WorldWideScience

Sample records for water table temperatures

  1. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  2. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.

    1989-01-01

    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  3. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  4. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  5. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  6. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  7. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  8. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  9. Water-table fluctuations in the Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Paces, James B.; Whelan, Joseph

    2001-01-01

    Pleistocene ground-water discharge deposits approximately 20 km southwest of Yucca Mountain were previously thought to represent pluvial water-table rises of 80 to 120 m. Data from new boreholes at two of the three discharge sites indicate that the modern water-table is at depths of only 17 to 30 m and that this shallow water is part of the regional ground-water flow system rather than being perched. Calcite in equilibrium with this modern ground water would have isotopic compositions similar to those in Pleistocene calcite associated with the discharge deposits. Carbon and uranium isotopes in both ground water and discharge deposits imply that past discharge consisted of a mixture of both shallow and deep ground water. These data limit Pleistocene water-table fluctuations at the specified Amargosa Desert discharge sites to between 17 and 30 m and eliminate the need to invoke large water-table rises

  10. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  11. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  12. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  13. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  14. Free product recovery at spill sites with fluctuating water tables

    International Nuclear Information System (INIS)

    Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.

    1992-01-01

    Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)

  15. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  16. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  17. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  18. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  19. A Gusseted Thermogradient Table to Control Soil Temperatures for Evaluating Plant Growth and Monitoring Soil Processes.

    Science.gov (United States)

    Welbaum, Gregory E; Khan, Osamah S; Samarah, Nezar H

    2016-10-22

    Thermogradient tables were first developed in the 1950s primarily to test seed germination over a range of temperatures simultaneously without using a series of incubators. A temperature gradient is passively established across the surface of the table between the heated and cooled ends and is lost quickly at distances above the surface. Since temperature is only controlled on the table surface, experiments are restricted to shallow containers, such as Petri dishes, placed on the table. Welding continuous aluminum vertical strips or gussets perpendicular to the surface of a table enables temperature control in depth via convective heat flow. Soil in the channels between gussets was maintained across a gradient of temperatures allowing a greater diversity of experimentation. The gusseted design was evaluated by germinating oat, lettuce, tomato, and melon seeds. Soil temperatures were monitored using individual, battery-powered dataloggers positioned across the table. LED lights installed in the lids or along the sides of the gradient table create a controlled temperature chamber where seedlings can be grown over a range of temperatures. The gusseted design enabled accurate determination of optimum temperatures for fastest germination rate and the highest percentage germination for each species. Germination information from gradient table experiments can help predict seed germination and seedling growth under the adverse soil conditions often encountered during field crop production. Temperature effects on seed germination, seedling growth, and soil ecology can be tested under controlled conditions in a laboratory using a gusseted thermogradient table.

  20. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  1. A time series approach to inferring groundwater recharge using the water table fluctuation method

    Science.gov (United States)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  2. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  3. Distribution Channel Intensity among Table Water Producers in Nigeria

    Directory of Open Access Journals (Sweden)

    Joseph Edewor Agbadudu

    2017-09-01

    Full Text Available Planning for and making reasonable decisions regarding reaching the target market with an organization’s product is a critical task on the part of management, which involves a careful evaluation and selection of its channel structure and intensity.This study therefore examines distribution channel intensity among table water producers in Edo State, Nigeria. The focus of the study is to ascertain the variables that significantly predict distribution intensity among the firms in the table water industry in Edo State. The study seeks to proffer answer to fundamental question of why brands within a single category of a given consumer good differ significantly in their distribution intensity. Using a survey research design, the data used for this study were obtained by taking a sample of 110 table water firms within the three senatorial districts in the State. The data obtained were presented and analyzed using different statistical tools such as mean and multiple regression through Statistical Packages for Social Sciences (SPSS version 22 software. Findings revealed that manufacturers’ target focus, manufacturers’ support program, brand quality and level of firm’s technological advancement were significant predictors of distribution channel intensity among the industrial players in table water industry in the State. Based on the findings, the study recommended that table water firms within the State can secure a competitive edge over their fellow counterpart in the industry by designing an optimal distribution intensity that will meet up their marketing objectives. It is also recommended that the adoption of modern technology in form of online sales is an efficient way of sales and distribution which could be used to enhance their distribution techniques if there is a need to cut down on middle men due to increased cost. The study concluded that optimal distribution intensity could be achieved not by mere imitation of competitors but through

  4. Relationships between water table and model simulated ET

    Science.gov (United States)

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  5. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  6. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  7. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission......Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene...

  8. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  9. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures

    Science.gov (United States)

    Chen, Qi; Li, Ni; Wang, Xing; Ma, Li; Huang, Jian-Bin; Huang, Guo-Hua

    2017-01-01

    Parapoynx crisonalis is an important pest of many aquatic vegetables including water chestnuts. Understanding the relationship between temperature variations and the population growth rates of P. crisonalis is essential to predicting its population dynamics in water chestnuts ponds. These relationships were examined in this study based on the age-stage, two-sex life table of P. crisonalis developed in the laboratory at 21, 24, 27, 30, 33 and 36°C. The results showed that the values of Sxj (age-stage–specific survival rate), fxj (age-stage-specific fecundity), lx (age specific survival rate) and mx (age-specific fecundity) increased as the temperature rose from 21 to 27°C, then decreased from 30 to 36°C. Temperature also had a significant effect on the net reproductive rate (R0), gross reproductive rate (GRR), intrinsic rate of increase (r) and finite rate of increase (λ). The value of these parameters were at low levels at 21, 33, and 36°C. Further, the r value decreased as the temperature rose from 24 to 30°C, while the GRR reached its highest level at 27°C. The results indicated that optimal growth and development of P. crisonalis occurred at temperatures between 24°C to 30°C when compared to the lowest temperature (21°C) and higher temperatures of 33°C and 36°C. PMID:28264022

  10. Stochastic analysis of unsaturated steady flows above the water table

    Science.gov (United States)

    Severino, Gerardo; Scarfato, Maddalena; Comegna, Alessandro

    2017-08-01

    Steady flow takes place into a three-dimensional partially saturated porous medium where, due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above the water table. The simple expressions (most of which in closed form) of the second-order moments pertaining to the FVs allow one to follow the transitional behavior from the zone close to the water table (where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In particular, it is shown how the stationary limits (and the distance from the water table at which stationarity is attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure head >> has been also computed, and it is expressed as =Ψ0>(1+ψ>), being ψ a characteristic heterogeneity function which modifies the zero-order approximation Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e., close (near field) and away (far field) from the water table, are derived into a very general manner, whereas the transitional behavior of ψ between the near/far field can be determined after specifying the shape of the various input soil properties. Besides the theoretical interest, results of the present paper are useful for practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the vadose zone close to the water table) which is generally very difficult to access by direct inspection.

  11. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    Science.gov (United States)

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I

  12. The film boiling look-up table: an improvement in predicting post-chf temperatures

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; El Nakla, M.; Cheng, S.C.

    2002-01-01

    During the past 50 years more than 60 film boiling prediction methods have been proposed (Groeneveld and Leung, 2000). These prediction methods generally are applicable over limited ranges of flow conditions and do not provide reasonable predictions when extrapolated well outside the range of their respective database. Leung et al. (1996, 1997) and Kirillov et al. (1996) have proposed the use of a film-boiling look-up table as an alternative to the many models, equations and correlations for the inverted annular film boiling (IAFB) and the dispersed flow film-boiling (DFFB) regime. The film-boiling look-up table is a logical follow-up to the development of the successful CHF look-up table (Groeneveld et al., 1996). It is basically a normalized data bank of heat-transfer coefficients for discrete values of pressure, mass flux, quality and heat flux or surface-temperature. The look-up table proposed by Leung et al. (1996, 1997), and referred to as PDO-LW-96, was based on 14,687 data and predicted the surface temperature with an average error of 1.2% and an rms error of 6.73%. The heat-transfer coefficient was predicted with an average error of -4.93% and an rms error of 16.87%. Leung et al. clearly showed that the look-up table approach, as a general predictive tool for film-boiling heat transfer, was superior to the correlation or model approach. Error statistics were not provided for the look-up table proposed by Kirillov et al. (1996). This paper reviews the look-up table approach and describes improvements to the derivation of the film-boiling look-up table. These improvements include: (i) a larger data base, (ii) a wider range of thermodynamic qualities, (iii) use of the wall temperature instead of the heat flux as an independent parameter, (iv) employment of fully-developed film-boiling data only for the derivation of the look-up table, (v) a finer subdivision and thus more table entries, (vi) smoother table, and (vii) use of the best of five prediction methods

  13. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  14. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  15. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  16. Numerical tables on physical and chemical analyses of Rhine water 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The numerical tables contain the measuring results of the physical-chemical studies on the Rhine water for the year 1983. The tables are arranged by general parameters, organic matter, eutrophicating substances, anorganic matter, metals, organic micropollution as well as by radioactivity (total alpha- or beta- and T-activity). (MM) [de

  17. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  18. Experimental study and calculation of boiling heat transfer on steel plates during runout table operation

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.

    2002-01-01

    Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 o C. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)

  19. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  20. Water table lowering to improve excavation performance and to reduce acid mine drainage

    International Nuclear Information System (INIS)

    Koppe, J.C.; Costa, J.F.; Laurent, O. Jr.

    1995-01-01

    This paper analyses the water table level fluctuations using wells located adjacent to the stripping cuts at the Butia-Leste coal mine, southernmost of Brazil. Piezometers monitored the water table fluctuations. Geological mapping provided additional information aiding the interpretation of the results. A contouring software was also used as tool to aid the interpretation of the data and the results visualisation. The parameters necessary in selecting the location of the wells and pumping volumes were calculated from the data obtained in the water table lowering tests. The results were used to minimise two main problems: the generation of acid mine drainage and the reduction of the excavation performance of the fleet used in overburden removal. 7 refs., 5 figs., 3 tabs

  1. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  2. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  3. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1931 to 1955

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1931 to 1955 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  4. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1912 to 1930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1912 to 1930 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  5. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1956 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1956 to 1980 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  6. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1981 to 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1981 to 2005 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  7. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  8. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  9. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic .... logical components in soils with shallow water tables. ..... dency of neither under-estimating nor over-estimating DDs,.

  10. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  11. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  12. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  13. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  14. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  15. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  16. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    Science.gov (United States)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs

  17. Numerical tables. Physical and chemical analyses of Rhine water 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Tables present the methods of analysis and the data obtained on inorganic, organic, and radioactive impurities in Rhine water. The measuring stations were located in Switzerland, France, West Germany, and the Netherlands. (HP) [de

  18. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  19. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  20. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  1. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  3. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    Science.gov (United States)

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  4. Water property lookup table (sanwat) for use with the two-phase computational code shaft

    International Nuclear Information System (INIS)

    Sherman, M.P.; Eaton, R.R.

    1980-10-01

    A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories

  5. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments.

    Directory of Open Access Journals (Sweden)

    Christine Stumpp

    Full Text Available The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.

  6. Microtropography and water table fluctuation in a sphagnum mire

    Science.gov (United States)

    E.S. Verry

    1984-01-01

    A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...

  7. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  8. Future water table rise at Yucca Mountain: A regulatory perspective

    International Nuclear Information System (INIS)

    Coleman, N.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission staff has developed a program of Systematic Regulatory Analysis (SRA). The purpose of this program is to ensure that important technical issues related to compliance with 10 CFR Part 60 will be identified before receipt of a license application. A plan is being developed to review the U.S. Department of Energy's (DOE's) demonstration of compliance in the license application for each part of the regulation. Under the siting criteria of NRC's Part 60, one of the potentially adverse conditions is the possibility that the water table may rise high enough to saturate a repository in the unsaturated zone. DOE must evaluate this and other conditions in a license application for a geologic repository site. DOE's evaluation must show compliance with the requirements of Part 60 with reasonable assurance. This paper describes the NRC staff's preliminary plans to review DOE's demonstration of compliance, including assumptions about a future rise of the water table

  9. Long-term rise of the Water Table in the Northeast US: Climate Variability, Land-Use Change, or Angry Beavers?

    Science.gov (United States)

    Boutt, D. F.

    2011-12-01

    The scientific evidence that humans are directly influencing the Earth's natural climate is increasingly compelling. Numerous studies suggest that climate change will lead to changes in the seasonality of surface water availability thereby increasing the need for groundwater development to offset those shortages. Research suggests that the Northeast region of the U.S. is experiencing significant changes to its' natural climate and hydrologic systems. Previous analysis of a long-term regional compilation of the water table response to the last 60 years of climate variability in New England documented a wide range of variability. The investigation evaluated the physical mechanisms, natural variability and response of aquifers in New England using 100 long term groundwater monitoring stations with 20 or more years of data coupled with 67 stream gages, 75 precipitation stations, and 43 temperature stations. Groundwater trends were calculated as normalized anomalies and analyzed with respect to regional compiled precipitation, temperature, and streamflow anomalies to understand the sensitivity of the aquifer systems to change. Interestingly, a trend and regression analysis demonstrate that water level fluctuations are producing statistically significant results with increasing water levels over at least the past thirty years at most (80 out of 100) well sites. In this contribution we investigate the causal mechanisms behind the observed ground water level trends using site-by-site land-use change assessments, cluster analysis, and spatial analysis of beaver populations (a possible proxy for beaver activity). Regionally, average annual precipitation has been slightly increasing since 1900, with 95% of the stations having statistically significant positive trends. Despite this, no correlation is observed between the magnitude of the annual precipitation trends and the magnitude of the groundwater level changes. Land-use change throughout the region has primarily taken

  10. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  11. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  12. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  13. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  14. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  15. Development of Historical Water Table Maps of the 200 West Area of the Hanford Site (1950-1970)

    International Nuclear Information System (INIS)

    Kinney, Teena M.; McDonald, John P.

    2006-01-01

    A series of detailed historical water-table maps for the 200-West Area of the Hanford Site was made to aid interpretation of contaminant distribution in the upper aquifer. The contaminants are the result of disposal of large volumes of waste to the ground during Hanford Site operations, which began in 1944 and continued into the mid-1990s. Examination of the contaminant plumes that currently exist on site shows that the groundwater beneath the 200-West Area has deviated from its pre-Hanford west-to-east flow direction during the past 50 years. By using historical water-level measurements from wells around the 200-West Area, it was possible to create water-table contour maps that show probable historic flow directions. These maps are more detailed than previously published water-table maps that encompass the entire Hanford Site.

  16. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  17. Hanford site water table changes 1950-1980: data observations and evaluation

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Reisenauer, A.E.; Black, G.D.; Young, M.A.

    1986-04-01

    The basalt formations underlying the Hanford site are being considered for characterization and evaluation as a deep geologic repository for defense and commercial radioactive wastes. To understand the hydrology of the Hanford area, we need to know if the ground-water system is in steady state and what impact a change in surface stress from artificial recharge may have on the underlying basalt aquifers. Researchers at Pacific Northwest Laboratory are supporting efforts to understand these issues by illustrating how changes in wastewater disposal activities at the Hanford site have altered the configuration of the water table surface with time. The objective of this work was to determine the magnitude and direction of changes in the elevation of the water table across the Hanford site from 1950 to 1980. Plots of the magnitudes of water-level changes occurring over 5-year intervals from 1950 through 1980 are presented. The water-level changes that occurred during each 5-year interval are related to water discharges from nuclear fuel reprocessing facilities or other discharge sources. The plots of water-level changes show large water-level increases in the vicinity of the Separations Area (200 East and 200 West) from 1950 to 1960; the rate of increase of water-level changes grows more slowly from 1960 to 1970, while the areal extent of the mounding continues to expand. Only small changes occur from 1970 to 1980; during this time period, the unconfined system appears to be in approximate equilibrium with the sources. Based on previous experience, it is believed that an increase in ground-water mounding will begin to appear near the 200 East Area B Pond as a result of the increased discharges from the restart of PUREX in 1983

  18. BOREAS TGB-1/TGB-3 Water Table and Peat Temperature Data over the NSA

    Science.gov (United States)

    Bubier, Jill L.; Comer, Neil; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the NSA. This data set contains continuous and manual measurements of water level and air and soil temperatures at the four subsites within the NSA Tower Fen site complex. The measurements were taken to understand the thermal and hydrological gradients associated with each plant community present in the fen. Measurements were taken from May to September 1994 and May to October 1996. The data are provided in tabular ASCII files.

  19. Holes in the Bathtub: Water Table Dependent Services and Threshold Behavior in an Economic Model of Groundwater Extraction

    Science.gov (United States)

    Kirk-lawlor, N. E.; Edwards, E. C.

    2012-12-01

    In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would

  20. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  1. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    International Nuclear Information System (INIS)

    Asrari, E.; Masoudi, M.

    2009-01-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  2. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    Science.gov (United States)

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  3. CORRELATION BETWEEN RAINFALL PATTERNS AND THE WATER TABLE IN THE GENERAL SEPARATIONS AREA OF THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Smith, C.

    2009-01-01

    The objective of the study was to evaluate rainfall and water table elevation data in search of a correlation that could be used to understand and predict water elevation changes. This information will be useful in placing screen zones for future monitoring wells and operations of groundwater treatment units. Fifteen wells in the General Separations Area (GSA) at Savannah River Site were evaluated from 1986 through 2001. The study revealed that the water table does respond to rainfall with minimal delay. (Water level information was available monthly, which restricted the ability to evaluate a shorter delay period.) Water elevations were found to be related to the cumulative sum (Q-Delta Sum) of the difference between the average rainfall for a specific month and the actual rainfall for that month, calculated from an arbitrary starting point. Water table elevations could also be correlated between wells, but using the right well for correlation was very important. The strongest correlation utilized a quadratic equation that takes into account the rainfall in a specific area and the rainfall from an adjacent area that contributes through a horizontal flow. Specific values vary from well to well as a result of geometry and underground variations. R2's for the best models ranged up to 0.96. The data in the report references only GSA wells but other wells (including confined water tables) on the site have been observed to return similar water level fluctuation patterns

  4. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    Science.gov (United States)

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after

  5. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  6. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  7. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  8. Tables of homogeneous equilibrium critical flow parameters for water in SI units

    International Nuclear Information System (INIS)

    Hall, D.G.; Czapary, L.S.

    1980-09-01

    This reference document presents tables and charts containing data calculated using the homogeneous equilibrium critical flow model (HEM). The ranges of stagnation state properties for which data are presented include: pressures from 2 to 22 120kPa, temperatures from 290 to 640 K, and thermodynamic qualities from 0 to 1

  9. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  10. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  11. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    Science.gov (United States)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  12. The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands

    Science.gov (United States)

    Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.

    2011-12-01

    Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.

  13. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  14. Water-temperature data acquisition activities in the United States

    Science.gov (United States)

    Pauszek, F.H.

    1972-01-01

    Water Data Coordination, U.S. Geological Survey, and published in the "Catalog of Information on Water Data, Index to Water Quality Section, Edition 1970." This is one of four indexes, each of which is a separate section of the Catalog. Three of the indexes, "Index to Water-Quality Section," "Index to Surface-Water Section," and "Index to Ground-.Water Stations," contain information on data acquired on a recurrent basis at specific locations for a period of 3 years or more. The fourth section, "Index to Areal Investigations and Miscellaneous Activities," is concerned with specific projects or shorter-term data activities that involve field or laboratory measurements or observations not included in any other section of the Catalog. The Catalog is a record of activities throughout the country (and in some places along the international border between the United States and Canada) conducted by Federal and non-Federal agencies engaged in the acquisition of water data and who furnish such information for presentation in the Catalog. The Catalog itself is an outgrowth of an assignment to the Department of the Interior and in turn to the Geological Survey, by the Office of Management and Budget, through the medium of OMB Circular A-67. This Circular states in part that one of the assigned responsibilities will be maintenance of a "central catalog of information on...water data and on Federal activities being planned or conducted to acquire such data." As an extension of this activity, non-Federal agencies are solicited to participate in the program. In this report, information is presented by means of tables and illustrations preceded by brief explanations. It includes the agencies collecting the data, the number of stations located on surface and ground waters where temperature measurements are made, the distribution of stations by States and by the 21 regions of the Water Resources Council (WRC) (a Federal agency created in accordance with the Water Resources Planning Act of

  15. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  16. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  17. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  18. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    Science.gov (United States)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  19. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  20. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  1. [The marketing evaluation of the consumers' preference as regards the use of medicinal and medicinal table mineral waters].

    Science.gov (United States)

    Babaskin, D V; Babaskina, L I; Pavlova, A V

    2017-12-28

    The development of modern technologies in physiotherapy with the use of mineral waters, the expansion of the assortment of the medicinal and medicinal table waters as well as increasing the competitive advantages of domestic products require the more extensive marketing survey of the consumers' preferences in the market of mineral waters. The objective of the present study was the marketing evaluation of the consumers' preference in the segment of medicinal and medicinal table mineral waters in the city of Moscow. The survey involved 697 consumers of medicinal and medicinal table mineral waters. The sampling was carried out by the deterministic quota method. The field research was conducted by means of personal verbal interviews (32%) and the CATI to Web method (phone recruiting and on-line questioning) (68%) with the use of the structured questionnaire. Positioning was carried out making use of the two-dimensional schematic map and scoring assessment on an individual basis with calculation of integrated indicators. The marketing evaluation has demonstrated that the principal motive for purchasing mineral waters in more than 40% of respondents was the treatment and prevention of various diseases including disturbances in the urogenital system as well as digestive and respiratory disorders that appear to be the most frequent reasons for the consumption of mineral waters. The main factors that form the preferences of the consumers as regards the use of a concrete variety of mineral waters were elucidated. Of crucial importance for approximately 40% of the consumers (p<0.01) proved to be their health condition, the medical indications, and the available information about the therapeutic effectiveness of one or another type of mineral waters. Other factors were the quality of mineral water, its cost, the manufacturer and/or place of production, the attractiveness of the packaging, etc. The evaluation of the positioning of the mineral water consumers' preferences made

  2. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  3. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  4. Investigation of the minimum film boiling temperature of water during rewetting under forced convective conditions

    International Nuclear Information System (INIS)

    Huang, X.C.; Bartsch, G.; Wang, B.X.

    1992-01-01

    The minimum film boiling temperature of water has been measured on a copper hollow cylinder of 50 mm length with the mass flux rate ranging from 25 to 500 kg/m 2 s and the pressure from 0.1 to 1.0 MPa at subcoolings of 5 to 50 K. Film boiling is established with help of a temperature-controlled system. Rewetting can be initiated by cutting off or very gradually reducing the power supply to the test section. A numerical method for solving the two-dimensional nonlinear inverse heat conduction problem is utilized in the data reduction, taking into account the axial heat conduction. The results are compared with the steady-state maximum transition boiling temperatures measured on the same test section and with the true quench temperatures available in the literature so far. (4 figures, 1 table) (Author)

  5. Environmental impact assessment of quarries under water table: state of the art

    International Nuclear Information System (INIS)

    Menatti, M.; Vismara, R.

    2009-01-01

    After an overview of environmental problems concerning pits under water table, data and results showed in a few examples of literature and in some Environmental Impact Study are summarized. A close examination about sector normative instruments, in the field of E.I.A. (Environmental Impact Assessment) and S.E.A. (Strategic Environmental Assessment) is showed, through some key elements obtained from a few guidelines expressed by control and authorization governmental authority.In addition, the paper deals with a specific problem about wash water management and, in particular, silt material management; the possible impacts derived from the directly wash water introduction in the pit lake and from the use of settling lagoon are analyzed. [it

  6. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  7. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  8. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  9. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  10. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    Science.gov (United States)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  11. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    Directory of Open Access Journals (Sweden)

    C. Vera Valero

    2018-03-01

    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  12. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  13. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  14. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  15. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  16. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  17. A look-up table for fully developed film-boiling heat transfer

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; Cheng, S.C.

    2003-01-01

    An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy

  18. Measurement of the 226Ra-concentration in bottled Austrian mineral waters and table beverages

    International Nuclear Information System (INIS)

    Friedmann, H.; Hernegger, F.

    1978-01-01

    226 Ra being regarded nowadays as a toxic trace element, a systementic examination of bottled Austrian mineral waters and table beverages has been carried out. Only in one case was the maximum allowable concentration of 3.3 pCi/l, a value set up by the WHO, clearly exceeded. (orig.) [de

  19. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  20. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  1. Creation of Soil Water and Physical data base and its inclusion in a new version of GIS of Soil Resources Attributive Table

    International Nuclear Information System (INIS)

    Kolev, Boyko

    2013-01-01

    For better using of GIS of Soil Resources a new version of the attributive table formation was created. This makes possible soil, physical, and water properties to be included into the table. The simulation procedure for soil hydro-physical properties determination was realized by using the soil particle size distribution data only. This develops a calculation algorithm for soil water content dynamic monitoring, which was realized for some of Bulgarian soils. The main aims of the study are: To demonstrate the usefulness of the new version of the attributive table formation. To show how the simulation model can be applied for environment conditions monitoring and agricultural production management. Keywords: environment conditions, simulation model, soil moisture at field capacity, wilting point, effective soil water content, particle size distribution

  2. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  3. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

    Directory of Open Access Journals (Sweden)

    C. Lauvernet

    2018-01-01

    Full Text Available Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018, we developed a physically based numerical algorithm (SWINGO that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate, where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil and hydraulic loading (rainfall + incoming runoff at each site. The presence of WT introduced more complex responses dominated by strong

  4. The effect of changing water table on methane fluxes at two Finnish mire sites

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Crill, P.; Silvola, J.

    1992-01-01

    Methane fluxes were measured using static chamber technique on a minerotrophic fen and an ombrotrophic peat bog site located in the Lakkasuo mire complex in central Finland. Both sites consisted of a virgin area and an area drained in 1961 by ditching. The measurements in 1991 were made biweekly from spring thaw to winter freezing. During this period, the mean CH4 emission from the virgin minerotrophic site and virgin ombrotrophic site was 98 mg/m -2 d -1 and 40 mg/m -2 d -1 , respectively. The mean emission of CH 4 from the drained ombrotrophic site was 18 mg/m -2 d -1 . The drained minerotrophic site consumed methane during most of the measuring period, the average uptake was 0.13 mg/m2d. Draining had lowered the average water table by 4 cm at the ombrotrophic site and by 20 cm at minerotrophic site. The possible reasons for the different development of the water table and methane fluxes at ombrotrophic and minerotrophic sites after drainer are discussed

  5. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  6. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  7. Effects of environmental temperature on life tables of Rhodnius neivai Lent, 1953 (Hemiptera: Reduviidae under experimental conditions

    Directory of Open Access Journals (Sweden)

    Daniel R Cabello

    1999-09-01

    Full Text Available Changes in life tables of Rhodnius neivai due to variations of environmental temperature were studied, based on nine cohorts. Three cohorts were kept at 22°C, three at 27°C and three at 32°C. Cohorts were censused daily during nymphal instars and weekly in adults. Nine complete horizontal life tables were built. A high negative correlation between temperature and age at first laying was registered (r=-0,84. Age at maximum reproduction was significantly lower at 32°C. Average number of eggs/female/week and total eggs/female on its life time were significantly lower at 22°C. Total number of egg by cohort and total number of reproductive weeks were significantly higher at 27°C. At 32°C, generational time was significantly lower. At 27°C net reproductive rate and total reproductive value were significantly higher. At 22°C, intrinsic growth, finite growth and finite birth rates were significantly lower. At 22°C, death instantaneous rate was significantly higher.

  8. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  9. Measuring the Change in Water Table with Gravity Methods - a Controlled Experiment

    DEFF Research Database (Denmark)

    Lund, S; Christiansen, Lars; Andersen, O. B.

    2009-01-01

    Gravity changes linearly with the change in soil water content. With the GRACE satellite mission the interest for ground-based gravity methods in hydrology has gained new attention. Time-lapse gravity data have the potential to constrain hydrological model parameters in a calibration scheme....... The greatest potential is seen for specific yield. The gravity signal from hydrology is small (10^-8 m/s^2 level) and the application of ground-based methods is mainly limited by the sensitivity of available instruments. In order to demonstrate the ability of the Scintrex CG-5 gravity meter to detect a change...... in water content, a controlled experiment was set up in 30 m by 20 m basin. The water table was lowered 0.69 m within 1½ hours and the corresponding gravity signal measured using two different approaches: a time series measurements at one location and a gravity network measurement including four points...

  10. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  11. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  12. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  13. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Science.gov (United States)

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen. Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  14. HCMM energy budget data as a model input for assessing regions of high potential ground-water pollution

    Science.gov (United States)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.

    1978-01-01

    The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.

  15. SUPPLEMENTARY INFORMATION Temperature effects on the ...

    Indian Academy of Sciences (India)

    Windows User

    SUPPLEMENTARY INFORMATION. Temperature effects on the hydrophobic force between two graphene-like surfaces in liquid water. TUHIN SAMANTA and BIMAN BAGCHI. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560. 012, India. Table of Contents. Figure S1. Page 2.

  16. Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Merjo P. P. Laine

    2013-01-01

    Full Text Available In the northern hemisphere, variability in hydrological conditions was suggested to increase as a consequence of climate warming, which may result in longer droughts than the area has experienced before. Due to their predominately anoxic conditions, peatlands are expected to respond to changes in hydrological conditions, such as successive drying and rewetting periods. As peatlands are rich in organic matter, any major changes in water table may influence the decomposition of it. The hydrological conditions may also influence release of nutrients from peat profiles as well as affect their transport to downstream ecosystems. In our mesocosm experiment, artificial water table fluctuations in pristine peat profiles caused an increase in dissolved organic nitrogen (DON and ammonium (NH4+-N concentrations, while no response was found in drained peat profiles, although originating from the same peatland complex.

  17. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  18. Water temperature issues in the 90's and beyond

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1993-01-01

    Water temperature issues are expected to receive increasing attention in the 1990s. Temperature impacts are among the most common and most expensive environmental issues requiring mitigation at water projects, but few changes in mitigation technologies and little research have occurred in the past decade. Water projects alter water temperatures because the heat balances in reservoirs and in streams with altered flows are significantly different from natural. Several emerging environmental and regulatory concerns and issues are likely to focus additional attention on temperature. Climate change, should it occur as predicted, can be expected to worsen many water temperature problems and complicate the determination of appropriate mitigation for water projects. The purposes of this paper are to review current water temperature issues and mitigation methods, to identify new and future temperature issues, and to identify research needs

  19. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  20. The 2005 CHF look-up table

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Vasic, A.Z.; Leung, L.K.H.; Durmayaz, A.; Shan, J.Q.; Yang, J.; Cheng, S.C.

    2005-01-01

    Full text of publication follows: CHF Look-up tables have been used widely for the prediction of the Critical Heat Flux (CHF) The CHF look-up table is basically a normalized data bank. The first CHF look-up table was constructed by Doroshchuk et al. (1975), using a limited database of 5 000 data points. This table, and all subsequent tables, contain normalized CHF values for a vertical 8 mm water-cooled tube for various pressures, mass fluxes and qualities. The CHF table development work has since been in progress at various institutions (e.g. CENG-Grenoble, University of Ottawa (UO), Ottawa, IPPE, Obninsk, and AECL, Chalk River) using an ever increasing data base. The 1995 CHF look-up table employs a data base containing about 30 000 CHF points and provides CHF values for an 8 mm ID, water-cooled tube, for 19 pressures, 20 mass fluxes, and 23 qualities. covering the full range of conditions of practical interest. The 2005 CHF LUT is an update to the 1995 LUT and addresses several concerns raised in the literature. The major improvements made are: - enhancement of the quality of the data base of the CHF look-up table (identify outliers, improve screening procedures); - increase in the data base by adding recently obtained data; - employment of greater subdivision of the look-up table by using smaller intervals in the independent parameters (pressure, mass flux and quality) at conditions where the variation in CHF is significant; - improvement of the smoothness of the CHF look-up table. This was done by the use of logarithmic functions for CHF, using optimum Spline functions etc. A discussion of the impact of these changes on the prediction accuracy and table smoothness is presented. It will be shown that the 2005 CHF look-up table is characterized by a significant improvement in accuracy and smoothness. [1] D. Groeneveld is the corresponding author. He is an Adjunct Professor at the University of Ottawa. (authors)

  1. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

    Science.gov (United States)

    Holmberg, Michael J.

    2017-05-15

    The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response

  2. The effect of urbanization in an arid region: Formation of a perched water table that causes environmental damages

    Science.gov (United States)

    Karnieli, A.; Issar, A.; Wolf, M.

    1984-03-01

    Construction in a new neighborhood in the israeli town of Dimona, situated in an arid region in the south of the country (150 mm average annual rainfall), resulted in a rise in groundwater levels during the subsequent rainy seasons This caused flooding of shelter basements, soil sliding, and sagging which permanently damaged walls and buildings The neighborhood had been built on continental sands and marls blanketed by loess, on a valley slope near a rocky anticlinal dip-slope Subsurface studies, using piezometer holes and groundwater analyses, revealed the presence of sand lenses alternating with plastic marls, which act as seasonal aquifers with perched water tables Groundwaters obtain high SO{4/-2} and Cl- corrosivity through contact with these nonflushed marls of the Neogene valley fill (Hazeva Formation) The reasons for the rising of groundwater were found to be (a) artificial interference with the natural (pre-construction) drainage system—interception of the hillside runoff by building plots, roads, etc, (b) partial denudation of the loess blanket, increasing the local infiltration and the build-up of local, perched water tables, and (c) corrosion of concrete and steel pipelines, as well as foundations, by prolonged contact with corrosive groundwater, resulting in haphazard but massive leakage Guidelines are proposed for an environmental improvement plan, which would include terracing and planting of the watershed above town to increase evapotranspiration, lowering of the water table by pumping, and diverting the water to suburban parks (groves of saltresistant trees), and replacement of steel and cement pipes by a non-corrodable plastic pipe system

  3. Effects of Permanently Raised Water Tables on Forest Overstory Vegetation in the Vicinity of the Tennessee-Tombigbee Waterway.

    Science.gov (United States)

    1982-08-01

    Mississippi Valley* Common Name Scientific Name Very Tolerant** Water hickory Carya aquatica Pecan C. illinoensis Buttonbush Cephalanthus occidentalis...Table I (Concluded) Common Name Scientific Name Intolerant* Ironwood Carpinus caroliniana Bitternut hickory Carya cordiformis Shellbark

  4. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  5. RIP Input Tables From WAPDEG for LA Design Selection: Continuous Pre-Closure Ventilation

    International Nuclear Information System (INIS)

    K.G. Mon

    1999-01-01

    The purpose of this calculation is to document the creation of .tables for input into Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) from Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. ''Software Routine Report for WAPDEG'' (Version 3.09)) simulations. This calculation details the creation of the RIP input tables (representing waste package corrosion degradation over time) for the License Application Design Selection (LADS) analysis of the effects of continuous pre-closure ventilation. Ventilation during the operational phase of the repository could remove considerable water from the system, as well as reduce temperatures. Pre-closure ventilation is LADS Design Feature 7

  6. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  7. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    Science.gov (United States)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS

  8. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  9. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    Science.gov (United States)

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  10. Dosimetric Effects Of Different Treatment Tables During Radiotherapy

    International Nuclear Information System (INIS)

    Murkovic, M.; Grego, T.; Bibic, J.

    2015-01-01

    The aim of our study was to measure the effect of mega-voltage photon beam attenuation when treating patients through carbon fibre treatment table with and without the carbon laminate base plate on it. We also examined the ability of XiO treatment planning system in modelling this effect. Direct attenuation measurements were made for two treatment tables, Siemens TxT 550 treatment table with TT-A table top and Elekta Precise table with iBEAM evo table top. On both treatment tables we used Orfit Base Plate (32301). Measurements were taken for two photon energies (6 MV and 18 MV), at two different field sizes (5 x 5 cm 2 and 10 x 10 cm 2 ) and different gantry angles in 50 intervals using stationary water phantom and Farmer type ionization chamber. These values were compared to values calculated in XiO. In order to account for the effect of table and base plate during treatment planning in XiO, customized table and base plate templates were develop in Focal planning system. To construct these customized templates, table and base plate contours as well as respective relative electron density's to water were obtained on CT scanner. The largest attenuation effect was seen for oblique treatment angles using low energy and small field sizes, 6.6 percent for the Elekta table top and 8.4 percent for Siemens table top. In this paper we show that customized table and base plate templates introduced in the patient treatment plan can accurately model the attenuation due to their presence to within 0.3 percent. Since dose modifications due to such carbon fiber accessories can be significant, it can be concluded that introduction of customized table and base plate templates into TPS brings an important improvement to patient treatment planning, and should be included in dose calculations whenever possible. (author).

  11. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  12. Numerical tables on physical and chemical analyses of Rhine water

    International Nuclear Information System (INIS)

    1982-01-01

    Tables on the places of measurement, the sampling methods and the methods of analysis used. The numerical tables of the measurement results are broken down in general parameters, organic, entrophicating and anorganic substances, orgnic micro-pollutants and radioactivity. (GG) [de

  13. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  14. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  15. Monthly tables of measurements. October 2000

    International Nuclear Information System (INIS)

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  16. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  17. Use of well points to determine the thickness and extent of floating product atop the water table

    International Nuclear Information System (INIS)

    Liikala, T.L.; Lewis, R.; Gilmore, T.; Hoffmann, H.

    1994-01-01

    The release of petroleum products to the ground water is a widespread problem. Conventional plume tracking techniques are to drill wells and measure product thickness and extent. In this study, well points were installed to rapidly and inexpensively determine the thickness and extent of floating product atop the water table. Spills and leaks of JP-4 have produced a discrete full layer atop the water table at one site at Eielson Air Force Base near Fairbanks, Alaska. The 0.2- to 1.3-foot-thick layer was identified in two ground water monitoring wells at a depth of approximately 10 feet. The layer is contained within unconsolidated glaciofluvial sands and gravels. A comprehensive assessment of the product thickness and extent was necessary for the site remedial investigation/feasibility study. The emplacement of additional monitoring wells was discouraged because of time and budget constraints. The fuel layer was delineated with 18 screened well points. The points consist of 2-inch-diameter galvanized steel pipe. The points were driven into the floating products with a hollow-stem auger rig sampling hammer. The product thickness was measured with an interface probe. The presence of floating product could be measured immediately after emplacement; the product thickness measurements typically stabilized within three days. The product thickness compared favorably with those measured in adjacent monitoring wells

  18. Study of energy transfer in table-top X-pinch driven by a water line

    International Nuclear Information System (INIS)

    Beg, F N; Zhang, T; Fedin, D; Beagen, B; Chua, E; Lee, J Y; Rawat, R S; Lee, P

    2007-01-01

    The current passing through X-pinches and the energy transferring from the pulse forming line to the load are modelled using a simple LCR circuit. A comparison of the electrical properties of two table-top X-pinch devices is made. It was found that up to 25% of the stored energy is transferred from the water transmission line to the load in the University of California,San Diego (UCSD) table-top X-pinch before x-ray emission starts. The highest energy transmitted (75%) is found after the current peak. In comparison, only 3% of the energy is transferred to the load in the National Institute of Education (NIE) X-pinch device just after the maximum current peak. The highest energy (25%) transmitted to the plasma occurs long after the current peak. The plasma in both devices is visually and qualitatively similar. However, the UCSD device emits intense x-rays with no x-rays observed in the NIE device. This observation is consistent with the electrical circuit analysis

  19. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  20. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  1. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  2. An observational study on the temperature rising effects in water warming canal and water warming pond

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. B.; Hong, S. B. [Rural Development Cooperation, Seoul (Korea, Republic of)

    1990-09-15

    The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18°C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1. The degree of the rise of the water temperature can be decided by θ{sub x} = θ{sub 0} + K (L/(v * h)) * (T - θ{sub 0}) Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2. A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was θ{sub x1} = 16.5 + 15.9 (1-e{sup -0.00018x}), θ{sub x2} = 18.8 + 8.4(1-e{sup -0.000298x}) for the type I. and θ{sub x} = 19.6 + 12.8 (1-e{sup -0.00041x}) for the type II. 3. It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4. In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made; Y = 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5. A monthly variation of the water temperature in the water warming

  3. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  4. Use of Decision Tables to Simulate Management in SWAT+

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Arnold

    2018-05-01

    Full Text Available Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are easily programmed in several current languages. Land management and river–reservoir models simulate complex land management operations and reservoir management in highly regulated river systems. Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+ model. Decision tables are developed to simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily Nash–Sutcliffe Efficiency (NSE of 0.52 and a percent bias of −1.1%. Using decision tables to simulate management in land, river, and reservoir models was shown to have several advantages over current approaches, including: (1 mature technology with considerable literature and applications; (2 ability to accurately represent complex, real world decision-making; (3 code that is efficient, modular, and easy to maintain; and (4 tables that are easy to maintain, support, and modify.

  5. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  6. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    Science.gov (United States)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  7. Research for Preseismic Phenomena on the Underground Water Level and Temperature in Selected Areas of Greece

    Science.gov (United States)

    Contadakis, M. E.; Asteriadis, G.

    1997-08-01

    A comprehensive study of the tectonic activity require the contribution of a variety of methods, geological, seismic, geodetic, satellite etc., being currently available in our days. On the other hand, the risk evaluation in areas of high seismicity, like this one of the South Balkan Peninsula, is of vital importance. To this purpose an interdisciplinary following up of the tectonic activity in the area may provide the best provision to the administration for an effective confrontation and intervention for the elimination of the possible disastrous effects in human life cost, financial and social cost of the communities, to which may result a strong earthquake. Among the various methods of indirect monitoring of the tectonic activity in an area, which in addition is of a low cost, is that of the following up of the underground water level and temperature changes in the area of interest. This method is based on the fact that tectonic activity is expected to result to tectonic stresses producing alterations to the local water table which in its turn is expected is expected to be observed as variation of the underground water level and temperature. The method of the following up of the underground water and temperature changes has been applied, among others by the Department of Geodesy and Surveying of the University of Thessaloniki in two areas of high seismicity in Greece: (a) The seismic zone of the lake Volvi in North Greece (40.5 deg N and 23.5 deg E) for ten years (1983-1992) and (b) the area of South Thessaly (39.2 deg N and 21 deg E) for three years (1994-1996). The statistical analysis of the observations, shows that the low frequency constituent (Sa,Ssa,Mf,Mm) of the earth tides and the barometric pressure have a small influence on the water level measurements. The shallow underground water network of South Thessaly is more sensitive to the non tectonic factors than the network of Volvi. Tentative correlation of the underground wat! er and temperature

  8. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  9. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  10. From Space to the Rocky Intertidal: Using NASA MODIS Sea Surface Temperature and NOAA Water Temperature to Predict Intertidal Logger Temperature

    Directory of Open Access Journals (Sweden)

    Jessica R. P. Sutton

    2017-02-01

    Full Text Available The development of satellite-derived datasets has greatly facilitated large-scale ecological studies, as in situ observations are spatially sparse and expensive undertakings. We tested the efficacy of using satellite sea surface temperature (SST collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS and local water temperature collected from NOAA buoys and onshore stations to estimate submerged intertidal mussel logger temperatures. Daily SST and local water temperatures were compared to mussel logger temperatures at five study sites located along the Oregon coastline. We found that satellite-derived SSTs and local water temperatures were similarly correlated to the submerged mussel logger temperatures. This finding suggests that satellite-derived SSTs may be used in conjunction with local water temperatures to understand the temporal and spatial variation of mussel logger temperatures. While there are limitations to using satellite-derived temperature for ecological studies, including issues with temporal and spatial resolution, our results are promising.

  11. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    Science.gov (United States)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2015-07-01

    Continuous monitoring of oceanic bottom water temperatures is a complicated task, even in relatively easy-to-access basins like the North or Baltic seas. Here, a method to determine annual bottom water temperature variations from inverse modeling of instantaneous measurements of temperatures and sediment thermal properties is presented. This concept is similar to climate reconstructions over several thousand years from deep borehole data. However, in contrast, the presented method aims at reconstructing the recent temperature history of the last year from sediment thermal properties and temperatures from only a few meters depth. For solving the heat equation, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature variations for the preceding years and the thermal properties of the sediments, the forward model determines the sediment temperature field. The bottom water temperature variation is modeled as an annual cosine defined by the mean temperature, the amplitude and a phase shift. As the forward model operator is non-linear but low-dimensional, common inversion schemes such as the Newton algorithm can be utilized. The algorithms are tested for artificial data with different noise levels and for two measured data sets: from the North Sea and from the Davis Strait. Both algorithms used show stable and satisfying results with reconstruction errors in the same magnitude as the initial data error. In particular, the artificial data sets are reproduced with accuracy within the bounds of the artificial noise level. Furthermore, the results for the measured North Sea data show small variances and resemble the bottom water temperature variations recorded from a nearby monitoring site with relative errors smaller than 1 % in all parameters.

  12. Superconductivity theory applied to the periodic table of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Elifritz, T.L. [Information Corporation, Madison, WI (United States)

    1994-12-31

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  13. Superconductivity theory applied to the periodic table of the elements

    International Nuclear Information System (INIS)

    Elifritz, T.L.

    1994-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity

  14. Superconductivity theory applied to the periodic table of the elements

    Science.gov (United States)

    Elifritz, Thomas Lee

    1995-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  15. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  16. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  17. Application of starter cultures to table olive fermentation: an overview on the experimental studies

    Directory of Open Access Journals (Sweden)

    Aldo eCorsetti

    2012-07-01

    Full Text Available Table olives are one of the oldest fermented foods and they are considered an important component of the Mediterranean diet, since their richness in monounsaturated fats (primarily oleic acid and phenolic compounds that may function as antioxidants in the human body; in the Western world they represent one of the most popular fermented vegetables but, despite its economic significance, table olive fermentation is still craft-based and empirical. In particular, such a type of fermentation results from the competitive activities among indigenous, contaminating microorganisms, the microbial balance depending on several intrinsic (pH, water activity, diffusion of nutrients from the drupe and level of anti-microbial compounds and extrinsic (temperature, oxygen availability and salt concentration factors. At present, to reduce the risk of spoilage and to achieve a more predictable process there is an increasing interest in developing starter cultures for table olives fermentation. Anyway, the application of starter cultures in the field of table olives is quite far from reaching the diffusion it has in other sectors of food industry (e.g., dairy products and alcoholic beverages. This review focuses on experimental researches devoted to studying starter cultures for possible application to table olive fermentation both at artisan and industrial level.

  18. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  19. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  20. The global resource balance table, an integrated table of energy, materials and the environment

    International Nuclear Information System (INIS)

    Tsuchiya, Haruki

    2013-01-01

    This paper introduces the Global Resource Balance Table (GRBT), which is an extension of the energy balance tables that expresses the relationships between energy, materials and the environment. The material division of the GRBT includes steel, cement, paper, wood and grain. In contrast, the environmental division of the GRBT includes oxygen, CO 2 and methane. The transaction division rows in the GRBT include production, conversion, end use and stock. Each cell of the GRBT contains the quantities of the respective resources that were generated or consumed. The relationships between the cells were constructed from the laws of conservation of the materials and energy. We constructed a GRBT for 2007 and discussed the increasing air temperature due to waste heat and the CO 2 equivalent from human breathing. The GRBT is a comprehensive integrated table that represents the resources that are consumed by human activities and is useful for energy and environmental studies. - Highlights: • We extended energy balance table and introduced Global Resource Balance Table. • It shows relationships between energy, materials and the environment. • The material division includes steel, cement, paper, wood and grain. • The environmental division includes oxygen, CO 2 and methane. • We discussed on waste heat and CO 2 emission by human breathing

  1. Water temperature impacts water consumption by range cattle in winter

    Science.gov (United States)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  2. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  3. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  4. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  5. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  6. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  7. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  8. Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures

    Science.gov (United States)

    Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.

    2018-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during

  9. Physiological and morphological effects of high water tables on early growth of giant reed (Arundo donax), elephant grass (Pennisetum purpureum), energycane and sugarcane (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, Stephen Peter [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed (Arundo donax), elephant grass (Pennisetum Purpureum), energycane (Saccharum spp.), and sugarcane (Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the water table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and

  10. Chlorine international thermodynamic tables of the fluid state

    CERN Document Server

    Angus, S; de Reuck, K M

    1985-01-01

    Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i

  11. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  12. The effect of water temperature and water hardness on reproductive indicators Hemichromis lifalili

    Directory of Open Access Journals (Sweden)

    Ján Kopecký

    2014-05-01

    Full Text Available In this work we investigated the effect of temperature and water hardness on reproductive indicators Hemichromis lifalili in aquarium conditions. From bred individuals we have compiled three breeding pairs, which we placed in aquariums with different temperature and water hardness. In experimental pairs, we evaluated these reproductive variables: number of spawning eggs, the number of hatched, dead and bred individuals. Experiments showed that 28 °C, and 8 °N water hardness increased the reproductive activity of fish and the quantity of fish hatched. Decreasing temperature in the tanks was proportionally increased the number of unhatched individuals, and the mortality. The mortality was 88 pieces per swab at 25 °C. Water at 28 °C and 8 °N hardness was reached swab to 1200 eggs pieces.

  13. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  14. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  15. Olive fly (Bactrocera oleae) activity, fruit infestation and temperature in an organic table olive orchard in southern Crete

    OpenAIRE

    Volakakis, Mr N.; Eyre, Dr M.D.; Kabourakis, Dr E.; Leifert, Prof C.

    2008-01-01

    Olive fly activity and olive fruit infestation was monitored in a table olive orchard in southern Crete throughout most of 2006 using McPhail traps. Flies were trapped weekly for 40 weeks, starting at the beginning of February. The fly data was split into 10 four-week periods. Male, female and total fly activity was significantly related to sampling period, maximum temperature and relative humidity but the pattern of catches was not consistent. Activity increased from February until July but ...

  16. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  17. Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: Effects on transcriptome profiling.

    Directory of Open Access Journals (Sweden)

    Raquel Rosales

    2016-07-01

    Full Text Available Table grapes (Vitis vinifera cv. Cardinal are highly perishable and their quality deteriorates during postharvest storage at low temperature mainly because of sensitivity to fungal decay and senescence of rachis. The application of a 3-day CO2 treatment (20 kPa CO2 + 20 kPa O2 + 60 kPa N2 at 0ºC reduced total decay and retained fruit quality in early and late-harvested table grapes during postharvest storage. In order to study the transcriptional responsiveness of table grapes to low temperature and high CO2 levels in the first stage of storage and how the maturity stage affect these changes, we have performed a comparative large-scale transcriptional analysis using the custom-made GrapeGen GeneChip®. In the first stage of storage, low temperature led to a significantly intense change in grape skin transcriptome irrespective of fruit maturity, although there were different changes within each stage. In the case of CO2 treated samples, in comparison to fruit at time zero, only slight differences were observed. Functional enrichment analysis revealed that major modifications in the transcriptome profile of early- and late-harvested grapes stored at 0ºC are linked to biotic and abiotic stress-responsive terms. However, in both cases there is a specific reprogramming of the transcriptome during the first stage of storage at 0ºC in order to withstand the cold stress. Thus, genes involved in gluconeogenesis, photosynthesis, mRNA translation and lipid transport were up-regulated in the case of early-harvested grapes, and genes related to protein folding stability and intracellular membrane trafficking in late-harvested grapes. The beneficial effect of high CO2 treatment maintaining table grape quality seems to be an active process requiring the induction of several transcription factors and kinases in early-harvested grapes, and the activation of processes associated to the maintenance of energy in late-harvested grapes.

  18. Low Temperature and Short-Term High-CO2 Treatment in Postharvest Storage of Table Grapes at Two Maturity Stages: Effects on Transcriptome Profiling.

    Science.gov (United States)

    Rosales, Raquel; Romero, Irene; Fernandez-Caballero, Carlos; Escribano, M Isabel; Merodio, Carmen; Sanchez-Ballesta, M Teresa

    2016-01-01

    Table grapes (Vitis vinifera cv. Cardinal) are highly perishable and their quality deteriorates during postharvest storage at low temperature mainly because of sensitivity to fungal decay and senescence of rachis. The application of a 3-day CO2 treatment (20 kPa CO2 + 20 kPa O2 + 60 kPa N2) at 0°C reduced total decay and retained fruit quality in early and late-harvested table grapes during postharvest storage. In order to study the transcriptional responsiveness of table grapes to low temperature and high CO2 levels in the first stage of storage and how the maturity stage affect these changes, we have performed a comparative large-scale transcriptional analysis using the custom-made GrapeGen GeneChip®. In the first stage of storage, low temperature led to a significantly intense change in grape skin transcriptome irrespective of fruit maturity, although there were different changes within each stage. In the case of CO2 treated samples, in comparison to fruit at time zero, only slight differences were observed. Functional enrichment analysis revealed that major modifications in the transcriptome profile of early- and late-harvested grapes stored at 0°C are linked to biotic and abiotic stress-responsive terms. However, in both cases there is a specific reprogramming of the transcriptome during the first stage of storage at 0°C in order to withstand the cold stress. Thus, genes involved in gluconeogenesis, photosynthesis, mRNA translation and lipid transport were up-regulated in the case of early-harvested grapes, and genes related to protein folding stability and intracellular membrane trafficking in late-harvested grapes. The beneficial effect of high CO2 treatment maintaining table grape quality seems to be an active process requiring the induction of several transcription factors and kinases in early-harvested grapes, and the activation of processes associated to the maintenance of energy in late-harvested grapes.

  19. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  1. Low temperature barrier wellbores formed using water flushing

    Science.gov (United States)

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  2. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  3. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  4. The leaching of radioactivity from highly radioactive glass blocks buried below the water table: fifteen years of results

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-03-01

    The results from two test burials of high-level fission products incorporated into nepheline syenite glass indicate that the nuclear wastes from fuel processing for a 30,000 MWe nuclear power industry could be incorporated into such glass and stored beneath the water table in the waste management area of Chalk River Nuclear Laboratories (CRNL) without harm to the environment. (author)

  5. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  6. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Science.gov (United States)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  7. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  8. Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5

    Science.gov (United States)

    Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).

  9. Relationship between water temperature predictability and aquatic ...

    African Journals Online (AJOL)

    Macroinvertebrate taxonomic turnover across seasons was higher for sites having lower water temperature predictability values than for sites with higher predictability, while temporal partitioning was greater at sites with greater temperature variability. Macroinvertebrate taxa responded in a predictable manner to changes in ...

  10. Fertility life table of Trichogramma pretiosum and Trichogramma acacioi on eggs of Anagasta kuehniella at different temperatures

    Directory of Open Access Journals (Sweden)

    Pratissoli Dirceu

    2004-01-01

    Full Text Available Species of the Trichogramma genus are among the most important ones for biological control. The objective of this research was to evaluate parasitism potential of two species of Trichogramma on eggs of Anagasta kuheniella through life fertility table, at temperatures between 15ºC and 35ºC. These species were collected in the State of Espírito Santo parasitising eggs of the avocado defoliator Nipteria panacea. Trichogramma pretiosum and T. acacioi showed adequate reproductive potential between 15ºC and 35ºC which indicates possibilities of using them in biological control programs in avocado plantations.

  11. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  12. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Directory of Open Access Journals (Sweden)

    Bąk Joanna

    2018-01-01

    Full Text Available At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water – air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  13. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Science.gov (United States)

    Bąk, Joanna

    2018-02-01

    At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  14. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  15. Perspectives on Temperature in the Pacific Northwest's Fresh Waters

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.

    1999-06-01

    This report provides a perspective on environmental water temperatures in the Pacific Northwest as they relate to the establishment of water temperature standards by the state and their review by the US Environmental Protection Agency. It is a companion to other detailed reviews of the literature on thermal effects on organisms important to the region. Many factors, both natural and anthropogenic, affect water temperatures in the region. Different environmental zones have characteristic temperatures and mechanisms that affect them. There are specific biotic adaptations to environmental temperatures. Life-cycle strategies of salmonids, in particular, are attuned to annual temperature patterns. Physiological and behavioral requirements on key species form the basis of present water temperature criteria, but may need to be augmented with more concern for environmental settings. There are many issues in the setting of standards, and these are discussed. There are also issues in compliance. Alternative temperature-regulating mechanisms are discussed, as are examples of actions to control water temperatures in the environment. Standards-setting is a social process for which this report should provide background and outline options, alternatives, limitations, and other points for discussion by those in the region.

  16. Income and irrigation water use efficiency under climate change: An application of spatial stochastic crop and water allocation model to Western Uzbekistan

    Directory of Open Access Journals (Sweden)

    Ihtiyor Bobojonov

    2016-01-01

    Results show farmers’ income could fall by as much as 25% with a 3.2 °C temperature increase and a 15% decline in irrigation. Farmers located in the tail end of the irrigation system could lose an even greater share of their revenues. A more conservative increase in temperature could increase farmer income by as much as 46% with a 2.2° temperature increase and only 8% decline in irrigation water since some crops benefit from extended vegetation periods. Under both pessimistic and optimistic scenarios, environmental challenges due to shallow groundwater tables may improve associated with enhanced water use efficiency.

  17. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. The influence of increased temperature of waters from Cernavoda NPP on underground water sources

    International Nuclear Information System (INIS)

    Isbasoiu, Eugen Constantin; Marinov, Anca Mariana; Moraru, Carina Nicoleta; Rizescu, Gheorghe

    1997-01-01

    The operation of Cernavoda NPP implies the change of thermal regime of waters in the Danube-Black Sea channel zone. The Danube water is used to cool the NPP systems before being delivered into channel and used in irrigations. The temperature increase of water in Cernavoda NPP installations is between 7 and 12 deg. C. The negative effects of this warming are: 1. limitation of water use for irrigations; 2. occurrence and persistence of fog in channel area; 3. thermal pollution of underground waters and limitation of underground potable water supply. The paper presents a general approach of thermal pollution problems of an aquifer and a mathematical model of forecasting the underground water temperature variation in Danube-Black Sea channel area. (authors)

  19. High-temperature thermodynamic data for species in aqueous solution. Final report

    International Nuclear Information System (INIS)

    Cobble, J.W.; Murray, R.C. Jr.; Turner, P.J.; Chen, K.

    1982-05-01

    This final report summarizes the results of experimental and theoretical research on the high temperature thermodynamic properties of aqueous species important to nuclear reactor water chemistry. Methods of predicting thermodynamic functions are included for electrolytes up to 300 0 C where experimental data are lacking. Data in the literature are evaluated and tables of important equilibrium constants for 78 reactions encountered in corrosion and precipitation in nuclear reactors are listed up to 300 0 C. Finally, tables of free energy functions from 0 to 300 0 C are given for 56 individual species. These data represented form a major compilation resulting from the most advanced experimental and theoretical methods. Illustrations of the use of the tables are given for problems involving pH control, precipitation, and corrosion. 11 figures, 100 tables

  20. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  1. Biological aspects and life table of Uroleucon ambrosiae (Thomas, 1878 as a function of temperature

    Directory of Open Access Journals (Sweden)

    Auad Alexander Machado

    2003-01-01

    Full Text Available The aphid Uroleucon ambrosiae (Thomas is considered a pest of hidroponically-grown lettuce, but basic and applied information on its control are scarce in Brazil. The aim of this study was to determine the effect of different temperatures on biological aspects and life history of U. ambrosiae (Thomas developing on hydroponic lettuce (Lactuca sativa L. crop. Newly emerged nymphs were placed on 4-cm discs of hydroponic lettuce, var. Verônica, which were maintained on 5-cm Petri dishes, at temperatures of 15, 20 and 25ºC and 14 h photophase, and inside a greenhouse, within micro-cages at room temperature. The duration of development in all nymphal stages varied inversely to temperature. Nymphs maintained at 20ºC and 25ºC, had similar development period. However, at fluctuating greenhouse temperatures (daily mean = 21ºC, different results were obtained, which was also true for the pre-reproductive, reproductive and post-reproductive periods. Daily and total fertilities at 20ºC were better in comparison to the other treatments. The highest mortality rate of aphids occurred under greenhouse conditions. The production of 1.28 nymphs per female per day, the time needed for the population to double in size (TD=2.77days, and the intrinsic rate of population increase (r m=0.25, were similar for in insects maintained at 20 and 25ºC. On the other hand, time interval between generations (T and the net reproductive rate (Ro were higher at 20ºC. In the greenhouse, even though T was similar to laboratory conditions at 20 and 25ºC, the R0, r m and l parameters were lower and TD was higher. Based on biological aspects, fertility and life expectancy tables, constant temperature of 20ºC is the most suitable for U. ambrosiae.

  2. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  3. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  4. Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil

    Science.gov (United States)

    Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.

    2012-11-01

    Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

  5. Geothermal data-base study: mine-water temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, D.C.; Sonderegger, J.L.

    1978-07-01

    Investigation of about 1,600 mines and prospects for perennial discharge resulted in the measurement of temperature, pH, specific conductance, and discharge at 80 sites to provide information for a geothermal data base. Measurements were made in the fall, winter, and late spring or early summer to provide information about seasonal variability. None of the temperatures measured exceeded the mean annual air temperature by 15/sup 0/F, but three areas were noted where discharges were anomalously warm, based upon high temperatures, slight temperature variation, and quantity of discharge. The most promising area, at the Gold Bug mine in the Little Rockies, discharges water averaging 7.3/sup 0/C (12.1/sup 0/F) above the mean annual air temperature. The discharge may represent water heated during circulation within the syenite intrusive body. If the syenite is enriched in uranium and thorium, an abnormal amount of heat would be produced by radioactive decay. Alternatively, the water may move through deep permeable sedimentary strata, such as the Madison Group, and be discharged to the surface through fractures in the pluton.

  6. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  7. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  8. Tables of thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units

  9. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  10. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  11. High-resolution gulf water skin temperature estimation using TIR/ASTER

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; ManiMurali, R.; Mahender, K.

    to separate geomorphic features. It is demonstrated that high resolution water skin temperature of small water bodies can be determined correctly, economically and less laboriously using space-based TIR/ASTER and that estimated temperature can be effectively...

  12. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  14. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    Science.gov (United States)

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  15. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  16. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  17. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  18. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  19. Spatial variation of nitrogen pollution of the water table at Oued M'Zab (Northern Algerian Sahara)

    Science.gov (United States)

    Benhedid, H.; Bouhoun, M. Daddi

    2018-05-01

    The aim of our work is the study of spatial variations of the water table pollution of Oued M'Zab, in order to determine their abilities of use and the posed problems of degradation. The methodological approach we adopted is to make a spatial study of the variability of nitrogen pollution, as well as to classify water quality according to international standards. The main results obtained in this research show that NH4+ range from 0 to 0,143 mg.l-1 with an average of 0,048 ± 0,039 mg.l-1, the NO2- from 0 to 0,209 mg.l-1 give an average of 0,007 ± 0,033 mg.l-1, and the NO3- vary between 14,264 and 143,465 mg.l-1, with a mean value 54,594 ± 30,503 mg.l-1. According to W.H.O. standards, the majority of these waters are classified as polluted and not drinkable. Our research shows a degradation of the underground water resources in M'Zab Valley. It resulted that it is essential to regulate the use of water and set out other adjustments in order to safeguard the underground water resources so as to promote sustainable development in the valley of M'Zab.

  20. Nanostructural studies on monoelaidin-water systems at low temperatures.

    Science.gov (United States)

    Kulkarni, Chandrashekhar V

    2011-10-04

    In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(β) and L(β*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications. © 2011 American Chemical Society

  1. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  2. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.

    Science.gov (United States)

    Koseki, Shigenobu; Isobe, Seiichiro

    2005-10-25

    The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.

  3. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    Science.gov (United States)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  4. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  5. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  6. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Directory of Open Access Journals (Sweden)

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  7. Temperature dependence of HU values for various water equivalent phantom materials

    International Nuclear Information System (INIS)

    Homolka, P.; Nowotny, R.; Gahleitner, A.

    2002-01-01

    The temperature dependence of water equivalent phantom materials used in radiotherapy and diagnostic imaging has been investigated. Samples of phantom materials based on epoxy resin, polyethylene, a polystyrene-polypropylene mixture and commercially available phantom materials (Solid Water TM , Gammex RMI and Plastic Water TM , Nuclear Associates) were scanned at temperatures from 15 to 40 deg. C and HU values determined. At a reference temperature of 20 deg. C materials optimized for CT applications give HU values close to zero while the commercial materials show an offset of 119.77 HU (Plastic Water) and 27.69 HU (Solid Water). Temperature dependence was lowest for epoxy-based materials (EPX-W: -0.23 HU deg. C -1 ; Solid Water: -0.25 HU deg. C -1 ) and highest for a polyethylene-based material (X0: -0.72 HU deg. C -1 ). A material based on a mixture of polystyrene and polypropylene (PSPP1: -0.27 HU deg. C -1 ) is comparable to epoxy-based materials and water (-0.29 HU deg. C -1 ). (author)

  8. Groundwater table rise in northwest Nile Delta:Problems and Recommendations

    International Nuclear Information System (INIS)

    El-Sayed, S. A.; Atta, E. R.; Al-Ashri, K. M.

    2012-01-01

    The present research work is devoted to evaluate the surrounding zones of a site which could be selected for construction of radiation facility. It is a model study to investigate the factors that protect sites from the risks of groundwater rising. The study area (village 17 and the related cultivated lands) lies in Bangar El Sukar area, south Alexandria Governorate. The area is suffering from the groundwater table rise phenomenon and its relevant problems (water logging, soil salinization and degradation of buildings). This water table rise is investigated using the hydrogeological, hydrogeochemical and isotopic approaches. The groundwater table of the Pleistocene-Holocene aquifer rises due to uncontrolled irrigation and drainage systems and the lack of municipal sewage system as well as soil and aquifer characteristics. The aquifer is being shallow and exists under semi-confined conditions. It consists of heterogeneous deposits (very fine to coarse grained sand, clay and calcareous rock fragments). Depths to water vary between 0.85 m and 1.44 m from ground surface. The groundwater (TDS 3331 mg/l, averagely) is a mixture of both the fresh water of the irrigation canals (TDS = 544.2 mg/l) and the more saline water (TDS = 5505 mg/l, averagely) of the drains used in irrigation. Nile water is considered the main recharge source to these types of waters. The recharge to the aquifer occurs by seepage from the canals and/or by the infiltration of the return flow after irrigation. The infiltration rate is moderately rapid (ranging from 1.8 mm/min to 2.6 mm/min). The groundwater moves from south to north with an average hydraulic gradient reaching about 1.7 x 10-3. The average rate of groundwater flow through the aquifer varies between 1799 m2/day and 543.65 m2/day. In order to avoid the risks related to the problem and its environmental impacts, proper recommendations are presented. Suggested design for a constructed net of drainage system and pumped well is presented in

  9. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2013-01-01

    Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...

  10. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  11. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  12. Climate-induced changes in river water temperature in North Iberian Peninsula

    Science.gov (United States)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  13. A novel HTS magnetic levitation dining table

    Science.gov (United States)

    Lu, Yiyun; Huang, Huiying

    2018-05-01

    High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.

  14. RECOVERY, A Mathematical Model to Predict the Temporal Response of Surface Water to Contaminated Sediments.

    Science.gov (United States)

    1994-11-01

    NewEngl d U.S. Art RAYo WAERAYaEPRIENCSATO Incudebilio grapicr•efe "M ( p prgam) 3dCOeTt L -E nv i Eroa BORpR of E. Nw Y ri.ARm E er Wter...constant = 8.206 x 10.5 atm m3/(gmole-kelvins) T = absolute temperature, kelvins. A temperature of 298K (25 °C) is assumed in the model. The parameter...bottom sediment material are shown in Table 3. Table 2 Concentrations of DDE and Lindane In Water Column Sampling Day DDE, ppt, X ± SD Undane, ppt, X

  15. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  16. Upper Bound Solution for the Face Stability of Shield Tunnel below the Water Table

    Directory of Open Access Journals (Sweden)

    Xilin Lu

    2014-01-01

    Full Text Available By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesion c, surcharge load q, and soil gravity γ multiplied by their corresponding coefficients Nc, Nq, and Nγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.

  17. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  18. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  19. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  20. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  1. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  2. Water temperature forecasting and estimation using fourier series and communication theory techniques

    International Nuclear Information System (INIS)

    Long, L.L.

    1976-01-01

    Fourier series and statistical communication theory techniques are utilized in the estimation of river water temperature increases caused by external thermal inputs. An example estimate assuming a constant thermal input is demonstrated. A regression fit of the Fourier series approximation of temperature is then used to forecast daily average water temperatures. Also, a 60-day prediction of daily average water temperature is made with the aid of the Fourier regression fit by using significant Fourier components

  3. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    Science.gov (United States)

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  4. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  5. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  6. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  7. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  8. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    Science.gov (United States)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  9. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N [State University of New York at Buffalo, Buffalo, NY (United States); Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  10. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    International Nuclear Information System (INIS)

    Islam, N; Podgorsak, M

    2016-01-01

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  11. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  12. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  13. TableMaker: An Excel Macro for Publication-Quality Tables

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-04-01

    Full Text Available This article introduces TableMaker, a Microsoft Excel macro that produces publicationquality tables and includes them as new sheets in workbooks. The macro provides an intuitive graphical user interface that allows for the full customization of all table features. It also allows users to save and load table templates, and thus allows layouts to be both reproducible and transferable. It is distributed in a single computer file. As such, the macro is easy to share, as well as accessible to even beginning and casual users of Excel. Since it allows for the quick creation of reproducible and fully customizable tables, TableMaker can be very useful to academics, policy-makers and businesses by making the presentation and formatting of results faster and more efficient.

  14. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  15. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  17. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mortality table construction

    Science.gov (United States)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  19. Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014

    Science.gov (United States)

    This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators

  20. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  1. TABLE TENNIS CLUB

    CERN Document Server

    TABLE TENNIS CLUB

    2010-01-01

    2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...

  2. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  3. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    The crop water requirement (CWR) depends on several factors including temperature and ...... infrastructure for collection, treatment and recycling of wastewater (MOEP, 2010 .... blue and grey water footprint of crops and derived crop products ...

  4. Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups

    Science.gov (United States)

    Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randy Kolka; Carl P. J. Mitchell

    2017-01-01

    Climate change is likely to significantly affect the hydrology, ecology, and ecosystem function of peatlands, with potentially important but unclear impacts on mercury mobility within and transport from peatlands. Using a full-factorial mesocosm approach, we investigated the potential impacts on mercury mobility of water table regime changes (high and low) and...

  5. Analyzing and Improving the Water-Table Fluctuation Method of Estimating Groundwater Recharge: Field Considerations Patros, T.B. and Parkin, G.W., School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

    Science.gov (United States)

    Patros, T.; Parkin, G. W.

    2012-12-01

    The focus of the project is on measuring and quantifying groundwater recharge (GWR) using the water-table fluctuation (WTF) method. This method requires measuring the change in water-table (WT) height (Δh) during recharge (R) events and volumetric soil specific yield water content (θsy), (&/or) perhaps more correctly volumetric soil fillable water content (θf). The rise in WT can also result from other non-precipitation-related WTF causes (e.g., Lisse effect, temperature variations, barometric, lateral flow, Reverse Wieringermeer effect, encapsulated air, pumping), which must be counted for. The measurement of the storativity (S) terms (θsy) and/or θf) is, indeed, not clear-cut and often they are taken as being constant with depth, time, WT movement (Drying-Wetting & Freezing-Thawing) history and heterogeneity. In fact, these two terms (θsy & θf) are controversial in their definition, thus in their use, in the literature and may either overestimate the R, when using θsy, or underestimate it, when using θf. To resolve some of these questions, a novel-automated method is under development, at the University of Guelph's Elora Research Station (ERS) and Arboretum, along with a novel multi-event time series model. The long-term expected outcomes and significance of this study are; 1. Establishing accuracy in defining and evaluating the θsy and θf and using them accordingly in estimating GWR with the WTF method in order to overcome some of the existing substantial gaps in our knowledge of groundwater (GW) storage variation. 2. Obtaining GWR measurements at the local scale on a year-round basis, which are currently scarce or even completely lacking for many regions of Ontario and thus would provide a valuable database for guiding development of any policy requiring GWR. 3. Using this database to calibrate and test estimates of the spatial and temporal variability in regional-scale (watershed scale) GWR from approximate statistical techniques or deterministic

  6. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  7. IMPACT OF WATER TEMPERATURE ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2002-08-07

    These tests conducted this past quarter have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels at water temperatures ranging from 7 to 23 C. Percent kill will likely be somewhat lower at very low temperatures, e.g., 7 C, but even at such low temperatures high mussel kill can still be achieved (>70% kill). This is significant because the development of a zebra mussel control method that is efficacious in such a wide range of temperatures broadens its usefulness as a potential commercial product.

  8. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  9. Operational efficiency of ballast water biocides at low water temperatures

    NARCIS (Netherlands)

    Kaag, N.H.B.M.; Sneekes, A.C.

    2015-01-01

    In the period 2013-2015 the effect of two biocides used for the treatment of ballast water has been evaluated at low ambient temperatures. Peraclean® Ocean and sodium hypochlorite were used as biocides. Most of the tests were conducted during winter and early spring at the laboratories of IMARES in

  10. Elekta Precise Table characteristics of IGRT remote table positioning

    International Nuclear Information System (INIS)

    Riis, Hans L.; Zimmermann, Sune J.

    2009-01-01

    Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. Material and methods. The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). Results and discussion. Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion

  11. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  12. AcuTable

    DEFF Research Database (Denmark)

    Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel

    2017-01-01

    In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...

  13. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  14. Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Kunick, Matthias; Kretzschmar, Hans-Joachim [Zittau/Goerlitz Univ. of Applied Sciences, Zittau (Germany). Dept. of Technical Thermodynamics; Berry, Ray A.; Martineau, Richard C. [Idaho National Laboratory, Idaho Falls, ID (United States). Nuclear Science and Technology; Gampe, Uwe [Dresden Univ. of Technology (Germany). Chair of Thermal Power Machinery and Plants

    2017-07-15

    The numerical simulation of thermalhydraulic processes in nuclear power plants requires very accurate and extremely fast algorithms for calculating the thermophysical properties of water and steam. In order to provide such algorithms, the International Association for the Properties of Water and Steam (IAPWS) has adopted the new ''IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)''. In this article, the SBTL method is applied to property functions of specific volume and specific internal energy (v,e) based on the scientific formulation IAPWS-95 and the latest IAPWS formulations for transport properties. From the newly generated SBTL functions, thermodynamic and transport properties as well as their derivatives and inverse functions are calculable in the fluid range of state for pressures up to 100 MPa and for temperatures up to 1273 K, including the metastable liquid and the metastable vapor regions. The SBTL functions reproduce the underlying formulations with an accuracy of 10-100 ppm and significantly reduced computing times. The SBTL method has been implemented into the nuclear reactor system safety analysis code RELAP-7 [2] to consider the real fluid behavior of water and steam in a novel 7-equation two-phase flow model.

  15. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  16. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Water temperature can affect many physiological processes during plant growth and development. Temperatures below or above optimum levels may influence plant metabolic activities positively or negatively. This may include accumulation of different metabolites such as phenolic compounds, reactive oxygen species ...

  17. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  18. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  19. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  20. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  1. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  2. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  3. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  4. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  5. On the behavior of water at subfreezing temperatures in a protein crystal: evidence of higher mobility than in bulk water.

    Science.gov (United States)

    Wang, Dongqi; Böckmann, Anja; Dolenc, Jožica; Meier, Beat H; van Gunsteren, Wilfred F

    2013-10-03

    NMR experiments have shown that water molecules in the crystal of the protein Crh are still mobile at temperatures well below 273 K. In order to investigate this water anomaly, a molecular dynamics (MD) simulation study of crystalline Crh was carried out to determine the mobility of water in this crystal. The simulations were carried out at three temperatures, 150, 200, and 291 K. Simulations of bulk water at these temperatures were also done to obtain the properties of the simple point charge (SPC) water model used at these temperatures and to allow a comparison of the properties of water in the Crh crystal with those of bulk water at the same temperatures. According to the simulations, water is immobilized at 150 K both in crystal and in bulk water. As expected, at 291 K it diffuses and rotates more slowly in the protein crystal than in bulk water. However, at 200 K, the translational and rotational mobility of the water molecules is larger in the crystal than in bulk water. The enhancement of water mobility in the crystal at 200 K was further investigated by MD simulations in which the backbone or all protein atoms were positionally restrained, and in which additionally the electrostatic protein-water interactions were removed. Of these changes in the environment of the water molecules, rigidifying the protein backbones slightly enhanced water diffusion, while it slowed down rotation. In contrast, removal of electrostatic protein-water interactions did not change water diffusion but enhanced rotational motion significantly. Further investigations are required to delineate particular features of the protein crystal that induce the anomalous behavior of water at 200 K.

  6. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  7. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  8. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H 2 O 2 ) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H 2 O 2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H 2 O 2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H 2 O 2 at 453 and 561 K. To minimize H 2 O 2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H 2 O 2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam 1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide

  9. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  10. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  11. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  12. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  13. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Science.gov (United States)

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  14. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  15. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  16. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  17. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  19. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  20. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal.

    Science.gov (United States)

    Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.

  1. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal

    Science.gov (United States)

    Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527

  2. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  3. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  4. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  5. Temperature impacts on the water year 2014 drought in California

    Science.gov (United States)

    Shukla, Shraddhanand; Safeeq, Mohammad; AghaKouchak, Amir; Guan, Kaiyu; Funk, Christopher C.

    2015-01-01

    California is experiencing one of the worst droughts on record. Here we use a hydrological model and risk assessment framework to understand the influence of temperature on the water year (WY) 2014 drought in California and examine the probability that this drought would have been less severe if temperatures resembled the historical climatology. Our results indicate that temperature played an important role in exacerbating the WY 2014 drought severity. We found that if WY 2014 temperatures resembled the 1916–2012 climatology, there would have been at least an 86% chance that winter snow water equivalent and spring-summer soil moisture and runoff deficits would have been less severe than the observed conditions. We also report that the temperature forecast skill in California for the important seasons of winter and spring is negligible, beyond a lead-time of one month, which we postulate might hinder skillful drought prediction in California.

  6. Dimensioning the Irrigation Variables for Table Grape Vineyards in Litho-soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2010-10-01

    Full Text Available The pedo-climatic and farm characteristics of Bari’s hinterland have allowed for the diffusion of prestigious table viticulture. The typical “tendone” vineyard structure is set up after managing the surface of the soil. The karstic nature of the region and the thermo-rainfall trend during the vegetative season impede the vineyard from producing adequately without irrigation. Given the importance of water contributions to table grapes, it is necessary to correctly measure the water variables for economic and environmental reasons. Farmers often irrigate according to “fixed” turns and volumes, against the rules of “good irrigation practice” which consider monitoring the water status of the soil or plant as a prerequisite of irrigation scheduling. During this experiment, two methods of irrigation management were compared: “fixed-turn” and “on demand”. For “on demand” irrigation, the irrigation volume is calculated on the basis of the soil water status (estimated according to the “water balance” method described in the “Paper n. 56 FAO” and the irrigation is scheduled on the basis of the experimental relationship between “pre-dawn” leaf water potential and the water available in the soil. For this comparison, data from a 2-year “on farm” experimentation, in an area typical of table grape cultivation in Southern Italy, have been used. The results obtained show that, in respect to the “fixed-turn” management, the “on demand” management allows for a 20% reduction in water volumes, without compromising production. The water balance method proved to be a promising criterion for irrigation scheduling in these shallow soils, rich in stones (litho-soils. This only held true when the depth of the soil layer explored by the root system was defined by the “equivalent depth” and not by the actual soil’s depth.

  7. The dynamics of Orimulsion in water with varying salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  8. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  9. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  10. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  11. Body temperature change in live and dead gizzard shad, Dorosoma Cepedianum

    Energy Technology Data Exchange (ETDEWEB)

    Beitinger, T. L.; Thommes, M. M.; Spigarelli, S. A.; Rowland, R. E.

    1975-01-01

    Temperature change kinetics were determined for a sample of 22 gizzard shad, ranging in weight from 13.2 to 467.5 grams. Tests consisted of monitoring the intestinal temperatures of shad transferred between two well aerated water baths held at 9.2 +- 0.13 C (mean and standard error) and 18.7 +- 0.08 C. None of the 22 live shad subjected to the +- ..delta..T of 9.5 C died during exposure. The similarity of double logarithmic regressions of body weight and half-time (Table 1) indicate that neither the direction of exposure nor the state of the test fish greatly influenced temperature change kinetics.

  12. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  13. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  14. Elevated service water temperature systems analysis for a nuclear power plant

    International Nuclear Information System (INIS)

    Lewis, T.; Hurt, W.

    1992-01-01

    This paper describes analyses performed to support the evaluation of the effects of elevated Service Water (SW) temperatures on the operation of a Pressurized Water Reactor. The purpose of the analyses is to provide justification of continued plant operation with SW temperatures up to 5 degrees F (3 degrees C) above the original temperature design limit. The study involved evaluation of the following major components or plant transients: Containment Design Basis Accident (DBA), Emergency Diesel Generator (EDG), Plant Cooldown, Engineered Safety Feature (ESF) Room Coolers, Engineered Safety Feature Pumps, and Assessment for Impact on Normal Operation. The principal objective was related to raising the design maximum temperature of the SW system from 95 degrees F (35 degrees C) to 100 degrees F (38 degrees C). since the Service Water system is safety related, an serves a plant during both normal and design basis conditions, a wide variety of components must be analyzed under various operating modes. The evaluation of systems and components affected by elevated SW temperature is presented, along with conclusions

  15. Monthly tables of measurements. October 2000; Tableaux mensuels des mesures. Octobre 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  16. Application of satellite data to the studies of agricultural meteorology: Relationship between ground temperature from GMS IR data and AMeDAS air temperature

    International Nuclear Information System (INIS)

    Tani, H.; Horiguchi, I.; Motoki, T.

    1984-01-01

    The purpose of the present study is to estimate air temperature in areas where there is no meteorological observation site, using satellite thermal IR data. Surface temperature from GMS IR data derived by eq. (1) was compared with AMeDAS (meteorological observation site) air temperature. The results are summarized as follows: 1) The maximum correlation coefficients between AMeDAS air temperature and surface temperature from GMS IR data is 0.90, the minimum is 0.30 and the mean is 0.60±0.15. 2) The correlation coefficients are affected by the precipitable water and decrease with increasing precipitable Water as shown in Fig. 2. 3) The correlation coefficients for each GMS observed time are better at night and in the morning than during the day (Table 2). 4) Also, the small values of the regression coefficients appear during the day and the large values at night and in the morning (Table 2). 5) The standard deviations which indicated scattering around the regression line are large at 12:00 and 15:00, but small at 06:00 and 09:00 (Table 2). The reason that correlation coefficients, regression coefficients and standard deviations between AMeDAS air temperature and surface temperature from GMS IR data are less during the day than at night and in the morning, is caused by ground conditions because the effects of solar radiation on surface temperature depend on ground surface conditions: plant cover, incline of slope etc. The hourly mean deviation from the regression line for surface temperature was calculated to investigate the characteristic of ground surface conditions for each AMeDAS observation site. AMeDAS observation sites were classified into four types according to the patterns of the hourly mean deviation as shown in Fig. 5. Most of type I were distributed in the plain regions: Ishikari, Konsen and Tokachi. Type II appears in the basin regions and type III on the coast of the Pacific Ocean and the Sea of Okhotsuk. The remaining areas are type IV. The standard

  17. Fundamental Aspects of Water Coolant Radiolysis

    International Nuclear Information System (INIS)

    Christensen, Hilbert

    2006-04-01

    The current state of knowledge of radiolysis in Light Water Reactors (LWR) is presented in this report. High-temperature data for rate constants and primary radiolysis yields have been collected and are shown in tables. Data from different sources have been compared and based on this recommended values have been selected. There is generally a good agreement between g-values for gamma-radiation at ambient temperature from different sources. There are larger discrepancies between results for primary yields from fast neutrons and also for g-values at reactor temperatures. Complete reaction mechanisms, including rate constants at reactor temperatures, from different sources are discussed and shown in tables. Experimentally determined activation energies are also shown, including the temperature range within which they have been determined. In normal cases rate constants at high temperature have been calculated from the rate constant at ambient temperature and the activation energy. Exceptions from this rule are shown and uncertainties have been discussed. The results of a number of radiolysis calculations, carried out for reactor temperatures, are also shown. The results of some sensitivity analyses are discussed. It has been shown that results from radiolysis calculations are rather sensitive to the rate constant ratio k(OH + H 2 )/(k(OH + H 2 O 2 ). The first reaction leads to recombination, whereas the last reaction leads to decomposition. In some cases reactions which are unimportant at ambient temperature may play a role at reactor temperatures. This may be the case for reactions with a low rate constant at ambient temperature in combination with a high activation energy

  18. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... such as porosity and resistance which were supported by images acquired using scanning electron microscopy (SEM). In chapters 6 and 7 the results of the steam electrolysis and pressurised water electrolysis, respectively, are presented and discussed. The steam electrolysis was tested at 130 °C and atmospheric...... needed and hence it has become acute to be able to store the energy. Hydrogen has been identified as a suitable energy carrier and water electrolysis is one way to produce it in a sustainable and environmentally friendly way. In this thesis an introduction to the subject (chapter 1) is given followed...

  19. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  20. Demonstration of anaerobic stabilization of black water in accumulation systems under tropical conditions

    NARCIS (Netherlands)

    Chaggu, E.J.; Sanders, W.; Lettinga, G.

    2007-01-01

    The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the

  1. Evaluation of dosimetric effects caused by the table top of therapy

    International Nuclear Information System (INIS)

    Camargo, Andre Vinicius de; Alvares, Bruno; Fioravante, Gustavo Donisete; Silva, Diego da Cunha Silveira Alves da; Giglioli, Milena; Batista, Felipe Placido; Silva, Lais Bueno da; Radicchi, Lucas Augusto

    2016-01-01

    The attenuation and bolus effect for two tables top from different manufacturers were investigated for 6MV photons. The bolus effect of couch was compared with 0,5cm bolus (water equivalent). Maximum attenuation found in Exact Couch table was 6,9% and the minimum was 0,63%. The rail of Exact Couch, for beam in 180 deg, was observed attenuation of 13,61%. The same way that for attenuation, the surface dose was different for each region of couch Exact Couch and for different components of iBeam evo. The percentage of the dose in the depth of 1,8 mm was greater for table top of Exact Couch (66,2%). The extender of table iBeam evo offered increase dose of 38,3% and it table top of 51,9% in the same depth. The bolus increased surface dose in 61,1%. The results of this study showed that table tops when in contact with surface of the patient may significantly increase surface dose and beam attenuation. (author)

  2. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  3. Monitoring of water quality of selected wells in Brno district

    Directory of Open Access Journals (Sweden)

    Marková Jana

    2016-06-01

    Full Text Available The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová. The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD, calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  4. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NARCIS (Netherlands)

    Paaijmans, K.P.; Heusinkveld, B.G.; Jacobs, A.F.G.

    2008-01-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that

  5. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  6. Tables of thermodynamic functions of a substance at a high concentration of energy

    International Nuclear Information System (INIS)

    Kalitkin, N.N.; Kuz'mina, L.V.

    Detailed tables of the Thomas-Fermi thermodynamic functions and the quantum and exchange corrections of order h 2 for them have been prepared. They are presented in a form that enables us to use them for any element of the periodic system. The tables cover a wide range of volumes- from highly compressed substance to rarefied gas, and temperatures from zero to tens of kilovolts. A comparison is made of the results with experimental data and calculations from more accurate models; the limits of applicability of the tables are evaluated

  7. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  8. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    Science.gov (United States)

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  10. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  11. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    Full Text Available Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated. Nine designed projected climate change scenarios and three future land-use scenarios were integrated into the Hydrological Simulation Program FORTRAN (HSPF model to determine the impact of climate change and land-use on water temperature and dissolved oxygen (DO concentration using basin-wide simulation of river system in Malaysia. The model performance coefficients showed a good correlation between simulated and observed streamflow, water temperature, and DO concentration in a monthly time step simulation. The Nash–Sutcliffe Efficiency for streamflow was 0.88 for the calibration period and 0.82 for validation period. For water temperature and DO concentration, data from three stations were calibrated and the Nash–Sutcliffe Efficiency for both water temperature and DO ranged from 0.53 to 0.70. The output of the calibrated model under climate change scenarios show that increased rainfall and air temperature do not affects DO concentration and water temperature as much as the condition of a decrease in rainfall and increase in air temperature. The regression model on changes in streamflow, DO concentration, and water temperature under the climate change scenarios illustrates that scenarios that produce high to moderate streamflow, produce small predicted change in water temperatures and DO concentrations compared with the scenarios that produced a low streamflow. It was observed that climate change slightly affects the relationship between water temperatures and DO concentrations in the tropical rivers that we

  12. Estimation of reactor pool water temperature after shutdown in JRR-3M

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Sato, Mitsugu; Kakefuda, Kazuhiro

    1999-01-01

    The reactor pool water temperature increasing by the decay heat was estimated by calculation. The reactor pool water temperature was calculated by increased enthalpy that was estimated by the reactor decay heat, the heat released from the reactor biological shielding concrete, reactor pool water surface, the heat conduction from the canal and the core inlet piping. These results of calculation were compared with the past measured data. As the results of estimation, after the JRR-3M shutdown, the calculated reactor pool temperature first increased sharply. This is because the decay heat was the major contribution. And then, rate of increased reactor pool temperature decreased. This is because the ratio of heat released from reactor biological shielding concrete and core inlet piping to the decay heat increased. Besides, the calculated reactor pool water temperature agreed with the past measured data in consequence of correcting the decay heat and the released heat. The corrected coefficient k 1 of decay heat was 0.74 - 0.80. And the corrected coefficient k 2 of heat released from the reactor biological shielding concrete was 3.5 - 4.5. (author)

  13. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  14. Correction: Whiley, H., et al. Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC along Potable Water Distribution Pipelines. Int. J. Environ. Res. Public Health 2014, 11, 7393–7405

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2014-11-01

    Full Text Available The authors wish to add the following amendments and corrections to their paper published in IJERPH [1].Page 7398, Table 1: The average water temperature measured in summer is 24.3 °C not 4.3 °C. The correct Table 1 should therefore be: [...

  15. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  16. Construction, calibration, and validation of the RBM10 water temperature model for the Trinity River, northern California

    Science.gov (United States)

    Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.

    2016-03-31

    We constructed a one-dimensional daily averaged water-temperature model to simulate Trinity River temperatures for 1980–2013. The purpose of this model is to assess effects of water-management actions on water temperature and to provide water temperature inputs for a salmon population dynamics model. Simulated meteorological data, observed streamflow data, and observed water temperatures were used as model inputs to simulate a continuous 34-year time series of historical daily mean water temperature at eight locations along 112.2 river miles from Lewiston Dam near Weaverville, California, downstream to the Klamath River confluence. To demonstrate the utility of the model to inform management actions, we simulated three management alternatives to assess the effects of bypass flow augmentation in a drought year, 1994, and compared those results to the simulated historical baseline, referred to as the “No Action” alternative scenario. Augmentation flows from the Lewiston Dam bypass consist of temperature-controlled releases capable of cooling downstream water temperatures in hot times of the year, which can reduce the probability of disease outbreaks in fish populations. Outputs from the Trinity River water-temperature model were then used as inputs to an existing water-temperature model of the Klamath River to evaluate the effect of augmentation flow releases on water temperatures in the lower Klamath River. 

  17. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  18. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  19. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  20. Calculation of plate temperatures in a Mk 4 LEU fuel element

    International Nuclear Information System (INIS)

    Haack, K.

    1991-10-01

    A calculation method for estimating the axial temperature distributions of each tube in each of the 26 fuel elements of the DR 3 core is described and demonstrated. With input data for fuel element power, D 2 O outlet temperature and main D 2 O circulator combination, a computer code calculates all important temperatures in the fuel element. Preface to Second Edition Oct. 1991. The second edition is based on the more reliable thermophysical heavy water properties made available by the investigations of Professor J. Bukovsky. The values in the tables are replaced and a new set of fuel element temperature curves is enclosed as an example of the temperature distributions in a low enriched uranium (19,8% 235 U as U 3 Si 2 ). (author) 11 tabs., 32 ills., 9 refs

  1. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  2. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  3. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  4. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Steam table routines for the simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Hall, C.A.; Mutafelija, B.A.; Rapp, J.P.

    1976-01-01

    The dynamic simulation of nuclear power generating stations requires evaluation of a large number of steam and water properties at every integration time step. Some of the interpolation/approximation methods presently used are described with particular emphasis on the use of the bilinear transfinite interpolation method. The fundamental requirements for the steam table routines are outlined and different approaches are compared. The superiority of the bilinear transfinite interpolation method is discussed. The use of the steam table functions in real-time simulation is of particular interest

  6. Improvement of the skeleton tables for calculation of the critical heat load

    International Nuclear Information System (INIS)

    Gotovskij, M.A.; Kvetnyj, M.A.

    2002-01-01

    Paper presents analysis of drawbacks of the skeleton tables of the critical heat flows applied in calculated heat and hydraulic codes. Paper demonstrates the necessity to take account of specific nature of mechanisms of dryout crisis, of boiling crisis at slow mass rates and the range of small underheatings up to temperature of saturation. Attention is drawn to necessity of detailed account of the natural limitations of the application field of the skeleton tables [ru

  7. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table

    Directory of Open Access Journals (Sweden)

    Yuya Ono

    2017-08-01

    Full Text Available Interest in the impacts of water use in the life cycle of products and services are increasing among various stakeholders. The water footprint is a tool to identify critical and effective points for reducing the impact of water use through the entire life cycle of products, services, and organizations. The purpose of this study was to develop a water consumption inventory database that focused on identifying of Asian water consumption using an input-output (IO framework. An Asia International Input-Output table (AIIO was applied in this study. The amount of water consumption required for agricultural products was estimated by modeling; for other sectors it was estimated from statistical reports. The intensities of direct water consumption in each sector were calculated by dividing the amount of water consumption by the domestic production. Based on the IO analysis using Leontief’s inverse matrix, the intensities of water consumption from cradle to gate were estimated for all goods and services. There was high intensity of water consumption in the primary industry sectors, together with a high dependency on rainwater as an input water source. The water consumption intensities generally showed a larger reduction in secondary sectors, in comparison with the tertiary sectors, due to the use of recycled water. There were differences between this study and previous studies due to the use of site-specific production data and the temporal resolution of crop production. By considering site-specific conditions, it is expected that the dataset developed here can be used for estimating the water footprint of products, services, and organizations in nine countries (Japan, South Korea, China, Taiwan, Thailand, the Philippines, Malaysia, Singapore, Indonesia, and USA.

  8. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    Science.gov (United States)

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  9. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  10. Symbol Tables and Branch Tables: Linking Applications Together

    Science.gov (United States)

    Handler, Louis M.

    2011-01-01

    This document explores the computer techniques used to execute software whose parts are compiled and linked separately. The computer techniques include using a branch table or indirect address table to connect the parts. Methods of storing the information in data structures are discussed as well as differences between C and C++.

  11. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    Erradi, Lahoussine.

    1982-02-01

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO 2 and UO 2 -PuO 2 lattice reactivity temperature coefficient continuous measurements between 20 0 C and 300 0 C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235 U and 238 U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235 U and 238 U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data [fr

  12. The corrosion behavior of hafnium in high-temperature-water environments

    Energy Technology Data Exchange (ETDEWEB)

    Rishel, D.M.; Smee, J.D.; Kammenzind, B.F.

    1999-10-01

    The high-temperature-water corrosion performance of hafnium is evaluated. Corrosion kinetic data are used to develop correlations that are a function of time and temperature. The evaluation is based on corrosion tests conducted in out-of-pile autoclaves and in out-of-flux locations of the Advanced Test Reactor (ATR) at temperatures ranging from 288 to 360 C. Similar to the corrosion behavior of unalloyed zirconium, the high-temperature-water corrosion response of hafnium exhibits three corrosion regimes: pretransition, posttransition, and spalling. In the pretransition regime, cubic corrosion kinetics are exhibited, whereas in the posttransition regime, linear corrosion kinetics are exhibited. Because of the scatter in the spalling regime data, it is not reasonable to use a best fit of the data to describe spalling regime corrosion. Data also show that neutron irradiation does not alter the corrosion performance of hafnium. Finally, the data illustrate that the corrosion rate of hafnium is significantly less than that of Zircaloy-2 and Zircaloy-4.

  13. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    Science.gov (United States)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  14. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    Science.gov (United States)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the

  15. Thermodynamic properties of mineral compounds (tables); Proprietes thermodynamiques des composes mineraux (tables)

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, P. [Lille-1 Univ., Lab. de Metallurgie Physique, UMR CNRS 8517, 59 - Villeneuve-d' Ascq (France)

    2005-10-01

    This article presents, in the form of tables, the thermodynamic data necessary for the calculation of equilibrium constants of reactions between mineral compounds (Rb, Re, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Th, Ti, Tl, Tm, U, V, W, Xe, Y, Yb, Zn, and Zr compounds). Table 1 presents the data recommended by Codata; table 2 gives the minimum informations allowing the calculation of an equilibrium constant in first approximation; table 3 allows to take into consideration the thermal capacities. Finally, table 4 gathers the data relative to species in aqueous solution. (J.S.)

  16. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    Science.gov (United States)

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and

  17. The effects of the recent minimum temperature and water deficit increases on Pinus pinaster wood radial growth and density in southern Portugal.

    Directory of Open Access Journals (Sweden)

    Cathy Béatrice Kurz Besson

    2016-08-01

    Full Text Available Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events.To address this question, tree-ring width and density chronologies were built for a P. pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011.We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region.

  18. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  19. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  20. Use of nuclear techniques in the study of artificial recharge of groundwater: case of groundwater table in Kairouan plane in Tunisia

    International Nuclear Information System (INIS)

    Benhamouda, M.F.

    1997-01-01

    The groundwater table studied here is located in the plain of Kairouan and it is one of the main underground resources in the Centre of Tunisia. This region is characterized by a semi arid climate with high intensity of rain that causes flooding of Kairouan City. This study has two objectives namely: 1- To develop a technical process of this recharge. The experiment was realized at two sites. In each site were installed 3 neutron probe access tubes to the depth of the level of the ground water table.Successive measurements were taken in each tube in function of depth and time to follow up the hydrodynamics of the recharge of the water table. Neutron and gamma probes were used and compared with respect to measured water content.Each access tube for a fixed time give a water content profile which shows the dynamics of actual recharge and the previous recharge. this technique can help the developer to make decision concerning the recharge parameters and, particularly, the flow rate and the opportunity time to get the best recharge water efficiency. 2- To analyse the concentration of stable and radioactive isotopes in the water of the plain of kairouan. Samples were taken from the shallow and deep water table. The obtained results are helpful to specify the origin of the water. Geochemical analysis were also done to clear the spatial variability of the quality of water. To reach the fore mentioned objectives, a survey of wells using those resources was made. Samples were taken from all surveilled wells in this investigation. water samples were taken from the deep and shallow aquifers and to determine salt concentration as well as stable and radioactive element (O18, H2, C13, C14, H3). The results obtained from chemical analysis showed no clear spatial variability of water quality between the two aquifers. However the isotopic study gave two types of results: First: A significant difference between ages of the water coming from the shallow and the deep ground water

  1. Improved flooding tolerance and carbohydrate status of flood-tolerant plant Arundinella anomala at lower water temperature.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Ye

    Full Text Available Operation of the Three Gorges Reservoir (TGR, China imposes a new water fluctuation regime, including a prolonged winter submergence in contrast to the natural short summer flooding of the rivers. The contrasting water temperature regimes may remarkably affect the survival of submerged plants in the TGR. Plant survival in such prolonged flooding might depend on the carbohydrate status of the plants. Therefore, we investigated the effects of water temperature on survival and carbohydrate status in a flood-tolerant plant species and predicted that both survival and carbohydrate status would be improved by lower water temperatures.A growth chamber experiment with controlled water temperature were performed with the flood-tolerant species Arundinella anomala from the TGR region. The plants were submerged (80 cm deep water above soil surface with a constant water temperature at 30°C, 20°C or 10°C. The water temperature effects on survival, plant biomass and carbohydrate content (glucose, fructose and sucrose and starch in the viable and dead tissues were investigated.The results showed that the survival percentage of A.anomala plants was greatly dependent on water temperature. The two-month submergence survival percentage was 100% at 10°C, 40% at 20°C and 0% at 30°C. Decreasing the water temperature led to both later leaf death and slower biomass loss. Temperature decrease also induced less reduction in glucose, fructose and sucrose in the roots and leaves (before decay, p 0.05. Different water temperatures did not alter the carbon pool size in the stems, leaves and whole plants (p > 0.05, but a clear difference was found in the roots (p < 0.05, with a larger pool size at a lower temperature.We concluded that (1 A. anomala is characterized by high flooding tolerance and sustained capability to mobilize carbohydrate pool. (2 The survival percentage and carbohydrate status of submerged A. anomala plants were remarkably improved by lower water

  2. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  3. Effects of seawater components on radiolysis of water at elevated temperature

    International Nuclear Information System (INIS)

    Wada, Yoichi; Tachibana, Masahiko; Ishida, Kazushige; Ota, Nobuyuki; Shigenaka, Naoto; Inagaki, Hiromitsu; Noda, Hiroshi

    2014-01-01

    Effects of seawater components on radiolysis of water at elevated temperature have been studied with a radiolysis model in order to evaluate influence on integrity of materials used in an ABWR. In 2011, seawater flowed into a wide part of the nuclear power plant system of the Hamaoka Nuclear Power Station Reactor No. 5 owned by Chubu Electric Power Co., Inc. after condenser tubes broke during the plant shutdown operation. The reactor water temperature was 250°C and its maximum Cl − concentration was ca. 450 ppm when seawater was mixed with reactor water. In order to clarify effects of the sea water components on radiolysis of water at elevated temperature, a radiolysis model calculation was conducted with Hitachi's radiolysis analysis code 'SIMFONY'. For the calculation, the temperature range was set from 50 to 250°C with 50°C increments and the gamma dose rate was set at 60 Gys −1 to see the effect of gamma irradiation from fuels under shutdown conditions. Concentrations of radiolytic species were calculated for 10 5 s. Dilution ratio of seawater was changed to see the effects of concentration of seawater components. Reaction rate constants of the Cl − , Br − , HCO 3 − , and SO 4 2− systems were considered. The main radiolytic species were predicted to be hydrogen and oxygen. Hydrogen peroxide of low concentration was produced in seawater-mixed water at elevated temperatures. Compared with these main products, concentrations of radiolytic products originating from chloride ion and other seawater components were found to be rather low. The dominant product among them was ClO 3 − and its concentration was found to be below 0.01ppm at 10 5 s. Then, during the plant shutdown operation, the harmful influence from radiolytic species originating from seawater components on integrity of fuel materials must be smaller than that of chloride ion which is the main ionic species in seawater. (author)

  4. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  5. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  6. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between......Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...

  7. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  8. Efecto del agua aplicada en las relaciones hídricas y productividad de la vid 'Crimson Seedless' Effect of applied water on water relations and productivity of 'Crimson Seedless' table grapes

    Directory of Open Access Journals (Sweden)

    Raúl Ferreyra

    2006-07-01

    Full Text Available Este estudio fue dirigido para evaluar la relación agua-rendimiento en vid de mesa cv. Crimson y establecer valores críticos para las mediciones del estado hídrico de las plantas. Los estudios de campo se desarrollaron durante tres años, en el Valle de Aconcagua, Chile, a 32º47'S y 70º42'O, en un suelo de textura franco arcillosa. Se proporcionaron a las plantas diferentes cantidades de agua de riego entre 40 y 100% de la evapotranspiración del cultivo (Etc. El potencial hídrico xilemático medido a mediodía (psixmin y la conductancia estomática estuvieron estrechamente relacionados con el déficit de agua impuesto y el rendimiento obtenido. Los rendimientos de la vid disminuyeron respecto al agua aplicada en el rango de los tratamientos estudiados. Sesenta por ciento de restricción de la Etc redujo 22% del rendimiento. Cuando la planta mantuvo psixmin mayor que -0,75 MPa entre cuaja y pinta, la producción y los calibres fueron mayores.This study aimed to evaluate the relationship between water and production in 'Crimson Seedless' table grapes, and to establish threshold values for plants water status. Field experiments were carried out, during a three-year period, in the Aconcagua Valley, Chile, at 32º47'S and 70º42'W, in a clay-loamy textured soil. Different irrigation water amounts were applied, between 40 and 100% crop evapotranspiration (Etc. Stem water potential measured at midday (psixmin and stomatal conductance were closely related to water shortage and yield obtained. Table grape yields decreased in comparison with applied water within the range of studied treatments. Sixty per cent Etc restriction decreased yields in 22%. When plants maintained psixmin greater than -0.75 MPa, between berry set and veraison, yield and berry size were high.

  9. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  10. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  11. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  12. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  13. Downwelling Far-Infrared Emission Spectra Measured By First at Cerro Toco, Chile and Table Mountain, California

    Science.gov (United States)

    Mast, J. C.; Mlynczak, M. G.; Cageao, R.; Kratz, D. P.; Johnson, D. G.; Mlawer, E. J.; Turner, D. D.

    2014-12-01

    The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the important far-infrared spectrum between 100 and 650 cm-1. Presented here are measurements made by FIRST during two successful deployments in a ground-based configuration to measure downwelling longwave radiation at Earth's surface. The initial deployment was to Cerro Toco, Chile, where FIRST operated from August to October, 2009 as part of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II) campaign. After recalibration, FIRST was deployed to the Table Mountain Facility from September through October, 2012. Spectra observed at each location are substantially different, due in large part to the order of magnitude difference in integrated precipitable water vapor (0.3 cm at Table Mountain, 0.03 cm at Cerro Toco). Dry days for both campaigns are chosen for analysis - 09/24/2009 and 10/19/2012. Also available during both deployments are coincident radiosonde temperature and water vapor vertical profiles which are used as inputs a line-by-line radiative transfer program. Comparisons between measured and modeled spectra are presented over the 200 to 800 cm-1 range. An extensive error analysis of both the measured and modeled spectra is presented. In general, the differences between the measured and modeled spectra are within their combined uncertainties.

  14. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  15. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.

    Science.gov (United States)

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D

    2011-04-01

     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of 1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  16. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  17. Pronounced microheterogeneity in a sorbitol-water mixture observed through variable temperature neutron scattering.

    Science.gov (United States)

    Chou, Shin G; Soper, Alan K; Khodadadi, Sheila; Curtis, Joseph E; Krueger, Susan; Cicerone, Marcus T; Fitch, Andrew N; Shalaev, Evgenyi Y

    2012-04-19

    In this study, the structure of concentrated d-sorbitol-water mixtures is studied by wide- and small-angle neutron scattering (WANS and SANS) as a function of temperature. The mixtures are prepared using both deuterated and regular sorbitol and water at a molar fraction of sorbitol of 0.19 (equivalent to 70% by weight of regular sorbitol in water). Retention of an amorphous structure (i.e., absence of crystallinity) is confirmed for this system over the entire temperature range, 100-298 K. The glass transition temperature, Tg, is found from differential scanning calorimetry to be approximately 200 K. WANS data are analyzed using empirical potential structure refinement, to obtain the site-site radial distribution functions (RDFs) and coordination numbers. This analysis reveals the presence of nanoscaled water clusters surrounded by (and interacting with) sorbitol molecules. The water clusters appear more structured compared to bulk water and, especially at the lowest temperatures, resemble the structure of low-density amorphous ice (LDA). Upon cooling to 100 K the peaks in the water RDFs become markedly sharper, with increased coordination number, indicating enhanced local (nanometer-scale) ordering, with changes taking place both above and well below the Tg. On the mesoscopic (submicrometer) scale, although there are no changes between 298 and 213 K, cooling the sample to 100 K results in a significant increase in the SANS signal, which is indicative of pronounced inhomogeneities. This increase in the scattering is partly reversed during heating, although some hysteresis is observed. Furthermore, a power law analysis of the SANS data indicates the existence of domains with well-defined interfaces on the submicrometer length scale, probably as a result of the appearance and growth of microscopic voids in the glassy matrix. Because of the unusual combination of small and wide scattering data used here, the present results provide new physical insight into the

  18. Responses of invertebrates to temperature and water stress: A polar perspective.

    Science.gov (United States)

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Development of technological modes for preparation of mineral water for sports drinks

    Directory of Open Access Journals (Sweden)

    I. Kovalenko

    2015-05-01

    Full Text Available Introduction. Conducted research study is devoted to development of technological modes of desalination of natural mineral medical-table sodium chloride water for water treatment technologies in the production of beverages for athletes. Materials and methods. Samples of initial water and water that has been desalinated using the experimental installation with different modes were investigated. Measuring of temperature mode of crystallizer was carried out using temperature sensors and digital thermometer. Quality indicators of the water samples using Photometer Palintest 7500 and standard techniques weredetermined. Resultsand discussion.The influence of different factors of the process of freezing on the quality of desalinated natural mineral medical-table sodium chloride water "Kuyalnik" was investigated. The patterns of distribution of components of initial water between the frozen solid phase, and a concentrated solution in the process of freezing are identified. For the majority of the investigated factors order of traffic was such: Ca 2+ >HCO -3 >(Na+>Cl- >(Mg2+>SO2-4 >K+, and with a decrease in water salinity so: Ca2+>SO2-4 >(Na+>Cl- >(HCO-3 >Mg2+>K+. Summary of the study results allowed to recommend the following technological parameters of the carrying out the process of desalination of natural mineral sodium chloride water by freeze: operating temperature mode of crystallizer, which is changing in the process from -2 to -4 ° C, the concentration of carbon dioxide in the water at the beginning of the process of freezing - 3,7 g/dm 3, duration of the desalination process (process without cooling - 60 minutes, one step of freezing, melting of solid phase under ambient conditions without prior separation of the frozen solid phase. With such technological modes of the carrying out the process of freezing it is possible to obtain water with mineral composition, mainly with existing relevant recommendations to the mineral composition of

  20. Geology, Hydrology, and Water Quality of the Little Blackwater River Watershed, Dorchester County, Maryland, 2006-09

    Science.gov (United States)

    Fleming, Brandon J.; DeJong, Benjamin D.; Phelan, Daniel J.

    2011-01-01

    The Little Blackwater River watershed is a low-lying tidal watershed in Dorchester County, Maryland. The potential exists for increased residential development in a mostly agricultural watershed that drains into the Blackwater National Wildlife Refuge. Groundwater and surface-water levels were collected along with water-quality samples to document hydrologic and geochemical conditions within the watershed prior to potential land-use changes. Lithologic logs were collected in the Little Blackwater River watershed and interpreted with existing geophysical logs to conceptualize the shallow groundwater-flow system. A shallow water table exists in much of the watershed as shown by sediment cores and surface geophysical surveys. Water-table wells have seasonal variations of 6 feet, with the lowest water levels occurring in September and October. Seasonally low water-table levels are lower than the stage of the Little Blackwater River, creating the potential for surface-water infiltration into the water table. Two stream gages, each equipped with stage, velocity, specific conductance, and temperature sensors, were installed at the approximate mid-point of the watershed and near the mouth of the Little Blackwater River. The gages recorded data continuously and also were equipped with telemetry. Discharge calculated at the mouth of the Little Blackwater River showed a seasonal pattern, with net positive discharge in the winter and spring months and net negative discharge (flow into the watershed from Blackwater National Wildlife Refuge and Fishing Bay) in the summer and fall months. Continuous water-quality records showed an increase in specific conductance during the summer and fall months. Discrete water-quality samples were collected during 2007--08 from 13 of 15 monitoring wells and during 2006--09 from 9 surface-water sites to characterize pre-development conditions and the seasonal variability of inorganic constituents and nutrients. The highest mean values of

  1. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  2. Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Vangansbeke, Dominiek; De Schrijver, Lien; Spranghers, Thomas; Audenaert, Joachim; Verhoeven, Ruth; Nguyen, Duc Tung; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2013-11-01

    Increasing energy costs force glasshouse growers to switch to energy saving strategies. In the temperature integration approach, considerable daily temperature variations are allowed, which not only have an important influence on plant growth but also on the development rate of arthropods in the crop. Therefore, we examined the influence of two constant temperature regimes (15 °C/15 °C and 20 °C/20 °C) and one alternating temperature regime (20 °C/5 °C, with an average of 15 °C) on life table parameters of Phytoseiulus persimilis and Neoseiulus californicus and their target pest, the two-spotted spider mite Tetranychus urticae at a 16:8 (L:D) h photoperiod and 65 ± 5 % RH. For females of both predatory mites the alternating temperature regime resulted in a 25-30 % shorter developmental time as compared to the corresponding mean constant temperature regime of 15 °C/15 °C. The immature development of female spider mites was prolonged for 7 days at 15 °C/15 °C as compared to 20 °C/5 °C. With a daytime temperature of 20 °C, no differences in lifetime fecundity were observed between a nighttime temperature of 20 and 5 °C for P. persimilis and T. urticae. The two latter species did show a higher lifetime fecundity at 20 °C/5 °C than at 15 °C/15 °C, and their daily fecundity at the alternating regime was about 30 % higher than at the corresponding mean constant temperature. P. persimilis and T. urticae showed no differences in sex ratio between the three temperature regimes, whereas the proportion of N. californicus females at 15 °C/15 °C (54.2 %) was significantly lower than that at 20 °C/5 °C (69.4 %) and 20 °C/20 °C (67.2 %). Intrinsic rates of increase were higher at the alternating temperature than at the corresponding mean constant temperature for both pest and predators. Our results indicate that thermal responses of the studied phytoseiid predators to alternating temperature regimes used in energy saving strategies in glasshouse crops may

  3. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  4. NOS CO-OPS Meteorological Data, Water Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Water Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  5. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  6. Long Island Sound Water Temperatures During the Last Two Thousand Years

    Science.gov (United States)

    Warren, C. E.; Varekamp, J. C.; Thomas, E.

    2010-12-01

    The Long Island Sound (LIS), sometimes called the “urban sea”, is a large estuary in the heavily populated coastal zone between New York City and the Connecticut - Rhode Island border. LIS has seen dramatic environmental shifts since colonial times, including major changes in aquatic food extraction, land use, contaminant and nutrient inputs, and climate change. Annual seasonal hypoxic/anoxic events, especially common in westernmost LIS, have been identified as potentially severe stressors for LIS biota including valuable fisheries species such as lobsters and shellfish. These conditions develop when the Sound becomes stratified in midsummer and oxygen consumption from the oxidation of organic matter exceeds oxygen resupply from the atmosphere or photosynthesis. Severity, lateral extent and frequency of hypoxia/anoxia is influenced by the amount of organic matter available for oxidation, both marine organic matter (produced by algal blooms in response to influx of N-rich effluents from waste water treatment plants) and terrestrial organic matter. These events are also influenced by the severity of stratification, determined by differences in density from temperature and salinity gradients of surface and bottom waters. Studies of cores in western and central LIS, dated using Hg-pollution profiles, 210Pb - 137Cs, and 14C, indicate that eutrophication and hypoxia have occurred in LIS only over the last ~150 years, with the possible exception of the Narrows (closest to NY) where it may have occurred before colonial times. Salinity decreased as well over the last 150 years, possibly due to changes in land use or deflection of fresh water from the Hudson River. Temperature variability in LIS over the last few thousand years has not been clearly documented, as several paleotemperature proxies are difficult to use in estuarine settings. Oxygen isotope values of carbonate microfossils are influenced by salinity fluctuations, and Mg/Ca values in these shells may be

  7. Effect of Water Quality and Temperature on the Efficiency of Two Kinds of Hydrophilic Polymers in Soil.

    Science.gov (United States)

    Dehkordi, Davoud Khodadadi

    2018-06-01

      In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.

  8. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Decision table languages and systems

    CERN Document Server

    Metzner, John R

    1977-01-01

    ACM Monograph Series: Decision Table Languages and Systems focuses on linguistic examination of decision tables and survey of the features of existing decision table languages and systems. The book first offers information on semiotics, programming language features, and generalization. Discussions focus on semantic broadening, outer language enrichments, generalization of syntax, limitations, implementation improvements, syntactic and semantic features, decision table syntax, semantics of decision table languages, and decision table programming languages. The text then elaborates on design im

  10. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  11. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  12. Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four

  13. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Data Summary Tables, United States: Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across states. Hawaii is missing from all tables since no sampling was done in that state. The following section briefly outlines the approach used by ISP in preparing these data tables. The third section contains the summary tables organized by sample type (water and sediment) and displaying elements within states and states within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  14. A method for generating subgroup parameters from resonance tables

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1993-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. (author). 8 refs., 2 tabs

  15. MCNPX Model/Table Comparison

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables

  16. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    Science.gov (United States)

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  17. 7 CFR 457.149 - Table grape crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... grown for commercial sale for human consumption as fresh fruit on acreage where the cultural practices... determine the minimum quality grade will be: (i) The United States Standards for Grades of Table Grapes...; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of irrigation water supply, if caused by an...

  18. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2010-01-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  19. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  20. MCNPX Model/Table Comparison

    CERN Document Server

    Hendricks, J S

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO sub 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data t...

  1. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    International Nuclear Information System (INIS)

    Kurzeja, R.J.

    2002-01-01

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru

  3. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  4. EFFECT OF IMMERSION TEMPERATURE ON THE WATER UPTAKE OF POLYPROPYLENE/WOOD FLOUR/ORGANOCLAY HYBRID NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    Behzad Kord

    2011-02-01

    Full Text Available Polypropylene/wood flour/organoclay hybrid nanocomposites were melt-compounded in an internal mixer at 190 oC and 60 rpm rotor speed. Then samples were fabricated by injection molding. Effects of immersion temperature on the water uptake of hybrid nanocomposite were investigated. To meet this objective, water absorption of samples was determined after 24 h immersion in distilled water at different temperatures (25, 50, 75, and 100 °C. Results indicated that immersion temperature had a significant influence on the water absorption of composites. By increasing the temperature, water absorption increases as well. The maximum water absorption of composite is decreased by increasing the nanoclay and compatibilizer content. The morphology of nanoclay was determined by X-ray diffraction (XRD and transmission electron microscopy. The effect of morphology on water absorption was also evaluated. Due to inadequate compatibilizer, exfoliated morphology of nanoclay was not obtained, but there was evidence of intercalation. The order of intercalation for samples containing 3 phc was higher than that of 6 phc at the same PP-g-MA content due to some agglomerations of organoclay.

  5. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  6. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  7. Sr/Ca ratios in cold-water corals - a 'low-resolution' temperature archive?

    Science.gov (United States)

    Rüggeberg, Andres; Riethdorf, Jan-Rainer; Raddatz, Jacek; López Correa, Matthias; Montagna, Paolo; Dullo, Wolf-Christian; Freiwald, André

    2010-05-01

    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008). Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L. pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral's Sr/Ca ratio is related to temperature, while 75% are influenced

  8. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  9. Experimental observations and modelling of thermal history within a steel plate during water jet impingement

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.; Lockhart, G.T.

    2002-01-01

    In order to investigate heat transfer of steel plates under a water jet impingement and to further simulate runout table operation in a hot strip mill, a full-scale pilot runout table facility was designed and constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement by one circular water jet from an industrial header. Recorded visual observations at the impinging surface were obtained. The effects of cooling water temperature and impingement velocity on the heat transfer from a steel plate were studied. A two-dimensional finite element method-based transient inverse heat conduction model was developed. With the help of the model, heat fluxes and heat transfer coefficients along the impinging surface under various cooling conditions were calculated. The microstructural evolution of the steel plate was also investigated for the varying cooling conditions. Samples were obtained from each plate, polished, etched and then photographed. (author)

  10. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    Science.gov (United States)

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  11. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  12. A survey of temperature measurement

    International Nuclear Information System (INIS)

    Saltvold, J.R.

    1976-03-01

    Many different techniques for measuring temperature have been surveyed and are discussed. The concept of temperature and the physical phenomena used in temperature measurement are also discussed. Extensive tables are presented in which the range and accuracy of the various techniques and other related data are included. (author)

  13. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Bucs, Szilard; Staal, Marc

    2016-01-01

    temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high

  14. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  15. Hydrography - MO 2014 Class L1 Lake Watersheds WQS TableG (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This feature class contains watersheds for Class L1 lakes listed in Table G - Lake Classifications and Use Designations of the Water Quality Standards rule published...

  16. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  17. Fractionation of deuterium and protium between water and methanol

    International Nuclear Information System (INIS)

    Rolston, J.H.; Gale, K.L.

    1984-01-01

    The overall deuterium-protium separation factor, α, between hydrogen gas and aqueous methanol mixtures has been measured over the full composition range at temperatures between 25 and 55 0 C. At each temperature α increases smoothly with increasing mole fraction of methanol but the values fall significantly below the straight line joining the separation factors for the methanol-hydrogen and water-hydrogen systems. The equilibrium constant, K 1 (1), for exchange of a deuterium atom tracer between the hydroxyl groups of methanol and liquid water, calculated from the values of α for each solution, is independent of composition within experimental error. The value of K 1 (1) at 25 0 C is 0.54 +/- 0.02, so that deuterium favors the methanol environment rather than water. The dependence of k 1 (1) on absolute temperature, T, is given by the expression 1n K 1 (1) = -0.776 + 52.6/T, which corresponds to a reaction enthalpy of -0.43 kJ mol -1 . 24 references, 2 figures, 2 tables

  18. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water-table

  19. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  20. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  2. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.

    2018-02-01

    We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  3. IGSCC growth behaviors of Alloy 690 in hydrogenated high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K.; Yamada, T.; Miyamoto, T.; Terachi, T. [INSS, (Japan)

    2011-07-01

    The rate of growth of stress corrosion cracking (SCC) was measured for cold worked and thermally treated and solution treated Alloy 690 (UNS N06690, CW TT690, CW ST690) in hydrogenated pressurized water reactor (PWR) primary water under static load condition. Three important patterns were observed: First, Intergranular stress corrosion cracking (IGSCC) was observed on both TT and ST690 even in static load condition if materials were heavily cold worked although the rate of SCC growth was much slower than that of CW mill annealed Alloy 600. Furthermore much rapid SCC growth was recognized in 20% CW TT690 than that of 20% CW ST690. This is quite different result in the literature in high temperature caustic solution. Second, in order to assess the role of creep, rates of creep crack growth were measured in air, argon, and hydrogen gas environments using 20% CW TT690, and 20% CW MA600 in the range of temperatures between 360 and 460 C; intergranular creep cracking (IG creep cracking) was observed on the test materials even in air. Similar slope of 1/T-type temperature dependencies on IGSCC and IG creep crack growth were observed on 20% CW TT690. Similar fracture morphologies and similar 1/T-type temperature dependencies suggest that creep is important in the growth of IGSCC of CW TT690 in high temperature water. Third, cavities and pores were observed at grain boundaries near tips of SCC and creep although the size of the cavities and pores of SCC were much smaller than that of creep cracks. Also the population and size of cavities seem to decrease with decreasing test temperature. These results suggest that the difference in the size and population of cavities might be related with the difference in crack growth rate. And the cavities seem to be formed result from collapse of vacancies at grain boundaries as the crack embryo. This result suggests that diffusion of condensation of vacancies in high stressed fields occurs in high temperature water and gas environments

  4. Temperature impact on cementitious materials carbonation - description of water transport influence

    International Nuclear Information System (INIS)

    Drouet, E.

    2010-11-01

    Carbonation is the major cause of degradation of reinforced concrete structures. It leads to rebar corrosion and cracking of the concrete cover. In the framework of radioactive waste management, cement-based materials used as building material for structures or containers would be simultaneously submitted to heating (due to the waste thermal output), subsequent drying and atmospheric carbon dioxide. Such environmental conditions are expected to modify the carbonation mechanisms (with respect to temperature). In order to describe their long-term evolution of material, a double approach was developed, combining the description of carbonation and drying for temperatures up to 80 C to complement available data at ambient temperature. The present work focuses on the durability study of four hardened cement pastes; two of them are derived from the reference formulations selected by Andra (CEM I and CEM V) and a low-pH mix. The first experimental campaign focuses on moisture transfer. The effect of temperature on drying is investigated through water vapour desorption experiments. The first desorption isotherms of four hardened cement pastes was characterized at 20, 50 and 80 C. The results show a significant influence of the temperature. For a given relative humidity (RH) the water content equilibrium is always reduced temperature is increased and the starting point of capillary condensation is shifted towards higher RHs. The experimental campaign is complemented through modelling activities. The impact of temperature on the first desorption isotherms is effectively described using the Clausius-Clapeyron equation (characterization of the isosteric heat of adsorption). The intrinsic permeability to water is evaluated through inverse analysis by reprocessing the experimental weight loss of initially saturated samples submitted to constant environmental conditions. The intrinsic permeability appears to increase with temperature in relation to the observed microstructure

  5. Activity of water content and storage temperature on the seed-borne mycoflora of lens culinaris

    International Nuclear Information System (INIS)

    Rahim, S.; Dawar, S.

    2014-01-01

    Storage of seeds with high water content and temperatures favors the growth of mould fungi which in turn affect the germination of seeds while low temperature with low water content prevent the growth of storage fungi and help in maintaining seed viability for longer duration of time. Seed sample from Sukkur district was stored at 4 degree C and room temperature (25-30 degree C) with water content of 8, 13 and 17% for about 80 days. The fungi were isolated at 0, 20, 40, 60 and 80 days intervals. Highest infection percentage of fungi was observed at 13 and 17% water contents at room temperature after 20 days of storage. High infection percentage of storage fungi affected the germination of seeds. Aspergillus spp were the most dominant fungi. (author)

  6. Daphnia magna fitness during low food supply under different water temperature and brownification scenarios

    Directory of Open Access Journals (Sweden)

    Andrea Gall

    2016-11-01

    Full Text Available Much of our current knowledge about non-limiting dietary carbon supply for herbivorous zooplankton is based on experimental evidence and typically conducted at ~1 mg C L-1 and ~20°C. Here we ask how low supply of dietary carbon affects somatic growth, reproduction, and survival of Daphnia magna and test effects of higher water temperature (+3 °C relative to ambient and brownification (3X higher than natural water color; both predicted effects of climate change during fall cooling. We predicted that even at very low carbon supply (~5µg C L-1, higher water temperature and brownification will allow D. magna to increase its fitness. Neonates (<24 h old were incubated with lake seston for 4 weeks (October-November 2013 in experimental bottles submerged in outdoor mesocosms to explore effects of warmer and darker water. Higher temperature and brownification did not significantly affect food quality, as assessed by its fatty acid composition. Daphnia exposed to both increased temperature and brownification had highest somatic growth and were the only that reproduced, and higher temperature caused the highest Daphnia survival success. These results suggest that even under low temperature and thus lower physiological activity, low food quantity is more important than its quality for D. magna fitness.

  7. Influence of temperature, exchangeable cation composition, salinity and density in the adsorption of water by a bentonite: implications to the pore water composition

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.M.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonites are being considered in many countries as a sealing material in high-level radioactive waste disposal (HLW) concepts because of their low permeability, high swelling capacity and high plasticity. In this context, the knowledge of the pore water composition in bentonites is an uncertainty associated to the retention and transport processes through highly compacted material. The nature of the pore water directly affects how the radionuclides are transported through the buffer materials because of a potential distribution is developed at the solid-liquid interface. Besides, the moisture potential of bentonites is closely related to swelling pressure. The pore water chemistry depends on the hydration and swelling of bentonites (matric and osmotic potentials), and therefore on the distribution of the external and the interlayer water. This relationship depends, in turn, on parameters such as water content, bulk dry density, temperature, type of cations at interlayers and salinity. The osmotic potential is related to the dissolved salt content and increases with pore water salinity. It is well-known that variations in pore water osmotic suction affect osmotic repulsion pressure caused by the diffuse double layers interactions of adjacent particles as both are functions of dissolved salt concentration in pore water. In this work, the moisture potential has been analysed as a function of the water content, temperature (20, 30 and 60 deg. C), type of cations at interlayers, salinity and degree of compaction of the FEBEX bentonite. The aim was to analyse the hydration of this bentonite, and the types and distribution of water as a function of these parameters, since both the Cl-accessible porosity (key parameter for transport processes) and the amount of internal (interlayer)/external water depend strongly on the ionic strength of the saturating solution, the composition at interlayers and the

  8. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  9. Influence of water temperature on the economic value of growth rate in fish farming

    NARCIS (Netherlands)

    Besson, M.; Vandeputte, M.; Arendonk, van J.A.M.; Aubin, J.; Boer, de I.J.M.; Quillet, E.; Komen, H.

    2016-01-01

    In sea cage farming, fish are exposed to seasonal variations of water temperature, and these variations can differ from one location to another. A small increase in water temperature does not only stimulate growth of the fish (until an optimal level) but also lowers dissolved oxygen concentration

  10. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  11. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    Science.gov (United States)

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  12. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  13. Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya

    NARCIS (Netherlands)

    Paaijmans, K.P.; Jacobs, A.F.G.; Takken, W.; Heusinkveld, B.G.; Githeko, A.K.; Dicke, M.; Holtslag, A.A.M.

    2008-01-01

    Water temperature is an important determinant of the growth and development of malaria mosquito immatures. To gain a better understanding of the daily temperature dynamics of malaria mosquito breeding sites and of the relationships between meteorological variables and water temperature, three clear

  14. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  15. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  16. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  17. The temperature control and water quality regulation for steam generator secondary side hydrostatic test

    International Nuclear Information System (INIS)

    Xiao Bo; Liu Dongyong

    2014-01-01

    The secondary side hydrostatic test for the steam generator of M310 unit is to verify the pressure tightness of steam generator secondary side tube sheet and related systems. As for the importance of the steam generator, the water temperature and water quality of hydrostatic test has strict requirements. The discussion on the water temperature control and water quality regulation for the secondary loop hydrostatic test of Fuqing Unit 1 contribute greatly to the guiding work for the preparation of the steam generator pressure test for M310 unit. (authors)

  18. Culture of microalgae biomass for valorization of table olive processing water

    Directory of Open Access Journals (Sweden)

    Contreras, C. G.

    2016-09-01

    Full Text Available Table olive processing water (TOPW contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80% in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%. Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS. Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment.El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de Nannochloropsis gaditana en TOPW a distintas concentraciones (10-80% con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%. Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  19. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  20. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  1. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  2. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  3. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    Science.gov (United States)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  4. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  5. Salinity and water temperature data from the Coastal Waters of Washington/Oregon from 01 March 2001 to 31 December 2001 (NODC Accession 0001142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and water temperature data were collected using conductivity sensor and temperature probe in the Coastal Waters of Washington/Orgen from March 1, 2001 to...

  6. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  7. Empirical yield tables for Minnesota.

    Science.gov (United States)

    Jerold T. Hahn; Gerhard K. Raile

    1982-01-01

    Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.

  8. Mathematical tables tables of in g [z] for complex argument

    CERN Document Server

    Abramov, A A

    1960-01-01

    Mathematical Tables of In ? (z) for Complex Argument is a compilation of tables of In ? (z), z = x + iy, calculated for steps in x and y of 0.01 and with an accuracy of one unit in the last (the sixth) decimal place. Interpolation is used to calculate In ? (z) for intermediate values and is carried out separately for the real and imaginary parts of In ? (z). Six places are retained in interpolation.This book first explains how the values of In ? (z) are calculated using the asymptotic formula in a wide lattice with step h = 0.16, and how the tables and the nomograph are used. The values in the

  9. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  10. Evaluation of a computer model to simulate water table response to subirrigation Avaliação de um modelo computacional para simular a resposta do lençol freático à subirrigação

    Directory of Open Access Journals (Sweden)

    Jadir Aparecido Rosa

    2002-12-01

    Full Text Available The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L. growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.O objetivo deste trabalho foi avaliar o modelo computacional WATABLE usando-se dados de campo obtidos em uma área experimental em manejo de lençol freático, localizada em Hastings, FL, EUA. Na área experimental, estavam instalados um sistema de drenagem e sistemas de irrigação por subsuperfície com irrigação localizada e por canais. Ciclos de cultivo de batata (Solanum tuberosum L., nos anos de 1996 e 1997, foram usados para a simulação da hidrologia da área. Profundidades do lençol freático, chuvas, irrigação e escorrimento superficial foram monitorados constantemente. O modelo simulou o movimento da água a partir de uma linha de irrigação localizada enterrada, e a resposta do nível do len

  11. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    Science.gov (United States)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  12. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  13. Hiatus in global warming - example of water temperature of the Danube River at Bogojevo gauge (Serbia

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2015-01-01

    Full Text Available The research included trends in water temperature of the Danube River at Bogojevo gauge and surface air temperature at the nearby meteorological station Sombor, as well as an analysis of the results obtained in relation to the claims of the existence of the hiatus in global air temperature increase in the period 1998-2012. In the period 1961-2013, there was a statistically significant increase in the mean annual water temperature (0.039°C/year, as well as all the average monthly values. However, with annual values for the period 1998-2013, there was a decrease. The longest periods of negative trend (27 years were recorded for January and February. A high correlation was found between the surface air temperature and water temperature for all monthly and seasonal values. In the mean annual air temperature the presence of the hiatus is not observed, but a negative trend is recorded in March (32 years, December (43 years and February (49 years. The highest correlations between water temperature and North Atlantic Oscillation (NAO, Arctic Oscillation (AO and Atlantic Multidecadal Oscillation (AMO were obtained for the NAO in January (0.60, the AMO in autumn (0.52 and the NAO in winter (0.51. For surface air temperature, the highest correlations were registered for the AMO in summer (0.49 and the NAO in winter (0.42. The results indicate the dominant role of natural factors in the decrease of winter air temperature and water temperature of the Danube. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  14. Patterns of Tamarix water use during a record drought.

    Science.gov (United States)

    Nippert, Jesse B; Butler, James J; Kluitenberg, Gerard J; Whittemore, Donald O; Arnold, Dave; Spal, Scott E; Ward, Joy K

    2010-02-01

    During a record drought (2006) in southwest Kansas, USA, we assessed groundwater dynamics in a shallow, unconfined aquifer, along with plant water sources and physiological responses of the invasive riparian shrub Tamarix ramosissima. In early May, diel water table fluctuations indicated evapotranspirative consumption of groundwater by vegetation. During the summer drought, the water table elevation dropped past the lowest position previously recorded. Concurrent with this drop, water table fluctuations abruptly diminished at all wells at which they had previously been observed despite increasing evapotranspirative demand. Following reductions in groundwater fluctuations, volumetric water content declined corresponding to the well-specific depths of the capillary fringe in early May, suggesting a switch from primary dependence on groundwater to vadose-zone water. In at least one well, the fluctuations appear to re-intensify in August, suggesting increased groundwater uptake by Tamarix or other non-senesced species from a deeper water table later in the growing season. Our data suggest that Tamarix can rapidly shift water sources in response to declines in the water table. The use of multiple water sources by Tamarix minimized leaf-level water stress during drought periods. This study illustrates the importance of the previous hydrologic conditions experienced by site vegetation for controlling root establishment at depth and demonstrates the utility of data from high-frequency hydrologic monitoring in the interpretation of plant water sources using isotopic methods.

  15. Unusually Warm Spring Temperatures Magnify Annual CH4 Losses From Arctic Ecosystems

    Science.gov (United States)

    Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Murphy, P.; Zona, D.

    2015-12-01

    The relatively fast pace of Northern high latitude warming puts the very large permafrost soil C pool at a higher risk of being lost to the atmosphere as CH4. Estimates for the Arctic tundra's contribution to the global wetland CH4 emissions range from 15-27 TgCH4 y-1 (8-14% of total). However, these estimates are largely based on data from the growing season, or from boreal systems underlain by discontinuous permafrost with different physical, hydrological, and biogeochemical dynamics than continuous permafrost zones. Recent data from a transect of eddy covariance flux towers across the North Slope of Alaska revealed the importance of cold season emissions to the annual CH4 budget, which may not correlate with summer flux patterns. However, understanding of the controls and inter-annual variability in fluxes at these different sites is lacking. Here, we present data from ~3 years at 5 tundra ecosystems along this Arctic transect to show the influence of earlier and deeper spring active layer thaw on timing and magnitude of CH4 fluxes. This year's warm spring led to significantly greater thaw depths and lower water tables than the previous year. Substantial CH4 emissions in 2015 were recorded at the wettest sites >20 days earlier than in the more meteorologically normal previous year. Since the soil remained saturated despite a lowered water table, total spring CH4 emissions more than doubled at these wet sites. At the drier sites, soil moisture declined with water table during the warmer spring, resulting in similar emissions to the previous year. However, deeper thaw depths prolonged fall and early winter emissions during the 'zero-curtain' soil temperature freezing phase, particularly at the drier site. In general, warmer spring temperatures in the Arctic may result in large increases in early season CH4 losses at wet sites and prolonged steady losses at the upland sites, enhancing the feedback between changing climate and tundra CH4 emissions at all sites.

  16. A New Approach to Simulate Groundwater Table Dynamics and Its Validation in China

    Science.gov (United States)

    Lv, M.; Lu, H.; Dan, L.; Yang, K.

    2017-12-01

    The groundwater has very important role in hydrology-climate-human activity interaction. But the groundwater table dynamics currently is not well simulated in global-scale land surface models. Meanwhile, almost all groundwater schemes are adopting a specific yield method to estimate groundwater table, in which how to determine the proper specific yield value remains a big challenge. In this study, we developed a Soil Moisture Correlation (SMC) method to simulate groundwater table dynamics. We coupled SMC with a hydrological model (named as NEW) and compared it with the original model in which a specific yield method is used (named as CTL). Both NEW and CTL were tested in Tangnaihai Subbasin of Yellow River and Jialingjiang Subbasin along Yangtze River, where underground water is less impacted by human activities. The simulated discharges by NEW and CTL are compared against gauge observations. The comparison results reveal that after calibration both models are able to reproduce the discharge well. However, there is no parameter needed to be calibrated for SMC. It indicates that SMC method is more efficient and easy-to-use than the specific yield method. Since there is no direct groundwater table observation in these two basins, simulated groundwater table were compared with a global data set provided by Fan et al. (2013). Both NEW and CTL estimate lower depths than Fan does. Moreover, when comparing the variation of terrestrial water storage (TWS) derived from NEW with that observed by GRACE, good agreements were confirmed. It demonstrated that SMC method is able to reproduce groundwater level dynamics reliably.

  17. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D

    2018-02-01

    We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  18. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  19. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  20. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  1. Chemical Characterization of “Alcaparras” Stoned Table Olives from Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Ricardo Malheiro

    2011-10-01

    Full Text Available Commercial stoned table olives named “alcaparras” from Trás-os-Montes (Portugal were chemically characterized. During three consecutive years (2004–2006 30 samples (10 per year were examined for their nutritional value (moisture, crude protein, total fat, ash, carbohydrates, and energy, with a detailed report of the fatty acids and tocopherols composition. Water was the major constituent (72.5 ± 5.5%, followed by fat (14.6 ± 5.1%. The average amount of protein and ash were 1.1% and 3.4%, respectively, reporting unusual ash values for table olives, related to the technological process. One hundred grams of fresh stoned table olives presented an average energetic value of 156 kcal, lower than most table olives. The lipids are rich in oleic acid (average of 77.7 ± 2.0%, followed by palmitic acid and linoleic acid. Samples showed an average of total tocopherols of 1.2 mg/100 g of fresh weight, being α-tocopherol the most abundant. Table olives are important sources of MUFA, as olive oil, recognized as a preventive factor in diseases in which free radicals are implicated, complemented by the amounts of vitamin E, with both antioxidant and vitamin action.

  2. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Science.gov (United States)

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  3. The dynamics of Orimulsion in water with varying energy, salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. Its unique composition causes it to behave differently from conventional fuel oils when spilled at sea. Earlier studies have shown that Orimulsion is driven by buoyancy to rise in salt water and sink in fresh water. This study conducted 11 experiments at lower temperature and salinity values to obtain new information on the behaviour of Orimulsion in salt, fresh and brackish water. The applied rotational field was adjusted to vary the energy. A time-series of samples of Orimulsion in a 300 litre tank of water were taken to determine depletion rates and characteristics. Oil on the surface was quantified and the concentration of bitumen and particle size distribution was determined. The study also measured changes in bitumen concentration and particle size distribution as a function of time. The data was used to develop simple equations that predict concentrations of bitumen resurfacing and remaining in the water column as a function of time. It was concluded that there is a complex interaction between salinity, time, energy and temperature. 9 refs., 5 tabs., 8 figs

  4. Taking water-based mud to extremes : new ultra-high temperature water-based mud development and applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Conn, L.; Cullum, D.; Ray, R.; Marinescu, P. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The design, development and field applications of an ultra-high temperature water-based mud used for drilling very deep and hot wells in continental Europe was described. Basin-centred gas production from unconventional tight sands represents a significant resources that may revive exploration and gas production. However, these accumulations lie deep down from normal-pressure reservoirs and the bottom hole static temperatures are greater than 200 degrees C. In addition, they host acid gases such as carbon dioxide and hydrogen sulfide. As such, there are severe limitations on the design and choice of drilling fluids. This paper also described the extensive laboratory work that is needed to optimize the formulation of drilling fluids for high densities and extreme high temperatures. The lessons learned were described with reference to critical engineering guidelines for running a water-based system in such harsh conditions. The effectiveness of new fluids in delivering optimum drilling in extreme high temperature high pressure (HTHP) conditions were demonstrated using a unique software program that predicted the rheological behaviour, pressure losses, equivalent circulating density and equivalent static density. The new water-based system proved to be effective in drilling HTHP wells in areas where invert emulsion drilling fluid systems are not allowed.

  5. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis africana and the copepod Acartia natalensis) and their temperate congenerics (M. wooldridgei and A. longipatella) was investigated over a 10-year period in the Mgazi Estuary, ...

  6. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  7. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    Science.gov (United States)

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  8. Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon

    International Nuclear Information System (INIS)

    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.

    2007-01-01

    In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes

  9. Climate change impacts on the temperature of recharge water in a temporate climate

    Science.gov (United States)

    Murdock, E. A.

    2015-12-01

    Groundwater outflows into headwater streams play an important role in controlling local stream temperature and maintaining habitat for cool and cold water fisheries. Because of the ecological and economic importance of these fisheries, there is significant concern about the impacts of climate change on these habitats. Many studies of stream temperature changes under climate change assume that groundwater outflows will vary with long-term mean air temperature, perhaps with a temporal lag to account for the relatively slow rate of heat diffusion through soils. This assumption, however, ignores the fact that climate change will also impact the temporal patterns of recharge in some regions. In Southern Wisconsin, much of the annual recharge comes from the spring snowmelt event, as a large amount of meltwater is released onto saturated soils with little to no active transpiration. Using the Simultaneous Heat and Water (SHAW) model populated with climate date from the North American Regional Climate Change Assessment Program (NARCCAP), we show that the temperature of water passing below the rooting zone in a simulated corn planting in Southern Wisconsin will change significantly less than the air temperature by midcentury. This finding highlights the importance of understanding the variability of heat flow mechanisms in the subsurface while assessing climate change impacts on surface water resources. In landscapes such as Wisconsin's driftless area, where deep aquifers feed numerous localized headwater streams, meltwater-driven recharge may provide a buffer against rising air temperatures for some time into the future. Fully understanding this dynamic will allow for targeted conservation efforts in those streams that are likely to show higher than average resilience to rising temperatures, but which remain vulnerable to development, stormwater runoff, agricultural pollution and other ecological threats. In a world with dwindling coldwater resources, identifying and

  10. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption.

    Directory of Open Access Journals (Sweden)

    Jeremiah J Minich

    Full Text Available Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2, on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 'future conditions', with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.

  11. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.

    Science.gov (United States)

    Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi

    2012-01-01

    The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.

  12. Daphnia fed algal food grown at elevated temperature have reduced fitness

    Directory of Open Access Journals (Sweden)

    Anna B. Sikora

    2014-05-01

    Full Text Available Lake water temperature is negatively correlated with fatty acids content and P:C ratio in green algae. Hence, elevated temperature may indirectly reduce the fitness of Daphnia due to induced decrease in algal food quality. The aim of this study was to test the hypotheses that quality of algal food decreases with increasing temperature of its culture and that large-bodied Daphnia are more vulnerable to the temperature-related deterioration of algal food quality than small-bodied ones. Laboratory life-table experiments were performed at 20°C with large-bodied D. pulicaria and small-bodied D. cucullata fed with the green alga Scenedesmus obliquus, that had been grown at temperatures of 16, 24 or 32°C. The somatic growth rates of both species decreased significantly with increasing algal culture temperature and this effect was more pronounced in D. pulicaria than in D. cucullata. In the former species, age at first reproduction significantly increased and clutch size significantly decreased with increasing temperature of algae growth, while no significant changes in these two parameters were observed in the latter species. The proportion of egg-bearing females decreased with increasing algal culture temperature in both species. The results of this study support the notion that the quality of algal food decreases with increasing water temperature and also suggest that small-bodied Daphnia species might be less vulnerable to temperature-related decreases in algal food quality than large-bodied ones.

  13. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).

  14. Using diurnal temperature signals to infer vertical groundwater-surface water exchange

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Lautz, Laura K.; Gordon, Ryan P.; McKenzie, Jeffrey M.; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.

  15. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  16. Guidelines for the collection of continuous stream water-temperature data in Alaska

    Science.gov (United States)

    Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.

    2014-01-01

    Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.

  17. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  19. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  20. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined