatively high speeds (about 0.30 m/s). Later on, remaining NAdDW leaks slowly out (0.09 m/s as average) from the production site. Residence times of dense waters in the north, middle, and south Adriatic Sea are also documented.

  20. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  1. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, Liya; Wu, Hengan; Wang, Fengchao

    2017-02-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications.

  2. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  3. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an in......Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along...... with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41......%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally...

  4. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Science.gov (United States)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  5. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2010-10-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. While for global HALOE observations the diabatic prediction underestimates the vertical ozone gradient, for SCOUT-O3 in-situ observations the kinematic prediction shows a clear high bias above 390 K. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity. In turn, ozone may provide constraints on aspects of transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  6. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro-osmo...

  7. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  8. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  9. Effect of Vibration on Water Transport through Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    LU Hang-Jun; GONG Xiao-Jing; WANG Chun-Lei; FANG Hai-Ping; WAN Rong-Zheng

    2008-01-01

    @@ We study the response of water permeation properties through a carbon nanotube on the time-dependent mechanical signals.It is found that there is a critical frequency of vibrating fc(about 1333GHz)which plays a significant role in the water permeation properties.The total water flow,the net flux,the number of hydrogen bonds and the dipole flipping frequency of the single-file water chain inside the nanotube are almost unchanged for the frequencly of vibrating f<fc.Simulation results show that the nanotube can be effectively resistant to the mechanical noise.

  10. Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes

    CERN Document Server

    Tedesco, M; Biesheuvel, P M

    2016-01-01

    Transport of water through ion-exchange membranes is of importance both for electrodialysis (ED) and reverse electrodialysis (RED). In this work, we extend our previous theory [J. Membrane Sci., 510, (2016) 370-381] and include water transport in a two-dimensional model for (R)ED. Following a Maxwell-Stefan (MS) approach, ions in the membrane have friction with the water, pore walls, and one another. We show that when ion-ion friction is neglected, the MS-approach is equivalent to the hydrodynamic theory proposed by Deen for nanofiltration. The model describes all fluxes of ions and water self-consistently as function of the driving forces. After validation against experimental data from literature for ED and RED, the model is also used to analyze single-pass seawater ED and RED with highly concentrated solutions. All fluxes and velocities of water and ions in the membranes are calculated, and the influence of water and coion leakage is investigated under different conditions.

  11. A Satellite-Derived Upper-Tropospheric Water Vapor Transport Index for Climate Studies

    Science.gov (United States)

    Jedlovec, Gray J.; Lerner, Jeffrey A.; Atkinson, Robert J.

    1998-01-01

    A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly

  12. The water mass structure and transports in the Atlantic Subpolar Gyre

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Pardo, Paula C.; Carracedo, Lidia I.; Mercier, Herlé; Lherminier, Pascale; Ríos, Aida F.; Pérez, Fiz F.

    2014-05-01

    The water mass structure, mixing and spreading in the North Atlantic Subpolar Gyre (SPG) were analyzed by means of an extended Optimum MultiParameter (eOMP) approach over the six repeats of the WOCE A25 hydrographic line located at the southern boundary of this gyre. The data includes the Fourex (4x) line taken in 1997 and the five repeat sections of the OVIDE line taken every other year from 2002 to 2010. We proposed 10 water masses, defined by their thermohaline properties (potential temperature and salinity), oxygen and nutrients (nitrate, phosphate and silicate), to resolve the water mass structure of the SPG. The eOMP enables to decompose the transports by water mass quantitatively. Our model provides water mass distributions that are able to reproduce the input data of potential temperature, salinity and silicate with r2>0.997 and of oxygen, nitrate and phosphate with r2>0.96. By combining the velocity field and the water mass structure across each section we provide the relative contribution of each water mass to the Meridional Overturning Circulation (MOC) and we evaluate the water mass transformation in the North Atlantic. The MOC upper limb during OVIDE (2002-2010) is constituted by the northward transports of the central waters (9.4 Sv; 1 Sv = 106 m3 s-1), the Subarctic Intermediate Water (SAIW, 2.8 Sv) and the Subpolar Mode Water (SPMW) of the Iceland Basin (2.1 Sv). The MOC lower limb is constituted by the southward transports of the Iceland-Scotland Overflow Water (ISOW, 2.9 Sv), the Denmark Strait Overflow Water (DSOW, 2.5 Sv), the Polar Intermediate Water (PIW, 0.8 Sv), the Labrador Sea Water (LSW, 3.6 Sv) and the SPMW of the Irminger Sea (4.7 Sv). These results contrast with those obtained for the 1997, cruise developed after a period of high NAO index. The greater MOC strength in 1997 resulted in greater northward transports of central waters (17.5 Sv), while the SAIW transports remained approximately unchanged. The increase of the northward

  13. Water as a transport medium for waste out of towns

    DEFF Research Database (Denmark)

    Harremoës, P.

    1999-01-01

    is illustrated by the absence of water-borne diseases in the modem developed city. A new paradigm is introduced based on added concern for the use of resources, pollution of the environment and the concern for the welfare of the coming generations. The water resource is not the unsustainable aspect of urban...

  14. Water Sorption and Transport in Dry, Crispy Bread Crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2010-01-01

    Water - sorption and dynamic properties of bread crust have been studied in gravimetric sorption experiments. Water uptake and loss were measured while relative humidity (RH) was stepwise increased or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment). Exp

  15. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment). Experi

  16. Transport modelling in coastal waters using stochastic differential equations

    NARCIS (Netherlands)

    Charles, W.M.

    2007-01-01

    In this thesis, the particle model that takes into account the short term correlation behaviour of pollutants dispersion has been developed. An efficient particle model for sediment transport has been developed. We have modified the existing particle model by adding extra equations for the suspensio

  17. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re......-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast...... circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China...

  18. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    CERN Document Server

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  19. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing

    Science.gov (United States)

    Becker, M.W.; Shapiro, A.M.

    2000-01-01

    Extended tailing of tracer breakthrough is often observed in pulse injection tracer tests conducted in fractured geologic media. This behavior has been attributed to diffusive exchange of tracer between mobile fluids traveling through channels in fractures and relatively stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. We present a field example where tracer breakthrough tailing apparently results from nondiffusive transport. Tracer tests were conducted in a fractured crystalline rock using both a convergent and weak dipole injection and pumping scheme. Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide range in molecular diffusivity. The late time behavior of the normalized breakthrough curves were consistent for all tracers, even when the pumping rate was changed. The lack of separation between tracers of varying diffusivity indicates that strong breakthrough tailing in fractured geologic media may be caused by advective transport processes. This finding has implications for the interpretation of tracer tests designed to measure matrix diffusion in situ and the prediction of contaminant transport in fractured rock.

  20. Field evidence for buoyancy-driven water flow in a Sphagnum dominated peat bog

    NARCIS (Netherlands)

    Adema, E.B.; Baaijens, G. J.; van Belle, J.; Rappoldt, C.; Grootjans, A. P.; Smolders, A. J. P.

    2006-01-01

    Nocturnal buoyancy-driven water flow in bogs is proposed as a mechanism to replenish the nutrient availability in the top of the acrotelm. In an earlier paper, we provided evidence for buoyancy-driven water flow on theoretical and experimental grounds. In this paper, field evidence is given for the

  1. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...... back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241-251), computations predict that 60-80% of the pumped flux stems from serosal bath in agreement with the experimental estimate...

  2. Water in SNC meteorites - Evidence for a Martian hydrosphere

    Science.gov (United States)

    Karlsson, Haraldur R.; Clayton, Robert N.; Gibson, Everett K., Jr.; Mayeda, Toshiko K.

    1992-01-01

    The Shergotty-Nakhla-Chassigny (SNC) meteorites, purportedly of Martian origin, contain 0.04 to 0.4 percent water by weight. Oxygen isotopic analysis can be used to determine whether this water is extraterrestrial or terrestrial. Such analysis reveals that a portion of the water is extraterrestrial and furthermore was not in oxygen isotopic equilibrium with the host rock. Lack of equilibrium between water and host rock implies that the lithosphere and hydrosphere of the SNC parent body formed two distinct oxygen isotopic reservoirs. If Mars was the parent body, the maintenance of two distinct reservoirs may result from the absence of plate tectonics on the planet.

  3. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    Science.gov (United States)

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  4. Northern Indian Ocean Salt Transport (NIOST): Estimation of Fresh and Salt Water Transports in the Indian Ocean using Remote Sensing, Hydrographic Observations and HYCOM Simulations

    Science.gov (United States)

    2014-09-30

    adjustment in the thermocline brings with it salty waters from below and allows for the entrainment of higher salinity values into the upper 50 m of...This layer of salty water likely originates in the AS. Vinayachandran et al., (2013) showed that salty AS water transported into the BoB tends to sink...Estimation of Fresh and Salt Water Transports in the Indian Ocean using Remote Sensing, Hydrographic Observations and HYCOM Simulations PI: Dr

  5. Fish larval transport in the coastal waters through ecological modelling

    Digital Repository Service at National Institute of Oceanography (India)

    George, G.

    ) numerically tracking the transport of larvae released from spawning sites based on hydrodynamics of the regions, and comparison with measurements (vi) interpreting the data sets generated by numerical simulation studies to infer the nursery areas and seasonal..., L. B. Crowder, J. A. Rice, and E. A. Marschall. Larval size and recruitment mechanisms in fishes: towards a conceptual framework. Canadian Journal of Fisheries and Aquatic Sciences, 45:1657–1670, 1988. Y. Miyake, S. Kimura, T. Kawamura, T. Horii, H...

  6. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations

    CERN Document Server

    Shen, Meng; Lueptow, Richard M

    2016-01-01

    The Angstrom-scale transport characteristics of water and six different solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polyamide reverse osmosis (RO) membrane, FT-30, using non-equilibrium molecular dynamics (NEMD) simulations. Results indicate that water transport increases with an increasing fraction of connected percolated free volume, or water-accessible open space, in the membrane polymer structure. This free volume is enhanced by the dynamic structure of the membrane at the molecular level as it swells when hydrated and vibrates due to molecular collisions allowing a continuous path connecting the opposite membrane surfaces. The tortuous paths available for transport of solutes result in Brownian motion of solute molecules and hopping from pore to pore as they pass through the polymer network structure of the membrane. The transport of alcohol solutes decreases for solutes with larger Van der Waals volume, which corresponds to less available percolated free volume, or sol...

  7. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut

    Science.gov (United States)

    Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900–126,500 years ago. PMID:27459279

  8. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  9. Water flow and nutrient transport in a layered silt loam soil

    NARCIS (Netherlands)

    Vos, de J.A.

    1997-01-01


    Theory, numerical models, and field and laboratory measurements are used to describe and predict water flow and nutrient transport in a layered silt loam soil. One- and two-dimensional models based on the Darcy equation for water flow and the convection-dispersion equation for solute

  10. Water vapor and gas transport through a poly (butylene terephthalate) poly (ethylene oxide) block copolymer

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    In this paper the transport behavior of water vapor and nitrogen in a poly(butylene terephthalate) poly (ethylene oxide) block copolymer is discussed. This polymer has a high solubility for water (300 cm3 (STP)/cm3 polymer at activity 0.9). A new permeation set up has been built to determine the wat

  11. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074

    NARCIS (Netherlands)

    Potreck, Jens; Nijmeijer, Dorothea C.; Kosinski, Thomas; Wessling, Matthias

    2009-01-01

    This work investigates the transport behavior of a hydrophilic, highly permeable type of poly ethylene oxide (PEO)-based block copolymer (PEBAX® 1074) as membrane material for the removal of water vapor from light gases. Water vapor sorption isotherms in PEBAX® 1074 represent Flory–Huggins type of s

  12. Water and heat transport in boreal soils: Implications for soil response to climate change

    Science.gov (United States)

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  13. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    Science.gov (United States)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and

  14. Modelling anisotropic water transport in polymer composite reinforced with aligned triangular bars

    Indian Academy of Sciences (India)

    Bryan Pajarito; Masatoshi Kubouchi; Saiko Aoki

    2014-02-01

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite. Through transient FE diffusion analysis, anisotropic water transport in thickness direction of the polymer composite was numerically predicted and validated against experimental results. The case of using impermeable triangular bars was also numerically simulated. The diffusivity of reinforced aligned triangular bars was confirmed to affect anisotropic water transport in the composite. The results of this work suggest possible use of polymer composite for barrier and fluid removal applications.

  15. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    Directory of Open Access Journals (Sweden)

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  16. Modeling and Diagnostics of Fuel Cell Porous Media for Improving Water Transport

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Jeff; M' edici, Ezequiel

    2011-07-01

    When a fuel cell is operating at high current density, water accumulation is a significant cause of performance and component degradation. Investigating the water transport inside the fuel cell is a challenging task due to opacity of the components, the randomness of the porous materials, and the difficulty in gain access to the interior for measurement due to the small dimensions of components. Numerical simulation can provide a good insight of the evolution of the water transport under different working condition. However, the validation of those simulations is remains an issue due the same experimental obstacles associated with in-situ measurements. The discussion herein will focus on pore-network modeling of the water transport on the PTL and the insights gained from simulations as well as in the validation technique. The implications of a recently published criterion to characterize PTL, based on percolation theory, and validate numerical simulation are discussed.

  17. Linking Fish Habitat Modelling and Sediment Transport in Running Waters

    Institute of Scientific and Technical Information of China (English)

    Andreas; EISNER; Silke; WIEPRECHT; Matthias; SCHNEIDER

    2005-01-01

    The assessment of ecological status for running waters is one of the major issues within an integrated river basin management and plays a key role with respect to the implementation of the European Water Frame- work Directive (WFD).One of the tools supporting the development of sustainable river management is physi- cal habitat modeling,e.g.,for fish,because fish population are one of the most important indicators for the e- colngical integrity of rivers.Within physical habitat models hydromorphological ...

  18. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    OpenAIRE

    Nielsen, Christoffer Peder; Bruus, Henrik

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find app...

  19. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.;

    2006-01-01

    In internal water curing of High Performance Concrete, it is fundamental to know how and when the water contained in the internal curing agent is released into the hydrating cement paste. In this study, X-ray absorption measurements showed that considerable transport of water from saturated pumice...... stone to hydrating cement paste with water/cement ratio 0.3 took place in the first days after casting and covered a distance of at least 4 mm. As a consequence, the total amount of water released by the lightweight aggregates, rather than the spatial distribution of the aggregates, is in this case...

  20. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    Science.gov (United States)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  1. Coherent description of transport across the water interface: From nanodroplets to climate models

    Science.gov (United States)

    Wilhelmsen, Øivind; Trinh, Thuat T.; Lervik, Anders; Badam, Vijay Kumar; Kjelstrup, Signe; Bedeaux, Dick

    2016-03-01

    Transport of mass and energy across the vapor-liquid interface of water is of central importance in a variety of contexts such as climate models, weather forecasts, and power plants. We provide a complete description of the transport properties of the vapor-liquid interface of water with the framework of nonequilibrium thermodynamics. Transport across the planar interface is then described by 3 interface transfer coefficients where 9 more coefficients extend the description to curved interfaces. We obtain all coefficients in the range 260-560 K by taking advantage of water evaporation experiments at low temperatures, nonequilibrium molecular dynamics with the TIP4P/2005 rigid-water-molecule model at high temperatures, and square gradient theory to represent the whole range. Square gradient theory is used to link the region where experiments are possible (low vapor pressures) to the region where nonequilibrium molecular dynamics can be done (high vapor pressures). This enables a description of transport across the planar water interface, interfaces of bubbles, and droplets, as well as interfaces of water structures with complex geometries. The results are likely to improve the description of evaporation and condensation of water at widely different scales; they open a route to improve the understanding of nanodroplets on a small scale and the precision of climate models on a large scale.

  2. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    CERN Document Server

    Bazylak, A; Markicevic, B; Sinton, D; Djilali, N

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile pha...

  3. Quantitative analysis of soil chromatography. I. Water and radionuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Francis, C.W.; Duguid, J.O.

    1977-12-01

    Soil chromatography has been used successfully to evaluate relative mobilities of pesticides and nuclides in soils. Its major advantage over the commonly used suspension technique is that it more accurately simulates field conditions. Under such conditions the number of potential exchange sites is limited both by the structure of the soil matrix and by the manner in which the carrier fluid moves through this structure. The major limitation of the chromatographic method, however, has been its qualitative nature. This document represents an effort to counter this objection. A theoretical basis is specified for the transport both of the carrier eluting fluid and of the dissolved constituent. A computer program based on this theory is developed which optimizes the fit of theoretical data to experimental data by automatically adjusting the transport parameters, one of which is the distribution coefficient k/sub d/. This analysis procedure thus constitutes an integral part of the soil chromatographic method, by means of which mobilities of nuclides and other dissolved constituents in soils may be quantified.

  4. A biogeochemical model of contaminant fate and transport in river waters and sediments.

    Science.gov (United States)

    Massoudieh, Arash; Bombardelli, Fabián A; Ginn, Timothy R

    2010-03-01

    A quasi-two-dimensional model is presented for simulating transport and transformation of contaminant species in river waters and sediments, taking into account the effect of both biotic and abiotic geochemical reactions on the contaminant fate and mobility. The model considers the downstream transport of dissolved and sediment-associated species, and the mass transfer with bed sediments due to erosion and resuspension, using linked advection-dispersion-reaction equations. The model also couples both equations to the reactive transport within bed sediment phases. This is done by the use of a set of vertical one-dimensional columns representing sediment layers that take into account the reactive transport of chemicals, burial, sorption/desorption to/from the solid phase, and the diffusive transport of aqueous species. Kinetically-controlled reversible solid-water mass exchange models are adopted to simulate interactions between suspended sediments and bulk water, as well as the mass exchange between bed sediments and pore water. An innovative multi-time step approach is used to model the fully kinetic nonlinear reaction terms using a non-iterative explicit method. This approach enables the model to handle fast and near-equilibrium reactions without a significant increase in computational burden. At the end, two demonstration cases are simulated using the model, including transport of a sorbing, non-reactive trace metal and nitrogen cycling, both in the Colusa Basin Drain in the Central Valley of California.

  5. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    Science.gov (United States)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  6. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction

    Science.gov (United States)

    Ma, Ming; Grey, François; Shen, Luming; Urbakh, Michael; Wu, Shuai; Liu, Jefferson Zhe; Liu, Yilun; Zheng, Quanshui

    2015-08-01

    The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

  7. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.

    Directory of Open Access Journals (Sweden)

    Slim Azouzi

    Full Text Available Urea transporter B (UT-B is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC, while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1 or UT-B. We found that UT-B's osmotic water unit permeability (pfunit is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.

  8. Evidence for a role of the polysaccharide capsule transport proteins in pertussis pathogenesis.

    Directory of Open Access Journals (Sweden)

    Regina Hoo

    Full Text Available Polysaccharide (PS capsules are important virulence determinants for many bacterial pathogens. Bordetella pertussis, the agent of whooping cough, produces a surface associated microcapsule but its role in pertussis pathogenesis remained unknown. Here we showed that the B. pertussis capsule locus is expressed in vivo in murine lungs and that absence of the membrane-associated protein KpsT, involved in the transport of the PS polymers across the envelope, but not the surface-exposed PS capsule itself, affects drastically B. pertussis colonization efficacy in mice. Microarray analysis revealed that absence of KpsT in B. pertussis resulted in global down-regulation of gene expression including key virulence genes regulated by BvgA/S, the master two-component system. Using a BvgS phase-locked mutant, we demonstrated a functional link between KpsT and BvgA/S-mediated signal transduction. Whereas pull-down assays do not support physical interaction between BvgS sensor and any of the capsule locus encoded proteins, absence of KpsT impaired BvgS oligomerization, necessary for BvgS function. Furthermore, complementation studies indicated that instead of KpsT alone, the entire PS capsule transport machinery spanning the cell envelope likely plays a role in BvgS-mediated signal transduction. Our work thus provides the first experimental evidence of a role for a virulence-repressed gene in pertussis pathogenesis.

  9. Source areas and transport mechanisms for freshwater and Brackish-water diatoms deposited in pelagic sediments of the equatorial atlantic*1

    Science.gov (United States)

    Pokras, Edward M.

    1991-01-01

    Distributions of freshwater and brackish-water diatoms from dust samples and modern sediments of the equatorial Atlantic demonstrate different transport mechanisms and source areas. Both Melosira spp. and Stephanodiscus spp. are transported via winds from the southern Sahara and Sahel in Northern Hemisphere winter. The core-top distribution of Cyclotella striata delineates the extent of the low-salinity plume formed by runoff from the Zaire River into the extreme eastern Atlantic. The transport mechanism and source areas for Melosira spp. during arid phases have not changed appreciably in the last 130,000 yr. There is no evidence for long-distance transport of freshwater diatoms by the southeast trade winds. This study confirms the validity of paleoclimatic research which inferred eolian transport of Melosira spp. in the winter dust plume from source regions north of the equator, although fluviatile input of Melosira valves into nearshore sediments cannot be ruled out.

  10. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030

    NARCIS (Netherlands)

    Lienden, van A.R.; Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Meer, van der Th.H.

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims In the last two centuries, fossil fuels have been our major source of energy. However, issues concerning energy security and the quality of the environment have given an impulse to the d

  11. Biofuel scenarios in a water perspective: The global blue and green water footprint of road transport in 2030

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Lienden, van A.R.; Hoekstra, A.Y.; Meer, van der T.H.

    2012-01-01

    Concerns over energy security and climate change stimulate developments towards renewable energy. Transport is expected to switch from fossil fuel use to the use of fuel mixtures with a larger fraction of biofuels, e.g. bio-ethanol and biodiesel. Growing biomass for biofuels requires water, a scarce

  12. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030

    NARCIS (Netherlands)

    van Lienden, A.R.; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims In the last two centuries, fossil fuels have been our major source of energy. However, issues concerning energy security and the quality of the environment have given an impulse to the

  13. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    Science.gov (United States)

    2013-08-01

    and boiling temperatures. Additionally, MP2f (Akin- Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Con- densed Phase Quantum...results. In the second part, we introduce the ab initio flexible water model developed by Akin- Ojo et al. [38] in 2008 using the relatively new adaptive...38] Akin- Ojo , O., Song, Y., and Wang, F., 2008, “Developing Ab Initio Quality Force Fields From Condensed Phase Quantum-Mechanics/Molecular-Mechan

  14. Water and Heavy Metal Transport in Roadside Soils

    Institute of Scientific and Technical Information of China (English)

    B. KOCHER; G. WESSOLEK; H. STOFFREGEN

    2005-01-01

    Roads with very high traffic loads in regions where soils are low in both pH and sorption capacity might be a source of percolation water loaded with heavy metals. Looking at some "worst case" scenarios, this study focused on the input of traffic related pollutants and on Pb, Cd, Cu, Zn, Ni and Cr concentrations in the soil matrix and soil solution, respectively.The analysis also included pH and electrical conductivity and at some sites DOC. The investigations were carried out on sandy soils with more or less low pH values at four motorway sites in Germany. The average of daily traffic was about 50 000 up to 90 000 vehicles. Soil pore water was collected in two soil depths and at four distances from the road. The pH in general decreased with increasing distance from the roadside. The elevated pH near the roadside was presumably caused by deposition of dust and weathering residues of the road asphalt, as well as by infiltration of salt that was used during winter time. At these road sites, increased heavy metal concentrations in the soil matrix as well as in the soil solution were found. However, the concentrations seldom exceeded reference values of the German Soil Protection Act. The soil solution concentrations tended to increase from the road edge to 10 m distance, whereas the concentration in the soil matrix decreased. Elevated DOC concentrations corresponded with elevated Cu concentrations but did not substantially change this tendency. High soil water percolation rates were found near the roads. Thus, even low metal concentrations of percolation water could yield high metal loads in a narrow area beside the road.

  15. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.

    Science.gov (United States)

    Tang, K P M; Wu, Y S; Chau, K H; Kan, C W; Fan, J T

    2015-04-15

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties.

  16. Direct evidence of quantum transport in photosynthetic light-harvesting complexes

    Science.gov (United States)

    Panitchayangkoon, Gitt; Voronine, Dmitri V.; Abramavicius, Darius; Caram, Justin R.; Lewis, Nicholas H. C.; Mukamel, Shaul; Engel, Gregory S.

    2011-01-01

    The photosynthetic light-harvesting apparatus moves energy from absorbed photons to the reaction center with remarkable quantum efficiency. Recently, long-lived quantum coherence has been proposed to influence efficiency and robustness of photosynthetic energy transfer in light-harvesting antennae. The quantum aspect of these dynamics has generated great interest both because of the possibility for efficient long-range energy transfer and because biology is typically considered to operate entirely in the classical regime. Yet, experiments to date show only that coherence persists long enough that it can influence dynamics, but they have not directly shown that coherence does influence energy transfer. Here, we provide experimental evidence that interaction between the bacteriochlorophyll chromophores and the protein environment surrounding them not only prolongs quantum coherence, but also spawns reversible, oscillatory energy transfer among excited states. Using two-dimensional electronic spectroscopy, we observe oscillatory excited-state populations demonstrating that quantum transport of energy occurs in biological systems. The observed population oscillation suggests that these light-harvesting antennae trade energy reversibly between the protein and the chromophores. Resolving design principles evident in this biological antenna could provide inspiration for new solar energy applications. PMID:22167798

  17. Direct evidence of quantum transport in photosynthetic light-harvesting complexes.

    Science.gov (United States)

    Panitchayangkoon, Gitt; Voronine, Dmitri V; Abramavicius, Darius; Caram, Justin R; Lewis, Nicholas H C; Mukamel, Shaul; Engel, Gregory S

    2011-12-27

    The photosynthetic light-harvesting apparatus moves energy from absorbed photons to the reaction center with remarkable quantum efficiency. Recently, long-lived quantum coherence has been proposed to influence efficiency and robustness of photosynthetic energy transfer in light-harvesting antennae. The quantum aspect of these dynamics has generated great interest both because of the possibility for efficient long-range energy transfer and because biology is typically considered to operate entirely in the classical regime. Yet, experiments to date show only that coherence persists long enough that it can influence dynamics, but they have not directly shown that coherence does influence energy transfer. Here, we provide experimental evidence that interaction between the bacteriochlorophyll chromophores and the protein environment surrounding them not only prolongs quantum coherence, but also spawns reversible, oscillatory energy transfer among excited states. Using two-dimensional electronic spectroscopy, we observe oscillatory excited-state populations demonstrating that quantum transport of energy occurs in biological systems. The observed population oscillation suggests that these light-harvesting antennae trade energy reversibly between the protein and the chromophores. Resolving design principles evident in this biological antenna could provide inspiration for new solar energy applications.

  18. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid

    2016-01-01

    of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic......A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re......-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast...

  19. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  20. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  1. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  2. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  3. Energy transport by thermocapillary convection during Sessile-Water-droplet evaporation.

    Science.gov (United States)

    Ghasemi, H; Ward, C A

    2010-09-24

    The energy transport mechanisms of a sessile-water droplet evaporating steadily while maintained on a Cu substrate are compared. Buoyancy-driven convection is eliminated, but thermal conduction and thermocapillary convection are active. The dominant mode varies along the interface. Although neglected in previous studies, near the three-phase line, thermocapillary convection is by far the larger mode of energy transport, and this is the region where most of the droplet evaporation occurs.

  4. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2011-01-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  5. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL)

    Science.gov (United States)

    Ploeger, F.; Fueglistaler, S.; Grooß, J.-U.; Günther, G.; Konopka, P.; Liu, Y. S.; Müller, R.; Ravegnani, F.; Schiller, C.; Ulanovski, A.; Riese, M.

    2011-01-01

    We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data) are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  6. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    CERN Document Server

    Nielsen, Christoffer P

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  7. Evidence from Opportunity's microscopic imager for water on Meridiani Planum

    DEFF Research Database (Denmark)

    Herkenhoff, K.E.; Squyres, S.W.; Arvidson, R.

    2004-01-01

    on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules...

  8. Dealing with water deficit in Atta ant colonies: large ants scout for water while small ants transport it

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Da-Silva

    2012-07-01

    Leafcutter ants (Atta sexdens rubropilosa (Forel 1908 have an elaborate social organization, complete with caste divisions. Activities carried out by specialist groups contribute to the overall success and survival of the colony when it is confronted with environmental challenges such as dehydration. Ants detect variations in humidity inside the nest and react by activating several types of behavior that enhance water uptake and decrease water loss, but it is not clear whether or not a single caste collects water regardless of the cost of bringing this resource back to the colony. Accordingly, we investigated water collection activities in three colonies of Atta sexdens rubropilosa experimentally exposed to water stress. Specifically, we analyzed whether or not the same ant caste foraged for water, regardless of the absolute energetic cost (distance of transporting this resource back to the colony. Our experimental design offered water sources at 0 m, 1 m and 10 m from the nest. We studied the body size of ants near the water sources from the initial offer of water (time  =  0 to 120 min, and tested for specialization. We observed a reduction in the average size and variance of ants that corroborated the specialization hypothesis. Although the temporal course of specialization changed with distance, the final outcome was similar among distances. Thus, we conclude that, for this species, a specialist (our use of the word “specialist” does not mean exclusive task force is responsible for collecting water, regardless of the cost of transporting water back to the colony.

  9. Aldicarb and carbofuran transport in a Hapludalf influenced by differential antecedent soil water content and irrigation delay.

    Science.gov (United States)

    Kazemi, H V; Anderson, S H; Goyne, K W; Gantzer, C J

    2009-01-01

    Pesticide use in agroecosystems can adversely impact groundwater quality via chemical leaching through soils. Few studies have investigated the effects of antecedent soil water content (SWC) and timing of initial irrigation (TII) after chemical application on pesticide transport and degradation. The objectives of this study were to investigate the effects of antecedent soil water content (wet vs dry) and timing of initial irrigation (0h Delay vs 24h Delay) on aldicarb [(EZ)-2-methyl-2-(methylthio)propionaldehyde O-methylcarbamoyloxime] and carbofuran [2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate] transport and degradation parameters at a field site with Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf) soils. Aldicarb and carbofuran were applied to plots near field capacity (wet) or near permanent wilting point (dry). Half of the dry and wet plots received irrigation water immediately after chemical application and the remaining plots were irrigated after a 24h Delay. The transport and degradation parameters were estimated using the method of moments. Statistical significance determined for SWC included averages across TII levels, and significance determined for TII included averages across SWC levels. For the dry treatment, aldicarb was detected 0.10 m deeper (Pcarbofuran was detected at least 0.10 m deeper (Pcarbofuran. Retardation coefficients for both pesticides showed similar evidence of reduced values for the dry vs wet treatments. These results indicate deeper pesticide movement in the initially dry treatment. For aldicarb and carbofuran, estimated values of the degradation rate were approximately 40-49% lower in the initially dry plots compared to the initially wet plots, respectively. When the initial irrigation was delayed for 24h, irrespective of antecedent moisture conditions, a 30% reduction in aldicarb degradation occurred. This study illustrates the deeper transport of pesticides and their increased persistence when

  10. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  11. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  12. The impacts of water stress on phloem transport in Douglas-fir trees.

    Science.gov (United States)

    Woodruff, David R

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water stress affects phloem transport in trees, both in terms of the short-term impacts of water stress on phloem sap composition and the longer-term impacts on sieve cell anatomical characteristics. Phloem sieve cell conductivity (kp) was evaluated along a gradient of tree height and xylem water potential in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in order to evaluate the influence of water stress on phloem transport capacity. The Hagen-Poiseuille equation was used with measurements of sieve cell anatomical characteristics, water content of phloem sap, non-structural carbohydrate content of phloem sap and shoot water potential (Ψl) to evaluate impacts of water stress on kp. Based on regression analysis, for each 1 MPa decrease in mean midday Ψl, sieve cell lumen radius decreased by 2.63 µm MPa(-1). Although there was no significant trend in sucrose content with decreasing Ψl, glucose and fructose content increased significantly with water stress and sieve cell relative water content decreased by 13.5% MPa(-1), leading to a significant increase in sugar molar concentration of 0.46 mol l(-1) MPa(-1) and a significant increase in viscosity of 0.27 mPa s MPa(-1). Modeled kp was significantly influenced both by trends in viscosity as well as by water stress-related trends in sieve cell anatomy.

  13. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  14. An assembly model for simulation of large-scale ground water flow and transport.

    Science.gov (United States)

    Huang, Junqi; Christ, John A; Goltz, Mark N

    2008-01-01

    When managing large-scale ground water contamination problems, it is often necessary to model flow and transport using finely discretized domains--for instance (1) to simulate flow and transport near a contamination source area or in the area where a remediation technology is being implemented; (2) to account for small-scale heterogeneities; (3) to represent ground water-surface water interactions; or (4) some combination of these scenarios. A model with a large domain and fine-grid resolution will need extensive computing resources. In this work, a domain decomposition-based assembly model implemented in a parallel computing environment is developed, which will allow efficient simulation of large-scale ground water flow and transport problems using domain-wide grid refinement. The method employs common ground water flow (MODFLOW) and transport (RT3D) simulators, enabling the solution of almost all commonly encountered ground water flow and transport problems. The basic approach partitions a large model domain into any number of subdomains. Parallel processors are used to solve the model equations within each subdomain. Schwarz iteration is applied to match the flow solution at the subdomain boundaries. For the transport model, an extended numerical array is implemented to permit the exchange of dispersive and advective flux information across subdomain boundaries. The model is verified using a conventional single-domain model. Model simulations demonstrate that the proposed model operated in a parallel computing environment can result in considerable savings in computer run times (between 50% and 80%) compared with conventional modeling approaches and may be used to simulate grid discretizations that were formerly intractable.

  15. The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; ZHU Yali; WANG Huijun

    2011-01-01

    The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.

  16. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT

    Institute of Scientific and Technical Information of China (English)

    Zhengfu Xu; Chi-Wang Shu

    2006-01-01

    In this paper we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws [18]to compute the Saint-Venant system of shallow water equations with pollutant propagation, which is described by a transport equation. The motivation is that the high order anti-diffusive WENOscheme for conservation laws produces sharp resolution of contact discontinuities while keeping high order accuracy for the approximation in the smooth region of the solution.The application of the anti-diffusive high order WENO scheme to the Saint-Venant system of shallow water equations with transport of pollutant achieves high resolution

  17. [NET WATER TRANSPORT VIA RAT COLON EPITELIUM UNDER THE EXPERIMENTAL DYSBIOSIS].

    Science.gov (United States)

    Dovbynchuk, T; Zakordonets, L; Putnikov, A; Vareniuk, I; Tiapko, O; Roslova, N; Sergiychuk, T; Lynchak, O; Dzerzhynsky, M; Beregova, T; Tolstanova, G

    2015-01-01

    The aim of the present study was to investigate the effect of cephalosporin antibiotic ceftriaxone (50 mg/kg, i/m) and mac- rolide antibiotic azithromycin (15 mg/kg, per.os.) on net water transport across rat colonic epithelium. Study was done on male Wistar rats (180-250 g). Azithromycin or ceftriaxone was injected daily for 5 days. Net water transport was evaluated on the 6th day by isolated colonic loop perfusion technique in vivo on anaesthetized rats. Treatment with azithromycin increased 2,4-fold the absorption of water, while ceftriaxone caused decrease 1,9-fold water absorption. The antibiotics treatment within five days didn't change the composition of the fecal and colonic parietal microbiota. Azithromycin-induced increase in water absorption was associated with upregulation of AQP 8 water channel expression (P < 0.05) in colonic mucosa. Ceftriaxone treatment didn't change protein level of AQP8 but induced pro-inflammatory changes in colonic mucosa structure and mast cells degranulation. We showed for the first time the opposite effects ofmacrolide and cephalosporin antibiotics on net water transport across rat colonic epithelium.

  18. Remobilization of polychlorinated biphenyls from sediment and its consequences for their transport in river waters.

    Science.gov (United States)

    Gdaniec-Pietryka, Monika; Mechlińska, Agata; Wolska, Lidia; Gałuszka, Agnieszka; Namieśnik, Jacek

    2013-05-01

    A laboratory experiment was performed to examine the remobilization of indicator polychlorinated biphenyls (iPCBs) from sediments and its results were applied to the real-world data for explaining the transport of PCBs in river. Seven PCB concentrations were determined in three series of model water-sediment systems (3 g of river sediment, three different volumes of distilled water (0.5, 0.25, and 0.15 ml), and 5 mg of biocide) after 11 days of incubation. Solid-phase extraction was used for separation of analytes from the aqueous phase and solvent extraction for isolation of analytes from the sediments, respectively. The extracts were analyzed for individual iPCB congeners using gas chromatography-mass spectrometry method. For each series of the experiment, the concentrations of PCBs in aqueous phase were similar. The average sediment/water partition coefficient value was 10(4) l/kg. The solubility of individual PCB congeners in water did not influence the desorption of PCBs from the sediment. Although the dominant form of PCBs in a water-sediment system occurs as suspended and colloidal fractions, these compounds are transported mostly in a dissolved form. Suspended and colloidal matter is a major sink for PCBs in low-energy aquatic environments. In contrast, the dissolved PCBs are readily transported in running waters. The mobilization of PCBs from sediments to aqueous phase, with respect to their solubility in water, seems to be limited, thus reducing the risk of secondary pollution.

  19. Transients of Water Distribution and Transport in PEFCs

    KAUST Repository

    Hussaini, Irfan

    2008-01-01

    Response of PEM fuel cells to a step-change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of such transient response, is shown to be due to transients of water distribution in membrane phase occurring at sub-second time scales. Use of humidified reactants as a means to control magnitude of voltage undershoot has been demonstrated. Constant stoichiometry operation under certain current-step conditions is found to result in reactant starvation, potentially leading to cell shut down. Further, response under step decrease in current density has been explored to determine existence of hysteresis. Under sufficiently humidified conditions, response under forward and reverse step changes are found to be symmetric, but under low RH conditions, voltage undershoot is found to be twice as large as the overshoot. © The Electrochemical Society.

  20. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  1. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    Science.gov (United States)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  2. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  3. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    Science.gov (United States)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  4. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    Science.gov (United States)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  5. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine.

    Directory of Open Access Journals (Sweden)

    Steffen S Madsen

    2011-09-01

    Full Text Available Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW to seawater (SW; however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of 3 aquaporins (Aqp1aa, -1ab and -8ab in pyloric caeca, middle (M and posterior (P intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (Jv was higher in SW than FW-trout and was inhibited by (mmol L-1: 0.1 KCN (41%, 0.1 ouabain (72% and 0.1 bumetanide (82% suggesting that active transport, Na+,K+-ATPase and Na+,K+,2Cl--cotransport are involved in establishing the driving gradient for water transport. Jv was also inhibited by 1 mmol L-1 HgCl2, serosally (23% in M and 44% in P, mucosally (27% in M or both (61% in M and 58% in P, suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L-1 mercaptoethanol. By comparison, 10 mmol L-1 mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited Jv by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na+-glucose cotransporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of 3 aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.

  6. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  7. Transport and transfer rates in the waters of the continental shelf. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Biscaye, P.E.

    1980-09-01

    The goal of govern project is to understand and quantify the processes that the transport and dispersal of energy-related pollutants introduced to the waters of the continental shelf and slope. The report is divided into sections dealing with processes associated with suspended solids; processes associated with sediments sinks for radionuclides and other pollutants; and spreading of water characteristics and species in solution. (ACR)

  8. Water Transport Analysis in Polymer Electrolyte Membrane Fuel Cells by Magnetic Resonance Imaging

    Institute of Scientific and Technical Information of China (English)

    S.Tsushima; S.Hirai

    2007-01-01

    1 Results Polymer electrolyte fuel cells (PEFCs) have beenintensively developedfor future vehicle applications andon-site power generation owing to its high energy efficiency and high power density.In PEFCs ,appropriatewater management to maintain polymer electrolyte membrane (PEM) hydratedis of great i mportance ,becausethe ion conductivity of membraneislower at lower water content .Consequently,it is of great interest to watercontent and water transport process in PEMs during fuel cell operation.

  9. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  10. Water and heat transport in hilly red soil of southern China: I. Experiment and analysis

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields' conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 ℃ temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively.Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent,when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.

  11. Dianeutral mixing, transformation and transport of the deep water of the Indian Ocean

    Science.gov (United States)

    You, Yuzhu

    1999-01-01

    The realization of North Atlantic Deep Water (NADW) replacement in the deep northern Indian Ocean is crucial to the "conveyor belt" scheme. This was investigated with the updated 1994 Levitus climatological atlas. The study was performed on four selected neutral surfaces, encompassing the Indian deep water from 2000 to 3500 m. The Indian deep water comprises three major water masses: NADW, Circumpolar Deep Water (CDW) and North Indian Deep Water (NIDW). Since NADW flowing into the southwest Indian Ocean is largely blocked by the ridges (the Madagascar Ridge in the east and Davie Ridge in the north in the Mozambique Channel) and NIDW is the only source in the northern Indian Ocean that cannot provide a large amount of volume transport, CDW has to be a major source for the Indian deep circulation and ventilation in the north. Thus the question of NADW replacement becomes that of how the advective flows of CDW from the south are changed to be upwelled flows in the north—a water-mass transformation scenario. This study considered various processes causing motion across neutral surfaces. It is found that dianeutral mixing is vital to achieve CDW transformation. Basin-wide uniform dianeutral upwelling is detected in the entire Indian deep water north of 32°S, somewhat concentrated in the eastern Indian Ocean on the lowest surface. However, the integrated dianeutral transport is quite low, about a net of 0.2 Sv (1 Sv=10 6 m 3 s -1) across the lowermost neutral surface upward and 0.4 Sv across the uppermost surface upward north of 32°S with an error band of about 10-20% when an uncertainty of half-order change in diffusivities is assumed. Given about 10-15% of rough ridge area where dianeutral diffusivity could be about one order of magnitude higher (10 -4 m 2 s -1) due to internal-wave breaking, the additional amount of increased net dianeutral transport across the lowest neutral surface is still within that error band. The averaged net upward transport in the north

  12. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressurea)

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2012-07-01

    Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.

  13. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Du, An; Koo, Donghun; Theryo, Grayce; Hillmyer, Marc A.; Cairncross, Richard A. (Drexel); (UMM)

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the water sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.

  14. Continuous directional water transport on the peristome surface of Nepenthes alata

    Science.gov (United States)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  15. The establishment of Atlantic Water transport as a topographically trapped slope current off Scotland

    Directory of Open Access Journals (Sweden)

    Qin Zhou

    2013-05-01

    Full Text Available Atlantic Water, with its origin in the western Atlantic, enters the Nordic Seas partly as a barotropic current following the continental slope. This water mass is carried across the Atlantic by the baroclinic North Atlantic Current (NAC. When the NAC meets the continental slope at the east side of the Atlantic, some of the transport is converted to barotropic transport over the slope before continuing northward. Here, we show that this baroclinic to barotropic conversion is in agreement with geostrophic theory. Historical observations show that the transport of the slope current increases significantly from the Rockall Channel (RC to the Faroe–Shetland Channel (FSC. Geostrophy predicts that with a northward decreasing buoyancy, baroclinic currents from the west will be transferred into northward topographically steered barotropic flow. We use hydrographic data from two sections crossing the continental slope, one located in the RC and another in the FSC, to estimate baroclinic and barotropic transport changes over the slope, within the framework of geostrophic dynamics. Our results indicate that ~1 Sv of the cross-slope baroclinic flow is mainly converted to northward barotropic transport above the 200–500m isobaths, which is consistent with observed transport changes between the RC and the FSC. Similar processes are also likely to occur further south, along the eastern Atlantic margin. This shows that AW within the slope current in the FSC is derived from both the eastern and the western Atlantic, in agreement with earlier studies of AW inflow to the Nordic Seas.

  16. On the water transport of animals with special reference to Denmark.

    Science.gov (United States)

    Katić, Ivan; Bajt, Vesna Vucevac

    2009-01-01

    Transport of animals by water is a very old way of transport because it is relatively cheap and safe, with a minimum loss of animals. Waterways have been used for the transport of living animals and various goods from ancient times, for example in Ancient Egypt and the Roman Empire. Later, Vikings were so successful in their conquests because they always had trained horses aboard. It is believed that the colonization of America was possible because Spaniards were also bringing many horses with them. Danish possessions in the Caribbean owe much of their economic success in the period between 1820 and 1920 to permanent supply of cheap mules and other equides from South America. Mules were used for agricultural purposes and for work in sugar-cane mills. In the 20th century, a significant number of animals was transported to German and British colonies in South Africa. During the First and the Second World War, animals were also transported by water; measures were taken to meet the fundamental physiological requirements, and a veterinarian accompanied animals on long voyages. These precautions resulted in minimum transport losses.

  17. The Distribution of Crystalline Hematite on Mars from the Thermal Emission Spectrometer: Evidence for Liquid Water

    Science.gov (United States)

    Christensen, P. R.; Malin, M.; Morris, D.; Bandfield, J.; Lane, M.; Edgett, K.

    2000-01-01

    Crystalline hematite on Mars has been mapped using the MGS TES. Two major, and several minor areas of significant accumulation are identified. We favor precipitation models involving Fe-rich water, providing direct mineralogic evidence for large-scale water interactions.

  18. A three-dimensional PEM fuel cell model with consistent treatment of water transport in MEA

    Science.gov (United States)

    Meng, Hua

    In this paper, a three-dimensional PEM fuel cell model with a consistent water transport treatment in the membrane electrode assembly (MEA) has been developed. In this new PEM fuel cell model, the conservation equation of the water concentration is solved in the gas channels, gas diffusion layers, and catalyst layers while a conservation equation of the water content is established in the membrane. These two equations are connected using a set of internal boundary conditions based on the thermodynamic phase equilibrium and flux equality at the interface of the membrane and the catalyst layer. The existing fictitious water concentration treatment, which assumes thermodynamic phase equilibrium between the water content in the membrane phase and the water concentration, is applied in the two catalyst layers to consider water transport in the membrane phase. Since all the other conservation equations are still developed and solved in the single-domain framework without resort to interfacial boundary conditions, the present new PEM fuel cell model is termed as a mixed-domain method. Results from this mixed-domain approach have been compared extensively with those from the single-domain method, showing good accuracy in terms of not only cell performances and current distributions but also water content variations in the membrane.

  19. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  20. XANES evidence of arsenate removal from water with magnetic ferrite.

    Science.gov (United States)

    Tu, Yao-Jen; You, Chen-Feng; Chang, Chien-Kuei; Wang, Shan-Li

    2013-05-15

    Arsenic (As) in groundwater and surface water is a worldwide problem possessing a serious threat to public health. In this study, a magnetic ferrite, was synthesized and investigated for its As(V) removal efficiency. The adsorption of As(V) by magnetic ferrite exhibited an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. The As K-edge X-Ray Absorption Near-Edge Structure (XANES) revealed that the adsorbed As(V) on ferrite was not reduced to more toxic As(III) by Fe(2+) in the ferrite structure. The maximum As adsorption capacity of ferrite was 14 mg/g at pH 3 and decreased with increasing pH due to enhanced electrostatic repulsion between As(V) and the adsorbent surface. Desorption of As(V) using six different acid and salt solutions showed that the desorption rate decreased in an order of H3PO4 > Na3PO4 > H2SO4 > Na2SO4 > HCl > HNO3. These results suggest that magnetic ferrite without surface modification is an effective adsorbent for removing As(V) from water, which was confirmed by the effective removal of As(V) from contaminated groundwater using this material. The used material can then be recovered using a magnet because of its paramagnetism; the adsorbed As(V) on the material can be recovered using H3PO4 or Na3PO4 solutions.

  1. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic

  2. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  3. Different stages of Cd’s transporting process in waters in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Li, Haixia; Zhang, Longlei; Wang, Qi

    2017-08-01

    Cd pollution in marine bays is one of the critical environmental issues, and understanding the stages of transporting process of Cd in marine bays is essential to pollution control. This paper analyzed the stages of Cd’s transporting process in waters in Jiaozhou Bay during 1979-1983. Results showed that the transporting process in waters in Jiaozhou Bay included seven different stages of 1) the sedimentation of Cd content was beginning, 2) the sedimentation of Cd content was increasing, 3) the sedimentation of Cd content was increasing greatly, 4) the sedimentation of Cd content was beginning to decrease, 5) the sedimentation of Cd content was decreasing stably, 6) the sedimentation of Cd content was beginning to stop, and 7) the sedimentation of Cd content was beginning to fully stop. In according to the different stages of Cd’s transporting process in waters, the changing trends of Cd contents in surface and bottom waters and their relationships could be defined and predicted.

  4. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic inter-

  5. Integrating Water, Waste, Energy, Transport and ICT Aspects into the Smart City Concept

    NARCIS (Netherlands)

    Strzelecka, Anna; Ulanicki, Bogumil; Koop, Stef; Koetsier, Laurence; Van Leeuwen, Kees; Elelman, Richard

    2017-01-01

    The paper presents the partial results of the EU BlueSCities project [1]. The project is developing the methodology for the integration of the water and waste sectors within the 'Smart Cities and Communities' concept to compliment other priority areas such as energy, transport and Information and

  6. Heat and water transport in a polymer electrolyte fuel cell electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  7. Computational insights of water droplet transport on graphene sheet with chemical density

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  8. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  9. Transport and distribution of nutrients in anchovy spawning ground to the southern waters of Shandong Peninsula

    Institute of Scientific and Technical Information of China (English)

    Gao Shengquan; Lin Yi'an; Jin Mingming; Liu Xiaoya

    2003-01-01

    The distribution of nutrients and the effect of side transport of nutrients on anchovy spawning ground to the southern waters of Shandong Peninsula are discussed based on the data collected in June 2000, May and June 2001. The coastal current and upwelling are the main physical processes of nutrient transport to the southern waters of Shandong Peninsula. The concentrations of nutrients, Chla, the density of anchovy eggs, larva and juvenile fish increase obviously where they are greatly affected by these processes, while the contents of nutrients and Chl-a, the density of anchovy eggs, larva and juvenile fish decrease significantly where these processes diminish or disappear. The investigation suggest that the side transport of nutrients by Lubei (North Shandong) coastal current in the northern area causes the Chl-a content to be high and dense anchovy eggs, larva and juvenile fish to be dense in the coastal area of the Chengshan Cape. In the southern area, the riverine input from Subei irrigation ditch with high content of nutrients inshore and upwelling in the western edge of the Huanghai Sea Cold Water offshore should be responsible for high Chl-a concentration and dense anchovy eggs, larva and juvenile fish.It is possible that these processes of nutrient transport have controlled the anchovy spawning ground to the southem waters of Shandong Peninsula.

  10. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  11. Transportation of low-grade thermal energy over long distance by ammonia-water absorption

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; WANG RuZhui; LUO LinGai; XIA ZaiZhong; LIN Peng

    2009-01-01

    This paper presents the importance and the cycle choice for long-distance transportation of low-grade thermal energy, and the thermodynamic and hydrodynamic feasibility of single-effect ammonia-water absorption system for heat or cold transportation over long distance are also involved. A model of a long-distance thermal energy transportation system is built and analyzed, which shows satisfactory and attractive results. When a steam heat source at 12012 is available, the user site can get hot water output at about 55℃ with the thermal COP of about 0.6 and the electric COP of about 100 in winter, and cold water output at about 10~C with the thermal COP of about 0.5 and the electric COP of 50 in summer.A small-size prototype is built to verify the performance analysis. Basically the experimental data show good accordance with the analysis results. The ammonia-water absorption system is a potential prospective solution for the heat or cold transportation over long distance.

  12. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.

    Science.gov (United States)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-08-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.

  13. Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection

    Science.gov (United States)

    Trzeciak, Tomasz M.; Garcia-Carreras, Luis; Marsham, John H.

    2017-02-01

    Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere.

  14. Redesigning transport equipment – comparative analysis of energy expenditure (power and water in refrigerators

    Directory of Open Access Journals (Sweden)

    Lisiane Ilha Librelotto

    2015-12-01

    Full Text Available Sustainability is defined as an approach that integrates social, economic and environmental concerns (SEE. This philosophy carries several implications for daily factory work, where culturally, the economic issue is considered most important. This paper provides a case study at a meat and bone-meal (MBM factory, and the preliminary studies of the adaptation of this factory to the SEE philosophy, focusing initially on economic aspect, and its relationship with the two other aspects. It also shows how the design of a conveyor belt - used to transport entrails and feathers from the slaughter site to the byproducts production site - could improve the consumption of power and water resources at the factory studied. Currently, this transport is accomplished manually (for feathers and by pneumatic conveying (for entrails. As a result, it was found that a change in the transport processes to align with the SEE philosophy would allow an 18% reduction of water use.

  15. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    Science.gov (United States)

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  16. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    Science.gov (United States)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  17. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Science.gov (United States)

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  18. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps

    Science.gov (United States)

    Mattingly, Kyle S.; Ramseyer, Craig A.; Rosen, Joshua J.; Mote, Thomas L.; Muthyala, Rohi

    2016-09-01

    The Greenland Ice Sheet (GrIS) has been losing mass in recent decades, with an acceleration in mass loss since 2000. In this study, we apply a self-organizing map classification to integrated vapor transport data from the ERA-Interim reanalysis to determine if these GrIS mass loss trends are linked to increases in moisture transport to Greenland. We find that "moist" days (i.e., days featuring anomalously intense water vapor transport to Greenland) were significantly more common during 2000-2015 compared to 1979-1994. Furthermore, the two most intense GrIS melt seasons during the last 36 years were either preceded by a record percentage of moist winter days (2010) or occurred during a summer with a record frequency of moist days (2012). We hypothesize that moisture transport events alter the GrIS energy budget by increasing downwelling longwave radiation and turbulent fluxes of sensible and latent energy.

  19. Interannual transport variability of Upper Labrador Sea Water at Flemish Cap

    Science.gov (United States)

    Varotsou, Eirini; Jochumsen, Kerstin; Serra, Nuno; Kieke, Dagmar; Schneider, Linn

    2015-07-01

    The transport of Upper Labrador Sea Water (ULSW) at Flemish Cap (47°N/45°W) is investigated in the period 1960-2009 using the output from an 8 km resolution numerical ocean model. The average model transport of ULSW decreases southward from 6.7 Sv at 53°N to 4.5 Sv at 45°N due to interior pathways. The largest fraction of the total ULSW volume transport goes around Flemish Cap within the Deep Western Boundary Current (DWBC, 72%) but a significant part goes through Flemish Pass (20%). At interannual timescales, the variability at Flemish Pass shows a distinct behavior when compared to the variability in the DWBC and to the upstream fluctuations. A running correlation method is applied to obtain the connection of the transport variability at Flemish Pass with several quantities, representative for different physical mechanisms: (1) the North Atlantic Oscillation index, (2) the Ekman transport, (3) the rate of ULSW formation in the Labrador Sea, (4) the position of the North Atlantic Current (NAC) relative to the slope and (5) the averaged transport in the subpolar gyre. Weakened or strengthened transport of ULSW through Flemish Pass coincides with changes of the atmospheric forcing or with changes of the NAC`s position. Strong meandering of the NAC close to the DWBC reduces the transport off Flemish Cap, and the ULSW flow is "redirected" into the Flemish Pass, enhancing the transport there. In contrast, the transport variability in the DWBC is mainly caused by upstream fluctuations and changes according to the rate of ULSW formation.

  20. Evidence of water ice near the lunar poles

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, W. C. (William C.); Maurice, S. (Sylvestre); Lawrence, David J. (David Jeffery),; Little, R. C. (Robert C.); Lawrence, S. L. (Stefanie L.); Gasnault, O. M. (Olivier M.); Wiens, R. C. (Roger C.); Barraclough, B. L. (Bruce L.); Elphic, Richard C.,; Prettyman, T. H. (Thomas H.); Steinberg, John Tyree; Binder, A. B.

    2001-01-01

    the large sunlit polar craters and the relatively high [H] in neighboring inter-crater plains. A closer look at the 'inter-crater' plains near the poles, shows that they are covered by many small craters that harbor permanent shade [4]. The temperatures within many of these craters are low enough [5] that they can disable sublimation as a viable loss process of [H{sub 2}O]. It is therefore tempting to postulate that the enhanced hydrogen within most regions of permanent shade is in the form of water molecules. This postulate is certainly viable within the bottoms of several large, permanently shaded craters near the south pole. Predicted temperatures within them [5] fall well below the 100 K temperature that is needed to stabilize water ice for aeons. The picture is different near the north pole. Here, there are relatively few permanently-shaded craters that are large enough to harbor temperatures that are sufficiently low to stabilize water ice indefinitely against sublimation [5]. Instead, the 'inter-crater' polar plains are a jumble of many permanently-shaded craters that have diameters less than 10 km [4]. Although simulations of temperatures within this class of craters show they are only marginally cold enough to indefinitely stabilize water ice [5], this terrane appears to have the highest [H]. Nevertheless, predicted temperatures are close enough to that needed to permanently stabilize [H{sub 2}O] to suggest that sublimation is indeed the process that discriminates between polar terrane that contains enhanced [H] and those that do not (see, e.g., the temperature estimates for doubly-shaded craters [6]). If correct, then an important fraction of the hydrogen near the north pole must be in the form of H{sub 2}O, which then resides within these small craters. Estimates using our improved data set of [H] within craters near the south pole remain unchanged from those derived from our previous analysis [2], [H] = 1700{+-}900 ppm. This translates

  1. New Models of Water Delivery To Earth: The Effects of Ice Longevity and Collisional Water Transport

    Science.gov (United States)

    Maindl, Thomas I.; Haghighipour, Nader

    2016-10-01

    It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. Modern simulations of the formation of terrestrial planets show this process with high resolution. However, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during the dynamical evolution of these bodies. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. We have developed a more accurate model in which the sublimation of ice during the process of the scattering of icy asteroids and planetary embryos into the accretion zone of Earth is taken into account. Our model includes two different modes of handling ice sublimation, one for sub-surface water and one for deeper ice. We also estimate water loss and retention during collisions which depends on the physical and dynamical parameters of the impacts. The results of our simulations put stringent constraints on the initial water distribution in the protoplanetary disk, the location of snowline, and the contribution of water from the primordial nebula to the final water budget of Earth. In this poster, we will present the results of our new simulations and discuss their implications for models of solar system formation and dynamics.

  2. Collisional water transport and water-loss relevant to formation of habitable planets

    Science.gov (United States)

    Maindl, T. I.; Schäfer, C. M.; Haghighipour, N.; Burger, C.; Dvorak, R.

    2017-03-01

    It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. While modern simulations of terrestrial planet formation show this process with high resolution, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during their dynamical evolution. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. In this study, we present results on collisional water loss obtained from collision simulations involving differently sized planetary embryos. We find that in most cases of realistic collision velocities and impact angles water loss is not negligible and may change the water inventory of formed terrestrial planets considerably. Finally, we get indication that it is not sufficient to specify collisional water loss just by the collision velocity in terms of the mutual escape velocity and the impact angle. Rather, factors like mass ratio, absolute masses (Burger & Schäfer, 2017, this volume), and the objects' water distribution need to be considered.

  3. Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates.

    Science.gov (United States)

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-05-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.

  4. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  5. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    Science.gov (United States)

    Hegele, P R; Mumford, K G

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  6. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    Science.gov (United States)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  7. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  8. Impact of Soil Water Flux on Vadose Zone Solute Transport Parameters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transport processes of solutes in two soil columns filled with undisturbed soil material collected from an unsaturated sandy aquifer formation in Belgium subjected to a variable upper boundary condition were identified from breakthrough curves measured by means of time domain refiectometry (TDR). Solute breakthrough was measured with 3 TDR probes inserted into each soil column at three different depths at a 10 minutes time interval. In addition, soil water content and pressure head were measured at 3 different depths. Analytical solute transport models were used to estimate the solute dispersion coefficient and average pore-water velocity from the observed breakthrough curves. The results showed that the analytical solutions were suitable in fitting the observed solute transport. The dispersion coefficient was found to be a function of the soil depth and average pore-water velocity, imposed by the soil water flux. The mobile moisture content on the other hand was not correlated with the average pore-water velocity and the dispersion coefficient.

  9. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    Science.gov (United States)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  10. Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS

    Directory of Open Access Journals (Sweden)

    Bingham C Raymond

    2011-09-01

    Full Text Available Abstract Background Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. Methods This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. Results The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly, was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. Conclusions These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality.

  11. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    Science.gov (United States)

    Walther, Jens; Koumoutsakos, Petros

    2011-11-01

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2 nm -diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate, for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500 nm long CNTs and observe a previously unseen dependence of the flow enhancement rates on the CNT length. We relate the present findings to past computational and experimental studies, we discuss previous continuum assessments for this flow and propose underlying physical mechanisms.

  12. Water and dissolved carbon transport in an eroding soil landscape using column experiments

    DEFF Research Database (Denmark)

    Rieckh, Helene; Gerke, Horst; Glæsner, Nadia;

    2014-01-01

    boundary. Breakthrough curves for a pre-applied tracer (Br-) on the soil surface and a tracer applied with irrigation water (3H2O) were modeled analytically using CXTFIT. The heterogeneity of the Luvisol horizons was generally higher than that of the Regosol horizons, which relates to the higher......In the hummocky ground moraine soil landscape, a spatial continuum of more or less eroded soils developed from till under intensive agricultural cultivation. Water flow and solute transport are affected by the variable soil structural and pedological developments, which are posing a challenge...... for flux estimation. The objective of this study was to investigate transport of water, dissolved organic (DOC), and particulate carbon (PC) through soil profiles of an eroded Haplic Luvisol and a heavily eroded Haplic Regosol. We studied 5 soil horizons in three replicates each: Ap (0-20 cm) and E (20...

  13. Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts

    Science.gov (United States)

    Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Andriopoulou, M.

    2016-08-01

    A survey of Cassini MIMI/LEMMS data acquired between 2004 and 2015 has led to the identification of 13 energetic electron microsignatures that can be attributed to particle losses on one of the several faint rings of the planet. Most of the signatures were detected near L-shells that map between the orbits of Mimas and Enceladus or near the G-ring. Our analysis indicates that it is very unlikely for these signatures to have originated from absorption on Mimas, Enceladus or unidentified Moons and rings, even though most were not found exactly at the L-shells of the known rings of the saturnian system (G-ring, Methone, Anthe, Pallene). The lack of additional absorbers is apparent in the L-shell distribution of MeV ions which are very sensitive for tracing the location of weakly absorbing material permanently present in Saturn's radiation belts. This sensitivity is demonstrated by the identification, for the first time, of the proton absorption signatures from the asteroid-sized Moons Pallene, Anthe and/or their rings. For this reason, we investigate the possibility that the 13 energetic electron events formed at known saturnian rings and the resulting depletions were later displaced radially by one or more magnetospheric processes. Our calculations indicate that the displacement magnitude for several of those signatures is much larger than the one that can be attributed to radial flows imposed by the recently discovered noon-to-midnight electric field in Saturn's inner magnetosphere. This observation is consistent with a mechanism where radial plasma velocities are enhanced near dusty obstacles. Several possibilities are discussed that may explain this observation, including a dust-driven magnetospheric interchange instability, mass loading by the pick-up of nanometer charged dust grains and global magnetospheric electric fields induced by perturbed orbits of charged dust due to the act of solar radiation pressure. Indirect evidence for a global scale interaction

  14. Flow Data for Solute Transport Modeling from Tracer Experiments in a Stream Not Continuously Gaining Water

    Science.gov (United States)

    Bencala, K. E.; Kimball, B. A.; Gooseff, M. N.

    2007-12-01

    In-stream tracer experiments are a well-established method for determining flow data to be incorporated in solute transport modeling. For a gaining stream, this method is implemented to provide spatial flow data at scales of minutes and tens of meters without physical disturbance to the flow of water, the streambed, or biota. Of importance for solute transport modeling, solute inflow loading along the stream can be estimated with this spatial data. The tracer information can also be interpreted to characterize hyporheic exchange time-scales for a stream with hyporheic exchange flowpaths (HEFs) that are short relative to the distance over which the stream gains water. The interpretation of tracer data becomes uncertain for a stream that is not gaining water continuously over intended study reach. We demonstrate, with straight-forward mass-balances, uncertainties for solute loading which arise in the analysis of streams locally losing water while predominantly gaining water (and solutes) over a larger scale. With field data from Mineral Creek (Silverton, Colorado) we illustrate the further uncertainty distinguishing HEFs from (locally) losing segments of the stream. Comparison of bromide tracer with ambient sulfate concentrations suggests that subsurface inflows and outflows, concurrent with likely HEFs, occur in a hydrogeochemical setting of multiple, dispersed and mixed, sources of water along a 64 m sub-reach of the predominately gaining, but locally losing, stream. To compute stream-reach mass-balances (the simplest of water quality models) there is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along flow paths crossing the sediment-water interface. Identification of inflow solute mass requires quantifying water gain, loss, and hyporheic exchange in addition to concentration.

  15. Salt-Water Transport in Unsaturated Soils Under Crop Planting: Dynamics and Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    XU Li-Gang; YANG Jing-Song; ZHANG Qi; LIU Guang-Ming

    2005-01-01

    A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of saltwater dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.

  16. On-the-fly Neutron Tomography of Water Transport into Lupine Roots

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Carminati, Andrea; Kaestner, Anders; Mannes, David; Morgano, Manuel; Peetermans, Steven; Lehmann, Eberhard; Trtik, Pavel

    Measurement and visualization of water flow in soil and roots is essential for understanding of how roots take up water from soils. Such information would allow for the optimization of irrigation practices and for the identification of the optimal traits for the capture of water, in particular when water is scarce. However, measuring water flow in roots growing in soil is challenging. The previous 2D experiments (Zarebanadkouki et al., 2012) have not been sufficient for understanding the water transport across the root and therefore we employed an on-the-fly tomography technique with temporal resolution of three minutes. In this paper, we show that the series of on-the-fly neutron tomographic experiments performed on the same sample allow for monitoring the three-dimensional spatial distribution of D2O across the root tissue. The obtained data will allow us to calculate the convective and diffusive transport properties across root tissue and to estimate the relative importance of different pathways of water across the root tissue.

  17. A water gradient can be used to regulate drug transport across skin.

    Science.gov (United States)

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2010-04-19

    At normal conditions there is a substantial water gradient over the skin as it separates the water-rich inside of the body from the dry outside. This leads to a variation in the degree of hydration from the inside to the outside of skin and changes in this gradient may affect its structure and function. In this study we raise the question: How do changes in the water gradient across skin affect its permeability? We approach this problem in novel diffusion experiments that permit strict control of the gradient in the chemical potential of water and hence well-defined boundary conditions. The results demonstrate that a water gradient can be used to regulate transport of drugs with different lipophilic characteristics across the skin barrier. It is shown that the transport of metronidazole (log P(o/w)=0.0) and methyl salicylate (log P(o/w)=2.5) across skin increases abruptly at low water gradients, corresponding to high degrees of skin hydration, and that this effect is reversible. This phenomenon is highly relevant to drug delivery applications due to its potential of temporarily open the skin barrier for transdermal drug delivery and subsequently close the barrier after treatment. Further, the results contribute to the understanding of the occlusion effect and indicate the boundary conditions of the water gradient needed to make use of this effect. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Toward a predictive understanding of water and charge transport in proton exchange membranes.

    Science.gov (United States)

    Selvan, Myvizhi Esai; Calvo-Muñoz, Elisa; Keffer, David J

    2011-03-31

    An analytical model for water and charge transport in highly acidic and highly confined systems such as proton exchange membranes of fuel cells is developed and compared to available experimental data. The model is based on observations from both experiment and multiscale simulation. The model accounts for three factors in the system including acidity, confinement, and connectivity. This model has its basis in the molecular-level mechanisms of water transport but has been coarse-grained to the extent that it can be expressed in an analytical form. The model uses the concentration of H(3)O(+) ion to characterize acidity, interfacial surface area per water molecule to characterize confinement, and percolation theory to describe connectivity. Several important results are presented. First, an integrated multiscale simulation approach including both molecular dynamics simulation and confined random walk theory is capable of quantitatively reproducing experimentally measured self-diffusivities of water in the perfluorinated sulfonic acid proton exchange membrane material, Nafion. The simulations, across a range of hydration conditions from minimally hydrated to fully saturated, have an average error for the self-diffusivity of water of 16% relative to experiment. Second, accounting for three factors-acidity, confinement, and connectivity-is necessary and sufficient to understand the self-diffusivity of water in proton exchange membranes. Third, an analytical model based on percolation theory is capable of quantitatively reproducing experimentally measured self-diffusivities of both water and charge in Nafion across a full range of hydration.

  19. E. coli transport to stream water column from bottom sediments to the stream water column in base flow conditions

    Science.gov (United States)

    Pachepsky, Yakov; Shelton, Daniel; Stocker, Matthew

    2016-04-01

    E. coli as an indicator bacterium is commonly used to characterize microbiological water quality, to evaluate surface water sources for microbiological impairment, and to assess management practices that lead to the decrease of pathogens and indicator influx in surface water sources for recreation and irrigation. Bottom sediments present a large reservoir of fecal indicator bacteria that are known to be released to water column during high flow events caused by rainstorms and snowmelt. The objective of this work was to see if the influx of E. coli from sediments to water occurs also during base flow periods when groundwater rather than runoff provides the major water input to the stream. The experiment was carried out at the first-order creek in Maryland flowing in the riparian zone in base flow conditions. An inert tracer was released to creek water from the manifold for 5 hours. Streamflow and concentrations of E. coli and tracer were monitored in water 10 m below tracer release location, and at the downstream location at 450 m from the release location. The tracer mass recovered at the downstream location was close to the released tracer mass. We then could directly compare the total numbers of E. coli in volumes of water containing tracer at the upstream (release) location and the downstream location. There was a substantial (3 to 6 times) increase in flow between the upstream and downstream locations as well as the substantial increase in the E. coli total numbers in water (14 to 26 times). The average E. coli influx from the bottom sediment was about 400 cells m-2s-1. Although this value is about 2 to 5 times less than published E. coli release rates during high flow events, it still can substantially change the microbial water quality assessment without any input from animal agriculture or manure application. Interesting research objectives include finding out whether the transport of E. coli from bottom sediment to water column during the base flow periods

  20. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    Directory of Open Access Journals (Sweden)

    Philipp Comanns

    2011-04-01

    Full Text Available Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus, the Arabian toadhead agama (Phrynocephalus arabicus and the Texas horned lizard (Phrynosoma cornutum. All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water.

  1. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    Science.gov (United States)

    Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682

  2. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    Directory of Open Access Journals (Sweden)

    Farshid Daryabor

    Full Text Available A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  3. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    Directory of Open Access Journals (Sweden)

    M. Sprenger

    2014-10-01

    Full Text Available Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last two decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a pore water isotope concentrations, (b a combination of pore water isotope concentrations and soil moisture time series, and (c a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by numerically solving the Richards equation with the finite-element code of Hydrus-1D. The transport of deuterium was simulated with the advection-dispersion equation, and the Hydrus code was modified to allow for deuterium loss during evaporation. The Mualem–van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a using only the pore water isotope content cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics, but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b and (c using both, the isotope profiles and the soil moisture time series resulted in satisfying model performances and good parameter identifiability. However, approach

  4. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    NARCIS (Netherlands)

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes an

  5. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies the mass transport properties for water vapor and nitrogen for a series of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) multi-block copolymers via: (a) the permeation of a water vapor/N2 mixture (b) the sorption of water vapor, (c) the diffusion of water vapor, (d

  6. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Science.gov (United States)

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of... Sections 2.4.12 and 2.4.13 regarding the assessment of ground water flow and transport of...

  7. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A;

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed...... in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  8. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    Science.gov (United States)

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  9. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    Directory of Open Access Journals (Sweden)

    Valérie Lefebvre

    Full Text Available Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE, i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1 gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.

  10. Water and heat transport in hilly red soil of southern China: Ⅱ. Modeling and simulation

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China.Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model,while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, Ks, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution,which would affect water redistribution.

  11. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).

  12. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate.

    Science.gov (United States)

    Liu, L; Patey, G N

    2014-11-14

    The conduction rate of water through (8,8) and (9,9) carbon nanotubes at 300 K and a pressure difference of 220 MPa is investigated using molecular dynamics simulations. The TIP3P, SPC/E, and TIP4P/2005 water models are considered. The pressure-driven flow rate is found to be strongly model dependent for both nanotubes. The fastest model (TIP3P) has a flow rate that is approximately five times faster than the slowest (TIP4P/2005). It is shown that the flow rate is significantly influenced by the structure taken on by the water molecules confined in the nanotube channels. The slower models, TIP4P/2005 and SPC/E, tend to favor stacked ring arrangements, with the molecules of a ring moving together through the nanotube, in what we term a "cluster-by-cluster" conduction mode. Confined TIP3P water has a much weaker tendency to form ring structures, and those that do form are fragile and break apart under flow conditions. This creates a much faster "diffusive" conduction mode where the water molecules mainly move through the tube as individual particles, rather than as components of a larger cluster. Our results demonstrate that water models developed to describe the properties of bulk water can behave very differently in confined situations.

  13. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  14. The effect of inhomogeneous compression on water transport in the cathode of a PEM fuel cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    A three-dimensional, multi-component, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS inc.), is used to investigate the effect of porous media compression on transport phenomenon of a PEM Fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas diffusion...... layer, micro-porous layer and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation and mass transfer between phases by a non-equilibrium phase change model...

  15. "Sticky"-Ends-Guided Creation of Functional Hollow Nanopores for Guest Encapsulation and Water Transport.

    Science.gov (United States)

    Huo, Yanping; Zeng, Huaqiang

    2016-05-17

    Commercial uses of water-transporting aquaporins for seawater desalination and wastewater reclamation/reuse are being investigated in both academia and the industry. Presently, structural complexity, stability, scalability, and activity reconstitution of these costly channel proteins still present substantial challenges to scientists and engineers. An attractive strategy is to develop robust synthetic water channels able to mimic the water-transporting function of aquaporins for utility in the making of next generation of water channel-based biomimetic porous membranes for various water purification applications. In sharp contrast to burgeoning development in constructing synthetic ion channels over the past four decades, very limited progress has been made in the area of synthetic water channels. A handful of such examples include the first report by Percec in 2007 (Percec et al. J. Am. Chem. Soc. 2007, 129, 11698-11699), which was followed by Barboiu in 2011 (Barboiu et al. Angew. Chem., Int. Ed. 2011, 50, 11366-11372), Gong and Hou in 2012 (Gong et al. Nat. Commun. 2012, 3, 949; Hou et al. J. Am. Chem. Soc. 2012, 134, 8384-8387), and Zeng in 2014 (Zeng et al. J. Am. Chem. Soc. 2014, 136, 14270-14276). Radically deviating from the fact that the discovery of novel synthetic channel systems with desired transport selectivity is most often empirical and very often serendipitous, we have instead adopted a more rational designer approach whereby molecular building blocks have been carefully designed from scratch to perform their intended built-in functions. Our designer journey started in 2008, two years after I started leading a group at the National University of Singapore. Since then, we have been actively investigating the use of designed water-binding "aquafoldamers" to construct synthetic water channels for the rapid and selective transport of water molecules ideally with the exclusion of all other nonproton molecular species. Toward this goal, we designed and

  16. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange

    Science.gov (United States)

    Vâge, Kjetil; Pickart, Robert S.; Pavlov, Vladimir; Lin, Peigen; Torres, Daniel J.; Ingvaldsen, Randi; Sundfjord, Arild; Proshutinsky, Andrey

    2016-09-01

    Data from a shipboard hydrographic survey near 30°E in the Nansen Basin of the Arctic Ocean are used to investigate the structure and transport of the Atlantic Water boundary current. Two high-resolution synoptic crossings of the current indicate that it is roughly 30 km wide and weakly middepth-intensified. Using a previously determined definition of Atlantic Water, the transport of this water mass is calculated to be 1.6 ± 0.3 Sv, which is similar to the transport of Atlantic Water in the inner branch of the West Spitsbergen Current. At the time of the survey a small anticyclonic eddy of Atlantic Water was situated just offshore of the boundary current. The data suggest that the feature was recently detached from the boundary current, and, due to compensating effects of temperature and salinity on the thermal wind shear, the maximum swirl speed was situated below the hydrographic property core. Two other similar features were detected within our study domain, suggesting that these eddies are common and represent an effective means of fluxing warm and salty water from the boundary current into the interior. An atmospheric low-pressure system transiting south of our study area resulted in southeasterly winds prior to and during the field measurements. A comparison to hydrographic data from the Pacific Water boundary current in the Canada Basin under similar atmospheric forcing suggests that upwelling was taking place during the survey. This provides a second mechanism related to cross-stream exchange of heat and salt in this region of the Nansen Basin.

  17. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    Science.gov (United States)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  18. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    Science.gov (United States)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  19. Association of Down's syndrome and water fluoride level: a systematic review of the evidence

    Directory of Open Access Journals (Sweden)

    McDonagh Marian

    2001-07-01

    Full Text Available Abstract Background A review of the safety and efficacy of drinking water fluoridation was commissioned by the UK Department of Health to investigate whether the evidence supported a beneficial effect of water fluoridation and whether there was any evidence of adverse effects. Down's syndrome was one of the adverse effects reported. The aim of this review is to examine the evidence for an association between water fluoride level and Down's syndrome. Methods A systematic review of research. Studies were identified through a comprehensive literature search, scanning citations and online requests for papers. Studies in all languages which investigated the incidence of Down's syndrome in areas with different levels of fluoride in their water supplies were included. Study inclusion and quality was assessed independently by 2 reviewers. A qualitative analysis was conducted. Results Six studies were included. All were ecological in design and scored poorly on the validity assessment. The estimates of the crude relative risk ranged from 0.84 to 3.0. Four studies showed no significant associations between the incidence of Down's syndrome and water fluoride level and two studies by the same author found a significant (p Conclusions The evidence of an association between water fluoride level and Down's syndrome incidence is inconclusive.

  20. Modeling the effects of water content on TiO2 nanoparticles transport in porous media

    Science.gov (United States)

    Toloni, Ivan; Lehmann, François; Ackerer, Philippe

    2016-08-01

    The transport of manufactured titanium dioxide (TiO2, rutile) nanoparticles (NP) in porous media was investigated by metric scale column experiments under different water saturation and ionic strength (IS) conditions. The NP breakthrough curves showed that TiO2 NP retention on the interface between air and water (AWI) and the interface between the solid and the fluid (SWI) is insignificant for an IS equal to or smaller than 3 mM KCl. For larger IS, the retention is depending on the water content and the fluid velocity. The experiments, conducted with an IS of 5 mM KCl, showed a significantly higher retention of NP than that observed under saturated conditions and very similar experimental conditions. Water flow was simulated using the standard Richards equation. The hydrodynamic model parameters for unsaturated flow were estimated through independent drainage experiments. A new mathematical model was developed to describe TiO2 NP transport and retention on SWI and AWI. The model accounts for the variation of water content and water velocity as a function of depth and takes into account the presence of the AWI and its role as a NP collector. Comparisons with experimental data showed that the suggested modeled processes can be used to quantify the NPs retentions at the AWI and SWI. The suggested model can be used for both saturated and unsaturated conditions and for a rather large range of velocities.

  1. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    Science.gov (United States)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  2. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    Science.gov (United States)

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.

  3. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  4. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    Science.gov (United States)

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  5. Modulation of ingested water absorption by Palestine sunbirds: evidence for adaptive regulation.

    Science.gov (United States)

    McWhorter, Todd J; del Rio, Carlos Martínez; Pinshow, Berry

    2003-02-01

    Nectarivorous birds feed on dilute sugar solutions containing trace amounts of amino acids and electrolytes. To meet their high mass-specific energy demands they must often deal with exceptionally high proportionate water fluxes. Despite nectar intake rates that may reach more than five times body mass per day, hummingbirds appear to absorb all ingested water. Here, we report the results of experiments designed to examine the relationship between nectar intake and water turnover in nectar-feeding Palestine sunbirds (Nectarinia osea). Like hummingbirds, sunbirds ingested large amounts of water. At the lowest sucrose concentration (292 mmol l(-1)), food intake rates reached 2.2 times body mass. Fractional and total water turnover increased linearly with water ingestion, but the fraction of ingested water absorbed by sunbirds decreased from 100% to 36% with increasing water intake rate. Palestine sunbirds may therefore avoid absorbing, and thus having to eliminate, up to 64% of their ingested water load when feeding on dilute nectars. To our knowledge, this is the first documentation of regulation of water flux across the gastrointestinal tract to the body. Our data suggest that sunbirds regulate transepithelial water flux independently of sugar absorption. These intriguing results open the door to many questions about how water transport is regulated in the vertebrate gastrointestinal tract. We suggest that intestinal water and body water form two separate but interacting pools in nectar-feeding birds. Convergence in diet has led to the evolution of many similar traits in hummingbirds and sunbirds. The physiological traits of these two groups that allow the processing of a water and sugar diet, however, may be very different.

  6. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Science.gov (United States)

    Jenista, Jirí

    2003-12-01

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius ~3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  7. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng GONG

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  8. Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization

    Science.gov (United States)

    Malvoisin, Benjamin; Brunet, Fabrice

    2014-10-01

    A series of San Carlos olivine aggregates, sintered at high pressure and high temperature, with two different porosities (around 1 and 10%) and grain sizes (1-5 μm and 0-38 μm) were reacted at 300 °C and 500 bars in the presence of pure water. The reaction progress was monitored magnetically and the composition and distribution of the reaction products were analyzed at the end of each experiment. Brucite formation mainly occurred at the aggregate surface as a result of both congruent olivine dissolution and aqueous Mg and Si buffering by the reaction products, i.e. brucite and lizardite. The measured reaction progress did not exceed 2.6% after 290 d, which strongly contrasts with previous studies performed on San Carlos olivine powders (i.e., isolated grains in aqueous solution). Hence, limited water transport through the intergranular region of the aggregate drastically decreased the olivine surface area accessible to water and thus slowed down the whole serpentinization process. When extrapolated to peridotite relevant olivine grain sizes, our experimental results indicate that the water diffusion rate will become so slow that the first layer of primary minerals exposed to water within a mesh structure must fully react before the next mineral layer starts reacting (;layer by layer; mechanism). This type of reaction-transport mechanism is obviously not consistent with the micro-scale serpentine distribution in the mesh of oceanic peridotite samples, therefore additional water transport pathways are required. Cracks formed under extensional thermal stresses are good candidates since, in comparison to grain boundary or reaction-induced fractures, they are wide enough to drastically enhance water transport in oceanic peridotites and therefore account for the observed textures. The 'layer by layer' mechanism inferred here can only set a lower time bound for serpentinization completion. Assuming a mesh size of 1 mm and an initial grain size of 100 μm and

  9. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    Science.gov (United States)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  10. Evident?

    DEFF Research Database (Denmark)

    Plant, Peter

    2012-01-01

    Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind......Quality assurance and evidence in career guidance in Europe are often seen as self-evident approaches, but particular interests lie behind...

  11. Desalination of water by vapor-phase transport through hydrophobic nanopores

    Science.gov (United States)

    Lee, Jongho; Karnik, Rohit

    2010-08-01

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficient as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m2 s may be feasible if the system is operated at temperatures in the range of 30-50 °C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance.

  12. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    CERN Document Server

    Hase, M; Hamada, T; Yoshikawa, K; Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The lipid vesicle can then be transported back into the oil phase. This novel experimental procedure may be a useful tool for creating a model cellular system, which, together with a microreactor, is applicable as a micrometer-scale biochemical reaction field.

  13. Optimizing Water Transport through Graphene-Based Membranes: Insights from Nonequilibrium Molecular Dynamics.

    Science.gov (United States)

    Muscatello, Jordan; Jaeger, Frederike; Matar, Omar K; Müller, Erich A

    2016-05-18

    Recent experimental results suggest that stacked layers of graphene oxide exhibit strong selective permeability to water. To construe this observation, the transport mechanism of water permeating through a membrane consisting of layered graphene sheets is investigated via nonequilibrium and equilibrium molecular dynamics simulations. The effect of sheet geometry is studied by changing the offset between the entrance and exit slits of the membrane. The simulation results reveal that the permeability is not solely dominated by entrance effects; the path traversed by water molecules has a considerable impact on the permeability. We show that contrary to speculation in the literature, water molecules do not pass through the membrane as a hydrogen-bonded chain; instead, they form well-mixed fluid regions confined between the graphene sheets. The results of the present work are used to provide guidelines for the development of graphene and graphene oxide membranes for desalination and solvent separation.

  14. U and sr isotopes in ground water and calcite, yucca mountain, nevada: evidence against upwelling water.

    Science.gov (United States)

    Stuckless, J S; Peterman, Z E; Muhs, D R

    1991-10-25

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  15. The influence of inner hydrophobisation on water transport properties of modified lime plasters

    Science.gov (United States)

    Pavlíková, Milena; Pavlík, Zbyšek; Pernicová, Radka; Černý, Robert

    2016-06-01

    The effect of hydrophobic agent admixture on water vapour and liquid water transport properties of newly designed lime plasters is analysed in the paper. The major part of physico - chemical building deterioration is related to the penetration of moisture and soluble salts into the building structure. For that reason, the modified lime plasters were in the broad range of basic material properties tested. From the quantitative point of view, the measured results clearly demonstrate the big differences in the behaviour of studied materials depending on applied modifying admixtures. From the practical point of view, plaster made of lime hydrate, metakaolin, zinc stearate and air-entraining agent can be recommended for renovation purposes. The accessed material parameters will be used as input data for computational modelling of moisture transport in this type of porous building materials and will be stored in material database.

  16. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide.

  17. Vertical wicking tester for monitoring water transportation behavior in fibrous assembly

    Science.gov (United States)

    Singh, Pratibha; Chatterjee, Arobindo; Ghosh, Subrata

    2016-10-01

    An instrument based on the principle of change of resistance of fibrous assembly on wetting has been developed for precise monitoring of the water transportation behaviour in the fibrous assemblies. The conducting probes sense the change in resistance of a dry fibrous assembly on wetting. This change in resistance generates analog signals which trigger an amplifying circuit. This circuit produces an enlarged copy of the received signals which are further converted to digital signals by a Darlington pair and are encoded to measurable quantity with the help of a microcontroller. The data thus obtained are displayed on a suitable display device. Comparison between conventional strip test and experimental results obtained by the developed instrument shows its reliability. The developed instrument measures the initial rate of water transport with increased precision and hence could be used for detailed study of fluid flow in the fibrous structure.

  18. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-01-01

    permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions...... flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+-2Cl- cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane...

  19. Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer

    Directory of Open Access Journals (Sweden)

    M. Bergvall

    2011-02-01

    Full Text Available Few studies have been carried out that cover the entire transport process of pesticides, from application at the soil surface, through subsurface transport, to contamination of drinking water in esker aquifers. In formerly glaciated areas, such as Scandinavia, many of the most important groundwater resources are situated in glaciofluvial eskers. The purpose of the present study was to model and identify significant processes that govern subsurface transport of pesticides in extensive glaciofluvial and littoral sediments. To simulate the transport processes, we coupled a vadose zone model at the point scale to a regional groundwater flow model. The model was applied to a municipal drinking-water aquifer, contaminated with the pesticide-metabolite BAM (2,6-dichlorobenzoamide. A sensitivity analysis revealed that hydraulic conductivity and infiltration rate accounted for almost half of the model uncertainty. For a ten-meter-deep vadose zone of coarse texture, macropore flow was found to be of minor importance for contaminant transport. The calibrated model was applied to optimize the location of extraction wells for remediation, which were used to verify the predictive modeling. Running a worst-case scenario, the model showed that the establishment of two remediation wells would clean the aquifer in four years, compared to nine years without them. Further development of the model would require additional field measurements to assess the importance of macropore flow in deep, sandy aquifers. We also suggest that future research should focus on characterization of the variability of hydraulic conductivity and its effect on contaminant transport in eskers.

  20. Some considerations on the transport properties of water-glycerol suspensions

    Science.gov (United States)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2016-01-01

    We study the self-diffusion coefficient and viscosity of a water-glycerol mixture for several glycerol molar fractions as a function of temperature well inside the metastable supercooled regime. We perform NMR experiments and verify that the system has at different concentration a fragile-to-strong crossover accompanied by the violation of the Stokes-Einstein relation. We observe that the crossover temperature depends on the water amount. Studying the fractional representation of the Stokes-Einstein relation, we find that in these systems dynamical arrest does not exhibit criticality and the transport parameters have a universal behavior.

  1. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    Science.gov (United States)

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  2. On the relative influence of heat and water transport on planetary dynamics

    Science.gov (United States)

    Crowley, John W.; Gérault, Mélanie; O'Connell, Richard J.

    2011-10-01

    The dynamics of a planet and its evolution are controlled to a large extent by its viscosity. In this study, we demonstrate that the dependence of mantle viscosity on temperature and water concentration introduces strong dynamic feedbacks. We derive a dimensionless parameter to quantitatively evaluate the relative strength of those feedbacks, and show that water and heat transport are equally important in controlling present-day dynamics for the Earth. A simple parameterized evolution model illustrates the strong feedbacks and behavior of the system and agrees well with our analytic results. The analysis identifies characteristic times for changes of viscosity, temperature, and water concentration and demonstrates, for time scales greater than a few hundred million years, that the system should either be degassing while warming or regassing while cooling. This yields a characteristic evolution in which, after an initial period of rapid adjustment, the mantle warms while degassing, and subsequently cools rapidly while regassing. As the planet continues to cool, the entire surface ocean may eventually return to the mantle. Our results suggest that a simple relationship may exist between the rate of change of water concentration and the rate of change of temperature in the mantle. This connection is extended by deriving an explicit equation for the Urey ratio that depends on both heat and water transport.

  3. A depth-averaged 2-D model of flow and sediment transport in coastal waters

    Science.gov (United States)

    Sanchez, Alejandro; Wu, Weiming; Beck, Tanya M.

    2016-11-01

    A depth-averaged 2-D model has been developed to simulate unsteady flow and nonuniform sediment transport in coastal waters. The current motion is computed by solving the phase-averaged 2-D shallow water flow equations reformulated in terms of total-flux velocity, accounting for the effects of wave radiation stresses and general diffusion or mixing induced by current, waves, and wave breaking. The cross-shore boundary conditions are specified by assuming fully developed longshore current and wave setup that are determined using the reduced 1-D momentum equations. A 2-D wave spectral transformation model is used to calculate the wave height, period, direction, and radiation stresses, and a surface wave roller model is adopted to consider the effects of surface roller on the nearshore currents. The nonequilibrium transport of nonuniform total-load sediment is simulated, considering sediment entrainment by current and waves, the lag of sediment transport relative to the flow, and the hiding and exposure effect of nonuniform bed material. The flow and sediment transport equations are solved using an implicit finite volume method on a variety of meshes including nonuniform rectangular, telescoping (quadtree) rectangular, and hybrid triangular/quadrilateral meshes. The flow and wave models are integrated through a carefully designed steering process. The model has been tested in three field cases, showing generally good performance.

  4. Promotion of Water Channels for Enhanced Ion Transport in 14-nm-diameter Carbon Nanotubes.

    Science.gov (United States)

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-06

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after applying an electric potential. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  5. Effects of water transportation on subduction dynamics: Roles of viscosity and density reduction

    Science.gov (United States)

    Nakao, Atsushi; Iwamori, Hikaru; Nakakuki, Tomoeki

    2016-11-01

    The effects of water on subduction dynamics, e.g., plate migration rate, slab geometry, stress field, and back-arc spreading, are investigated by using a 2-D self-consistent model for lithosphere subduction and whole mantle convection. We solve water transportation coupled with hydrous mineral phase changes. Mantle flows and water transportation are interactive through constitutive and state equations for hydrous rocks. Our model has successfully reproduced the water distribution in a mantle wedge and along the slab with sufficient resolution comparable to that of previous models that focus on the mantle wedge structure. As a result, low density owing to hydration reduces subduction rates, back-arc spreading, and slab stagnation on the phase boundary at 660-km depth, whereas low viscosity owing to hydration enhances rapid subduction, trench migration, and slab stagnation. We attribute these results to mechanisms that cause the hydrous buoyancy of subducting plates to reduce the slab pull force and the accompanying tensile stress on overlying lithosphere. In addition, hydrous weakening diminishes the mechanical coupling of the subducted slab with the wedge mantle and overriding lithosphere. Thus, water is capable of generating two opposite situations in the stress field of the overlying lithosphere and the subduction rate. Water is therefore expected to be an important mechanism for generating broad styles of the subduction structure and kinematics, as observed in actual subduction zones such as Tonga and Mariana. Such observed variation in the subduction mode can be caused by variation in buoyancy corresponding to the water content from relatively dry to several thousands of parts per million for the wedge mantle and slab surface, whereas the extremely buoyant case does not appear to occur in nature. Water in the mantle is thus key to better understand the whole-mantle-scale slab dynamics as well as island arc volcanic processes.

  6. Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media

    Science.gov (United States)

    Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.

    2015-12-01

    Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.

  7. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.

    2016-08-11

    A dispersion system for saturated fluorocarbon (SFC) liquids based on permeable hollow nanospheres with fluorous interiors is described. The nanospheres are well dispersible in water and are capable of immediate uptake of SFCs. The nanosphere shells are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere-stabilized SFC dispersions is demonstrated.

  8. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  9. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    Science.gov (United States)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  10. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.

    Science.gov (United States)

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina

    2016-03-29

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.

  11. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  12. Cobenefits of replacing car trips with alternative transportation: a review of evidence and methodological issues.

    Science.gov (United States)

    Xia, Ting; Zhang, Ying; Crabb, Shona; Shah, Pushan

    2013-01-01

    It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed.

  13. Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence and Methodological Issues

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2013-01-01

    Full Text Available It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed.

  14. Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence and Methodological Issues

    Science.gov (United States)

    Zhang, Ying; Crabb, Shona

    2013-01-01

    It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed. PMID:23956758

  15. Transport of water and solutes in wettable and water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    The research yielded the following conclusions and results: preferential flow can be expected in recently deposited, loosely packed, wettable dune sands; preferential flow is common in most water-repellent sandy soils; distribution flow in topsoils isa process of major importance, resulting in a

  16. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    Science.gov (United States)

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m‑2·a‑1) to medium spatial scale basins (258 g·m‑2·a‑1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  17. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  18. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  19. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  20. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    Science.gov (United States)

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  1. Entrainment, motion, and deposition of coarse particles transported by water over a sloping mobile bed

    Science.gov (United States)

    Heyman, J.; Bohorquez, P.; Ancey, C.

    2016-10-01

    In gravel bed rivers, bed load transport exhibits considerable variability in time and space. Recently, stochastic bed load transport theories have been developed to address the mechanisms and effects of bed load transport fluctuations. Stochastic models involve parameters such as particle diffusivity, entrainment, and deposition rates. The lack of hard information on how these parameters vary with flow conditions is a clear impediment to their application to real-world scenarios. In this paper, we determined the closure equations for the above parameters from laboratory experiments. We focused on shallow supercritical flow on a sloping mobile bed in straight channels, a setting that was representative of flow conditions in mountain rivers. Experiments were run at low sediment transport rates under steady nonuniform flow conditions (i.e., the water discharge was kept constant, but bed forms developed and migrated upstream, making flow nonuniform). Using image processing, we reconstructed particle paths to deduce the particle velocity and its probability distribution, particle diffusivity, and rates of deposition and entrainment. We found that on average, particle acceleration, velocity, and deposition rate were responsive to local flow conditions, whereas entrainment rate depended strongly on local bed activity. Particle diffusivity varied linearly with the depth-averaged flow velocity. The empirical probability distribution of particle velocity was well approximated by a Gaussian distribution when all particle positions were considered together. In contrast, the particles located in close vicinity to the bed had exponentially distributed velocities. Our experimental results provide closure equations for stochastic or deterministic bed load transport models.

  2. Tailoring the water structure and transport in nanotubes with tunable interiors

    Science.gov (United States)

    Ruiz, Luis; Wu, Yuanqiao; Keten, Sinan

    2014-11-01

    Self-assembly of cyclic peptide nanotubes (CPNs) in polymer thin films has opened up the possibility of creating separation membranes with tunable nanopores that can differentiate molecules at the sub-nanometer level. While it has been demonstrated that the interior chemistry of the CPNs can be tailored by inserting functional groups in the nanopore lumen (mCPNs), a design strategy for picking the chemical modifications that lead to particular transport properties has not been established. Drawing from the knowledgebase of functional groups in natural amino acids, here we use molecular dynamics simulations to elucidate how bioinspired mutations influence the transport of water through mCPNs. We show that, at the nanoscale, factors besides the pore size, such as electrostatic interactions and steric effects, can dramatically change the transport properties. We recognize a novel asymmetric structure of water under nanoconfinement inside the chemically functionalized nanotubes and identify that the small non-polar glycine-mimic groups that minimize the steric constraints and confer a hydrophobic character to the nanotube interior are the fastest transporters of water. Our computationally developed experiments on a realistic material system circumvent synthetic challenges, and lay the foundation for bioinspired principles to tailor artificial nanochannels for separation applications such as desalination, ion-exchange and carbon capture.Self-assembly of cyclic peptide nanotubes (CPNs) in polymer thin films has opened up the possibility of creating separation membranes with tunable nanopores that can differentiate molecules at the sub-nanometer level. While it has been demonstrated that the interior chemistry of the CPNs can be tailored by inserting functional groups in the nanopore lumen (mCPNs), a design strategy for picking the chemical modifications that lead to particular transport properties has not been established. Drawing from the knowledgebase of functional

  3. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    Science.gov (United States)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area

  4. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2016-12-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  5. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  6. Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models

    Directory of Open Access Journals (Sweden)

    Jiefang Dong

    2016-12-01

    Full Text Available With the rapid economic development of the Xinjiang Uygur Autonomous Region, the area’s transport sector has witnessed significant growth, which in turn has led to a large increase in carbon dioxide emissions. As such, calculating of the carbon footprint of Xinjiang’s transportation sector and probing the driving factors of carbon dioxide emissions are of great significance to the region’s energy conservation and environmental protection. This paper provides an account of the growth in the carbon emissions of Xinjiang’s transportation sector during the period from 1989 to 2012. We also analyze the transportation sector’s trends and historical evolution. Combined with the STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology model and ridge regression, this study further quantitatively analyzes the factors that influence the carbon emissions of Xinjiang’s transportation sector. The results indicate the following: (1 the total carbon emissions and per capita carbon emissions of Xinjiang’s transportation sector both continued to rise rapidly during this period; their average annual growth rates were 10.8% and 9.1%, respectively; (2 the carbon emissions of the transportation sector come mainly from the consumption of diesel and gasoline, which accounted for an average of 36.2% and 2.6% of carbon emissions, respectively; in addition, the overall carbon emission intensity of the transportation sector showed an “S”-pattern trend within the study period; (3 population density plays a dominant role in increasing carbon dioxide emissions. Population is then followed by per capita GDP and, finally, energy intensity. Cargo turnover has a more significant potential impact on and role in emission reduction than do private vehicles. This is because road freight is the primary form of transportation used across Xinjiang, and this form of transportation has low energy efficiency. These findings have important

  7. Red cell amino acid transport. Evidence for the presence of system Gly in guinea pig reticulocytes.

    Science.gov (United States)

    Fincham, D A; Willis, J S; Young, J D

    1984-10-17

    Guinea pig reticulocytes are shown to possess an Na+-dependent glycine transporter which also requires Cl- for activity. Glycine transport by this route is saturable (apparent Km 98 microM; Vmax 24 mumol/g Hb per h) and inhibited by sarcosine. The properties of this carrier closely resemble those of System Gly previously demonstrated in pigeon and human erythrocytes. In contrast, no System Gly activity was detected in mature guinea pig erythrocytes.

  8. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration

    OpenAIRE

    Walker, Berkley J.; South, Paul F.; Ort, Donald R.

    2016-01-01

    Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1–5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in Arabidopsis thaliana, but it is not known how critical this transporter is for maintaining photorespiratory efficiency. We examined a mutant defici...

  9. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  10. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  11. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites

    CERN Document Server

    Jacquet, Emmanuel

    2013-01-01

    The D/H ratios of carbonaceous chondrites, believed to reflect that of water in the inner early solar system, are intermediate between the protosolar value and that of most comets. The isotopic composition of cometary water has been accounted for by several models where the isotopic composition of water vapor evolved by isotopic exchange with hydrogen gas in the protoplanetary disk. However, the position and the wide variations of the distribution of D/H ratios in carbonaceous chondrites have yet to be explained. In this paper, we assume that the D/H composition of cometary ice was achieved in the disk building phase and model the further isotopic evolution of water in the inner disk in the classical T Tauri stage. Reaction kinetics compel isotopic exchange between water and hydrogen gas to stop at $\\sim$500 K, but equilibrated water can be transported to the snow line (and beyond) via turbulent diffusion and consequently mix with isotopically comet-like water. Under certain simplifying assumptions, we calcul...

  12. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.

    2015-01-01

    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor tr

  13. Reaction of aluminous perovskite and water at high pressure and temperature and water transport into the lower mantle

    Science.gov (United States)

    Ohira, I.; Ohtani, E.; Sakai, T.; Miyahara, M.; Hirao, N.; Ohishi, Y.; Nishijima, M.

    2012-12-01

    Water cycle is an important issue in earth science, because water can affect rheological properties and melting temperature of the mantle. It has been clarified that water can be transported to at least deep upper mantle and the transition zone (e.g., Ono, 1998). The transition zone is believed to be a water reservoir in the earth, because wadsleyite and ringwoodite which compose the transition zone can contain 1 to 3 wt.% water (Inoue et al., 1995; Kohlstedt et al., 1996). However, it has been a debated matter whether water can be transported into the lower mantle and the core. Here we report the phase relation and mineral chemistry of MgSiO3-perovskite and delta-AlOOH obtained from a combination of in-situ X-ray diffraction measurements at high-pressure and high-temperature, and chemical analyses using scanning transmission electron microscope with an EDS detector (STEM-EDS). We used MgSiO3-Al2O3-H2O gel-samples for high-temperature and high-pressure experiments at the SPring-8 BL10XU. The bulk composition of the starting gel sample was 70 mol% MgSiO3 - 30 mol% Al2O3. H2O contents of the starting gel samples were 1.5 wt.%, 6.0wt.% and 7.0 wt.%. A double sided laser heating diamond anvil cell was used for generation of high pressure and temperature. The YAG (Nd) or fiber laser was used for heating the sample. A Pt foil or powder was mixed with the sample for the absorber of the laser. In situ X-ray diffraction was conducted in the pressure and temperature ranges of 55~87 GPa and 1700~2400 K. We observed a clear coexistence of perovskite and delta-AlOOH at 68 GPa and 2000 K. The chemical analysis of the recovered sample revealed that MgSiO3-perovskite coexisting with delta-AlOOH contains 6.6±2.2 mol.% Al2O3 and delta-AlOOH phase contains about 50 mol.% MgSiO3. Our results revealed a new reaction of aluminous perovskite and water to form a mixture of alumina-depleted perovskite and Mg, Si-bearing delta-AlOOH along the mantle geotherm under the lower mantle

  14. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere.

    Science.gov (United States)

    Green, Harry W; Chen, Wang-Ping; Brudzinski, Michael R

    2010-10-14

    Strong evidence exists that water is carried from the surface into the upper mantle by hydrous minerals in the uppermost 10-12 km of subducting lithosphere, and more water may be added as the lithosphere bends and goes downwards. Significant amounts of that water are released as the lithosphere heats up, triggering earthquakes and fluxing arc volcanism. In addition, there is experimental evidence for high solubility of water in olivine, the most abundant mineral in the upper mantle, for even higher solubility in olivine's high-pressure polymorphs, wadsleyite and ringwoodite, and for the existence of dense hydrous magnesium silicates that potentially could carry water well into the lower mantle (deeper than 1,000 km). Here we compare experimental and seismic evidence to test whether patterns of seismicity and the stabilities of these potentially relevant hydrous phases are consistent with a wet lithosphere. We show that there is nearly a one-to-one correlation between dehydration of minerals and seismicity at depths less than about 250 km, and conclude that the dehydration of minerals is the trigger of instability that leads to seismicity. At greater depths, however, we find no correlation between occurrences of earthquakes and depths where breakdown of hydrous phases is expected. Lastly, we note that there is compelling evidence for the existence of metastable olivine (which, if present, can explain the distribution of deep-focus earthquakes) west of and within the subducting Tonga slab and also in three other subduction zones, despite metastable olivine being incompatible with even extremely small amounts of water (of the order of 100 p.p.m. by weight). We conclude that subducting slabs are essentially dry at depths below 400 km and thus do not provide a pathway for significant amounts of water to enter the mantle transition zone or the lower mantle.

  15. Characteristics of distribution and transport of petroleum contaminants in fracture-karst water in Zibo Area, Shandong Province, China

    Institute of Scientific and Technical Information of China (English)

    朱学愚; 刘建立; 朱俊杰; 陈余道

    2000-01-01

    Fracture-karst water is an important water resource for the water supply in North China. Petroleum contamination is one of the most problematic types of the groundwater pollution. The characteristics of distribution and transport of the petroleum contaminants in fracture-karst water are different from those in porous water. The flow velocity of fracture-karst water is much faster than the velocity of porous water on an average. Therefore, contaminant transport in fracture-karst water is an absolute advection-dominated problem. The plume of the petroleum contamination may extend to several kilometers from pollution sources. It was not caused by the oil pool floating on the water table but by the oil components dissolved and scattered in groundwater. The distribution of the petroleum contaminants over space are concentrated in the strong conductive zone on the plane. On the vertical section the highest concentration of the oil contaminants appeared in the strata where the contamination sources were located

  16. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    Science.gov (United States)

    Sprenger, M.; Volkmann, T. H. M.; Blume, T.; Weiler, M.

    2015-06-01

    Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem-van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling-Gupta efficiency and good parameter

  17. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  18. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean

    Science.gov (United States)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.

    2011-04-01

    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  19. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  20. Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer

    Directory of Open Access Journals (Sweden)

    M. Bergvall

    2011-07-01

    Full Text Available Few studies have been carried out that cover the entire transport process of pesticides, from application at the soil surface, through subsurface transport, to contamination of drinking water in esker aquifers. In formerly glaciated regions, such as Scandinavia, many of the most important groundwater resources are situated in glaciofluvial eskers. The purpose of the present study was to model and identify significant processes that govern subsurface transport of pesticides in extensive glaciofluvial and littoral sediments. To simulate the transport processes, we coupled a vadose zone model at soil profile scale to a regional groundwater flow model. The model was applied to a municipal drinking-water aquifer, contaminated with the pesticide-metabolite BAM (2,6-dichlorobenzoamide. At regional scale, with the combination of a ten-meter-deep vadose zone and coarse texture, the observed concentrations could be described by the model without assuming preferential flow. A sensitivity analysis revealed that hydraulic conductivity in the aquifer and infiltration rate accounted for almost half of the model uncertainty. The calibrated model was applied to optimize the location of extraction wells for remediation, which were used to validate the predictive modeling. Running a worst-case scenario, the model showed that the establishment of two remediation wells would clean the aquifer in four years, compared to nine years without them. Further development of the model would require additional field measurements in order to improve the description of macrodispersion in deep, sandy vadose zones. We also suggest that future research should focus on characterization of the variability of hydraulic conductivity and its effect on contaminant transport in eskers.

  1. Large scale reactive transport of nitrate across the surface water divide

    Science.gov (United States)

    Kortunov, E.; Lu, C.; Amos, R.; Grathwohl, P.

    2016-12-01

    Groundwater pollution caused by agricultural and atmospheric inputs is a pressing issue in environmental management worldwide. Various researchers have studied different aspects of nitrate contamination since the substantial increase of the agriculture pollution in the second half of the 20th century. This study addresses large scale reactive solute transport in a typical Germany hilly landscapes in a transect crossing 2 valleys: River Neckar and Ammer. The numerical model was constructed compromising a 2-D cross-section accounting for typical fractured mudstones and unconsolidated sediments. Flow modelling showed that the groundwater divide significantly deviates from the surface water divide providing conditions for inter-valley flow and transport. Reactive transport modelling of redox-sensitive solutes (e.g. agriculture nitrate and natural sulfate, DOC, ammonium) with MIN3P was used to elucidate source of nitrate in aquifers and rivers. Since both floodplains, in the Ammer and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural nitrate is reduced therein and does not reach the groundwater. However, nitrate applied in the hillslopes underlain by fractured oxidized mudrock is transported to the high yield sand and gravel aquifer in the Neckar valley. Therefore, the model predicts that nitrate in the Neckar valley comes, to a large extent, from the neighboring Ammer valley. Moreover, nitrate observed in the rivers and drains in the Ammer valley is very likely geogenic since frequent peat layers there release ammonium which is oxidized as it enters the surface water. Such findings are relevant for land and water quality management.

  2. Evidence of Photocatalytic Dissociation of Water on TiO2 with Atomic Resolution

    CERN Document Server

    Tan, Shijing; Wang, Yang; Zhao, Jin; Zhao, Aidi; Wang, Bing; Luo, Yi; Yang, Jinlong; Hou, J G

    2011-01-01

    Photocatalytic water splitting reaction on TiO2 surface is one of the fundamental issues that bears significant implication in hydrogen energy technology and has been extensively studied. However, the existence of the very first reaction step, the direct photo-dissociation of water, has been disregarded. Here, we provide unambiguously experimental evidence to demonstrate that adsorbed water molecules on reduced rutile TiO2(110)-1\\times1 surface can be dissociated under UV irradiation using low temperature scanning tunneling microscopy. It is identified that a water molecule at fivefold coordinated Ti (Ti5c) site can be photocatalytically dissociated, resulting in a hydroxyl at Ti5c and another hydroxyl at bridge oxygen row. Our findings reveal a missing link in the photocatalytic water splitting reaction chain, which greatly contribute to the detailed understanding of underlying mechanism.

  3. Water and sediment transport modeling of a large temporary river basin in Greece.

    Science.gov (United States)

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  4. Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region

    Science.gov (United States)

    Martin, Antoine; Houssais, Marie-Noëlle; Le Goff, Hervé; Marec, Claudie; Dausse, Denis

    2017-08-01

    The East Antarctic shelf off Adélie-George V Land is known to be an important region for Dense Shelf Water (DSW) formation as a result of intense sea ice production in the Mertz Glacier Polynya during the winter season. It is also a region where the warm modified Circumpolar Deep Water (mCDW) penetrates onto the shelf during the summer. Using hydrographic observations from a summer survey in 2008 we implement a box inverse model to propose a comprehensive view of the steady state circulation on this shelf in summer. Additional information from mooring observations collected on the depression slope is used to provide context to the retrieved circulation scheme. Over the depression slope, the summer baroclinic structure of the currents is found to contrast with the almost barotropic structure in winter. The summer circulation is strongly constrained by the DSW distribution and forms a clockwise circulation primarily transporting the fresh surface waters and the warm mCDW around the dome of DSW. Over the upper flank of the Mertz Bank, the inflow branch transports the mCDW towards the Mertz Glacier, while, over the lower part of the slope, the outflow branch returns to the sill a diluted mode of the same water mass. A total of 0.19 Sv of mCDW inflows at the sill and two-third reach the Mertz Glacier and recirculate in front of it, allowing the mCDW to penetrate into the deeper part of the depression. Possible scenarios of interaction between the mCDW and the DSW with the glacier are examined. It is shown that, despite the water mass pathways and transports suggest possible ice-ocean interaction, both lateral and basal melting were likely small in summer 2008. Finally, our results suggest that, in addition to bathymetric features, the distribution of the residual DSW which is left from the preceding winter sets up regional pressure gradients which provide a seasonal control on the shelf circulation. In particular, the spring collapse of the convective patch would

  5. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Energy Technology Data Exchange (ETDEWEB)

    Jenista, Jiri [Institute of Plasma Physics ASCR, Za Slovankou 3, PO Box 17, Prague 8, 182 21 (Czech Republic)

    2003-12-07

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius {approx} 3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  6. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  7. Transport of water in a transient impact-generated lunar atmosphere

    Science.gov (United States)

    Prem, P.; Artemieva, N. A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2015-07-01

    In recent decades, several missions have detected signs of water and other volatiles in cold, permanently shadowed craters near the lunar poles. Observations suggest that some of these volatiles could have been delivered by comet impacts and therefore, understanding the impact delivery mechanism becomes key to explaining the origin and distribution of lunar water. During impact, the constituent ices of a comet nucleus vaporize; a significant part of this vapor remains gravitationally bound to the Moon, transforming the tenuous, collisionless lunar exosphere into a collisionally thick, transient atmosphere. Here, we use numerical simulations to investigate the physical processes governing volatile transport in the transient atmosphere generated after a comet impact, with a focus on how these processes influence the accumulation of water in polar cold traps. It is observed that the transient atmosphere maintains a certain characteristic structure for at least several Earth days after impact, during which time volatile transport occurs primarily through low-altitude winds that sweep over the lunar day-side. Meanwhile, reconvergence of vapor antipodal to the point of impact results in preferential redistribution of water in the vicinity of the antipode. Due to the quantity of vapor that remains gravitationally bound, the atmosphere is sufficiently dense that lower layers are shielded from photodestruction, prolonging the lifetime of water molecules and allowing greater amounts of water to reach cold traps. Short-term ice deposition patterns are markedly non-uniform and the variations that arise in simulated volatile abundance between different cold traps could potentially explain variations that have been observed through remote sensing.

  8. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.

    Science.gov (United States)

    Yao, Lixian; Li, Guoliang; Dang, Zhi; Yang, Baomei; He, Zhaohuan; Zhou, Changmin

    2010-04-01

    Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites.

  9. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  10. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In

  11. Transport and transfer rates in the waters of the Continental Shelf. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Biscaye, P.E.

    1978-07-01

    The present contract year has been one of transition from an emphasis on field work and sample gathering to the predominance of sample and data analysis and the formulation of testable hypotheses concerning specific processes in the New York Bight. We have begun to understand the seasonal transition in the role of phytoplankton vs. grazing zooplankton in forming the particles on which some reactive pollutants are removed. Using natural radioactive tracers we have estimated the removal rates of reactive metals from the surface waters and these range over an order of magnitude from most rapid nearshore to least rapid over the upper continental slope. Once removed nearshore, however, these tracers, and the pollutants for which they proxy, do not remain permanently in the sediments but appear to be remobilized (probably by oxidation) during the winter and are reintroduced into the water column. Work on transport and mixing processes of pollutants which are or behave like those in solution has continued along several fronts. Hydrographic data on the structure of the water column continues to give a description of the system that is crucial to understanding geochemical and biological processes which affect pollutants. Hydrographic characterization of water masses from the data sets of cruises has resulted in hypotheses concerning the renewal of shelf water by direct exchange between shelf and upper slope water.

  12. Transport Characteristics of Soil Salinity in Saline-alkali Land under Water Storage and Drainage Conditions

    Institute of Scientific and Technical Information of China (English)

    Juan; LI; Jichang; HAN

    2015-01-01

    To test the variation and transport of soil salinity in saline- alkali land under water storage and drainage treatments,an experimental model was established in Fuping,Shaanxi Province,2009. The variation of soil salinity during 0- 160 cm soil depth under the two treatments was determined and analyzed. Results showed that the average soil water content under water storage treatment was 4. 47% higher than that under drainage treatment,which means that the water storage treatment could help to improve soil moisture to satisfy the crop’s growth needs. The profile distribution of soil soluble solids( TDS),anion( Cl-,HCO3-,SO2-4) and cation( Ca2 +,Na+,K+) content and the variation of soil p H were also measured and analyzed. PCA( Principal Component Analysis) was used to explore the relationship between the soil salinity and its ions,which showed that the water storage treatment could significantly decrease the surface salinity of soil and accelerate the desalination of topsoils,and finally,the soil quality was improved significantly,demonstrating that the water storage treatment has a remarkable effect on soil salinity management.

  13. Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations

    Directory of Open Access Journals (Sweden)

    Agnieszka Beszczyńska-Möller

    2004-03-01

    Full Text Available A medium-sized inflow (about 200 km3 according to IOW data, - personal communication of saline water into the southern Baltic Sea occurred during January 2003. Unlike any previously observed inflow, this one brought very cold water, of temperatures around 1-2oC and less. Since the temperature of the deep water in the southern Baltic before the inflow was exceptionally high (11-12oC, the inflowing waters produced dramatic changes and a steep temperature gradient. The movement of the inflowing waters through the deep basins and channels of the Baltic Sea from the Arkona Basin to the Gdańsk Deep during next 4-8 months is described. Frequent mesoscale structures and intensive mixing followed the eastward transport of the inflow water, particularly in the Bornholm Deep and Słupsk Furrow. The present paper is based on data collected during 6 cruises r/v "Oceania" between December 2002 and August 2003. The last cruise in August took place in order to assess the long-term consequences of the inflow.

  14. Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations

    Directory of Open Access Journals (Sweden)

    Jan Piechura

    2003-12-01

    Full Text Available A medium-sized inflow (about 200 km3 according to IOW data, - personal communication of saline water into the southern Baltic Sea occurred during January 2003. Unlike any previously observed inflow, this one brought very cold water, of temperatures around 1-2°C and less. Since the temperature of the deep water in the southern Baltic before the inflow was exceptionally high (11-12°C, the inflowing waters produced dramatic changes and a steep temperature gradient. The movement of the inflowing waters through the deep basins and channels of the Baltic Sea from the Arkona Basin to the Gdansk Deep during next 4-8 months is described. Frequent mesoscale structures and intensive mixing followed the eastward transport of the inflow water, particularly in the Bornholm Deep and Słupsk Furrow. The present paper is based on data collected during of 6 cruises r/v "Oceania" between December 2002 and August 2003. The last cruise in August took place in order to assess the long-term consequences of the inflow.

  15. Surface hall effect and nonlocal transport in SmB₆: evidence for surface conduction.

    Science.gov (United States)

    Kim, D J; Thomas, S; Grant, T; Botimer, J; Fisk, Z; Xia, Jing

    2013-11-06

    A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. The surface transport, however, remains difficult to isolate from the bulk conduction in most existing TI crystals (particularly Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB₆ the thickness-independent surface Hall effects and non-local transport, which persist after various surface perturbations. These results serve as proof that at low temperatures SmB₆ has a metallic surface that surrounds an insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.

  16. National Borders and Transport corridors in Europe: Evidence of linkages in the Dublin-Belfast corridor

    DEFF Research Database (Denmark)

    Petrov, Laura Oana; Williams, Brendan; Shahumyan, Harutyun;

    2012-01-01

    . The growth of urban areas is associated with acces-sibility to transportation routes, and has become the most important factor in landscape and land use change throughout Europe. Apart from providing links between cities, transport corridors are also exten-sions of cities' functionality which allow...... Member States (MS) where a new phase of urbanization is un-derway, dramatically changing land use patterns. The aim of the present work is to reflect on the European perspective concerning spatial development strategies, particularly cross-border transport corridors; to assess the role......Europe’s urban life focuses around a major network of cities, which exchange population, goods, and services of every kind both within regions and across borders. By their very nature, urban questions thus have a transnational dimension, and constitute a fruitful area of Euro-pean cooperation...

  17. Impact of mesoscale eddies on water transport between the Pacific Ocean and the Bering Sea

    CERN Document Server

    Prants, S V; Budyansky, M V; Uleysky, M Yu

    2013-01-01

    Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the...

  18. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  19. Confined Water Determines Transport Properties of Guest Molecules in Narrow Pores.

    Science.gov (United States)

    Phan, Anh; Cole, David R; Weiß, R Gregor; Dzubiella, Joachim; Striolo, Alberto

    2016-08-23

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of solid substrates. Models for silica, magnesium oxide, and alumina were used as solid substrates. The pores were filled with water. The results show that the methane permeability through the hydrated pores is strongly dependent on the solid substrate. Detailed analysis of the simulated systems reveals that local properties of confined water, including its structure, and more importantly, evolution of solvation free energy and hydrogen bond structure are responsible for the pronounced differences observed. The simulations are extended to multicomponent systems representative of natural gas, containing methane, ethane, and H2S. The results show that all pores considered have high affinity for H2S, moderate affinity for methane, and low affinity for ethane. The H2S/methane transport selectivity through the hydrated alumina pore is comparable, or superior, to that reported for existing commercial membranes. A multiscale approach was then implemented to demonstrate that a Smoluchowski one-dimensional model is able to reproduce the molecular-level results for short pores when appropriate values for the local self-diffusion coefficients are used as input parameters. We propose that the model can be extended to predict methane transport through uniform hydrated pores of macroscopic length. When verified by experiments, our simulation results could have important implications in applications such as natural gas sweetening and predictions of methane migration through hydraulically fractured shale formations.

  20. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  1. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  2. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O;

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double......-blinded, placebo-controlled, 3-way crossover study we examined 23 healthy subjects on a standardized diet and fluid intake. The subjects were treated with amiloride 5 mg, BFTZ 1.25 mg or placebo twice a day for 4.5 d before each examination day. On the examination day, glomerular filtration rate was measured...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  3. Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    Science.gov (United States)

    Willford, Samantha L; Anderson, Cynthia M; Spencer, Shelly R; Eskandari, Sepehr

    2015-08-01

    Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

  4. On the hydrogen-bond network and the non-Arrhenius transport properties of water

    Science.gov (United States)

    Galamba, N.

    2017-01-01

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale

  5. On the hydrogen-bond network and the non-Arrhenius transport properties of water.

    Science.gov (United States)

    Galamba, N

    2017-01-11

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale

  6. Congressional Testimony: Statement of Wade T. Najjum Before the Subcommittee on Water Resources and Environment Committee on Transportation

    Science.gov (United States)

    Statement of Wade T. Najjum Assistant Inspector General for Program Evaluation Office of Inspector General U.S. EPA Before the Subcommittee on Water Resources and Environment Committee on Transportation and Infrastructure U.S. House of Representatives

  7. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  8. Impact of Providing Feed and/or Water on Performance, Physiology, and Behavior of Weaned Pigs during a 32-h Transport

    Directory of Open Access Journals (Sweden)

    Arlene Garcia

    2016-05-01

    Full Text Available Transportation at weaning is a complex stressor made up of many factors, including withdrawal from feed and water, which can potentially negatively affect the health and welfare of pigs, especially those already experiencing weaning stress. The objective of this study was to evaluate the effect of weaning and extended transport durations (up to 32 h, with and without the provision of feed and/or water, on pig welfare. Treatment groups included: pigs neither weaned nor transported, control (CON; weaned pigs transported and provided with feed and water (T+; weaned pigs transported without feed and water (T−; weaned pigs transported with only feed (T+F; and weaned pigs transported with only water provided (TRAN+W. The effect of transport (with and without feed and/or water on weaned pigs was assessed using behavior, performance, and physiology. After a 32-h transport period, pigs transported without water lost markedly more weight than those transported with water ( p < 0.01. Furthermore, the neutrophil to lymphocyte ratio was markedly higher in male pigs transported without water ( p < 0.05. Overall, transportation had a negative effect on pig well-being, especially when water was not provided.

  9. Respiration rates in subsurface waters of the northern Indian Ocean: Evidence for low decomposition rates of organic matter within the water column in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Shailaja, M.S.; DileepKumar, M.; Sengupta, R.

    Depth profiles of activity of the respirtory Electron Transport System (ETS) have been generated at several locations in the northern Indian Ocean. The results reveal much lower ETS activities in subsurface waters of the Bay of Bengal than those...

  10. A Continuum Model for Water Transport in the Ionomer-Phase of Catalyst Coated Membranes for PEMFCs

    Directory of Open Access Journals (Sweden)

    Vladimir Gurau

    2010-01-01

    Full Text Available We study the problem of water transport in the ionomer-phase of catalyst coated membranes (CCMs for proton exchange membrane fuel cells (PEMFCs, where microscopic-scale phenomena at the distributed interfaces between structural components control the water management. Existing models for water transport in CCMs describe the transport in systems which consist exclusively of an ionomer-phase. Interfacial water fluxes across distributed interfaces representing various mechanisms of water transfer between ionomer and catalyst layer pores are not captured properly in these models. Here we develop a continuum model for water transport in CCMs using the method of volume averaging. Water is exchanged between ionomer and the catalyst layer pores by electro-osmotic discharge (EOD through the three-phase boundary (TPB regions and by sorption and desorption across the ionomer-pore interfaces. While the former mechanism does not affect directly the water content in the ionomer-phase, it represents an effective mechanism for water transfer during fuel cell operation and controls directly the water saturation in the catalyst pores.

  11. Water use impacts of future transport fuels: role of California's climate policy & National biofuel policies (Invited)

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.; Tiedeman, K.; Yang, C.

    2013-12-01

    In the coming decades, growing demand for energy and water and the need to address climate change will create huge challenges for energy policy and natural resource management. Synergistic strategies must be developed to conserve and use both resources more efficiently. California (CA) is a prime example of a region where policymakers have began to incorporate water planning in energy infrastructure development. But more must be done as CA transforms its energy system to meet its climate target. We analyze lifecycle water use of current and future transport fuel consumption to evaluate impacts & formulate mitigation strategies for the state at the watershed scale. Four 'bounding cases' for CA's future transportation demand to year 2030 are projected for analysis: two scenarios that only meet the 2020 climate target (business-as-usual, BAU) with high / low water use intensity, and two that meet long-term climate target with high / low water use intensity (Fig 1). Our study focuses on the following energy supply chains: (a) liquid fuels from conventional/unconventional oil & gas, (b) thermoelectric and renewable generation technologies, and (c) biofuels (Fig 2-3). We develop plausible siting scenarios that bound the range of possible water sources, impacts, and dispositions to provide insights into how to best allocate water and limit water impacts of energy development. We further identify constraints & opportunities to improve water use efficiency and highlight salient policy relevant lessons. For biofuels we extend our scope to the entire US as most of the biofuels consumed in California are and will be produced from outside of the state. We analyze policy impacts that capture both direct & indirect land use effects across scenarios, thus addressing the major shortcomings of existing studies, which ignore spatial heterogeneity as well as economic effects of crop displacement and the effects of crop intensification and extensification. We use the agronomic

  12. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Pons Rotger, Gabriel Angel; Nielsen, Thomas Alexander Sick

    2015-01-01

    and Metro system resulting from the construction of a new terminal Metro station connecting southern townships to Copenhagen city centre. The results show that public transport based job accessibility has a positive and permanent effect on individual earnings. The increase in earnings is associated...

  13. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Rotger, Gabriel Pons; Sick Nielsen, Thomas

    2015-01-01

    and Metro system due to the construction of a new terminal Metro station connecting southern townships to the city centre of Copenhagen. The results show that public transport based job accessibility has a positive and permanent effect on individual earnings. The increase in earnings is associated...

  14. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the pliocene

    Science.gov (United States)

    Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.

    1992-01-01

    The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.

  15. Evidence of low dimensional ion transport in mechanosynthesized nanocrystalline BaMgF4.

    Science.gov (United States)

    Preishuber-Pflügl, F; Wilkening, M

    2014-07-14

    Mechanochemical milling provides a versatile method for the preparation of nano-sized, defect rich, polycrystalline materials. If ionic materials are considered, the transport parameters of the mobile ions may greatly differ from those of the microcrystalline counterparts prepared by conventional synthesis routes. Little is known about ionic conduction in nanocrystalline materials having crystal structures that offer spatially confined transport pathways. Here, we focused on mechanosynthesized BaMgF4 that combines both nanocrystallinity and anisotropic F(-) transport. The preparation of nanocrystalline BaMgF4 is presented as a facile and rapid one-pot procedure. The reaction was followed by X-ray diffraction and high-resolution (19)F nuclear magnetic resonance (NMR) spectroscopy. NMR helped prove the formation of X-ray amorphous compounds as well as the transformation of the starting materials into the final product BaMgF4. Most importantly, besides enhanced conduction properties compared to a single crystal, our broadband impedance spectra reveal characteristics pointing to anisotropic (low dimensional) ion transport processes even in the nanocrystalline form of BaMgF4.

  16. Evidence of active transport (filtration?) of plasma proteins across the capillary walls in muscle and subcutis

    DEFF Research Database (Denmark)

    Noer, Ivan; Lassen, N A

    1978-01-01

    Under slight lymphatic stasis (tilting the body 15 degrees) we measured the arrival of locally injected I-albumin to the plasma pool. From 30 min. to 90 min. after the injection the return rate was zero i.e. local back transport in the two tissues studied viz.muscle and subcutaneous fat is very...

  17. Evidence of active transport (filtration?) of plasma proteins across the capillary walls in muscle and subcutis

    DEFF Research Database (Denmark)

    Noer, Ivan; Lassen, N A

    1979-01-01

    Under slight lymphatic stasis (tilting the body 15 degrees) we measured the arrival of locally injected 131I-albumin in the plasma pool. From 30 min to 90 min after the injection the return rate was zero, i.e. local back transport in the two tissues studied, muscle and subcutaneous fat, is very...

  18. Evidence of intrinsic ambipolar charge transport in a high band gap organic semiconductor

    OpenAIRE

    Moreno, César; Pfattner, Raphael; Mas-Torrent, Marta; Puigdollers, Joaquim; Bromley, Stefan T.; Rovira, Concepció; Veciana, Jaume; Alcubilla, Ramón

    2012-01-01

    Theoretical and experimental investigations combining in situ Kelvin probe microscopy (KPM) and macroscopic electrical studies are employed to explore the intrinsic transport in dithiophene-tetrathiafulvalene (DT-TTF) single crystal organic field-effect transistors. Our work demonstrates that ambipolar behavior is not restricted only to materials possessing a high electron affinity and thus may be a more general phenomenon. Peer Reviewed

  19. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Science.gov (United States)

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  20. Limitations of empirical sediment transport formulas for shallow water and their consequences for swash zone modelling

    CERN Document Server

    Li, Wei; Pähtz, Thomas; He, Zhiguo; Cao, Zhixian

    2016-01-01

    Volumetric sediment concentrations computed by phase-resolving swash morphodynamic models are shown to exceed unity minus porosity (i.e. the maximal physically possible concentration value) by up to factor of $10^5$ when using standard expressions to compute the sediment transport rate. An ad hoc limit of sediment concentration is introduced as a means to evaluate consequences of exceeding physically realistic concentration by standard expressions. We find that implementation of this ad hoc limit strongly changes the quantitative and qualitative predictions of phase-resolving swash morphodynamic models, suggesting that existing swash predictions are unreliable. This is because standard expressions inappropriately consider or ignore the fact that the shallow swash water depth limits the storage capacity of transported sediment.

  1. Energy and water vapor transport across a simplified cloud-clear air interface

    CERN Document Server

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  2. Numerical modeling of ground water flow and contaminant transport in a saturated porous medium

    Science.gov (United States)

    Valipour, Mohammad S.; Sadeghi, Masoomeh; Mahmoudi, Amir H.; Shahi, Mina; Gandaghi, Hadi

    2012-05-01

    In this paper, numerical modeling and experimental testing of the distribution of pollutants along the water flow in a porous medium is discussed. Governing equations including overall continuity, momentum and species continuity equations are derived for porous medium. The governing equations have been solved numerical using the Finite Volume Method based on collocated grids. The SIMPLE algorithm has been adopted for the pressure _ velocity linked equations. In order to validate the numerical results, experimental data from laboratory apparatus are applied and there is a good agreement among numerical results and experimental test. Finally, the main affecting parameters on the distribution and transport of pollutants porous medium were investigated. Results indicate that, the domain of pollution rises with increasing dispersion coefficient and the dispersion phenomenon overcomes on pollutant transfer. Reduction of porosity has decreased the pollutant transfer and increased velocity has result in the increasing pollutant transport phenomenon but has reduced the domain of the pollution.

  3. Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials

    OpenAIRE

    Pourchez, Jérémie; Ruot, Bertrand; Debayle, Johan; Rouèche-Pourchez, Emilie; Grosseau, Philippe

    2010-01-01

    International audience; This paper evaluates and compares the impact of cellulose ethers (CE) on water transport and porous structure of cement-based materials in both fresh and hardened state. Investigations of the porous network (mercury intrusion porosimetry, apparent density, 2D and 3D observations) emphasize an air-entrained stabilisation depending on CE chemistry. We also highlight that CE chemistry leads to a gradual effect on characteristics of the water transport. The global tendenci...

  4. Three-Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3) Validation: Galveston Bay Hydrodynamics and Salinity Transport

    Science.gov (United States)

    2015-04-01

    Salinity Transport Co as ta l a nd H yd ra ul ic s La bo ra to ry Gaurav Savant and R. Charlie Berger April 2015 Approved for public release...Three-Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3) Validation Report 1: Galveston Bay Hydrodynamics and Salinity Transport Gaurav...water surface elevations, velocities, and salinity . DISCLAIMER: The contents of this report are not to be used for advertising, publication, or

  5. Characteristics of Loads of Cattle Stopping for Feed, Water and Rest during Long-Distance Transport in Canada

    OpenAIRE

    2014-01-01

    Simple Summary This study was designed to benchmark the characteristics of loads of cattle stopping for feed, water and rest during long distance transport in Canada. Another objective of this study was to determine how well these loads were following current Canadian regulations for the length of time animals can spend in transit, and how long they must be rested for. The majority of loads stopping for feed water and rest were transporting cattle to feedlots rather than processing plants. Al...

  6. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  7. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  8. TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment Program

    Directory of Open Access Journals (Sweden)

    Dongchull Jeon

    2013-09-01

    Full Text Available One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The ‘Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX’ is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1 to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2 to understand the large-scale oceanic-climatic variation including El Niño-Southern Oscillation (ENSO/Warm Pool/Pacific Decadal Oscillation (PDO/Indian Ocean Dipole (IOD, and 3 to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.

  9. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration.

    Science.gov (United States)

    Walker, Berkley J; South, Paul F; Ort, Donald R

    2016-07-01

    Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1-5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in Arabidopsis thaliana, but it is not known how critical this transporter is for maintaining photorespiratory efficiency. We examined a mutant deficient in PLGG1 (plgg1-1) using modeling, gas exchange, and Rubisco biochemistry. Under low light (under 65 μmol m(-2) s(-1) PAR), there was no difference in the quantum efficiency of CO2 assimilation or in the photorespiratory CO2 compensation point of plgg1-1, indicating that photorespiration proceeded with wild-type efficiency under sub-saturating light irradiances. Under saturating light irradiance (1200 μmol m(-2) s(-1) PAR), plgg1-1 showed decreased CO2 assimilation that was explained by decreases in the maximum rate of Rubisco carboxylation and photosynthetic linear electron transport. Decreased rates of Rubisco carboxylation resulted from probable decreases in the Rubisco activation state. These results suggest that glycolate/glycerate transport during photorespiration can proceed in moderate rates through an alternative transport process with wild-type efficiencies. These findings also suggest that decreases in net CO2 assimilation that occur due to disruption to photorespiration can occur by decreases in Rubisco activity and not necessarily decreases in the recycling efficiency of photorespiration.

  10. The rebound effect on road freight transport: Empirical evidence from Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Fernando J.F., E-mail: fjmatos@uac.p [University of the Azores, Rua da Mae de Deus/9501-801 Ponta Delgada (Portugal); Silva, Francisco J.F., E-mail: fsilva@uac.p [CEEAplA - University of the Azores, Rua da Mae de Deus/9501-801 Ponta Delgada (Portugal)

    2011-05-15

    Because a large proportion of total operating costs for transportation companies goes towards energy, a reduction in energy operating costs, brought about by an increase in fleet fuel efficiency, or an increase in operational efficiency, results in a change in the relative cost of road freight transportation. This fact could result in an increase in the demand for such services. If this is true, the result would be an increase in total fuel consumption. Consequently, that part of the energy savings obtained through the increased energy efficiency would be lost. The existence of a 'Rebound Effect' is especially important in the road freight transportation sector and is crucial for the definition of a national energy policy. In this study, data from the road freight transportation sector in Portugal for the years of 1987 through 2006 was analyzed. It was determined that an increase in energy efficiency did not cause a backfire, but did cause a total direct rebound effect of 24.1%. In addition, fleet operators were more inclined to adopt operational efficiencies than technological fuel efficiencies as a means of increasing the total operational efficiency. - Research highlights: {yields} We estimate a direct rebound effect for road freight transportation in Portugal. {yields} The functional form chosen was a log-log model and the estimation method used was the two stage least squares model. {yields} Increasing energy efficiency by 1% results in a reduction of 0.759% in energy consumption (a direct rebound effect of about 24.1%). {yields} Estimates of reduced fuel consumption without considering the direct rebound effect may be overestimated by about 0.87 million liters of diesel per year for each percentage point increase in energy efficiency.

  11. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.K. [Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content ({lambda}, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical {lambda} ({lambda}{sub h}), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of {lambda} ({lambda}{sub l}), below which the stack can be self-started without forming ice. Between {lambda}{sub l} and {lambda}{sub h}, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both {lambda}{sub l} and {lambda}{sub h} are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical {lambda} for a subsequent successful startup. There is an optimum {lambda} for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the {lambda} is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the {lambda} is much higher than this optimum. (author)

  12. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.; Nuclear Engineering Division

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (?, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical ? (?h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of ? (?l), below which the stack can be self-started without forming ice. Between ?l and ?h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both ?l and ?h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical ? for a subsequent successful startup. There is an optimum ? for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the ? is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the ? is much higher than this optimum.

  13. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Science.gov (United States)

    Wang, X.; Tajiri, K.; Ahluwalia, R. K.

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (λ, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical λ (λ h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 °C. There is a second value of λ (λ l), below which the stack can be self-started without forming ice. Between λ l and λ h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 °C. Both λ l and λ h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical λ for a subsequent successful startup. There is an optimum λ for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the λ is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the λ is much higher than this optimum.

  14. Transport and Transformation of Dissolved Organic Matter in Soil Interstitial Water Across Forested, Montane Hillslopes

    Science.gov (United States)

    Burns, M. A.; McKnight, D. M.; Gabor, R. S.; Brooks, P. D.; Barnard, H. R.

    2013-12-01

    Dissolved organic matter (DOM) is a ubiquitous mixture of compounds formed from the degradation of both terrestrial and microbial material. The abundance and composition of the DOM present in stream water is important to stream processes such as UV light attenuation, nutrient supply and metal sorption. However, an excess of DOM can cause reactions with chlorination compounds at drinking water treatment plants, creating potentially harmful disinfection byproducts. Currently, little is known regarding the influence of soil interstitial water on stream DOM composition. In this study, we explore the role of interstitial water on DOM transport and transformation from the hillslope to the stream in a montane catchment within the Boulder Creek Critical Zone Observatory in Colorado. We installed a suite of tension lysimeters located within the rooting zone across representative north- and south-facing slopes. Interstitial water and stream samples were collected daily for approximately seven weeks during the 2013 spring snow melt period and analyzed for DOM composition using fluorescence spectroscopy. To date, we have used fluorescence index (FI) to evaluate differences between microbial and terrestrial DOM inputs and humification index (HIX) to assess degree of humification undergone by the DOM. Preliminary results indicate that FI was significantly correlated with hillslope aspect (pwater inputs into the stream during snowmelt. These preliminary results suggest that changes in DOM composition through the catchment during snowmelt can be linked to hydrologic transport. Further site specific model development will reveal explicit changes in the DOM chemistry and will increase our understanding of fundamental nutrient cycling processes at the hillslope to catchment scale.

  15. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M.; Van Eeckhout, E. [Los Alamos National Lab., NM (United States); David, N.A. [Environmental Res., Inst. of Michigan, Santa Fe, NM (United States); Irvine, J.M. [Environmental Res. Inst. of Michigan, Arlington, VA (United States)

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  16. Permanent dissipative structures in water: the matrix of life? Experimental evidences and their quantum origin.

    Science.gov (United States)

    Elia, V; Germano, R; Napoli, E

    2015-01-01

    This paper presents a short review of the evidence - both experimental and theoretical - of the formation of dissipative structures in liquid water induced by three kinds of physical perturbations having a low energy content: extremely diluted solution (EDS), iteratively filtered water (IFW), and iteratively nafionated water (INW). Particular attention is devoted to the very recent discovery that such structures are tremendously persistent even in the solid phase: large ponderal quantities of supramolecular aggregates of water (with each nucleus hundreds of nanometers in size) have been observed - at ambient pressure and temperature - using easily-reproducible experimental methods. The nature of these dissipative structures is analyzed and explained in terms of the thermodynamics of far-from-equilibrium systems and irreversible processes, showing their spontaneous quantum origin. Are these kinds of structures the matrix itself of life?.

  17. Cirrus and water vapor transport in the tropical tropopause layer – Part 1: A specific case modeling study

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2012-10-01

    Full Text Available In a simulation of a tropical-tropopause-layer (TTL cirrus forced by a large-scale equatorial Kelvin wave, the radiatively induced mesoscale dynamics of the cloud actively contributes to the transport of water vapor in the vertical direction.

    In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of water vapor by the radiatively induced circulation leads to upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air. On the other hand, ice nucleation and depositional growth, followed by sedimentation and sublimation lead to downward transport of water vapor.

    Under the conditions specific to our simulation, the upward transport of water vapor by the mesoscale circulation dominates the downward transport by microphysical processes. The net result is upward transport of water vapor, which is equivalent to hydration of the lower stratosphere. Sensitivity to model conditions and parameters will be discussed in a follow-up paper.

  18. Modeling dense water production and salt transport from Alaskan coastal polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2002-09-01

    A three-dimensional primitive equation model was used to assess the effects of dense water formation from winter (1996/1997) polynyas on the ambient stratification, salt transport, and circulation in the vicinity of Barrow Canyon. The model, which includes ambient stratification and bottom topography, is forced by time-varying surface heat flux, surface salt flux, and coastal flow. The influence of sea ice drift on the circulation and salt transport is also analyzed by prescribing ice water stress at the sea surface. The surface fluxes and ice drift are derived from satellite observations (Special Sensor Microwave Imager (SSM/I) and NASA scatterometer (NSCAT) sensors). The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model by using a wind-transport regression. One set of experiments was forced by strong and persistent polynyas, simulated by 20-day averaged heat and salt fluxes originating from the largest events. In this set of experiments both strong and weak steady coastal currents were imposed. The amount of salt exported from the generation area depended on the strength of the current. Another set of experiments was forced by weaker and less persistent polynyas using time-varying forcing. The experiments with time-varying polynya forcing were conducted with two ambient vertical stratifications, one representing fall conditions and one representing winter conditions. The amount of salt retained on the shelf was found to be quite sensitive to the initial stratification. Weaker vertical stratification promotes a deeper mixed layer, which develops 20 times faster than the horizontal advective timescale of the coastal current, thus increasing the residence time of the salt generated by the polynya on the shelf. The time-varying northeastward coastal current, combined with the offshore Ekman transport, can export 29-73% of the salt produced by polynyas upstream of Barrow Canyon, depending upon the

  19. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  20. A model study of influence of circulation on the pollutant transport in the Zhujiang River Estuary and adjacent coastal waters

    Institute of Scientific and Technical Information of China (English)

    WONG Lai Ah; GUAN Weibing; CHEN Jay-Chung; SU Jilan

    2004-01-01

    A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water quality of Hong Kong waters due to their transport away from Hong Kong; (3) during the winter when a northeasterly monsoon prevails, all pollutants released from the eight river gates will be laterally transported seaward inside the estuary and transport westward in the coastal waters along the river plume frontal zone. However, pollutants released from the surface layer of offshore stations near or east of the Dangan Channel will be carried into the coastal waters of Hong Kong by the landward component of the westward coastal current driven by the winter northeasterly monsoon. But the pollutants from the bottom layer of the offshore stations will be carried away from the offshore by the bottom flow driven by the northeasterly monsoon. This implies that only surface-released matter from offshore stations will affect the water quality of the coastal waters around Hong Kong during the winter when a northeasterly monsoon prevails.

  1. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  2. Source and transport of human enteric viruses in deep municipal water supply wells.

    Science.gov (United States)

    Bradbury, Kenneth R; Borchardt, Mark A; Gotkowitz, Madeline; Spencer, Susan K; Zhu, Jun; Hunt, Randall J

    2013-05-07

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  3. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Directory of Open Access Journals (Sweden)

    Liting Sheng

    2017-06-01

    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  4. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    Science.gov (United States)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  5. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  6. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    Science.gov (United States)

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  7. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  8. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...... flux when available energy and transfer to the free airflow are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We compare the different approaches...... evaporation. Concepts range from nonisothermal two-phase flow, two-component transport in the porous medium that is coupled with one-phase flow, two-component transport in the free air flow to isothermal liquid water flow in the porous medium with upper boundary conditions defined by a potential evaporation...

  9. COMPARATIVE ANALYSIS OF TRANSPORT ORGANIZATION AND FUNCTIONING OF WATER TRAMS IN GDAŃSK, BYDGOSZCZ AND KRAKÓW

    Directory of Open Access Journals (Sweden)

    Emilia Miszewska-Urbańsk

    2016-03-01

    Full Text Available The subject of this work is to identify and juxtapose solutions implemented in transport provided by water trams for the following cities: Gdańsk, Bydgoszcz and Kraków. As a result of the conducted analysis of transport factors, the degree of conformity of project objectives to the actual role of the water tram has been determined. It was found that the Kraków Water Tram (also known as Cracow Water Tram is characterized by the greatest degree of conformity with project objectives. The solutions adopted in the project can be used to develop organizational and functional standards for this type of transport in Poland, since the lack of system solutions and little experience in implementation of water trams resulted in different organizational and technical approaches in their functioning.

  10. Water retention, gas transport, and pore network complexity during short-term regeneration of soil structure

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2013-01-01

    was done using water retention (pore size distribution), soil gas diffusivity, air permeability, and derived pore network complexity parameters. Significant decreases in bulk density (increased total porosity) and increases in pores > 100 1m was observed for incubated samples compared with SR samples....... The proportion of pores > 100 1m increased in order: smectite gas diffusivity, air permeability, and derived pore network indices was greater for incubated samples than SR. For illitic soils...... for convective air transport when analyzing pore network complexity. Overall, our results showed that short-term regeneration...

  11. Ligand interaction with the purified serotonin transporter in solution and at the air/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Faivre, V.; Manivet, P.; Callaway, J.C.; Morimoto, H.; Airaksinen, M.M.; Baszkin, A.; Launay, J.M.; Rosilio, V.

    2000-06-01

    The purified serotonin transporter (SERT) was spread at the air/water interface and the effects both of its surface density and of the temperature on its interfacial behavior were studied. The recorded isotherms evidenced the existence of a stable monolayer undergoing a lengthy rearrangement. SERT/ligand interactions appeared to be dependent on the nature of the studied molecules. Whereas an unrelated drug (chlorcyclizine) did not bind to the spread SERT, it interacted with its specific ligands. Compared to heterocyclic drugs, for which binding appeared to be concentration-dependent, a 'two-site' mechanism was evidenced for pinoline and imipramine.

  12. Stochastic Modeling Of Field-Scale Water And Solute Transport Through The Unsaturated Zone Of Soils

    DEFF Research Database (Denmark)

    Loll, Per

    were previously thought not to pose a leaching threat. Thus, a reevaluation of our understanding of the mechanisms governing chemical fate in the unsaturated zone of soils has been necessary, in order for us to make better decisions regarding widely different issues such as agricultural management...... of pesticides and nutrients, and risk identification and assessment at polluted (industrial) sites. One of the key factors requiring our attention when we are trying to predict field-scale chemical leaching is spatial variability of the soil and the influence it exerts on both water and chemical transport...

  13. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    Science.gov (United States)

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  14. Electrophysiological evidence for glial-subtype glutamate transporter functional expression in rat cerebellar granule neurons

    Directory of Open Access Journals (Sweden)

    Mafra R.A.

    2003-01-01

    Full Text Available A glutamate-sensitive inward current (Iglu is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 ± 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 µM and a maximum increase of 51.2 ± 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM, shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.

  15. Does improving Public Transport decrease Car Ownership? Evidence from the Copenhagen Metropolitan Area

    DEFF Research Database (Denmark)

    Mulalic, Ismir; Pilegaard, Ninette; Rouwendal, Jan

    Car ownership is lower in urban areas, which is probably related to the availability of better publict ransport. Better public transport thus may offer the possibility to relieve the many problems (congestion,health, and parking) associated with the presence of cars in urban areas. To investigate...... this issue, wedevelop and estimate a model for the simultaneous choice of a residential area and car ownership. Themodel is estimated on Danish register data for single-earner and dual-earners households in the greaterCopenhagen metropolitan area. We pay special attention to accessibility of the metro...... network whichoffers particularly high quality public transport. Simulations based on the estimated model show that forthe greater Copenhagen area a planned extension of the metro network decreases car ownership by 2-3%.Our results suggest also a substantial increase in the interest for living in areas...

  16. Recent Voyager Evidence for Rapid Transport of Flare-Generated Disturbances by Polar Coronal Hole Streams

    Science.gov (United States)

    Intriligator, D. S.; Miller, W. D.; Intriligator, J.; Webber, W.; Sun, W.; Detman, T.; Dryer, M.; Deehr, C.

    2017-09-01

    Disturbances observed by Voyagers 1 and 2 during the past five years or more may have been transported by plasma emitted from polar coronal holes, thereby having travelled much faster from the Sun to the termination shock than previously recognized. Estimating the average speed to the shock as 750 km/s has produced consistently good associations between solar flares, or groups of them, and dynamic pressure increases at Voyager 2 and plasma wave events at Voyager 1. Furthermore, magnetograph observations confirm that polar coronal holes were present around the times of the flares to which the events at the Voyagers have been attributed. These calculations also provide revised estimates of the transport of heliospheric current sheet fluctuations. We discuss the possibilities that extrapolations from past observations and simulations based on them may provide insight into currently challenging issues and possible future developments.

  17. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  18. Evidence of intrinsic ambipolar charge transport in a high band gap organic semiconductor

    OpenAIRE

    Moreno Sierra, César; Pfattner, Raphael; Mas-Torrent, Marta; Puigdollers-González, Joaquim; Bromley, Stefan T.; Rovira Angulo, Concepció; Veciana Miró, Jaume; Alcubilla-González, Ramón

    2012-01-01

    Theoretical and experimental investigations combining in situ Kelvin probe microscopy (KPM) and macroscopic electrical studies are employed to explore the intrinsic transport in dithiophene-tetrathiafulvalene (DT-TTF) single crystal organic field-effect transistors. Our work demonstrates that ambipolar behavior is not restricted only to materials possessing a high electron affinity and thus may be a more general phenomenon. © 2012 The Royal Society of Chemistry.

  19. Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Chun Pong; Wirtz, Markus; Hell, Rüdiger

    2014-01-01

    Cysteine is essential for many mitochondrial processes in plants, including translation, iron-sulfur cluster biogenesis and cyanide detoxification. Its biosynthesis is carried out by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) which can be found in the cytosol, plastids and mitochondria. Mutants lacking one compartment-specific OAS-TL isoform show viable phenotypes, leading to the hypothesis that the organellar membranes are permeable to substrates and products of the cysteine biosynthetic pathway. In this report, we show that exogenouslly supplied [(35)S]cysteine accumulates in the mitochondrial fraction and is taken up into isolated mitochondria for in organello protein synthesis. Analysis of cysteine uptake by isolated mitochondria and mitoplasts indicates that cysteine is transported by multiple facilitated mechanisms that operate in a concentration gradient-dependent manner. In addition, cysteine uptake is dependent mainly on the ΔpH across the inner membrane. The rates of mitochondrial cysteine transport can be mildly altered by specific metabolites in the cyanide detoxification-linked sulfide oxidation, but not by most substrates and products of the cysteine biosynthetic pathway. Based on these results, we propose that the transport of cysteine plays a pivotal role in regulating cellular cysteine biosynthesis as well as modulating the availability of sulfur for mitochondrial metabolism.

  20. Transport and scavenging of Pu in surface waters of the Southern Hemisphere Oceans

    DEFF Research Database (Denmark)

    Gastaud, J.; Povinec, P.P.; Aoyama, M.

    2011-01-01

    The distribution of 239Pu in Atlantic and Indian Ocean waters about four decades after their main injection from atmospheric nuclear weapons tests is discussed. Recent data obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) projects are evaluated and compared...... with previous investigations. Seawater samples were collected during the round the globe BEAGLE2003 (Blue Ocean Global Expedition) along the 30°S transect in the Atlantic and the 20°S transect in the Indian Ocean. The results indicate transport of surface waters labelled with 239Pu from the western North...... Pacific via the Indonesian Seas to the South Indian Ocean and then to the South Atlantic Ocean. Along the whole BEAGLE2003 sampling route, the Atlantic Ocean has the lowest 239Pu content due to its particle scavenging on the long way from the western North Pacific. On the other hand, concentrations...

  1. Simulation of soluble waste transport and buildup in surface waters using tracers

    Science.gov (United States)

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  2. Selective transport of microplastics and mesoplastics by drifting in coastal waters.

    Science.gov (United States)

    Isobe, Atsuhiko; Kubo, Kenta; Tamura, Yuka; Kako, Shin'ichio; Nakashima, Etsuko; Fujii, Naoki

    2014-12-15

    The quantity and size distributions of small plastic fragments in the Seto Inland Sea, Japan were investigated using field surveys and a numerical particle-tracking model. The model was used to interpret the distributions of small plastic fragments and the possible transport processes in coastal waters. Of note, the size and quantity of mesoplastics (approximately >5mm) gradually increased close to the coast irrespective of the existence of river mouths, which probably act as a major source of anthropogenic marine debris. Additionally, microplastics were more dominant as we moved further offshore. The numerical model reproduced the near-shore trapping of mesoplastics, suggesting that mesoplastics are selectively conveyed onshore by a combination of Stokes drift and terminal velocity, dependent on fragment sizes. It is suggested that mesoplastics washed ashore on beaches degrade into microplastics, and that the microplastics, which are free from near-shore trapping, are thereafter spread offshore in coastal waters.

  3. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C......-gas diffusivity on intact 100cm3 soil samples (5 replicates in each plot). We found that biochar application significantly decreased soil bulk density, hereby creating higher porosity. At the same soil-water matric potential, all the soil-gas phase parameters (air-filled porosity, air permeability and gas...

  4. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment