WorldWideScience

Sample records for water table depends

  1. Holes in the Bathtub: Water Table Dependent Services and Threshold Behavior in an Economic Model of Groundwater Extraction

    Science.gov (United States)

    Kirk-lawlor, N. E.; Edwards, E. C.

    2012-12-01

    In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would

  2. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.

    1989-01-01

    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  3. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  4. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  5. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  6. Stochastic analysis of unsaturated steady flows above the water table

    Science.gov (United States)

    Severino, Gerardo; Scarfato, Maddalena; Comegna, Alessandro

    2017-08-01

    Steady flow takes place into a three-dimensional partially saturated porous medium where, due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above the water table. The simple expressions (most of which in closed form) of the second-order moments pertaining to the FVs allow one to follow the transitional behavior from the zone close to the water table (where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In particular, it is shown how the stationary limits (and the distance from the water table at which stationarity is attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure head >> has been also computed, and it is expressed as =Ψ0>(1+ψ>), being ψ a characteristic heterogeneity function which modifies the zero-order approximation Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e., close (near field) and away (far field) from the water table, are derived into a very general manner, whereas the transitional behavior of ψ between the near/far field can be determined after specifying the shape of the various input soil properties. Besides the theoretical interest, results of the present paper are useful for practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the vadose zone close to the water table) which is generally very difficult to access by direct inspection.

  7. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  8. Free product recovery at spill sites with fluctuating water tables

    International Nuclear Information System (INIS)

    Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.

    1992-01-01

    Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)

  9. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  10. Numerical tables. Physical and chemical analyses of Rhine water 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Tables present the methods of analysis and the data obtained on inorganic, organic, and radioactive impurities in Rhine water. The measuring stations were located in Switzerland, France, West Germany, and the Netherlands. (HP) [de

  11. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  12. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  13. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  14. Relationships between water table and model simulated ET

    Science.gov (United States)

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  15. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  16. Microtropography and water table fluctuation in a sphagnum mire

    Science.gov (United States)

    E.S. Verry

    1984-01-01

    A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...

  17. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic .... logical components in soils with shallow water tables. ..... dency of neither under-estimating nor over-estimating DDs,.

  18. Distribution Channel Intensity among Table Water Producers in Nigeria

    Directory of Open Access Journals (Sweden)

    Joseph Edewor Agbadudu

    2017-09-01

    Full Text Available Planning for and making reasonable decisions regarding reaching the target market with an organization’s product is a critical task on the part of management, which involves a careful evaluation and selection of its channel structure and intensity.This study therefore examines distribution channel intensity among table water producers in Edo State, Nigeria. The focus of the study is to ascertain the variables that significantly predict distribution intensity among the firms in the table water industry in Edo State. The study seeks to proffer answer to fundamental question of why brands within a single category of a given consumer good differ significantly in their distribution intensity. Using a survey research design, the data used for this study were obtained by taking a sample of 110 table water firms within the three senatorial districts in the State. The data obtained were presented and analyzed using different statistical tools such as mean and multiple regression through Statistical Packages for Social Sciences (SPSS version 22 software. Findings revealed that manufacturers’ target focus, manufacturers’ support program, brand quality and level of firm’s technological advancement were significant predictors of distribution channel intensity among the industrial players in table water industry in the State. Based on the findings, the study recommended that table water firms within the State can secure a competitive edge over their fellow counterpart in the industry by designing an optimal distribution intensity that will meet up their marketing objectives. It is also recommended that the adoption of modern technology in form of online sales is an efficient way of sales and distribution which could be used to enhance their distribution techniques if there is a need to cut down on middle men due to increased cost. The study concluded that optimal distribution intensity could be achieved not by mere imitation of competitors but through

  19. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  20. Future water table rise at Yucca Mountain: A regulatory perspective

    International Nuclear Information System (INIS)

    Coleman, N.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission staff has developed a program of Systematic Regulatory Analysis (SRA). The purpose of this program is to ensure that important technical issues related to compliance with 10 CFR Part 60 will be identified before receipt of a license application. A plan is being developed to review the U.S. Department of Energy's (DOE's) demonstration of compliance in the license application for each part of the regulation. Under the siting criteria of NRC's Part 60, one of the potentially adverse conditions is the possibility that the water table may rise high enough to saturate a repository in the unsaturated zone. DOE must evaluate this and other conditions in a license application for a geologic repository site. DOE's evaluation must show compliance with the requirements of Part 60 with reasonable assurance. This paper describes the NRC staff's preliminary plans to review DOE's demonstration of compliance, including assumptions about a future rise of the water table

  1. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  2. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  3. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  4. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  5. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  6. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  7. A time series approach to inferring groundwater recharge using the water table fluctuation method

    Science.gov (United States)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  8. Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jacob, Rico

    2001-01-01

    We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....

  9. Time-Dependent Networks as Models to Achieve Fast Exact Time-Table Queries

    DEFF Research Database (Denmark)

    Brodal, Gert Stølting; Jacob, Rico

    2003-01-01

    We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....

  10. Water-table fluctuations in the Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Paces, James B.; Whelan, Joseph

    2001-01-01

    Pleistocene ground-water discharge deposits approximately 20 km southwest of Yucca Mountain were previously thought to represent pluvial water-table rises of 80 to 120 m. Data from new boreholes at two of the three discharge sites indicate that the modern water-table is at depths of only 17 to 30 m and that this shallow water is part of the regional ground-water flow system rather than being perched. Calcite in equilibrium with this modern ground water would have isotopic compositions similar to those in Pleistocene calcite associated with the discharge deposits. Carbon and uranium isotopes in both ground water and discharge deposits imply that past discharge consisted of a mixture of both shallow and deep ground water. These data limit Pleistocene water-table fluctuations at the specified Amargosa Desert discharge sites to between 17 and 30 m and eliminate the need to invoke large water-table rises

  11. Numerical tables on physical and chemical analyses of Rhine water

    International Nuclear Information System (INIS)

    1982-01-01

    Tables on the places of measurement, the sampling methods and the methods of analysis used. The numerical tables of the measurement results are broken down in general parameters, organic, entrophicating and anorganic substances, orgnic micro-pollutants and radioactivity. (GG) [de

  12. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  13. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  14. Numerical tables on physical and chemical analyses of Rhine water 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The numerical tables contain the measuring results of the physical-chemical studies on the Rhine water for the year 1983. The tables are arranged by general parameters, organic matter, eutrophicating substances, anorganic matter, metals, organic micropollution as well as by radioactivity (total alpha- or beta- and T-activity). (MM) [de

  15. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  16. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  17. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  18. Effect of water table fluctuations on phreatophytic root distribution.

    Science.gov (United States)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission......Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene...

  20. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  1. Water property lookup table (sanwat) for use with the two-phase computational code shaft

    International Nuclear Information System (INIS)

    Sherman, M.P.; Eaton, R.R.

    1980-10-01

    A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories

  2. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  3. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  4. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  5. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  6. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  7. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  8. Water laws in eleven midwestern states: summary tables

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, T.L.; Torpy, M.F.

    1979-06-01

    Basic information about the water laws of Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Ohio, and West Virginia is summarized. References to state laws and court decisions that may be useful in assessing the legal availability of water for energy development are provided. (MCW)

  9. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  10. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  11. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  12. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  13. Combined uses of water-table fluctuation (WTF), chloride mass ...

    African Journals Online (AJOL)

    Agadaga

    isotopes methods to investigate groundwater recharge ... and isotopic characterization of groundwater, rainfall and the unsaturated zone were also carried out using a ..... Chloride concentrations in soil water extracted by lixiviation from.

  14. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  15. Radar sounding of bedrock and water table at Chalk River

    International Nuclear Information System (INIS)

    Annan, A.P.; Davis, J.L.

    1979-01-01

    When a spill of radioactive waste occurs, one of the main concerns is the flow pattern of ground water in the area of the spill. Ground probing radar is a relatively new geophysical technique which can provide high resolution data on the surficial geology and water distribution. The results of some preliminary radar experiments conducted at Chalk River Nuclear Laboratories (CRNL) of the Atomic Energy of Canada Limited (AECL), Chalk River, Ontario are presented. (auth)

  16. Water table lowering to improve excavation performance and to reduce acid mine drainage

    International Nuclear Information System (INIS)

    Koppe, J.C.; Costa, J.F.; Laurent, O. Jr.

    1995-01-01

    This paper analyses the water table level fluctuations using wells located adjacent to the stripping cuts at the Butia-Leste coal mine, southernmost of Brazil. Piezometers monitored the water table fluctuations. Geological mapping provided additional information aiding the interpretation of the results. A contouring software was also used as tool to aid the interpretation of the data and the results visualisation. The parameters necessary in selecting the location of the wells and pumping volumes were calculated from the data obtained in the water table lowering tests. The results were used to minimise two main problems: the generation of acid mine drainage and the reduction of the excavation performance of the fleet used in overburden removal. 7 refs., 5 figs., 3 tabs

  17. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  18. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  19. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  20. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    Science.gov (United States)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  1. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  2. Water table in Long Island, New York, March 1971

    Science.gov (United States)

    Koszalka, Edward J.; Koch, Ellis

    1971-01-01

    The geologic framework and the hydrologic situation in Long Island are periodically reviewed by the U.S. Geological Survey as new knowledge is obtained from current investigations. This work is done through cooperative programs with Nassau and Suffolk County agencies and the New York State Department of Environmental Conservation. A unique opportunity to update many of the hydrogeologic maps occurred when the Geological Survey's Mineola, N.Y., office participated in the New England River Basins Commission's "Long Island Sound Study." This map, one of a series of open-file maps showing the updated information, was compiled from data obtained from G. E. Kimmel (written commun., July 1972) and Jensen and Soren (in press). Comparison of the March 1971 data with similar data for March 1970 (Kimmel, 1970) shows virtually no change in water levels on Long Island during the 12 month period, except for a slight decline in levels in central Suffolk County.

  3. Measurement of the 226Ra-concentration in bottled Austrian mineral waters and table beverages

    International Nuclear Information System (INIS)

    Friedmann, H.; Hernegger, F.

    1978-01-01

    226 Ra being regarded nowadays as a toxic trace element, a systementic examination of bottled Austrian mineral waters and table beverages has been carried out. Only in one case was the maximum allowable concentration of 3.3 pCi/l, a value set up by the WHO, clearly exceeded. (orig.) [de

  4. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  5. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  6. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  8. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  9. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  10. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    International Nuclear Information System (INIS)

    Asrari, E.; Masoudi, M.

    2009-01-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  11. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  12. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  13. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  14. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  15. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    Science.gov (United States)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  16. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water-table

  17. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  18. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  19. Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table

    Science.gov (United States)

    Medyńska-Gulij, Beata; Cybulski, Paweł

    2016-06-01

    This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.

  20. Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table

    Directory of Open Access Journals (Sweden)

    Medyńska-Gulij Beata

    2016-06-01

    Full Text Available This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.

  1. Hanford site water table changes 1950-1980: data observations and evaluation

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Reisenauer, A.E.; Black, G.D.; Young, M.A.

    1986-04-01

    The basalt formations underlying the Hanford site are being considered for characterization and evaluation as a deep geologic repository for defense and commercial radioactive wastes. To understand the hydrology of the Hanford area, we need to know if the ground-water system is in steady state and what impact a change in surface stress from artificial recharge may have on the underlying basalt aquifers. Researchers at Pacific Northwest Laboratory are supporting efforts to understand these issues by illustrating how changes in wastewater disposal activities at the Hanford site have altered the configuration of the water table surface with time. The objective of this work was to determine the magnitude and direction of changes in the elevation of the water table across the Hanford site from 1950 to 1980. Plots of the magnitudes of water-level changes occurring over 5-year intervals from 1950 through 1980 are presented. The water-level changes that occurred during each 5-year interval are related to water discharges from nuclear fuel reprocessing facilities or other discharge sources. The plots of water-level changes show large water-level increases in the vicinity of the Separations Area (200 East and 200 West) from 1950 to 1960; the rate of increase of water-level changes grows more slowly from 1960 to 1970, while the areal extent of the mounding continues to expand. Only small changes occur from 1970 to 1980; during this time period, the unconfined system appears to be in approximate equilibrium with the sources. Based on previous experience, it is believed that an increase in ground-water mounding will begin to appear near the 200 East Area B Pond as a result of the increased discharges from the restart of PUREX in 1983

  2. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  3. Effects of Permanently Raised Water Tables on Forest Overstory Vegetation in the Vicinity of the Tennessee-Tombigbee Waterway.

    Science.gov (United States)

    1982-08-01

    Mississippi Valley* Common Name Scientific Name Very Tolerant** Water hickory Carya aquatica Pecan C. illinoensis Buttonbush Cephalanthus occidentalis...Table I (Concluded) Common Name Scientific Name Intolerant* Ironwood Carpinus caroliniana Bitternut hickory Carya cordiformis Shellbark

  4. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    Science.gov (United States)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs

  5. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  6. Environmental impact assessment of quarries under water table: state of the art

    International Nuclear Information System (INIS)

    Menatti, M.; Vismara, R.

    2009-01-01

    After an overview of environmental problems concerning pits under water table, data and results showed in a few examples of literature and in some Environmental Impact Study are summarized. A close examination about sector normative instruments, in the field of E.I.A. (Environmental Impact Assessment) and S.E.A. (Strategic Environmental Assessment) is showed, through some key elements obtained from a few guidelines expressed by control and authorization governmental authority.In addition, the paper deals with a specific problem about wash water management and, in particular, silt material management; the possible impacts derived from the directly wash water introduction in the pit lake and from the use of settling lagoon are analyzed. [it

  7. Measuring the Change in Water Table with Gravity Methods - a Controlled Experiment

    DEFF Research Database (Denmark)

    Lund, S; Christiansen, Lars; Andersen, O. B.

    2009-01-01

    Gravity changes linearly with the change in soil water content. With the GRACE satellite mission the interest for ground-based gravity methods in hydrology has gained new attention. Time-lapse gravity data have the potential to constrain hydrological model parameters in a calibration scheme....... The greatest potential is seen for specific yield. The gravity signal from hydrology is small (10^-8 m/s^2 level) and the application of ground-based methods is mainly limited by the sensitivity of available instruments. In order to demonstrate the ability of the Scintrex CG-5 gravity meter to detect a change...... in water content, a controlled experiment was set up in 30 m by 20 m basin. The water table was lowered 0.69 m within 1½ hours and the corresponding gravity signal measured using two different approaches: a time series measurements at one location and a gravity network measurement including four points...

  8. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  9. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  10. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    Science.gov (United States)

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  11. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  13. The effect of changing water table on methane fluxes at two Finnish mire sites

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Crill, P.; Silvola, J.

    1992-01-01

    Methane fluxes were measured using static chamber technique on a minerotrophic fen and an ombrotrophic peat bog site located in the Lakkasuo mire complex in central Finland. Both sites consisted of a virgin area and an area drained in 1961 by ditching. The measurements in 1991 were made biweekly from spring thaw to winter freezing. During this period, the mean CH4 emission from the virgin minerotrophic site and virgin ombrotrophic site was 98 mg/m -2 d -1 and 40 mg/m -2 d -1 , respectively. The mean emission of CH 4 from the drained ombrotrophic site was 18 mg/m -2 d -1 . The drained minerotrophic site consumed methane during most of the measuring period, the average uptake was 0.13 mg/m2d. Draining had lowered the average water table by 4 cm at the ombrotrophic site and by 20 cm at minerotrophic site. The possible reasons for the different development of the water table and methane fluxes at ombrotrophic and minerotrophic sites after drainer are discussed

  14. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  16. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  17. Development of Historical Water Table Maps of the 200 West Area of the Hanford Site (1950-1970)

    International Nuclear Information System (INIS)

    Kinney, Teena M.; McDonald, John P.

    2006-01-01

    A series of detailed historical water-table maps for the 200-West Area of the Hanford Site was made to aid interpretation of contaminant distribution in the upper aquifer. The contaminants are the result of disposal of large volumes of waste to the ground during Hanford Site operations, which began in 1944 and continued into the mid-1990s. Examination of the contaminant plumes that currently exist on site shows that the groundwater beneath the 200-West Area has deviated from its pre-Hanford west-to-east flow direction during the past 50 years. By using historical water-level measurements from wells around the 200-West Area, it was possible to create water-table contour maps that show probable historic flow directions. These maps are more detailed than previously published water-table maps that encompass the entire Hanford Site.

  18. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  19. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

    Science.gov (United States)

    Holmberg, Michael J.

    2017-05-15

    of the alluvium to varying environmental and anthropogenic conditions, the percentage of area of the lower Arkansas Valley showing an absolute change of 3 feet or less was calculated for each of the six water-table altitude change maps. For fall water-table altitude change maps, the periods between 2002 and 2008, 2008 and 2015, and 2002 and 2015 showed that 86.5 percent, 85.2 percent, and 66.3 percent of the study area, respectively, showed a net change of 3 feet or less. In the spring water-table altitude change maps these periods showed a net change of 3 feet or less in 94.4 percent, 96.1 percent, and 90.2 percent of the study area, respectively. While the estimated change in water-table altitude was slightly greater and more variable in fall-to-fall comparisons, these high percentages of area with relatively small net changes indicated that, at least in comparisons of the years presented, there was not a large amount of fluctuation in the altitude of the water table.The saturated thickness in the lower Arkansas Valley was between 25 and 50 feet in 34.4 to 35.9 percent of the study area, depending on the season and year. Between 30.2 and 35.6 percent of the area showed saturated thicknesses between 0 and 25 feet. Less than 1 percent of the area showed a saturated thickness greater than 200 feet in all mapped seasons and years.

  20. CORRELATION BETWEEN RAINFALL PATTERNS AND THE WATER TABLE IN THE GENERAL SEPARATIONS AREA OF THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Smith, C.

    2009-01-01

    The objective of the study was to evaluate rainfall and water table elevation data in search of a correlation that could be used to understand and predict water elevation changes. This information will be useful in placing screen zones for future monitoring wells and operations of groundwater treatment units. Fifteen wells in the General Separations Area (GSA) at Savannah River Site were evaluated from 1986 through 2001. The study revealed that the water table does respond to rainfall with minimal delay. (Water level information was available monthly, which restricted the ability to evaluate a shorter delay period.) Water elevations were found to be related to the cumulative sum (Q-Delta Sum) of the difference between the average rainfall for a specific month and the actual rainfall for that month, calculated from an arbitrary starting point. Water table elevations could also be correlated between wells, but using the right well for correlation was very important. The strongest correlation utilized a quadratic equation that takes into account the rainfall in a specific area and the rainfall from an adjacent area that contributes through a horizontal flow. Specific values vary from well to well as a result of geometry and underground variations. R2's for the best models ranged up to 0.96. The data in the report references only GSA wells but other wells (including confined water tables) on the site have been observed to return similar water level fluctuation patterns

  1. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments.

    Directory of Open Access Journals (Sweden)

    Christine Stumpp

    Full Text Available The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.

  2. Study of energy transfer in table-top X-pinch driven by a water line

    International Nuclear Information System (INIS)

    Beg, F N; Zhang, T; Fedin, D; Beagen, B; Chua, E; Lee, J Y; Rawat, R S; Lee, P

    2007-01-01

    The current passing through X-pinches and the energy transferring from the pulse forming line to the load are modelled using a simple LCR circuit. A comparison of the electrical properties of two table-top X-pinch devices is made. It was found that up to 25% of the stored energy is transferred from the water transmission line to the load in the University of California,San Diego (UCSD) table-top X-pinch before x-ray emission starts. The highest energy transmitted (75%) is found after the current peak. In comparison, only 3% of the energy is transferred to the load in the National Institute of Education (NIE) X-pinch device just after the maximum current peak. The highest energy (25%) transmitted to the plasma occurs long after the current peak. The plasma in both devices is visually and qualitatively similar. However, the UCSD device emits intense x-rays with no x-rays observed in the NIE device. This observation is consistent with the electrical circuit analysis

  3. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  4. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Science.gov (United States)

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  5. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  6. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Science.gov (United States)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  7. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  8. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  9. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  10. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  11. Upper Bound Solution for the Face Stability of Shield Tunnel below the Water Table

    Directory of Open Access Journals (Sweden)

    Xilin Lu

    2014-01-01

    Full Text Available By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesion c, surcharge load q, and soil gravity γ multiplied by their corresponding coefficients Nc, Nq, and Nγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.

  12. Tables of density dependent effective interactions between 122 and 800 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1996-01-01

    Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs

  13. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  14. The leaching of radioactivity from highly radioactive glass blocks buried below the water table: fifteen years of results

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-03-01

    The results from two test burials of high-level fission products incorporated into nepheline syenite glass indicate that the nuclear wastes from fuel processing for a 30,000 MWe nuclear power industry could be incorporated into such glass and stored beneath the water table in the waste management area of Chalk River Nuclear Laboratories (CRNL) without harm to the environment. (author)

  15. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  16. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Science.gov (United States)

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen. Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  17. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  18. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  19. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  20. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined

  1. The relation between tilt table and acceleration-tolerance and their dependence on stature and physical fitness

    Science.gov (United States)

    Klein, K. E.; Backhausen, F.; Bruner, H.; Eichhorn, J.; Jovy, D.; Schotte, J.; Vogt, L.; Wegman, H. M.

    1980-01-01

    A group of 12 highly trained athletes and a group of 12untrained students were subjected to passive changes of position on a tilt table and positive accelerations in a centrifuge. During a 20 min tilt, including two additional respiratory maneuvers, the number of faints and average cardiovascular responses did not differ significantly between the groups. During linear increase of acceleration, the average blackout level was almost identical in both groups. Statistically significant coefficients of product-moment correlation for various relations were obtained. The coefficient of multiple determination computed for the dependence of acceleration tolerance on heart-eye distance and systolic blood pressure at rest allows the explanation of almost 50% of the variation of acceleration tolerance. The maximum oxygen uptake showed the expected significant correlation to the heart rate at rest, but not the acceleration tolerance, or to the cardiovascular responses to tilting.

  2. The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands

    Science.gov (United States)

    Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.

    2011-12-01

    Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.

  3. Water dependency and water exploitation at global scale as indicators of water security

    Science.gov (United States)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  4. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  5. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  7. Life depends upon two kinds of water.

    Directory of Open Access Journals (Sweden)

    Philippa Wiggins

    Full Text Available BACKGROUND: Many well-documented biochemical processes lack a molecular mechanism. Examples are: how ATP hydrolysis and an enzyme contrive to perform work, such as active transport; how peptides are formed from amino acids and DNA from nucleotides; how proteases cleave peptide bonds, how bone mineralses; how enzymes distinguish between sodium and potassium; how chirality of biopolymers was established prebiotically. METHODOLOGY/PRINCIPAL FINDINGS: It is shown that involvement of water in all these processes is mandatory, but the water must be of the simplified configuration in which there are only two strengths of water-water hydrogen bonds, and in which these two types of water coexist as microdomains throughout the liquid temperature range. Since they have different strengths of hydrogen bonds, the microdomains differ in all their physical and chemical properties. Solutes partition asymmetrically, generating osmotic pressure gradients which must be compensated for or abolished. Displacement of the equilibrium between high and low density waters incurs a thermodynamic cost which limits solubility, depresses ionisation of water, drives protein folding and prevents high density water from boiling at its intrinsic boiling point which appears to be below 0 degrees C. Active processes in biochemistry take place in sequential partial reactions, most of which release small amounts of free energy as heat. This ensures that the system is never far from equilibrium so that efficiency is extremely high. Energy transduction is neither possible and nor necessary. Chirality was probably established in prebiotic clays which must have carried stable populations of high density and low density water domains. Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously. CONCLUSIONS/SIGNIFICANCE: The simplified model of water has great explanatory power.

  8. [The marketing evaluation of the consumers' preference as regards the use of medicinal and medicinal table mineral waters].

    Science.gov (United States)

    Babaskin, D V; Babaskina, L I; Pavlova, A V

    2017-12-28

    The development of modern technologies in physiotherapy with the use of mineral waters, the expansion of the assortment of the medicinal and medicinal table waters as well as increasing the competitive advantages of domestic products require the more extensive marketing survey of the consumers' preferences in the market of mineral waters. The objective of the present study was the marketing evaluation of the consumers' preference in the segment of medicinal and medicinal table mineral waters in the city of Moscow. The survey involved 697 consumers of medicinal and medicinal table mineral waters. The sampling was carried out by the deterministic quota method. The field research was conducted by means of personal verbal interviews (32%) and the CATI to Web method (phone recruiting and on-line questioning) (68%) with the use of the structured questionnaire. Positioning was carried out making use of the two-dimensional schematic map and scoring assessment on an individual basis with calculation of integrated indicators. The marketing evaluation has demonstrated that the principal motive for purchasing mineral waters in more than 40% of respondents was the treatment and prevention of various diseases including disturbances in the urogenital system as well as digestive and respiratory disorders that appear to be the most frequent reasons for the consumption of mineral waters. The main factors that form the preferences of the consumers as regards the use of a concrete variety of mineral waters were elucidated. Of crucial importance for approximately 40% of the consumers (p<0.01) proved to be their health condition, the medical indications, and the available information about the therapeutic effectiveness of one or another type of mineral waters. Other factors were the quality of mineral water, its cost, the manufacturer and/or place of production, the attractiveness of the packaging, etc. The evaluation of the positioning of the mineral water consumers' preferences made

  9. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  10. Long-term rise of the Water Table in the Northeast US: Climate Variability, Land-Use Change, or Angry Beavers?

    Science.gov (United States)

    Boutt, D. F.

    2011-12-01

    place in and around existing urban centers with an overall increase in the percentage of forested land. Individual analysis of well sites in areas with documented land-use change from agriculture and forested land cover to urban land use suggests a positive correlation with increasing water levels. Recently, beaver populations been begun to rise that has led to local increases in wetland areas. These regions also show a high positive correlation to the magnitude of water table rise. Local factors such as land-use change and beaver activity appear to overprint and mask the impact of consistent increases in annual precipitation. Rising water tables have major implications for not only water management but also the agriculture, forestry, fishing, and tourism industries as they all depend on the quantity and quality of water resources of the region.

  11. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table

    Directory of Open Access Journals (Sweden)

    Yuya Ono

    2017-08-01

    Full Text Available Interest in the impacts of water use in the life cycle of products and services are increasing among various stakeholders. The water footprint is a tool to identify critical and effective points for reducing the impact of water use through the entire life cycle of products, services, and organizations. The purpose of this study was to develop a water consumption inventory database that focused on identifying of Asian water consumption using an input-output (IO framework. An Asia International Input-Output table (AIIO was applied in this study. The amount of water consumption required for agricultural products was estimated by modeling; for other sectors it was estimated from statistical reports. The intensities of direct water consumption in each sector were calculated by dividing the amount of water consumption by the domestic production. Based on the IO analysis using Leontief’s inverse matrix, the intensities of water consumption from cradle to gate were estimated for all goods and services. There was high intensity of water consumption in the primary industry sectors, together with a high dependency on rainwater as an input water source. The water consumption intensities generally showed a larger reduction in secondary sectors, in comparison with the tertiary sectors, due to the use of recycled water. There were differences between this study and previous studies due to the use of site-specific production data and the temporal resolution of crop production. By considering site-specific conditions, it is expected that the dataset developed here can be used for estimating the water footprint of products, services, and organizations in nine countries (Japan, South Korea, China, Taiwan, Thailand, the Philippines, Malaysia, Singapore, Indonesia, and USA.

  12. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    Science.gov (United States)

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I

  13. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  14. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    Science.gov (United States)

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after

  15. Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Merjo P. P. Laine

    2013-01-01

    Full Text Available In the northern hemisphere, variability in hydrological conditions was suggested to increase as a consequence of climate warming, which may result in longer droughts than the area has experienced before. Due to their predominately anoxic conditions, peatlands are expected to respond to changes in hydrological conditions, such as successive drying and rewetting periods. As peatlands are rich in organic matter, any major changes in water table may influence the decomposition of it. The hydrological conditions may also influence release of nutrients from peat profiles as well as affect their transport to downstream ecosystems. In our mesocosm experiment, artificial water table fluctuations in pristine peat profiles caused an increase in dissolved organic nitrogen (DON and ammonium (NH4+-N concentrations, while no response was found in drained peat profiles, although originating from the same peatland complex.

  16. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  17. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  18. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  19. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    Science.gov (United States)

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  20. Comparison of groundwater transit velocity estimates from flux theory and water table recession based approaches for solute transport.

    Science.gov (United States)

    Rasiah, Velu; Armour, John David

    2013-02-15

    Reliable information in transit time (TT) derived from transit velocity (TV) for rain or irrigation water to mix with groundwater (GW) and the subsequent discharge to surface water bodies (SWB) is essential to address the issues associated with the transport of nutrients, particularly nitrate, from GW to SWB. The objectives of this study are to (i) compare the TV estimates obtained using flux theory-based (FT) approach with the water table rise/recession (WT) rate approach and (ii) explore the impact of the differences on solute transport from GW to SWB. The results from a study conducted during two rainy seasons in the northeast humid tropics of Queensland, Australia, showed the TV varied in space and over time and the variations depended on the estimation procedures. The lateral TV computed using the WT approach ranged from 1.00 × 10(-3) to 2.82 × 10(-1) m/d with a mean of 6.18 × 10(-2) m/d compared with 2.90 × 10(-4) to 5.15 × 10(-2) m/d for FT with a mean of 2.63 × 10(-2) m/d. The vertical TV ranged from 2.00 × 10(-3) to 6.02 × 10(-1) m/d with a mean of 1.28 × 10(-1) m/d for the WT compared with 6.76 × 10(-3)-1.78 m/d for the FT with a mean of 2.73 × 10(-1) m/d. These differences are attributed to the role played by different flow pathways. The bypass flow pathway played a role only in WT but not in FT. Approximately 86-95% of the variability in lateral solute transport was accounted for by the lateral TV and the total recession between two consecutive major rainfall events. A comparison of TT from FT and WT approaches indicated the laterally transported nitrate from the GW to the nearby creek was relatively 'new', implying the opportunity for accumulation and to undergo biochemical reactions in GW was low. The results indicated the WT approach produced more reliable TT estimates than FT in the presence of bypass flow pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Culture of microalgae biomass for valorization of table olive processing water

    Directory of Open Access Journals (Sweden)

    Contreras, C. G.

    2016-09-01

    Full Text Available Table olive processing water (TOPW contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80% in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%. Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS. Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment.El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de Nannochloropsis gaditana en TOPW a distintas concentraciones (10-80% con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%. Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  2. Tables of homogeneous equilibrium critical flow parameters for water in SI units

    International Nuclear Information System (INIS)

    Hall, D.G.; Czapary, L.S.

    1980-09-01

    This reference document presents tables and charts containing data calculated using the homogeneous equilibrium critical flow model (HEM). The ranges of stagnation state properties for which data are presented include: pressures from 2 to 22 120kPa, temperatures from 290 to 640 K, and thermodynamic qualities from 0 to 1

  3. A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil

    NARCIS (Netherlands)

    Neto, Dagmar C.; Chang, Hung K.; van Genuchten, Martinus Th

    Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4years (2002 to 2005)

  4. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  5. Use of well points to determine the thickness and extent of floating product atop the water table

    International Nuclear Information System (INIS)

    Liikala, T.L.; Lewis, R.; Gilmore, T.; Hoffmann, H.

    1994-01-01

    The release of petroleum products to the ground water is a widespread problem. Conventional plume tracking techniques are to drill wells and measure product thickness and extent. In this study, well points were installed to rapidly and inexpensively determine the thickness and extent of floating product atop the water table. Spills and leaks of JP-4 have produced a discrete full layer atop the water table at one site at Eielson Air Force Base near Fairbanks, Alaska. The 0.2- to 1.3-foot-thick layer was identified in two ground water monitoring wells at a depth of approximately 10 feet. The layer is contained within unconsolidated glaciofluvial sands and gravels. A comprehensive assessment of the product thickness and extent was necessary for the site remedial investigation/feasibility study. The emplacement of additional monitoring wells was discouraged because of time and budget constraints. The fuel layer was delineated with 18 screened well points. The points consist of 2-inch-diameter galvanized steel pipe. The points were driven into the floating products with a hollow-stem auger rig sampling hammer. The product thickness was measured with an interface probe. The presence of floating product could be measured immediately after emplacement; the product thickness measurements typically stabilized within three days. The product thickness compared favorably with those measured in adjacent monitoring wells

  6. The effect of urbanization in an arid region: Formation of a perched water table that causes environmental damages

    Science.gov (United States)

    Karnieli, A.; Issar, A.; Wolf, M.

    1984-03-01

    Construction in a new neighborhood in the israeli town of Dimona, situated in an arid region in the south of the country (150 mm average annual rainfall), resulted in a rise in groundwater levels during the subsequent rainy seasons This caused flooding of shelter basements, soil sliding, and sagging which permanently damaged walls and buildings The neighborhood had been built on continental sands and marls blanketed by loess, on a valley slope near a rocky anticlinal dip-slope Subsurface studies, using piezometer holes and groundwater analyses, revealed the presence of sand lenses alternating with plastic marls, which act as seasonal aquifers with perched water tables Groundwaters obtain high SO{4/-2} and Cl- corrosivity through contact with these nonflushed marls of the Neogene valley fill (Hazeva Formation) The reasons for the rising of groundwater were found to be (a) artificial interference with the natural (pre-construction) drainage system—interception of the hillside runoff by building plots, roads, etc, (b) partial denudation of the loess blanket, increasing the local infiltration and the build-up of local, perched water tables, and (c) corrosion of concrete and steel pipelines, as well as foundations, by prolonged contact with corrosive groundwater, resulting in haphazard but massive leakage Guidelines are proposed for an environmental improvement plan, which would include terracing and planting of the watershed above town to increase evapotranspiration, lowering of the water table by pumping, and diverting the water to suburban parks (groves of saltresistant trees), and replacement of steel and cement pipes by a non-corrodable plastic pipe system

  7. Dependence on carbonated water: Clinical and policy implications

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Gupta

    2015-01-01

    Full Text Available A case of caffeine dependence syndrome with preference for a specific brand of carbonated water (popularly known as soft drinks or colas is discussed to highlight the clinical and policy implications.

  8. Feasibility of cardiopulmonary exercise testing and training using a robotics-assisted tilt table in dependent-ambulatory stroke patients.

    Science.gov (United States)

    Saengsuwan, Jittima; Huber, Celine; Schreiber, Jonathan; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J

    2015-09-26

    We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O2peak), peak heart rate (HRpeak) and peak work rate (WRpeak) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O2max), 117 ± 32 beats/min (72 % of predicted HRmax) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O2 at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O2peak. Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O2 was 6.9 ml/kg/min (49 % of V'O2 reserve), mean HR was 90 beats/min (56 % of HRmax), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent

  9. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  10. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  12. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  13. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  14. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    Science.gov (United States)

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  15. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  16. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  17. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  18. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  19. Water Balance Study of a Groundwater-dependent Oak Forest

    Directory of Open Access Journals (Sweden)

    MÓRICZ, Norbert

    2010-01-01

    Full Text Available The objectives of this study were (1 to estimate the water balance components of an oak standby calibrating a Hydrus 1-D model, (2 to determine the groundwater consumption by the water tablefluctuation method and (3 to compare the results of the modelling with a remote-sensing based estimation.Model simulation described the observed soil moisture and groundwater level relatively well, theroot mean square errors varied between 12.0 and 14.9% for the soil moisture measurements and 5.0%for the groundwater level. Groundwater consumption was estimated also by the water table fluctuationmethod, which provided slightly different groundwater consumption rates than estimated by theHydrus model simulation. The simulated evapotranspiration was compared with results of a remotesensingbased estimation using the surface temperature database of MODIS.According to the Hydrus model, the estimated evapotranspiration resulted from transpiration(73%, interception loss (23% and soil surface evaporation (4% in the two-year study period. Theproportion of groundwater consumption was 58% of the total transpiration. During the dry growingseason of 2007 the groundwater consumption was significant with 66% of the total transpiration.Water supply from groundwater was found to be less important in the wet growing season of 2008with 50%. The remote-sensing based estimation of evapotranspiration was about 4% lower than themodel based results of nearby comparable sites.

  20. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  1. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  2. Spatial variation of nitrogen pollution of the water table at Oued M'Zab (Northern Algerian Sahara)

    Science.gov (United States)

    Benhedid, H.; Bouhoun, M. Daddi

    2018-05-01

    The aim of our work is the study of spatial variations of the water table pollution of Oued M'Zab, in order to determine their abilities of use and the posed problems of degradation. The methodological approach we adopted is to make a spatial study of the variability of nitrogen pollution, as well as to classify water quality according to international standards. The main results obtained in this research show that NH4+ range from 0 to 0,143 mg.l-1 with an average of 0,048 ± 0,039 mg.l-1, the NO2- from 0 to 0,209 mg.l-1 give an average of 0,007 ± 0,033 mg.l-1, and the NO3- vary between 14,264 and 143,465 mg.l-1, with a mean value 54,594 ± 30,503 mg.l-1. According to W.H.O. standards, the majority of these waters are classified as polluted and not drinkable. Our research shows a degradation of the underground water resources in M'Zab Valley. It resulted that it is essential to regulate the use of water and set out other adjustments in order to safeguard the underground water resources so as to promote sustainable development in the valley of M'Zab.

  3. Water table and species identity outweigh carbon and nitrogen availability in a softwater plant community

    Science.gov (United States)

    Vanderhaeghe, Floris; Smolders, Alfons J. P.; Roelofs, Jan G. M.; Hoffmann, Maurice

    2013-02-01

    Performance of aquatic macrophytes is driven by many environmental factors, and a major challenge is to understand how aquatic macrophyte communities are structured in various environments. In softwater lakes in Western Europe, hydrological state (submersed/emersed), carbon dioxide and ammonium levels and species interactions are considered as driving forces in structuring amphibious plant communities. In this study we aimed at evaluating the relative importance of these factors for four species in a competitive neighbourhood. Softwater lake habitat was simulated during one growing season in laboratory conditions, mimicking water level fluctuation, photoperiod and temperature. Artificial communities consisted of small populations of four softwater macrophyte species: Luronium natans, Baldellia ranunculoides ssp. repens, Eleocharis multicaulis and Hydrocotyle vulgaris. These communities were subjected to two levels of carbon dioxide and ammonium. Additionally, monocultures of Baldellia and Eleocharis were grown at a higher nutrient level combination in order to measure their competitive response in a community. Time (hydrological state) and species identity turned out to be the only consistently significant factors determining community composition. Plant performance was clearly species-dependent, while carbon dioxide and ammonium did not have major effects. The competitive response was significant in both Eleocharis and Baldellia. Competition intensity was highest in the emersed state. Carbon dioxide had a supplementary effect on the within-species performance in Luronium, Baldellia and Eleocharis, with high carbon dioxide level mainly resulting in more flowers and more stolons. Community outcomes and competitive responses in aquatic macrophytes appear difficult to predict, because of mixed life strategies and morphological and functional plasticity. We conclude that hydrological state was the only important environmental factor. The identity of the species that

  4. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  6. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

    Directory of Open Access Journals (Sweden)

    C. Lauvernet

    2018-01-01

    Full Text Available Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018, we developed a physically based numerical algorithm (SWINGO that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate, where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil and hydraulic loading (rainfall + incoming runoff at each site. The presence of WT introduced more complex responses dominated by strong

  7. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  8. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  9. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  10. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  11. Physico-chemical characteristics of the ground water table after monsoon: a case study at central Travancore in Kerala

    Directory of Open Access Journals (Sweden)

    Sankar S Vishnu

    2014-05-01

    Full Text Available Water quality plays an important role in maintaining plant and animal life. Lack of good quality drinking water and water for sanitation cause health problems. Water quality characteristics arise from a group of physical, chemical and biological factors. The dynamic balance of the aquatic system can be destroyed by human activities resulting in water pollution.Well water has traditionally considered as a safe resource of water for consumption without treatment and extensively used for individual water supply in rural and many urban areas.In this paper a preliminary analysis is done to explore the water quality of selected wells in order to correlate the effect of pollution on water quality at these locations. Water samples are collected from different regions of Vazhappally area located on central travancore of Kerala. These sites are important because people depend only on well water for drinking purpose. The samples are collected from ten locations and analyzed for chemical parameters such as pH, conductivity, salinity, turbidity, acidity, alkainity, hardness, total phosphates, dissolved oxygen, biological oxygen demand, total dissolved solids and Iron content. Samples are also analysed for coliform bacteria which cause pathogenic diseases. Remarkable differences are observed mainly in biological oxygen demand, acidity and hardness. Finally, an attempt has been done to correlate the observed chemical parameters and the waterquality standards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10501 International Journal of the Environment Vol.3(2 2014: 20-27

  12. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  13. Effect of agroforestry system on yield attributes of wheat (Triticum Aestivum l.) under shallow water table conditions

    International Nuclear Information System (INIS)

    Kiran, R.; Agnihotri, A.K.

    2001-01-01

    Fifteen tree rows of Eucalyptus tereticornis were planted at G.B.Pant University of Agriculture and Technology, Pant Nagar, located in tarai region of Uttaranchal in a Nelder fan design in March 1989 at the angle of 24øN' from each other starting from north in anticlockwise direction. Area per tree was 30 m 2 . Wheat was intercropped with Eucalyptus tereticornis of 21st November, 1996. Each row of trees was one treatment. There were 15 treatments with control as sole crop. Various yield attributes, net radiation and water table depth were measured below trees and in control, simultaneously. In treatments 7, 8, 9, 10 and 12 early vegetative growth was observed below trees. Higher yield attributing characters were also observed in some of the treatments below trees. In general, treatment 9 (192-216ø) gave better yield attributes than that of control

  14. Creation of Soil Water and Physical data base and its inclusion in a new version of GIS of Soil Resources Attributive Table

    International Nuclear Information System (INIS)

    Kolev, Boyko

    2013-01-01

    For better using of GIS of Soil Resources a new version of the attributive table formation was created. This makes possible soil, physical, and water properties to be included into the table. The simulation procedure for soil hydro-physical properties determination was realized by using the soil particle size distribution data only. This develops a calculation algorithm for soil water content dynamic monitoring, which was realized for some of Bulgarian soils. The main aims of the study are: To demonstrate the usefulness of the new version of the attributive table formation. To show how the simulation model can be applied for environment conditions monitoring and agricultural production management. Keywords: environment conditions, simulation model, soil moisture at field capacity, wilting point, effective soil water content, particle size distribution

  15. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  16. Isotopic fractionation of soil water during the evaporation process in the presence of a phreatic water table

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Stolf, R.

    1979-01-01

    This experiment was conducted with columns of soil, constitued by alluvion sediment keeping a phreatic watertable at a depth of 40 cm and constant water supply, and its objective was to check the water behaviour as to its deuterium and oxigen content when moving from the lower layers to the upper layers, and consequent loss to the atmosphere through evaporation. It was noted that the existing D and 18 O content in the water forming the phreativ watertable practivally does not vary with this process. In addition to the observations on soil columns, soil water from the Brasilian northeastern region was collected and analysed. The phreatic watertable at the collecting site lay at a depth of about 40-50 cm. Preliminarily, it was noted that these results apparently indicate an excess evaporation, and are also consistent with those obtained by other investigators, who proposed the use of stable isotopes to study problems related to salinization of water in this region. (Author) [pt

  17. Methane transport and emissions from soil as affected by water table and vascular plants

    OpenAIRE

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-01-01

    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here...

  18. SIMULATION OF THE BEHAVIOR OF THE WATER TABLE IN A COASTAL AQUIFER SYSTEM FINITE ELEMENT

    Directory of Open Access Journals (Sweden)

    Luis Lara Romero

    2016-06-01

    Full Text Available This paper presents the application of Galerkin method to discretize the model equation of groundwater ow in a conned aquifer semipermeable with tidal boundary conditions on one of its borders, the other borders remain constant. For the simulations was generated a numerical program, Ground Water Finite Element Method, which implements the method of nite elements with triangular elements with three nodes and a degree of freedom per node.

  19. Environmental Monitoring, Water Quality - MO 2009 Water Quality Standards - Table G Lake Classifications and Use Designations (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains Missouri Water Quality Standards (WQS) lake classifications and use designations described in the Missouri Code of State Regulations (CSR), 10...

  20. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  1. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  2. Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed.

    Science.gov (United States)

    Aubert, Alice H; Kirchner, James W; Gascuel-Odoux, Chantal; Faucheux, Mikael; Gruau, Gérard; Mérot, Philippe

    2014-01-21

    Recently developed measurement technologies can monitor surface water quality almost continuously, creating high-frequency multiparameter time series and raising the question of how best to extract insights from such rich data sets. Here we use spectral analysis to characterize the variability of water quality at the AgrHys observatory (Western France) over time scales ranging from 20 min to 12 years. Three years of daily sampling at the intensively farmed Kervidy-Naizin watershed reveal universal 1/f scaling for all 36 solutes, yielding spectral slopes of 1.05 ± 0.11 (mean ± standard deviation). These 36 solute concentrations show varying degrees of annual cycling, suggesting different controls on watershed export processes. Twelve years of daily samples of SO4, NO3, and dissolved organic carbon (DOC) show that 1/f scaling does not continue at frequencies below 1/year in those constituents, whereas a 12-year daily record of Cl shows a general 1/f trend down to the lowest measurable frequencies. Conversely, approximately 12 months of 20 min NO3 and DOC measurements show that at frequencies higher than 1/day, the spectra of these solutes steepen to slopes of roughly 3, and at time scales shorter than 2-3 h, the spectra flatten to slopes near zero, reflecting analytical noise. These results confirm and extend the recent discovery of universal fractal 1/f scaling in water quality at the relatively pristine Plynlimon watershed in Wales, further demonstrating the importance of advective-dispersive transport mixing in catchments. However, the steeper scaling at subdaily time scales suggests additional short-term damping of solute concentrations, potentially due to in-stream or riparian processes.

  3. BOREAS TGB-1/TGB-3 Water Table and Peat Temperature Data over the NSA

    Science.gov (United States)

    Bubier, Jill L.; Comer, Neil; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the NSA. This data set contains continuous and manual measurements of water level and air and soil temperatures at the four subsites within the NSA Tower Fen site complex. The measurements were taken to understand the thermal and hydrological gradients associated with each plant community present in the fen. Measurements were taken from May to September 1994 and May to October 1996. The data are provided in tabular ASCII files.

  4. Performance of methods for estimation of table beet water requirement in Alagoas

    Directory of Open Access Journals (Sweden)

    Daniella P. dos Santos

    Full Text Available ABSTRACT Optimization of water use in agriculture is fundamental, particularly in regions where water scarcity is intense, requiring the adoption of technologies that promote increased irrigation efficiency. The objective of this study was to evaluate evapotranspiration models and to estimate the crop coefficients of beet grown in a drainage lysimeter in the Agreste region of Alagoas. The experiment was conducted at the Campus of the Federal University of Alagoas - UFAL, in the municipality of Arapiraca, AL, between March and April 2014. Crop evapotranspiration (ETc was estimated in drainage lysimeters and reference evapotranspiration (ETo by Penman-Monteith-FAO 56 and Hargreaves-Samani methods. The Hargreaves-Samani method presented a good performance index for ETo estimation compared with the Penman-Monteith-FAO method, indicating that it is adequate for the study area. Beet ETc showed a cumulative demand of 202.11 mm for a cumulative reference evapotranspiration of 152.00 mm. Kc values determined using the Penman-Monteith-FAO 56 and Hargreaves-Samani methods were overestimated, in comparison to the Kc values of the FAO-56 standard method. With the obtained results, it is possible to correct the equations of the methods for the region, allowing for adequate irrigation management.

  5. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  6. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    Science.gov (United States)

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  7. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  8. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  9. Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four

  10. Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups

    Science.gov (United States)

    Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randy Kolka; Carl P. J. Mitchell

    2017-01-01

    Climate change is likely to significantly affect the hydrology, ecology, and ecosystem function of peatlands, with potentially important but unclear impacts on mercury mobility within and transport from peatlands. Using a full-factorial mesocosm approach, we investigated the potential impacts on mercury mobility of water table regime changes (high and low) and...

  11. The dependence of water potential in shoots of Picea abies on air and soil water status

    Directory of Open Access Journals (Sweden)

    A. Sellin

    Full Text Available Where there is sufficient water storage in the soil the water potential (Ψx in shoots of Norway spruce [Picea abies (L. Karst.] is strongly governed by the vapour pressure deficit of the atmosphere, while the mean minimum values of Ψx usually do not drop below –1.5 MPa under meteorological conditions in Estonia. If the base water potential (Ψb is above –0.62 MPa, the principal factor causing water deficiency in shoots of P. abies may be either limited soil water reserves or atmospheric evaporative demand depending on the current level of the vapour pressure deficit. As the soil dries the stomatal control becomes more efficient in preventing water losses from the foliage, and the leaf water status, in turn, less sensitive to atmospheric demand. Under drought conditions, if Ψb falls below –0.62 MPa, the trees' water stress is mainly caused by low soil water availability. Further declines in the shoot water potential (below –1.5 MPa can be attributed primarily to further decreases in the soil water, i.e. to the static water stress.Key words. Hydrology (evapotranspiration · plant ecology · soil moisture.

  12. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  13. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    Science.gov (United States)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS

  14. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    Science.gov (United States)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  15. The reconstruction of late Holocene depth-to-water-table based on testate amoebae in an eastern Australian mire

    Science.gov (United States)

    Zheng, X.; Money, S.; Hope, G.

    2017-12-01

    There are relatively few quantitative palaeo-hydrological records available in eastern Australia, and those that are available, for example from dendroclimatology and the reconstruction of lake level, are often relatively short or have a relatively coarse temporal resolution (e.g. Wilkins et al. 2013; Palmer et al. 2015). Testate amoebae, a widely used hydrological proxy in the Northern Hemisphere, were used here to reconstruct depth to water table (DWT) at Snowy Flat, which is a Sphagnum-Richea-Empodismahigh altitude (1618 m asl) shrub bog in the Australian Capital Territory, Australia. Testate amoebae were quantified in a Snowy Flat core representing 4,200 cal Y BP and the community composition was used to reconstruct DWT based on our recently established transfer functions. Results from three different types of transfer functions (Fig. 1) consistently show there was a decreasing DWT (wetter) period centred on about 3350 cal Y BP, a trend towards increased dryness from about 3300 to 2200 cal Y BP and a distinctly drier period 850 to 700 cal Y BP which was immediately followed by a wetter period from 700 to 500 cal Y BP. We discuss these episodes and trends in relation to the drivers of climatic variability in this region and in particular, by comparing our results with other south-eastern Australia records, comment on the history of the southern annular mode.

  16. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  17. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    Full Text Available Introduction: Iron is found in different forms in the soil. In the primary minerals, iron is found as Fe3+ or Fe2+ which converted to Fe2+ and released in unsuitable reduction conditions. Minerals such as sulfide or chlorine and bicarbonate can affect and change the different forms soil Fe. FeAs these elements are abundance in groundwater or soil, they are capable to react chemically with Fe and change different Fe forms and also may deposit or even leach them by increasing its solubility in the soil. Water table fluctuation is a regular phenomenon in Khuzestan that Fe forms change under these situations. The study of Fe oxide forms and its changes can be applied for evaluation of soil development. Therefore, the aim of this study is the water table fluctuation and its quality effects, and some physio-chemical properties on Fe oxides forms in non-saline and saline soils in Khuzestan. Materials and Methods: Soil samples were collected from two regions: saline (Abdolkhan and non-saline (South Susa regions. soil samples were collected from all horizons of 12 soil field studied profiles . The samples were analyzed for soil texture, pH, EC (soil: water ratio 1:5, organic carbon and aggregate stability (Kemper and Rosenau method. Fe forms also were extracted by two methods in all samples: di-tyonite sodium and ammonium oxalate extraction. Fe oxalate extracted was related to Feo (non crystal Fe and Fed-Feo was related to Fec (crystalline Fe. The Fe content were determined by atomic absorbtion spectrophotometer (AAS. Data were analysis in SAS and Excel software and results were presented. Results and Discussion: The results showed that texture were loamy sand to silty clay loam, OM was very poor (0.1-0.7%. The soil salinity was also 2.8-16.8 dS/m. Calcium carbonate equivalent was 38-40%. All pedons were classified in Entisols and Inceptisols according to Keys to soil taxonomy (2010. The results showed that the proportion of Fe with oxalate to di

  18. Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations

    Science.gov (United States)

    Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.

  19. Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation.

    Directory of Open Access Journals (Sweden)

    Nik G Wiman

    Full Text Available Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix and availability of a suitable host medium (fruit. Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations.

  20. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  1. Temperature dependent development parameters and population life table of beet armyworm, Spodoptera exigua (Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    HonQing Dai

    2017-12-01

    Full Text Available Beet armyworm, Spodoptera exigua (Hübner, is an important insect pest fed on many crops. Temperature and host plant dependent development, survival, and population parameters of S. exigua were studied in present article. The results showed that the generation duration of S. exigua at temperatures 20, 25, 27, 30, and 35 ℃ were 37.61, 30.78, 22.40, 18.57, and 13.74 days, respectively. S. exigua could not survive at 38 ℃. The generation duration of S. exigua, feeding on Lactuca sativa, Lactuca Sativa L., Raphanus sativus L., and Allium fistulosum at 27 ℃, were 18.86, 20.10, 22.67, and 22.50 days respectively. And the generation survivorship was 30.91, 29.00, 22.00, and 27.50% respectively, far less than observed 81.91% feeding on artificial diet. S. exigua feeding on L. sativa showed the highest net reproduction rate (216.29, intrinsic rate for increase (0.34, population trend index (76.59, finite rate for increase (1.33, and fecundity (606.5 eggs, while these values were the lowest when it fed on A. fistulosum. Relationship between development rate and temperature was fitted with three models, the linear model, Logistic model and Wang model, and Wang model produced the best fitting goodness. Wang model showed that for the egg, the 1st-5th instar larvae, pupa and adult of S. exigua, the upper limit temperatures for development are 45, 44.5, 44.4, 40.3, 43.6, 38.9, 38, and 38 ℃, resepctively; the lower limit temperatures for development are 7.5, 7.2, 13.4, 7.3, 6.6, 5.3, 5.6, and 5.6 ℃, respectively, and the optimum temperatures for development are 21.9, 28.9, 25.5, 24.5, 26, 31.6, 30.6, and 29.1 ℃, respectively. The upper limit, lower limit and optimum temperatures for development of the entire generation are 38, 5.7 and 30 ℃, resepctively.

  2. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  3. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  4. Mitigating the risk of extreme water scarcity and dependency: the case of Jordan

    NARCIS (Netherlands)

    Schyns, Joseph Franciscus; Hamaideh, A.; Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Schyns, M.

    2015-01-01

    Jordan faces great internal water scarcity and pollution, conflict over trans-boundary waters, and strong dependency on external water resources through trade. This paper analyzes these issues and subsequently reviews options to reduce the risk of extreme water scarcity and dependency. Based on

  5. Environmental water requirements of groundwater dependent ecosystems: conflict between nature and man

    Science.gov (United States)

    Witczak, S.; Kania, J.; Rozanski, K.; Wachniew, P.; Zurek, A.; Dulinski, M.

    2012-04-01

    new pumping wells has been set up close to the northern border of Niepolomice Forest. There is a growing concern that exploitation of those wells may lead to lowering of water table in the Niepolomice Forest area and, as a consequence, trigger drastic changes of this unique groundwater dependent ecosystem. In order to quantify dynamics of groundwater flow in the area of the Niepolomice Forest and Wielkie Bloto fen, physicochemical parameters and concentrations of environmental tracers (stable isotopes of water, tritium, radiocarbon) were measured in wells located in the recharge area of the Bogucice Sands aquifer and in the newly established wellfield. Also, surface water appearances in the area of Wielkie Bloto fen were investigated. To detect potential discharge of deeper groundwater in the area of Wielkie Bloto fen a dedicated Geoprobe sampling of water from different levels of shallow phreatic aquifer was performed for chemical and isotope analyses. Appropriate modeling runs of the existing 3D flow and transport model of the Bogucice Sands aquifer were also made to investigate possible impact of the newly establish wellfield on the groundwater flow in the Niepolomice Forest area. The chemical and isotope data available to date indicate that in the recharge area, upstream of Wielkie Bloto fen groundwater is relatively young. Presence of appreciable amounts of tritium points to recharge in the past several decades. Radiocarbon content fluctuates between 48 and 65 pmc. In contrast, in the newly established wellfield tritium is absent while radiocarbon content drops to a few pmc. Significant age of groundwater in this area is confirmed by stable isotopes of water revealing characteristic shift towards more negative delta values indicating glacial origin of water. The work was carried out as part of the GENESIS project on groundwater systems (http:/www.thegenesisproject.eu) financed by the European Commission 7FP contract 226536 and the statutory funds of the AGH

  6. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland.

    Science.gov (United States)

    Wang, Hao; Yu, Lingfei; Zhang, Zhenhua; Liu, Wei; Chen, Litong; Cao, Guangmin; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng; Tang, Yanhong; He, Jin-Sheng

    2017-02-01

    Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20 cm relative to control) and N deposition (30 kg N ha -1  yr -1 ) on carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH 4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO 2 uptake or N 2 O flux. N deposition increased net CO 2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N 2 O sinks to N 2 O sources, but had little influence on CH 4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1 g CO 2 -eq m -2 mostly because of decreased CH 4 emissions, while N deposition reduced GWP from 21.0 to -163.8 g CO 2 -eq m -2 , mainly owing to increased net CO 2 uptake. GeoChip analysis revealed that decreased CH 4 production potential, rather than increased CH 4 oxidation potential, may lead to the reduction in net CH 4 emissions, and decreased nitrification potential and increased denitrification potential affected N 2 O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes. © 2016 John Wiley & Sons Ltd.

  7. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  8. Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil

    Science.gov (United States)

    Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.

    2012-11-01

    Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

  9. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  10. Analysis of key thresholds leading to upstream dependencies in global transboundary water bodies

    Science.gov (United States)

    Munia, Hafsa Ahmed; Guillaume, Joseph; Kummu, Matti; Mirumachi, Naho; Wada, Yoshihide

    2017-04-01

    Transboundary water bodies supply 60% of global fresh water flow and are home to about 1/3 of the world's population; creating hydrological, social and economic interdependencies between countries. Trade-offs between water users are delimited by certain thresholds, that, when crossed, result in changes in system behavior, often related to undesirable impacts. A wide variety of thresholds are potentially related to water availability and scarcity. Scarcity can occur because of the country's own water use, and that is potentially intensified by upstream water use. In general, increased water scarcity escalates the reliance on shared water resources, which increases interdependencies between riparian states. In this paper the upstream dependencies of global transboundary river basins are examined at the scale of sub-basin areas. We aim to assess how upstream water withdrawals cause changes in the scarcity categories, such that crossing thresholds is interpreted in terms of downstream dependency on upstream water availability. The thresholds are defined for different types of water availability on which a sub-basin relies: - reliable local runoff (available even in a dry year), - less reliable local water (available in the wet year), - reliable dry year inflows from possible upstream area, and - less reliable wet year inflows from upstream. Possible upstream withdrawals reduce available water downstream, influencing the latter two water availabilities. Upstream dependencies have then been categorized by comparing a sub-basin's scarcity category across different water availability types. When population (or water consumption) grows, the sub-basin satisfies its needs using less reliable water. Thus, the factors affecting the type of water availability being used are different not only for each type of dependency category, but also possibly for every sub- basin. Our results show that, in the case of stress (impacts from high use of water), in 104 (12%) sub- basins out of

  11. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    Science.gov (United States)

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  12. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    Science.gov (United States)

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and

  13. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2012-01-01

    The CERN Table Tennis club and the Meyrin CTT are organizing two Table Tennis workshops from 2 to 6 July and from 20 to 24 August 2012 inclusive in Meyrin. A professional would be with your children from 14.00 pm to 18.00 pm: an instructor J + S category A. Training courses with specific themes, individual courses would be given depending on the level of the child’s game, “discoveries –table tennis games” courses and games with the robot. Other activities (stretching, relaxation). Afternoons (from 18 to 20 children): 40 CHF per workshop and per child. Evenings (from 18 to 20 adults): 60 CHF per workshop and per adult. For further information, please contact Mr. Monteil : Mobile: (+33) 06 61 31 70 47 E-mail: wilfried.monteil@free.fr.

  14. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  15. Characteristics of Tables for Disseminating Biobehavioral Results.

    Science.gov (United States)

    Schneider, Barbara St Pierre; Nagelhout, Ed; Feng, Du

    2018-01-01

    To report the complexity and richness of study variables within biological nursing research, authors often use tables; however, the ease with which consumers understand, synthesize, evaluate, and build upon findings depends partly upon table design. To assess and compare table characteristics within research and review articles published in Biological Research for Nursing and Nursing Research. A total of 10 elements in tables from 48 biobehavioral or biological research or review articles were analyzed. To test six hypotheses, a two-level hierarchical linear model was used for each of the continuous table elements, and a two-level hierarchical generalized linear model was used for each of the categorical table elements. Additionally, the inclusion of probability values in statistical tables was examined. The mean number of tables per article was 3. Tables in research articles were more likely to contain quantitative content, while tables in review articles were more likely to contain both quantitative and qualitative content. Tables in research articles had a greater number of rows, columns, and column-heading levels than tables in review articles. More than one half of statistical tables in research articles had a separate probability column or had probability values within the table, whereas approximately one fourth had probability notes. Authors and journal editorial staff may be generating tables that better depict biobehavioral content than those identified in specific style guidelines. However, authors and journal editorial staff may want to consider table design in terms of audience, including alternative visual displays.

  16. Water-dependent photonic bandgap in silica artificial opals.

    Science.gov (United States)

    Gallego-Gómez, Francisco; Blanco, Alvaro; Canalejas-Tejero, Victor; López, Cefe

    2011-07-04

    Some characteristics of silica--based structures-like the photonic properties of artificial opals formed by silica spheres--can be greatly affected by the presence of adsorbed water. The reversible modification of the water content of an opal is investigated here by moderate heating (below 300 °C) and measuring in situ the changes in the photonic bandgap. Due to reversible removal of interstitial water, large blueshifts of 30 nm and a bandgap narrowing of 7% are observed. The latter is particularly surprising, because water desorption increases the refractive index contrast, which should lead instead to bandgap broadening. A quantitative explanation of this experiment is provided using a simple model for water distribution in the opal that assumes a nonclose-packed fcc structure. This model further predicts that, at room temperature, about 50% of the interstitial water forms necks between nearest-neighbor spheres, which are separated by 5% of their diameter. Upon heating, dehydration predominantly occurs at the sphere surfaces (in the opal voids), so that above 65 °C the remaining water resides exclusively in the necks. A near-close-packed fcc arrangement is only achieved above 200 °C. The high sensitivity to water changes exhibited by silica opals, even under gentle heating of few degrees, must be taken into account for practical applications. Remarkably, accurate control of the distance between spheres--from 16 to 1 nm--is obtained with temperature. In this study, novel use of the optical properties of the opal is made to infer quantitative information about water distribution within silica beads and dehydration phenomena from simple reflection spectra. Taking advantage of the well-defined opal morphology, this approach offers a simple tool for the straightforward investigation of generic adsorption-desorption phenomena, which might be extrapolated to many other fields involving capillary condensation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGa

  17. Water-Dependent Photonic Bandgap in Silica Artificial Opals

    OpenAIRE

    Gallego-Gomez, Francisco; Blanco, Alvaro; Canalejas-Tejero, Victor; Lopez, Cefe

    2011-01-01

    Some characteristics of silica-based structuresa-like the photonic properties of artificial opals formed by silica spheresa-can be greatly affected by the presence of adsorbed water. The reversible modification of the water content of an opal is investigated here by moderate heating (below 300 °C) and measuring in situ the changes in the photonic bandgap. Due to reversible removal of interstitial water, large blueshifts of 30 nm and a bandgap narrowing of 7% are observed. The latter is partic...

  18. Mitigating the Risk of Extreme Water Scarcity and Dependency: The Case of Jordan

    Directory of Open Access Journals (Sweden)

    Joep F. Schyns

    2015-10-01

    Full Text Available Jordan faces great internal water scarcity and pollution, conflict over trans-boundary waters, and strong dependency on external water resources through trade. This paper analyzes these issues and subsequently reviews options to reduce the risk of extreme water scarcity and dependency. Based on estimates of water footprint, water availability, and virtual water trade, we find that groundwater consumption is nearly double the groundwater availability, water pollution aggravates blue water scarcity, and Jordan’s external virtual water import dependency is 86%. The review of response options yields 10 ingredients for a strategy for Jordan to mitigate the risks of extreme water scarcity and dependency. With respect to these ingredients, Jordan’s current water policy requires a strong redirection towards water demand management. Actual implementation of the plans in the national water strategy (against existing oppositions would be a first step. However, more attention should be paid to reducing water demand by changing the consumption pattern of Jordanian consumers. Moreover, unsustainable exploitation of the fossil Disi aquifer should soon be halted and planned desalination projects require careful consideration regarding the sustainability of their energy supply.

  19. Filled and empty states of carbon nanotubes in water: Dependence ...

    Indian Academy of Sciences (India)

    WINTEC

    We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube ..... tant system containing the nanotube is re-equilibrated for each ... quent production phase of the simulation run, the nanotube is ...

  20. Temperature dependence on sodium-water chemical reaction

    International Nuclear Information System (INIS)

    Tamura, Kenta; Deguchi, Yoshihiro; Suzuki, Koichi; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2012-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. A quasi one-dimensional flame model is also applied to a sodium-water counter-flow reaction field. Temperature, H 2 , H 2 O, OH, Na and Particulate matter were measured using laser induced fluorescence and CARS in the counter-flow reaction field. The temperature of the reaction field was also modified to reduce the condensation of Na in the reaction zone. (author)

  1. Surface-structure dependence of water-related adsorbates on platinum

    NARCIS (Netherlands)

    Badan, C.

    2016-01-01

    Today, the energy sector is highly dependent on heterogeneous catalysis because a future solution to end our dependency on natural sources lies in generating hydrogen by splitting water. Several transition metals, such as Pt, are known to be good catalyst materials for water splitting reactions.

  2. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    Science.gov (United States)

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  3. Water security of nations: how international trade affects national water scarity and dependency

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Jones, J. Anthony A.; Vardanian, Trahel G.; Hakopian, Christina

    2009-01-01

    Import of water in virtual form, i.e. in the form of agricultural and industrial commodities, can be an effective means for water-scarce countries to preserve their domestic water resources. On the other hand, export of water-intensive commodities will increase the use and thus the scarcity of water

  4. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  5. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  6. Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

    Science.gov (United States)

    Ethier, Marie-Pier; Bussière, Bruno; Broda, Stefan; Aubertin, Michel

    2018-01-01

    The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D'Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

  7. Scots pine (Pinus sylvestris L.) based reconstruction of 130 years of water table fluctuations in a peatland and its relevance for moisture variability assessments

    Science.gov (United States)

    Tamkevičiūtė, Marija; Edvardsson, Johannes; Pukienė, Rūtilė; Taminskas, Julius; Stoffel, Markus; Corona, Christophe; Kibirkštis, Gintautas

    2018-03-01

    Continuous water-table (WT) measurements from peatlands are scarce and - if existing at all -very short. Consequently, proxy indicators are critically needed to simulate hydrological changes in peatlands over longer time periods. In this study, we demonstrate that tree-ring width (TRW) records of Scots pine (Pinus sylvestris L.) growing in the Čepkeliai peatland (southern Lithuania) can be used as a proxy to reconstruct hydrological variability in a raised bog environment. A two-step modelling procedure was applied to extend existing measurements and to develop a new and longer peatland WT time series. To this end, we used instrumental WT measurements extending back to 2002, meteorological records, a P-PET (difference between precipitation and potential evapotranspiration) series covering the period 1935-2014, so as to construct a tree-ring based time series of WT fluctuations at the site for the period 1870-2014. Strongest correlations were obtained between average annual WT measured at the bog margin and total P-PET over 7 years (r = 0.923, p runoff since CE 1812 (r = 0.39, p < 0.00001, 1870-2014). We conclude that peatlands can act both as sinks and sources of greenhouse gases in case that hydrological conditions change, but that hydrological lags and complex feedbacks still hamper our understanding of several processes affecting the hydrology and carbon budget in peatlands. We therefore call for the development of further proxy records of water-table variability in peatlands to improve our understanding of peatland responses to climatic changes.

  8. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    Science.gov (United States)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  9. Physiological and morphological effects of high water tables on early growth of giant reed (Arundo donax), elephant grass (Pennisetum purpureum), energycane and sugarcane (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, Stephen Peter [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed (Arundo donax), elephant grass (Pennisetum Purpureum), energycane (Saccharum spp.), and sugarcane (Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the water table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and

  10. Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh

    Czech Academy of Sciences Publication Activity Database

    Dušek, Jiří; Čížková, Hana; Stellner, Stanislav; Czerný, Radek; Květ, Jan

    2012-01-01

    Roč. 692, č. 1 (2012), s. 57-66 ISSN 0018-8158 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŽP(CZ) SP/2D1/93/07; GA MŠk OC08021 Institutional research plan: CEZ:AV0Z60870520 Keywords : Wetland * fen * carbon * water level * Carex acuta L. * Eddy covariance Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.985, year: 2012

  11. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  12. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  13. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  14. Efecto del agua aplicada en las relaciones hídricas y productividad de la vid 'Crimson Seedless' Effect of applied water on water relations and productivity of 'Crimson Seedless' table grapes

    Directory of Open Access Journals (Sweden)

    Raúl Ferreyra

    2006-07-01

    Full Text Available Este estudio fue dirigido para evaluar la relación agua-rendimiento en vid de mesa cv. Crimson y establecer valores críticos para las mediciones del estado hídrico de las plantas. Los estudios de campo se desarrollaron durante tres años, en el Valle de Aconcagua, Chile, a 32º47'S y 70º42'O, en un suelo de textura franco arcillosa. Se proporcionaron a las plantas diferentes cantidades de agua de riego entre 40 y 100% de la evapotranspiración del cultivo (Etc. El potencial hídrico xilemático medido a mediodía (psixmin y la conductancia estomática estuvieron estrechamente relacionados con el déficit de agua impuesto y el rendimiento obtenido. Los rendimientos de la vid disminuyeron respecto al agua aplicada en el rango de los tratamientos estudiados. Sesenta por ciento de restricción de la Etc redujo 22% del rendimiento. Cuando la planta mantuvo psixmin mayor que -0,75 MPa entre cuaja y pinta, la producción y los calibres fueron mayores.This study aimed to evaluate the relationship between water and production in 'Crimson Seedless' table grapes, and to establish threshold values for plants water status. Field experiments were carried out, during a three-year period, in the Aconcagua Valley, Chile, at 32º47'S and 70º42'W, in a clay-loamy textured soil. Different irrigation water amounts were applied, between 40 and 100% crop evapotranspiration (Etc. Stem water potential measured at midday (psixmin and stomatal conductance were closely related to water shortage and yield obtained. Table grape yields decreased in comparison with applied water within the range of studied treatments. Sixty per cent Etc restriction decreased yields in 22%. When plants maintained psixmin greater than -0.75 MPa, between berry set and veraison, yield and berry size were high.

  15. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  16. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  17. Dependability and Survivability Evaluation of a Water Distribution Process with Arcade

    NARCIS (Netherlands)

    Roolvink, S.; Remke, Anne Katharina Ingrid; Stoelinga, Mariëlle Ida Antoinette

    2009-01-01

    Among others, drinking water belongs to the socalled critical infrastructures. To ensure that the water production meets current and future societal needs, a systematic and rigorous analysis is needed. In this paper, we report our ��?rst experience with dependability analysis of the last phase of a

  18. Mechanical properties of cohesive soils in dependence on the water quantity and mineralogical composition

    Directory of Open Access Journals (Sweden)

    Ludvik Trauner

    2003-12-01

    Full Text Available This article explains the relationships between the water content, mineralogical properties and mechanical properties of saturated clays. The findings are based on theoretical analysis and were confirmed experimentally on monomineral clay samples. It was foundthat the quantity of intergrain water, which determines the undrained shear strength and compressibility of clays, consists of free pore water, and the firmly adsorbed water on the external surfaces of the clay grains. The free water quantity is the same for differentsaturated clays, at the same undrained shear strength, and same effective stress after consolidation and, likewise, the thickness of the water film around the clay grains. The total quantity of firmly adsorbed water depends on the specific surfaces of the clays. Theresult of this work is a new analytical formulation that gives the relationship between the water content and the mechanical properties of clays, taking into account their mineralogical characteristics.

  19. VIDENTE: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modellin

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.

    2000-01-01

    The VIDENTE program contains a decision support system (DSS) to choose between different models for stochastic modelling of water-table depths, and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN,SSDS and EMERALD. In self-contained parts each of

  20. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  1. Monthly tables of measurements. October 2000

    International Nuclear Information System (INIS)

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  2. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  3. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  4. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  5. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    Science.gov (United States)

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Stability analysis of roadway embankments supported by stone columns with the presence of water table under short-term and long-term conditions

    Directory of Open Access Journals (Sweden)

    Kadhim Shaymaa Tareq

    2018-01-01

    Full Text Available Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.

  7. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  8. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    OpenAIRE

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-01-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-t...

  9. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil

    NARCIS (Netherlands)

    Castro Teixeira, de A.H.; Bastiaanssen, W.G.M.; Bassoi, L.H.

    2007-01-01

    Energy and water balance parameters were measured in two commercial vineyards in the semiarid region of the São Francisco river basin, Brazil. Actual evapotranspiration (ET) was acquired with the Bowen ratio surface energy balance method. The ratio of the latent heat flux to the available energy, or

  10. Quantitative assessment of accumulation of radionuclides in fish organism in dependence on water temperature

    International Nuclear Information System (INIS)

    Katkov, A.E.

    1980-01-01

    Eperimentally studied are the changes of levels of several indices of radionuclide metabolism in fishes in dependence on water temperature at its absorption directly from water and at introduction into the digestive tract. Presented are the coefficients of radionuclide storage by the fish tissues in the dependence on temperature (scales and fins, gills, head, intestines, skin, muscles, axial skeleton) and the coefficients of radionuclide retention in the whole fish. It is shown that the connection between the coefficient of radionuclide storage in the fish organism and water temperature is described by the logarithmic dependence. At the systematic entering of radionuclides into the digestive tract the retention coefficient of them in the organism expressed in the form of the ratio of residual quantity in the fish to the quantity in day dose is constant

  11. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  12. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  13. Tide dependent seasonal changes in water quality and assimilative capacity of anthropogenically influenced Mormugao harbour water

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Deepthi, M.; Vethamony, P.; Mesquita, A.M.; Pradhan, U.K.; Babu, M.T.; Verlecar, X.N.; Haldankar, S.R.

    Water quality data from Mormugao harbour area at the mouth of Zuari estuary in Goa have been obtained over two tidal cycles monthly for the year 2003 to 2004. R-mode factor analyses of the data indicated strong positive loadings of coliforms...

  14. The economic value of detailed soil survey in a drinking water collection area in the Netherlands

    NARCIS (Netherlands)

    Knotters, M.; Vroon, H.R.J.

    2015-01-01

    In large parts of the Netherlands crop growth depends on the water table. If groundwater is withdrawn the water table is lowered and agricultural crop production may be reduced. Farmers in drinking water collection areas are legally compensated for these crop yield reductions. Soil maps are used to

  15. Dynamics of Soil Water Evaporation during Soil Drying in the Presence of a Shallow Water Table: Laboratory Experiment and Numerical Analysis

    Science.gov (United States)

    Han, J.; Lin, J.; Liu, P.; Li, W.

    2017-12-01

    Evaporation from a porous medium plays a key role in hydrological, agricultural, environmental, and engineering applications. Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. Although the magnitude of condensation zone was much smaller than that for the evaporation zone, the importance of the contribution of condensation zone to soil water dynamics should not be underestimated. Results from our experiment and numerical simulation show that this condensation process resulted in an unexpected and apparent water content increase in the middle of vadose zone profile.

  16. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Koumoutsakos, Petros

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate......, for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500nm long CNTs and observe a previously unseen dependence of the flow enhancement rates...

  17. Temperature dependence of HU values for various water equivalent phantom materials

    International Nuclear Information System (INIS)

    Homolka, P.; Nowotny, R.; Gahleitner, A.

    2002-01-01

    The temperature dependence of water equivalent phantom materials used in radiotherapy and diagnostic imaging has been investigated. Samples of phantom materials based on epoxy resin, polyethylene, a polystyrene-polypropylene mixture and commercially available phantom materials (Solid Water TM , Gammex RMI and Plastic Water TM , Nuclear Associates) were scanned at temperatures from 15 to 40 deg. C and HU values determined. At a reference temperature of 20 deg. C materials optimized for CT applications give HU values close to zero while the commercial materials show an offset of 119.77 HU (Plastic Water) and 27.69 HU (Solid Water). Temperature dependence was lowest for epoxy-based materials (EPX-W: -0.23 HU deg. C -1 ; Solid Water: -0.25 HU deg. C -1 ) and highest for a polyethylene-based material (X0: -0.72 HU deg. C -1 ). A material based on a mixture of polystyrene and polypropylene (PSPP1: -0.27 HU deg. C -1 ) is comparable to epoxy-based materials and water (-0.29 HU deg. C -1 ). (author)

  18. Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs)

    DEFF Research Database (Denmark)

    Munch Johansen, Ole; Andersen, Dagmar Kappel; Ejrnæs, Rasmus

    2018-01-01

    , management and conservation of fens are constrained by limited knowledge on the relations between vegetation and measurable hydrological conditions. This study investigates the relations between vegetation and water level dynamics in groundwater dependent wetlands in Denmark. A total of 35 wetland sites...... across Denmark were included in the study. The sites represent a continuum of wetlands with respect to vegetation and hydrological conditions. Water level was measured continuously using pressure transducers at each site. Metrics expressing different hydrological characteristics, such as mean water level...... and low and high water level periods, were calculated based on the water level time series. A complete plant species list was recorded in plots covering 78.5 m2 at each site. Community metrics such as total number of species and the number of bryophytes were generated from the species lists and Ellenberg...

  19. Assessment of 226Ra age-dependent dose from water intake

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Srisuksawad, Kanitha

    2008-01-01

    The radioactivity in canal and ground waters collected in a 2-year long observation from the vicinity of the Rare Earth Research and Development Center (RRDC), Phathumthani Province, Thailand, was measured in order to determine the concentration of 226 Ra and to estimate the age-dependent effective dose to humans due to consumption. 226 Ra activities in both canal and ground waters were well below the WHO guidance level for drinking water quality of 1 Bq L -1 . The highest 226 Ra effective doses per year were found for infants and teens. However, the observed levels of calculated 226 Ra effective doses for all age groups in both canal and ground waters show satisfactory low values (less than 15 μSv yr -1 ). These values are acceptable in accordance with the WHO recommended reference dose level of 100 μSv yr -1 from water intake of 2 L day -1

  20. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  1. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    Science.gov (United States)

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  3. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  4. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2018.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  5. Pension Insurance Data Tables

    Data.gov (United States)

    Pension Benefit Guaranty Corporation — Find out about retirement trends in PBGC's data tables. The tables include statistics on the people and pensions that PBGC protects, including how many Americans are...

  6. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  7. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  8. NNDSS - Table II. Vibriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...

  9. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2017.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  10. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  11. NNDSS - Table II. Vibriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...

  12. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  13. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  14. Chemosensory Perception of Predators by Larval Amphibians Depends on Water Quality.

    Directory of Open Access Journals (Sweden)

    Rachael R Troyer

    Full Text Available The acquisition of sensory information by animals is central to species interactions. In aquatic environments, most taxa use chemical cues to assess predation risk and other key ecological factors. A number of laboratory studies suggest that anthropogenic pollutants can disrupt chemoreception, even when at low, non-toxic concentrations, but there are few tests of whether real-world variation in water quality affects chemoreception. Here we investigate whether chemosensory perception of predators by the gray treefrog, Hyla versicolor, depends on water quality. We evaluated the anti-predator response of anuran tadpoles housed in water collected from three sites that represent strong contrasts in the concentration and types of dissolved solids: de-chlorinated tap water, water from an impaired stream, and treated wastewater effluent. Behavioral assays were conducted in laboratory aquaria. Chemical cues associated with predation were generated by feeding tadpoles to dragonfly predators held in containers, and then transferring aliquots of water from dragonfly containers to experimental aquaria. Tadpoles housed in tap water responded to predator cues with an activity reduction of 49%. Tadpoles housed in stream water and wastewater effluent responded to predator cues by reducing activity by 29% and 24% respectively. The results of factorial ANOVA support the hypothesis that the response to predator cues depended on water type. These results show that alteration of the chemical environment can mediate chemical perception of predators in aquatic ecosystems. Because most aquatic species rely on chemoreception to gather information on the location of food and predators, any impairment of sensory perception likely has important ecological consequences.

  15. AcuTable

    DEFF Research Database (Denmark)

    Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel

    2017-01-01

    In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...

  16. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2013-01-01

    Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...

  17. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  18. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  19. Defining groundwater-dependent ecosystems and assessing critical water needs for their foundational plant communities

    Science.gov (United States)

    Stella, J. C.

    2017-12-01

    In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought

  20. Age-dependent radiation dose due to intake of uranium through drinking water in India

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Mohapatra, S.; Chakrabarty, A.; Sumesh, C.G.; Tripathi, R.M.; Puranik, V.D.

    2009-01-01

    In the present study, an attempt has been made to estimate the content of uranium in drinking water in various states of India by laser fluorimetry. Depending upon the rate of water intake for the different age groups, the associated radiation dose was calculated. The concentration of uranium varied between 0.1 ± 0.01 and 19.6 ± 1.8 ppb which is much lower than the drinking water guideline value of 60 ppb. The total radiation dose due to ingestion of uranium through drinking water for various age groups is found to vary from 0.14 μSv/y to 48 μSv/y. (author)

  1. Mortality table construction

    Science.gov (United States)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  2. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  3. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  4. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  5. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    Science.gov (United States)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  6. On shallow water waves in a medium with time-dependent

    Directory of Open Access Journals (Sweden)

    Hamdy I. Abdel-Gawad

    2015-07-01

    Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.

  7. TABLE TENNIS CLUB

    CERN Document Server

    TABLE TENNIS CLUB

    2010-01-01

    2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...

  8. Temperature dependence of the calibration factor of radon and radium determination in water samples by SSNTD

    CERN Document Server

    Hunyadi, I; Hakl, J; Baradacs, E; Dezso, Z

    1999-01-01

    The sensitivity of a sup 2 sup 2 sup 6 Ra determination method of water samples by SSNTD was measured as a function of storage temperature during exposure. The method is based on an etched track type radon monitor, which is closed into a gas permeable foil and is immersed in the water sample. The sample is sealed in a glass vessel and stored for an exposure time of 10-30 days. The sensitivity increased more than a factor of two when the storage temperature was raised from 2 deg. C to 30 deg. C. Temperature dependence of the partition coefficient of radon between water and air provides explanation for this dependence. For practical radio- analytical application the temperature dependence of the calibration factor is given by fitting the sensitivity data obtained by measuring sup 2 sup 2 sup 6 Ra standard solutions (in the activity concentration range of 0.1-48.5 kBq m sup - sup 3) at different storage temperatures.

  9. Institutional path dependence and environmental water recovery in Australia’s Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Graham R. Marshall

    2016-10-01

    Full Text Available The concept of institutional path dependence offers useful ways of understanding the trajectories of water policy reforms and how past institutional arrangements, policy paradigms and development patterns constrain current and future choices and limit institutional adaptability. The value of this concept is demonstrated through an analysis of environmental water recovery in Australia’s Murray-Darling Basin, where while significant water volumes have been reallocated to the environment, the costs have also been significant. While there are significant lessons from the Australian experience, attempts to emulate the approach involve substantive risks and may be prohibitively costly for less wealthy nations. Context-specific institutional analysis is emphasised as fundamental to water reform and critical for reform architecture and sequencing. A key finding is that while crisis can provide powerful catalysts for institutional innovation, institutional path dependence in the absence of active and disruptive policy entrepreneurs fosters a strong tendency to reinforce the status quo and limit innovation, potentially exposing social-ecological systems to greater shocks due to climate change and other sources of escalating uncertainty.

  10. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  11. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1966-03-01

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 ± 0.3 μs has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 μs. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 ±2.4 μs. The approach to the equilibrium spectrum takes place with a time constant of 33 ±4 μs, and the equilibrium has been established after about 200 μs. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time

  12. Standard Reference Tables -

    Data.gov (United States)

    Department of Transportation — The Standard Reference Tables (SRT) provide consistent reference data for the various applications that support Flight Standards Service (AFS) business processes and...

  13. Evaluation of a computer model to simulate water table response to subirrigation Avaliação de um modelo computacional para simular a resposta do lençol freático à subirrigação

    Directory of Open Access Journals (Sweden)

    Jadir Aparecido Rosa

    2002-12-01

    Full Text Available The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L. growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.O objetivo deste trabalho foi avaliar o modelo computacional WATABLE usando-se dados de campo obtidos em uma área experimental em manejo de lençol freático, localizada em Hastings, FL, EUA. Na área experimental, estavam instalados um sistema de drenagem e sistemas de irrigação por subsuperfície com irrigação localizada e por canais. Ciclos de cultivo de batata (Solanum tuberosum L., nos anos de 1996 e 1997, foram usados para a simulação da hidrologia da área. Profundidades do lençol freático, chuvas, irrigação e escorrimento superficial foram monitorados constantemente. O modelo simulou o movimento da água a partir de uma linha de irrigação localizada enterrada, e a resposta do nível do len

  14. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  15. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    Science.gov (United States)

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  17. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay)

    KAUST Repository

    Álvarez, E

    2015-12-09

    © Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.

  18. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay)

    KAUST Repository

    Á lvarez, E; Moran, Xose Anxelu G.; Ló pez-Urrutia, Á ; Nogueira, E

    2015-01-01

    © Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.

  19. The Living Periodic Table

    Science.gov (United States)

    Nahlik, Mary Schrodt

    2005-01-01

    To help make the abstract world of chemistry more concrete eighth-grade students, the author has them create a living periodic table that can be displayed in the classroom or hallway. This display includes information about the elements arranged in the traditional periodic table format, but also includes visual real-world representations of the…

  20. Qualification of the calculational methods of the fluence in the pressurised water reactors. Improvement of the cross sections treatment by the probability table method

    International Nuclear Information System (INIS)

    Zheng, S.H.

    1994-01-01

    It is indispensable to know the fluence on the nuclear reactor pressure vessel. The cross sections and their treatment have an important rule to this problem. In this study, two ''benchmarks'' have been interpreted by the Monte Carlo transport program TRIPOLI to qualify the calculational method and the cross sections used in the calculations. For the treatment of the cross sections, the multigroup method is usually used but it exists some problems such as the difficulty to choose the weighting function and the necessity of a great number of energy to represent well the cross section's fluctuation. In this thesis, we propose a new method called ''Probability Table Method'' to treat the neutron cross sections. For the qualification, a program of the simulation of neutron transport by the Monte Carlo method in one dimension has been written; the comparison of multigroup's results and probability table's results shows the advantages of this new method. The probability table has also been introduced in the TRIPOLI program; the calculational results of the iron deep penetration benchmark has been improved by comparing with the experimental results. So it is interest to use this new method in the shielding and neutronic calculation. (author). 42 refs., 109 figs., 36 tabs

  1. Time-dependent enhancement of lymphocyte activation by mitogens after exposure to isolation or water scheduling.

    Science.gov (United States)

    Jessop, J J; Gale, K; Bayer, B M

    1988-01-01

    The effects of isolation and water scheduling on mitogen induced lymphocyte proliferation were investigated. Isolated rats were animals which had been raised in group-housed conditions and then transferred to individual cages with ad lib access to water for a 1 or 2 week period. Water scheduled rats were maintained in group housing (5 rats per cage) with ad lib access to food but with access to water for a single 30 minute session each day. Responses of these groups were compared to those of animals which had been continuously group-housed with ad lib access to food and water. No differences in lymphocyte responses to phytohemagglutinin (PHA) were found 1 week after exposure to isolation. However, after 2 weeks, splenic and blood T lymphocytes from isolated animals demonstrated an increased proliferative response to suboptimum and maximum concentrations of PHA. Splenic B lymphocyte responses to lipopolysaccharide (LPS) from isolated animals were also increased by 2- to 3-fold compared to group-housed controls. Two weeks of exposure of animals to daily water scheduling similarly increased the splenic lymphocyte proliferation. This increased responsiveness to PHA was not accompanied by a significant change in the sensitivity of the lymphocytes to PHA, in the total number of white blood cells, or the proportion of splenic T or T helper lymphocytes. Our results show that the increase in lymphocyte proliferation is time-dependent, requires greater than 1 week of exposure to isolation and is due to factors other than changes in sensitivity to mitogen or T lymphocyte number.

  2. Path Dependencies and Institutional Bricolage in Post-Soviet Water Governance

    Directory of Open Access Journals (Sweden)

    Jenniver Sehring

    2009-02-01

    Based on empirical findings, four variables through which the neopatrimonial context in both countries impacts water governance are identified: the decision-making process, the agricultural sector, the local governance institutions, and internal water-institutional linkages. A historical-institutionalist perspective shows how path dependencies limit reform effectiveness: institutionalised Soviet and pre-Soviet patterns of behaviour still shape actors’ responses to new challenges. Consequently, rules and organisations established formally by the state or international donor organisations are undermined by informal institutions. Yet, informal institutions are not only an obstacle to reform, but can also support it. They are not static but dynamic. This is elucidated with the concept of 'institutional bricolage', which explains how local actors recombine elements of different institutional logics and thereby change their meaning.

  3. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  4. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  5. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  6. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  7. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  8. Dependence of precipitation of trace elements on pH in standard water

    Science.gov (United States)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  9. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes

    International Nuclear Information System (INIS)

    Shi, Hao; Li, Longhui; Eamus, Derek; Cleverly, James; Huete, Alfredo; Yu, Qiang; Beringer, Jason; Van Gorsel, Eva; Hutley, Lindsay

    2014-01-01

    The sensitivity of ecosystem gross primary production (GPP) to availability of water and photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with differing annual precipitation, species composition and temperature. Changes to both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales across biomes, with minor additional correlations observed with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and eWUE were statistically different for biomes between summer and winter, except eWUE for savannas and the grassland. These findings will improve our understanding of how light- and water-use traits in Australian ecosystems may respond to climate change. (letter)

  10. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  11. A void ratio dependent water retention curve model including hydraulic hysteresis

    Directory of Open Access Journals (Sweden)

    Pasha Amin Y.

    2016-01-01

    Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.

  12. Empirical yield tables for Michigan.

    Science.gov (United States)

    Jerold T. Hahn; Joan M. Stelman

    1984-01-01

    Describes the tables derived from the 1980 Forest Survey of Michigan and presents ways the tables can be used. These tables are broken down according to Michigan's four Forest Survey Units, 14 forest types, and 5 site-index classes.

  13. Empirical yield tables for Wisconsin.

    Science.gov (United States)

    Jerold T. Hahn; Joan M. Stelman

    1989-01-01

    Describes the tables derived from the 1983 Forest Survey of Wisconsin and presents ways the tables can be used. These tables are broken down according to Wisconsin`s five Forest Survey Units and 14 forest types.

  14. Permit.LOA table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)

  15. VMS forms Output Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...

  16. The Periodic Table CD.

    Science.gov (United States)

    Banks, Alton J.; Holmes, Jon L.

    1995-01-01

    Describes the characteristics of the digitized version of The Periodic Table Videodisc. Provides details about the organization of information and access to the data via Macintosh and Windows computers. (DDR)

  17. Setting the Periodic Table.

    Science.gov (United States)

    Saturnelli, Annette

    1985-01-01

    Examines problems resulting from different forms of the periodic table, indicating that New York State schools use a form reflecting the International Union of Pure and Applied Chemistry's 1984 recommendations. Other formats used and reasons for standardization are discussed. (DH)

  18. Body Mass Index Table

    Science.gov (United States)

    ... Families ( We Can! ) Health Professional Resources Body Mass Index Table 1 for BMI greater than 35, go ... Health Information Email Alerts Jobs and Careers Site Index About NHLBI National Institute of Health Department of ...

  19. Decision table languages and systems

    CERN Document Server

    Metzner, John R

    1977-01-01

    ACM Monograph Series: Decision Table Languages and Systems focuses on linguistic examination of decision tables and survey of the features of existing decision table languages and systems. The book first offers information on semiotics, programming language features, and generalization. Discussions focus on semantic broadening, outer language enrichments, generalization of syntax, limitations, implementation improvements, syntactic and semantic features, decision table syntax, semantics of decision table languages, and decision table programming languages. The text then elaborates on design im

  20. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Science.gov (United States)

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  1. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra; Tomar, Vikas, E-mail: tomar@purdue.edu

    2014-11-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water.

  2. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    International Nuclear Information System (INIS)

    Verma, Devendra; Tomar, Vikas

    2014-01-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water

  3. The 2005 CHF look-up table

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Vasic, A.Z.; Leung, L.K.H.; Durmayaz, A.; Shan, J.Q.; Yang, J.; Cheng, S.C.

    2005-01-01

    Full text of publication follows: CHF Look-up tables have been used widely for the prediction of the Critical Heat Flux (CHF) The CHF look-up table is basically a normalized data bank. The first CHF look-up table was constructed by Doroshchuk et al. (1975), using a limited database of 5 000 data points. This table, and all subsequent tables, contain normalized CHF values for a vertical 8 mm water-cooled tube for various pressures, mass fluxes and qualities. The CHF table development work has since been in progress at various institutions (e.g. CENG-Grenoble, University of Ottawa (UO), Ottawa, IPPE, Obninsk, and AECL, Chalk River) using an ever increasing data base. The 1995 CHF look-up table employs a data base containing about 30 000 CHF points and provides CHF values for an 8 mm ID, water-cooled tube, for 19 pressures, 20 mass fluxes, and 23 qualities. covering the full range of conditions of practical interest. The 2005 CHF LUT is an update to the 1995 LUT and addresses several concerns raised in the literature. The major improvements made are: - enhancement of the quality of the data base of the CHF look-up table (identify outliers, improve screening procedures); - increase in the data base by adding recently obtained data; - employment of greater subdivision of the look-up table by using smaller intervals in the independent parameters (pressure, mass flux and quality) at conditions where the variation in CHF is significant; - improvement of the smoothness of the CHF look-up table. This was done by the use of logarithmic functions for CHF, using optimum Spline functions etc. A discussion of the impact of these changes on the prediction accuracy and table smoothness is presented. It will be shown that the 2005 CHF look-up table is characterized by a significant improvement in accuracy and smoothness. [1] D. Groeneveld is the corresponding author. He is an Adjunct Professor at the University of Ottawa. (authors)

  4. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review.

    Science.gov (United States)

    Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl

    2017-07-28

    Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.

  5. Magnetic resonance angiography (MRA) of the calf station at 3.0 T: intraindividual comparison of non-enhanced ECG-gated flow-dependent MRA, continuous table movement MRA and time-resolved MRA

    International Nuclear Information System (INIS)

    Haneder, Stefan; Attenberger, Ulrike I.; Riffel, Philipp; Henzler, Thomas; Schoenberg, Stefan O.; Michaely, Henrik J.

    2011-01-01

    To compare 3D non-enhanced ECG-gated inflow-dependent MRA (NE-MRA) vs. continuous table movement (CTM) MR-angiography and time-resolved TWIST-MRA in the calf station at 3.0 T in a clinical patient collective. 36 patients (27 male/9 female, 66.1 ± 14.4 years) with PAOD (stage II-IV) underwent during a single MRI: NE-MRA, contrast-enhanced CTM-MRA and TWIST-MRA with a single dose of a gadolinium-based contrast agent. The image quality (IQ) and the degree of stenoses were rated on a four-point scale. Positive (PPV) and negative predictive values (NPV), sensitivity (SS) and specificity (SP) for stenoses detection were calculated for NE-MRA vs. CTM-MRA and vs. TWIST-MRA. Values were obtained for overall graduation of wall changes and for severe stenoses (>70%). With NE-MRA 122/288 segments were not assessable. Compared with CTM-MRA and TWIST-MRA the IQ was significantly inferior (p < 0.0001 to p = 0.0426). CTM-MRA/TWIST-MRA detected stenoses in 44.9%/46.1% of the segments, NE-MRA in 53.5%. SS/NPV of the NE-MRA ranged from 97.8 to 100%. The SP and PPV ranged from 72.7 to 85.5% and 66.7 to 78.2%. Contrast-enhanced MRA techniques are superior to NE-MRA regarding IQ and correct identification of stenoses. If technically successful, NE-MRA is characterised by high NPV and overestimation of the degree of stenoses. (orig.)

  6. Theoretical treatment of photodissociation of water by time-dependent quantum mechanical methods

    International Nuclear Information System (INIS)

    Weide, K.

    1993-01-01

    An algorithm for wavepacket propagation, based on Kosloff's method of expansion of the time evolution operator in terms of Chebychev polynomials, and some details of its implementation are described. With the programs developed, quantum-mechanical calculations for up to three independent molecular coordinates are possible and feasible and therefore photodissociation of non-rotating triatomic molecules can be treated exactly. The angular degree of freedom here is handled by expansion in terms of free diatomic rotor states. The time-dependent wave packet picture is compared with the more traditional view of stationary wave functions, and both are used to interpret computational results where appropriate. Two-dimensional calculations have been performed to explain several experimental observations about water photodissociation. All calculations are based on ab initio potential energy surfaces, and it is explained in each case why it is reasonable to neglect the third degree of freedom. Many experimental results are reproduced quantitatively. (orig.) [de

  7. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  8. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis

    Directory of Open Access Journals (Sweden)

    Jan Christian Koj

    2017-06-01

    Full Text Available Industrial hydrogen production via alkaline water electrolysis (AEL is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany, revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes in three different countries (Austria, Germany and Spain with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden.

  9. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  10. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    Science.gov (United States)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  11. Reading the Water Table: The Interaction between Literacy Practices and Groundwater Management Training in Preparing Farmers for Climate Change in South India

    Science.gov (United States)

    Chavva, Konda Reddy; Smith, Cristine A.

    2012-01-01

    This article focuses on farmers' use of literacy for individual decision-making on crop-water management and crop choices and investigates how farmer participants perceive the usefulness of Farmer Water School (FWS) training. It draws upon a study conducted with farmers of Kurnool district of Andhra Pradesh, India. This study has demonstrated that…

  12. Empirical yield tables for Minnesota.

    Science.gov (United States)

    Jerold T. Hahn; Gerhard K. Raile

    1982-01-01

    Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.

  13. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  14. Periodic table of elements

    International Nuclear Information System (INIS)

    Fluck, E.; Heumann, K.G.

    1985-01-01

    Following a recommendation by the International Union for Pure and Applied Chemistry (IUPAC), the groups of the periodic table shall be numbered from 1 to 18, instead of I to VIII as before. The recommendations has been approved of by the Committee on Nomenclature of the American Chemical Society. The new system abandons the distinction between main groups (a) and auxiliary groups (b), which in the past frequently has been the reason for misunderstandings between European and American chemists, due to different handling. The publishing house VCH Verlagsgesellschaft recently produced a new periodic table that shows the old and the new numbering system together at a glance, so that chemists will have time to get familiar with the new system. In addition the new periodic table represents an extensive data compilation arranged by elements. The front page lists the chemical properties of elements, the back page their physical properties. (orig./EF) [de

  15. Dependence of ion-water distances on covalent radii, ionic radii in water and distances of oxygen and hydrogen of water from ion/water boundaries

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 429, č. 4-6 (2006), s. 600-605 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : ion-water distances * covalent and ionic radius Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  16. Dosimetric Effects Of Different Treatment Tables During Radiotherapy

    International Nuclear Information System (INIS)

    Murkovic, M.; Grego, T.; Bibic, J.

    2015-01-01

    The aim of our study was to measure the effect of mega-voltage photon beam attenuation when treating patients through carbon fibre treatment table with and without the carbon laminate base plate on it. We also examined the ability of XiO treatment planning system in modelling this effect. Direct attenuation measurements were made for two treatment tables, Siemens TxT 550 treatment table with TT-A table top and Elekta Precise table with iBEAM evo table top. On both treatment tables we used Orfit Base Plate (32301). Measurements were taken for two photon energies (6 MV and 18 MV), at two different field sizes (5 x 5 cm 2 and 10 x 10 cm 2 ) and different gantry angles in 50 intervals using stationary water phantom and Farmer type ionization chamber. These values were compared to values calculated in XiO. In order to account for the effect of table and base plate during treatment planning in XiO, customized table and base plate templates were develop in Focal planning system. To construct these customized templates, table and base plate contours as well as respective relative electron density's to water were obtained on CT scanner. The largest attenuation effect was seen for oblique treatment angles using low energy and small field sizes, 6.6 percent for the Elekta table top and 8.4 percent for Siemens table top. In this paper we show that customized table and base plate templates introduced in the patient treatment plan can accurately model the attenuation due to their presence to within 0.3 percent. Since dose modifications due to such carbon fiber accessories can be significant, it can be concluded that introduction of customized table and base plate templates into TPS brings an important improvement to patient treatment planning, and should be included in dose calculations whenever possible. (author).

  17. Efeito de velocidades de rebaixamento do nível freático em diferentes períodos de desenvolvimento da cultura da alface Effect of water table drawdown velocities in different stages of lettuce crop

    Directory of Open Access Journals (Sweden)

    Rafael Mingoti

    2006-03-01

    Full Text Available Através deste trabalho objetivou-se determinar os efeitos do encharcamento do solo nas variáveis fenológicas e na produtividade da cultura da alface, identificar o estádio fenológico em que ocorre a maior diminuição da produtividade e obter uma relação entre a produtividade relativa da cultura e o índice diário de estresse. O delineamento experimental adotado foi inteiramente casualizado, arranjado em esquema fatorial [(3x4+1], com 3 repetições. Os tratamentos consistiram do período de inundação (12, 22 e 32 DAT, de velocidades de rebaixamento do nível freático (30 cm em 24, 48, 72 e 96 horas e uma testemunha, na qual não foi aplicado estresse por elevação do lençol freático. A alface apresentou-se como cultura sensível ao encharcamento; entretanto, não foi possível se definir um valor para o coeficiente de drenagem pois, mesmo com a maior velocidade de rebaixamento testada, ocorreu decréscimo de cerca de 50% da produção. Dentre os três períodos nos quais o estresse causado pela elevação do nível freático foi aplicado, o primeiro foi o que ocasionou maiores perdas. A produtividade das plantas de alface apresentou correlação linear negativa com o índice diário de estresse (IDS.The work had the objectives of determining the effect of water table drawdown velocities on the growth and yield of lettuce crop in a flooded soil, identifying the stage of the crop cycle with the highest reduction in the productivity and obtaining a relation between the crop relative productivity and the daily stress index. The statistical experimental design was completely randomized in factorial scheme [(3 x 4 + 1], with three replications. The water table was lowered at 3 stages of the crop cycle (12, 22 and 32 days after the transplanting, four drawdown velocities (30 cm during 24, 48, 72 and 96 h and a 13 treatment in which stress was not applied with the elevation of the water table. The lettuce presented as a sensible crop to

  18. Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the Spline-Based Table Look-Up Method (SBTL) in RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Kunick, Matthias; Kretzschmar, Hans-Joachim [Zittau/Goerlitz Univ. of Applied Sciences, Zittau (Germany). Dept. of Technical Thermodynamics; Berry, Ray A.; Martineau, Richard C. [Idaho National Laboratory, Idaho Falls, ID (United States). Nuclear Science and Technology; Gampe, Uwe [Dresden Univ. of Technology (Germany). Chair of Thermal Power Machinery and Plants

    2017-07-15

    The numerical simulation of thermalhydraulic processes in nuclear power plants requires very accurate and extremely fast algorithms for calculating the thermophysical properties of water and steam. In order to provide such algorithms, the International Association for the Properties of Water and Steam (IAPWS) has adopted the new ''IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)''. In this article, the SBTL method is applied to property functions of specific volume and specific internal energy (v,e) based on the scientific formulation IAPWS-95 and the latest IAPWS formulations for transport properties. From the newly generated SBTL functions, thermodynamic and transport properties as well as their derivatives and inverse functions are calculable in the fluid range of state for pressures up to 100 MPa and for temperatures up to 1273 K, including the metastable liquid and the metastable vapor regions. The SBTL functions reproduce the underlying formulations with an accuracy of 10-100 ppm and significantly reduced computing times. The SBTL method has been implemented into the nuclear reactor system safety analysis code RELAP-7 [2] to consider the real fluid behavior of water and steam in a novel 7-equation two-phase flow model.

  19. Code for the steam tables for pure water in visual basic 6.0.; Un codigo para las tablas de vapor para agua pura en visual basic 6.0

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Mahendra P. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2002-07-01

    The thermodynamic data of the water are of extreme importance in all of the branches of science and technology; the facilitate the understanding of the natural Earth processes. Nevertheless, for the electrical industry the water plays a very important role during the generation of electrical energy process. Different heat sources such as coal, oil, natural gas, nuclear fuel or the geothermal heat boil the water that forms the steam used to move the turbines. Consequently, the steam tables (the thermodynamic water data) are vital to model thermal and mass transference and physical-chemical processes during the generation of electrical energy. [Spanish] Los datos termodinamicos del agua son de suma importancia en todas las ramas de la ciencia y tecnologia, ellos facilitan el entendimiento de los procesos naturales de la Tierra. Sin embargo, para la industria electrica el agua juega un papel muy importante durante el proceso de generacion de energia electrica. Diferentes fuentes de calor tales como carbon, aceite, gas natural, combustible nuclear o el calor geotermico calientan el agua que forma el vapor utilizado para mover las turbinas. Luego entonces, las tablas de vapor (los datos termodinamicos de agua) son vitales para modelar transferencia termica y de masa y procesos fisico-quimico durante la generacion energia electrica.

  20. Changes in the water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  1. Development of Less Water-Dependent Radiation Grafted Proton Exchange Membranes for Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M M; Ahmad, A; Saidi, H; Dahlan, K Z.M. [Institute of Hydrogen Economy, Energy Research Alliance (ERA), International Campus, Univeristi Teknologi Malaysia, Jalan Semarak, Kuala Lumpur (Malaysia); Radiation Processing Division, Malaysian Nuclear Agency, Bangi, Kajang (Malaysia)

    2012-09-15

    The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel cell operated above 100{sup o}C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were evaluated and the in situ performance was tested in a single H{sub 2}/O{sub 2} fuel cell under dynamic conditions and compared with a similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the variation in G% and temperature (30-130{sup o}C). The performance of 34 and 49% grafted and doped membranes was tested in a single fuel cell at 130{sup o}C under dynamic conditions with 146 and 127 mW/cm{sup 2} power densities. The polarization, power density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell operation above 100 deg. C. (author)

  2. Time-of-day-dependent global distribution of lunar surficial water/hydroxyl.

    Science.gov (United States)

    Wöhler, Christian; Grumpe, Arne; Berezhnoy, Alexey A; Shevchenko, Vladislav V

    2017-09-01

    A new set of time-of-day-dependent global maps of the lunar near-infrared water/hydroxyl (H 2 O/OH) absorption band strength near 2.8 to 3.0 μm constructed on the basis of Moon Mineralogy Mapper (M 3 ) data is presented. The analyzed absorption band near 2.8 to 3.0 μm indicates the presence of surficial H 2 O/OH. To remove the thermal emission component from the M 3 reflectance spectra, a reliable and physically realistic mapping method has been developed. Our maps show that lunar highlands at high latitudes show a stronger H 2 O/OH absorption band in the lunar morning and evening than at midday. The amplitude of these time-of-day-dependent variations decreases with decreasing latitude of the highland regions, where below about 30°, absorption strength becomes nearly constant during the lunar day at a similar level as in the high-latitude highlands at midday. The lunar maria exhibit weaker H 2 O/OH absorption than the highlands at all, but showing a smaller difference from highlands absorption levels in the morning and evening than at midday. The level around midday is generally higher for low-Ti than for high-Ti mare surfaces, where it reaches near-zero values. Our observations contrast with previous studies that indicate a significant concentration of surficial H 2 O/OH at high latitudes only. Furthermore, although our results generally support the commonly accepted mechanism of H 2 O/OH formation by adsorption of solar wind protons, they suggest the presence of a more strongly bounded surficial H 2 O/OH component in the lunar highlands and parts of the mare regions, which is not removed by processes such as diffusion/thermal evaporation and photolysis in the course of the lunar day.

  3. Evaluation of Augmented REality Sandtable (ARES) during Sand Table Construction

    Science.gov (United States)

    2018-01-01

    sand table, ARES, resulted in significantly higher- quality ratings overall for the terrain model based on a global rating scale, as well as...dependent measures in this study. Sand Table Construction Score Card: A 5-point Likert scale was used to identify the accuracy and quality of required...reproduced on the sand table. The quality of the map reproduced was evaluated using standard procedures of the map-drawing paradigm, such as that

  4. Climate change : transportation table

    International Nuclear Information System (INIS)

    Ogilvie, K.

    1999-01-01

    The Kyoto Protocol sets greenhouse gas (GHG) reduction targets for the post-2000 period. If ratified, Canada will be committed to reduce emissions of GHGs by 6 per cent below 1990 levels during the period 2008-2012. A recommended national strategy is to establish 'issue tables' that will advise the Ministers of Energy and Environment on preferred options to reach the Kyoto target and to identify early actions that can be taken. The 'Transportation Table' which is the focus of this paper, is one of the 15 sectoral tables. The Transportation Table will identify by July 1999, specific measures to mitigate GHG emissions from Canada's transportation sector. Currently, GHG emissions from the transportation sector are predicted to be 27 per cent above 1990 levels by 2010. Fuel taxes, emissions trading, and research into improved vehicle technologies and automotive fuels are some of the recommended options which can help reduce emissions trading from the transportation sector. Studies are underway to deal with emissions from transport in two sub-groups, freight and passenger. 1 fig

  5. Statistical tables 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The energy statistical table is a selection of statistical data for energies and countries from 1997 to 2002. It concerns the petroleum, the natural gas, the coal, the electric power, the production, the external market, the consumption per sector, the energy accounting 2002 and graphs on the long-dated forecasting. (A.L.B.)

  6. A Modern Periodic Table.

    Science.gov (United States)

    Herrenden-Harker, B. D.

    1997-01-01

    Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)

  7. Conversion tables. Appendix I

    International Nuclear Information System (INIS)

    McKerrell, H.

    1975-01-01

    Tables are presented for the conversion of standard (5568 year half-life) C-14 dates to calendar years. The major part of the data converts C-14 dates to tree-ring years: additional data are given, based on the Egyptian historical curve. (U.K.)

  8. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  9. Analyzing and Improving the Water-Table Fluctuation Method of Estimating Groundwater Recharge: Field Considerations Patros, T.B. and Parkin, G.W., School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

    Science.gov (United States)

    Patros, T.; Parkin, G. W.

    2012-12-01

    The focus of the project is on measuring and quantifying groundwater recharge (GWR) using the water-table fluctuation (WTF) method. This method requires measuring the change in water-table (WT) height (Δh) during recharge (R) events and volumetric soil specific yield water content (θsy), (&/or) perhaps more correctly volumetric soil fillable water content (θf). The rise in WT can also result from other non-precipitation-related WTF causes (e.g., Lisse effect, temperature variations, barometric, lateral flow, Reverse Wieringermeer effect, encapsulated air, pumping), which must be counted for. The measurement of the storativity (S) terms (θsy) and/or θf) is, indeed, not clear-cut and often they are taken as being constant with depth, time, WT movement (Drying-Wetting & Freezing-Thawing) history and heterogeneity. In fact, these two terms (θsy & θf) are controversial in their definition, thus in their use, in the literature and may either overestimate the R, when using θsy, or underestimate it, when using θf. To resolve some of these questions, a novel-automated method is under development, at the University of Guelph's Elora Research Station (ERS) and Arboretum, along with a novel multi-event time series model. The long-term expected outcomes and significance of this study are; 1. Establishing accuracy in defining and evaluating the θsy and θf and using them accordingly in estimating GWR with the WTF method in order to overcome some of the existing substantial gaps in our knowledge of groundwater (GW) storage variation. 2. Obtaining GWR measurements at the local scale on a year-round basis, which are currently scarce or even completely lacking for many regions of Ontario and thus would provide a valuable database for guiding development of any policy requiring GWR. 3. Using this database to calibrate and test estimates of the spatial and temporal variability in regional-scale (watershed scale) GWR from approximate statistical techniques or deterministic

  10. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction

    Science.gov (United States)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.

    2017-08-01

    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  11. Consumers' choice of drinking water: Is it dependent upon perceived quality, convenience, price and attitude?

    Science.gov (United States)

    Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen

    2017-10-01

    Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.

  12. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  13. Application of starter cultures to table olive fermentation: an overview on the experimental studies

    Directory of Open Access Journals (Sweden)

    Aldo eCorsetti

    2012-07-01

    Full Text Available Table olives are one of the oldest fermented foods and they are considered an important component of the Mediterranean diet, since their richness in monounsaturated fats (primarily oleic acid and phenolic compounds that may function as antioxidants in the human body; in the Western world they represent one of the most popular fermented vegetables but, despite its economic significance, table olive fermentation is still craft-based and empirical. In particular, such a type of fermentation results from the competitive activities among indigenous, contaminating microorganisms, the microbial balance depending on several intrinsic (pH, water activity, diffusion of nutrients from the drupe and level of anti-microbial compounds and extrinsic (temperature, oxygen availability and salt concentration factors. At present, to reduce the risk of spoilage and to achieve a more predictable process there is an increasing interest in developing starter cultures for table olives fermentation. Anyway, the application of starter cultures in the field of table olives is quite far from reaching the diffusion it has in other sectors of food industry (e.g., dairy products and alcoholic beverages. This review focuses on experimental researches devoted to studying starter cultures for possible application to table olive fermentation both at artisan and industrial level.

  14. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  15. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  16. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  17. Position-dependency of Fuel Pin Homogenization in a Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Woong; Kim, Yonghee [Korea Advanced Institute of Science and Technolgy, Daejeon (Korea, Republic of)

    2016-05-15

    By considering the multi-physics effects more comprehensively, it is possible to acquire precise local parameters which can result in a more accurate core design and safety assessment. A conventional approach of the multi-physics neutronics calculation for the pressurized water reactor (PWR) is to apply nodal methods. Since the nodal methods are basically based on the use of assembly-wise homogenized parameters, additional pin power reconstruction processes are necessary to obtain local power information. In the past, pin-by-pin core calculation was impractical due to the limited computational hardware capability. With the rapid advancement of computer technology, it is now perhaps quite practical to perform the direct pin-by-pin core calculation. As such, fully heterogeneous transport solvers based on both stochastic and deterministic methods have been developed for the acquisition of exact local parameters. However, the 3-D transport reactor analysis is still challenging because of the very high computational requirement. Position-dependency of the fuel pin homogenized cross sections in a small PWR core has been quantified via comparison of infinite FA and 2-D whole core calculations with the use of high-fidelity MC simulations. It is found that the pin environmental affect is especially obvious in FAs bordering the baffle reflector regions. It is also noted that the downscattering cross section is rather sensitive to the spectrum changes of the pins. It is expected that the pinwise homogenized cross sections need to be corrected somehow for accurate pin-by-pin core calculations in the peripheral region of the reactor core.

  18. Seashore marine table quiz

    OpenAIRE

    Institute, Marine

    2013-01-01

    Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.

  19. Table Tennis Club

    CERN Document Server

    Table Tennis Club

    2012-01-01

    2012 CERN Table Tennis Tournament As the campaign launched by the CERN medical service “Move! & Eat better” is designed in particular to encourage people at CERN to take more regular exercise, the CERN Table Tennis Club, with its traditional CERN Table Tennis Tournament is providing an excellent opportunity to practice moving. The tournament will take place at the Meyrin CTT, 2 rue de Livron, Saturday August 25, 2012, in the afternoon (starting at 13:30). It is open to all CERN staff, users, visitors and families, including of course summer students, who are strongly encouraged to participate. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You may also find useful information on the Club Web page http://www.cern.ch/tabletennis CERN 2011 champion Savitha Flaecher, between the finalist Bertrand Mouches on her left, the winner of the consolation draw on her right (Sudarshan Paramesvaran), and far left, Denis Moriaud (semi-finalist a...

  20. SRTC - Gap Analysis Table

    International Nuclear Information System (INIS)

    M.L. Johnson

    2005-01-01

    The purpose of this document is to review the existing SRTC design against the ''Nuclear Safety Design Bases for License Application'' (NSDB) [Ref. 10] requirements and to identify codes and standards and supplemental requirements to meet these requirements. If these codes and standards and supplemental requirements can not fully meet these safety requirements then a ''gap'' is identified. These gaps will be identified here and addressed using the ''Site Rail Transfer Cart (SRTC) Design Development Plan'' [Ref. 14]. The codes and standards, supplemental requirements, and design development requirements are provided in the SRTC and associated rails gap analysis table in Appendix A. Because SRTCs are credited with performing functions important to safety (ITS) in the NSDB [Ref. 10], design basis requirements are applicable to ensure equipment is available and performs required safety functions when needed. The gap analysis table is used to identify design objectives and provide a means to satisfy safety requirements. To ensure that the SRTC and rail design perform required safety Functions and meet performance criteria, this portion of the gap analysis table supplies codes and standards sections and the supplemental requirements and identifies design development requirements, if needed

  1. Global Reference Tables Services Architecture

    Data.gov (United States)

    Social Security Administration — This database stores the reference and transactional data used to provide a data-driven service access method to certain Global Reference Table (GRT) service tables.

  2. Aggregation Algorithms in Heterogeneous Tables

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2006-01-01

    Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.

  3. TABLE OF CONTENTS TABLE OF CONTENTS

    African Journals Online (AJOL)

    eobe

    Effects of Variability in the Pozzolanic Properties of Rice Husk. Ash on the ... on Semi-Infinite Elastic Soils using Fourier Transform Method. H. N. Onah, N. N. ... Al – Si – Mg Alloy in Simulated Sea Water Environment. S. M. Adams, S. A. Yaro,.

  4. Contingency Table Browser - prediction of early stage protein structure.

    Science.gov (United States)

    Kalinowska, Barbara; Krzykalski, Artur; Roterman, Irena

    2015-01-01

    The Early Stage (ES) intermediate represents the starting structure in protein folding simulations based on the Fuzzy Oil Drop (FOD) model. The accuracy of FOD predictions is greatly dependent on the accuracy of the chosen intermediate. A suitable intermediate can be constructed using the sequence-structure relationship information contained in the so-called contingency table - this table expresses the likelihood of encountering various structural motifs for each tetrapeptide fragment in the amino acid sequence. The limited accuracy with which such structures could previously be predicted provided the motivation for a more indepth study of the contingency table itself. The Contingency Table Browser is a tool which can visualize, search and analyze the table. Our work presents possible applications of Contingency Table Browser, among them - analysis of specific protein sequences from the point of view of their structural ambiguity.

  5. The pH Value of Fungicide, Insecticide and Mineral Fertilizer Mixtures Depending on Water Quality

    Directory of Open Access Journals (Sweden)

    Dušanka Inđić

    2008-01-01

    Full Text Available The paper deals with the effect of water quality on the pH value of fungicides, insecticides, mineral fertilizers and their mixtures. The fungicides propineb (Antracol WP-70 and mancozeb (Dithane M-70, insecticides pirimiphos-methyl (Actellic-50 and imidacloprid(Confidor 200-SL, several fertilizers (Ferticare I, Ferticare II, Ferticare III and Wuxal Super and their mixtures were analyzed for pH value under laboratory conditions using a potentiometric pH meter. Measurements were made directly after preparation or mixing with tap and well water and 24 hours later. Tap water exhibited a neutral reaction. A slightly alkaline reaction of well water was mostlikely due to high ammonium content. The suspensions of Antracol WP-70 exhibited slightly alkaline reactions with both water types during 24 hours. The spray liquids of Dithane M-70 mixed with tap or well water had neutral reaction after preparation and slightly alkaline reaction after 24 hours. The emulsions of Actellic-50 showed neutral reaction with both water types, followed by a pH increase in tap water after 24 hours. The solutions of Confidor200-SL had a slightly alkaline reaction after mixing and the pH value increased with both water types after 24 hours. It is therefore recommended to apply these insecticides directly after preparation. Mineral fertilizers considerably reduced pH values of the fungicide and insecticide components in double and triple mixtures, especially Ferticare nutrients which had a moderately acid reaction. Wuxal Super had a neutral reaction with both water types.The mixtures with well water increased pH values, which indicates that water pH does affect the pH value of the mixture. Both individual fertilizers and all mixtures (double and triple with Ferticare had pH values between 2.4 and 6, which allows their active liquids to be stored for 12 to 24 hours. The suspensions (Antracol WP-70, double and triple mixtures, emulsions (Actellic-50 and Actellic-50+Wuxal Super

  6. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  7. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  8. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  9. Patterns of Tamarix water use during a record drought.

    Science.gov (United States)

    Nippert, Jesse B; Butler, James J; Kluitenberg, Gerard J; Whittemore, Donald O; Arnold, Dave; Spal, Scott E; Ward, Joy K

    2010-02-01

    During a record drought (2006) in southwest Kansas, USA, we assessed groundwater dynamics in a shallow, unconfined aquifer, along with plant water sources and physiological responses of the invasive riparian shrub Tamarix ramosissima. In early May, diel water table fluctuations indicated evapotranspirative consumption of groundwater by vegetation. During the summer drought, the water table elevation dropped past the lowest position previously recorded. Concurrent with this drop, water table fluctuations abruptly diminished at all wells at which they had previously been observed despite increasing evapotranspirative demand. Following reductions in groundwater fluctuations, volumetric water content declined corresponding to the well-specific depths of the capillary fringe in early May, suggesting a switch from primary dependence on groundwater to vadose-zone water. In at least one well, the fluctuations appear to re-intensify in August, suggesting increased groundwater uptake by Tamarix or other non-senesced species from a deeper water table later in the growing season. Our data suggest that Tamarix can rapidly shift water sources in response to declines in the water table. The use of multiple water sources by Tamarix minimized leaf-level water stress during drought periods. This study illustrates the importance of the previous hydrologic conditions experienced by site vegetation for controlling root establishment at depth and demonstrates the utility of data from high-frequency hydrologic monitoring in the interpretation of plant water sources using isotopic methods.

  10. VIDENTE 1.1: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modelling; 2nd rev. ed

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.; Knotters, M.

    2002-01-01

    A description is given of the program VIDENTE. VIDENTE contains a decision support system to choose between different models for stochastic modelling of water-table depths and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN, SSD and EMERALD. In

  11. Artificial recharge of the water-table aquifer in the latian volcano in Rome province; Ricarica artificiale dalla falda acquifera presente nel vulcano laziale in Provincia di Roma

    Energy Technology Data Exchange (ETDEWEB)

    Bersani, P.; Piotti, A. [Ambito Territoriale Ottimale, Lazio Centrale, Rome (Italy)

    2001-06-01

    The zone of the Latian Volcano extends in an area of about 1.500 km{sup 2} in the south-est of Rome. This area is thickly peopled, owing to the presence of many towns (Velletri, Frascati, Albano, etc.) in the central share of the volcanic edifice. Actually the volcanic edifice of Alban Hills shows in the central and higher area, a large caldera (Tuscolana-Artemisia). This caldera has a sub-circular form wide 10 km in diameter and 75 km{sup 2} in area. The excessive groundwater drawing by wells caused the depauperation of underground resources so to produce a real crisis since 1984. To restore of water balance of the aquifer of the Latian Volcano, an important contribution could be given by the artificial recharge of the higher aquifer. This recharge could be done by allowing to meteoric water to inflitrate as much as possible in the underground by realization of an artificial lake; otherwise by making a series of little infiltration-basins together with infiltration-wells. Besides the realization of the artificial lake could give back to the landscape a characteristic component present in the past centuries until very recent times. [Italian] L'area del Vulcano Laziale si estende su una superficie di circa 1500 km{sup 2} a sud-est di Roma in un'area densamente popolata per la presenza di numerosi centri urbani (Velletri, Frascati, Albano, ecc.), ubicati nella parte centrale dell'ufficio vulcanico. Attualmente l'edificio vulcanico dei Colli Albani presenta in posizione centrale un'ampia caldera sommitale con forma subcircolare, con diametro medio di circa 10 km ed estensione di circa 75 km{sup 2}. Gli eccessivi prelievi di acqua sotterranea hanno condotto ad un impoverimento della risorsa idrica fino a determinare una vera e propria crisi manifestatasi a partire dal 1984. Per riequilibrare il bilancio idrico dell'acquifero del Vulcano Laziale, un contributo significativo potrebbe provenire dalla ricarica artificiale dell

  12. Separation factor dependence upon cathode material for tritium separation from heavy water by electrolysis

    International Nuclear Information System (INIS)

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kotaka, M.

    2002-01-01

    Using three cathode materials, i.e. carbon (C), stainless steel (SUS), and nickel (Ni), tritium was separated from heavy water by electrolysis, and the separation factors were compared. To separate hydrogen isotopes, heavy water was electrolyzed by an electrolysis device with a solid polymer electrode (SPE), which needed no electrolyte additives for electrolysis. The anode was made of 3 mm thickness of a sintered porous titanium plate covered with iridium oxide. The cathode was made of the same thickness of a sintered porous carbon, stainless steel, or nickel plate. Heavy water or light water spiked with tritiated water was electrolyzed 20 A x 60 min with the electrolysis cell temperature at 10, 20 or 30degC, and 15 A x 80 min at 5degC. The produced hydrogen and oxygen gases were recombined using a palladium catalyst with nitrogen gas as a carrier. The activities of the water in the electrolysis cell and of the recombined water were analyzed using a liquid scintillation counter. The apparent D-T separation factor (SF D/T ) and H-T separation factor (SF H/T ) were calculated as quotient the specific activity of the water in the cell divided by that of the recombined water. The electrolysis potential to keep the current 20 A was 2-3 V. The average yields of the recombined water were 95%. At the cell temperature of 20degC, SF D/T (C), SF D/T (SUS), and SF D/T (Ni) were 2.42, 2.17, and 2.05, respectively. At the same temperature, SF H/T (C), SF H/T (SUS), and SF H/T (Ni) were 12.5, 10.8, and 11.8, respectively. The SFs were in agreement with the results in other works. The SFs were changed with the cell temperature. (author)

  13. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  14. Uranium interaction with soil minerals in the presence of co-contaminants: Case Study- subsurface sediments at or below the water table

    Energy Technology Data Exchange (ETDEWEB)

    Gartman, Brandy N.; Qafoku, Nikolla

    2016-03-09

    Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) is the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.

  15. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  16. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    Science.gov (United States)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  17. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface.

    Science.gov (United States)

    Ambrosio, Francesco; Wiktor, Julia; Pasquarello, Alfredo

    2018-03-28

    We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pH PZC , and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO 4 (010)-water interface, yields a pH PZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p K a values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.

  18. Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon

    International Nuclear Information System (INIS)

    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.

    2007-01-01

    In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes

  19. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    Science.gov (United States)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  20. Monte Carlo thermodynamic and structural properties of the TIP4P water model: dependence on the computational conditions

    Directory of Open Access Journals (Sweden)

    João Manuel Marques Cordeiro

    1998-11-01

    Full Text Available Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r and g(O/H(r do not depend on them.

  1. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  2. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters

    Science.gov (United States)

    Gould, Richard W., Jr.; Arnone, Robert A.; Martinolich, Paul M.

    1999-04-01

    An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m 1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m 1 . A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

  3. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  4. Numerical relationship between surface deformation and a change of groundwater table before and after an earthquake

    International Nuclear Information System (INIS)

    Akao, Yoshihiko

    1995-01-01

    The purpose of this study is to estimate the effect of earthquakes upon a groundwater flow around a repositories for high-level radioactive wastes. Estimation of a groundwater flow change before and after an earthquake or a volcanic eruption is one of the issues for a long-term safety assessment of the repositories. However, almost any systematic investigation about the causality between a groundwater flow change and an earthquake or an eruption was not found, and as well no estimation formula has been published. The authors succeeded in obtaining a primitive relationship between a groundwater change and an earthquake in this study. The study consists of three stages. First, several survey reports which describe field observation results of groundwater anomalies caused by earthquakes or eruptions have been collected. The necessary data have been read from the literature and systematically arranged. Second, source mechanisms of the corresponding earthquakes were inspected and static displacements at the well positions were calculated by the dislocation theory in the seismology. Third, parametric studies among the parameters of groundwater anomalies and earthquakes were carried out to find a numerical relationship between a couple of them. Then, a preliminary relationship between water table change in a well and static displacement at the well position was found. The authors can conclude that temporary change of water table seems to depend on the norm of displacement vector. In this relationship, the maximum value of water table change would be approximately one hundred times of the displacement

  5. Radionuclide table. Pt. 1

    International Nuclear Information System (INIS)

    Legrand, Jean; Perolat, J.-P.; Lagoutine, Frederic; Le Gallic, Yves.

    The evaluation of the following 29 radionuclides is presented: 22 Na, 24 Na, sup(24m)Na, 51 Cr, 54 Mn, 57 Co, 58 Co, sup(58m)Co, 60 Co, sup(60m)Co, 75 Se, 103 Ru, sup(103m)Rh, sup(110m)Ag- 110 Ag, 109 Cd, 125 Sb, sup(125mTe), 125 I, 133 Xe, sup(133m)Xe, 131 Cs, 134 Cs, sup(134m)Cs, 139 Ce, 144 Ce- 144 Pr, 144 Pr, 169 Er, 186 Re, 203 Hg. The introduction contains a brief description of radioactive processes and the evaluation rules followed. The best values and associated uncertainties are given for each radionuclide for the major parameters of the decay scheme and the radiation intensities emitted, together with a decay table. Gamma, X-rays and sometimes conversion electron spectra are also provided [fr

  6. Strain rate dependent environmental cracking of ferritic steels in high temperature water

    International Nuclear Information System (INIS)

    Tice, D.R.

    1989-01-01

    Corrosion fatigue crack growth testing demonstrates that a pre-existing defect which might be inadvertently present in the wall of a thick walled component such as the main reactor pressure vessel would not grow in service under transient loading to reach a critical size which would threaten vessel integrity. Steady load stress corrosion has received renewed attention following publication of data showing that stress corrosion cracking can occur in high temperature aqueous environments. Evidence shows that stress corrosion cracking cannot occur in normal pressurized water reactor (PWR) operating conditions. Environmental cracking of ferritic steels in high temperature aqueous environments is influenced by a range of material and environmental variables, amongst the most important being dissolved oxygen (or other oxidants) in the water, water purity and the sulphur content of the steel

  7. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  8. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  9. Dependence of radiocaesium biological half-life in freshwater fish on water potassium concentration and temperature

    International Nuclear Information System (INIS)

    Carreiro, M.C.V.; Corisco, J.A.G.

    1998-01-01

    Short-term experiments (35-49 days) showed that the rate of cesium elimination from fish increases with increasing potassium concentration in water (the biological half-life decreases); this, however, is only true of the potassium concentration range of 0.35 to 3.5 ppm, whereas higher potassium concentrations do not seem to affect the elimination rate. Decrease in water temperature within the 20 degC to 5 degC range slows down the cesium elimination process. (P.A.)

  10. Spatial distribution of lion kills determined by the water dependency of prey species

    NARCIS (Netherlands)

    Boer, de W.F.; Vis, M.J.P.; Knegt, de H.J.; Rowles, C.; Kohi, E.; Langevelde, van F.; Peel, M.J.S.; Pretorius, Y.; Skidmore, A.K.; Slotow, R.; Wieren, van S.E.; Prins, H.H.T.

    2010-01-01

    Predation risk from lions (Panthera leo) has been linked to habitat characteristics and availability and traits of prey. We separated the effects of vegetation density and the presence of drinking water by analyzing locations of lion kills in relation to rivers with dense vegetation, which offer

  11. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  12. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation

    NARCIS (Netherlands)

    Jansen, E. D.; van Leeuwen, T. G.; Motamedi, M.; Borst, C.; Welch, A. J.

    1994-01-01

    The dynamics of the water absorption peak around 1.94 microns was examined. This peak is important for the absorption of holmium and thulium laser radiation. To examine the effect of temperature on the absorption coefficient, the transmission of pulsed Ho:YAG, Ho:YAG, Ho:YSGG, and Tm:YAG laser

  13. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NARCIS (Netherlands)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-01-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (gF) derives a canopy conductance (gW) from measured transpiration by inverting the coupled transpiration model to yield gW = m − n ln(D) where m and n are fitting parameters. In contrast, this paper

  14. Water ingestion decreases cardiac workload time-dependent in healthy adults with no effect of gender.

    Science.gov (United States)

    Monnard, Cathriona Rosemary; Grasser, Erik Konrad

    2017-08-11

    Ingestion of water entails a variety of cardiovascular responses. However, the precise effect remains elusive. We aimed to determine in healthy adults the effect of water on cardiac workload and to investigate potential gender differences. We pooled data from two controlled studies where blood pressure (BP) and heart rate (HR) were continuously recorded before and after the ingestion of 355 mL of tap water. Additionally, we calculated double product by multiplying systolic BP with HR and evaluated spectral parameters referring to vagal tone. All parameters were investigated for potential differences based on gender. In response to water, HR, systolic BP, and double product decreased significantly during the first 30 min. However, these effects were attenuated for HR and double product and even abolished for systolic BP over the subsequent 30 min. Over the entire post-drink period (60 min), decreases in HR and double product (all P fashion, cardiac workload and that these responses appear not to be influenced by gender.

  15. Sex-dependent responses of perch to changes in water clarity and temperature

    Czech Academy of Sciences Publication Activity Database

    Estlander, Satu; Nurminen, L.; Mrkvička, Tomáš; Olin, M.; Rask, M.; Lehtonen, H.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 544-552 ISSN 0906-6691 Institutional support: RVO:60077344 Keywords : increasing water colour * climate change * European perch * feeding efficiency * sexual size dimorphism Subject RIV: EH - Ecology, Behaviour Impact factor: 2.052, year: 2015

  16. Time-scale Dependence of Response of an Estuarine Water Quality Model to Nutrient Loading

    Science.gov (United States)

    We describe calibration and evaluation of a water quality model being implemented for Narragansett Bay to quantify the response of concentrations of nutrients, phytoplankton chlorophyll a and dissolved oxygen in the Bay to loading rates of nutrients and other boundary conditions....

  17. Symbol Tables and Branch Tables: Linking Applications Together

    Science.gov (United States)

    Handler, Louis M.

    2011-01-01

    This document explores the computer techniques used to execute software whose parts are compiled and linked separately. The computer techniques include using a branch table or indirect address table to connect the parts. Methods of storing the information in data structures are discussed as well as differences between C and C++.

  18. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  19. Exigências hídricas da videira na Região do Submédio São Francisco Table grape water requirements in the Submedium São Francisco Region

    Directory of Open Access Journals (Sweden)

    JAQUELINE ÁVILA NETTO

    2000-08-01

    Full Text Available O trabalho objetivou a estimativa das necessidades hídricas da videira (Vitis vinifera L., cv. Itália, sob as condições edafoclimáticas da Região do Submédio São Francisco. A parte experimental foi conduzida no campo experimental de Bebedouro da Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido, no município de Petrolina, PE, durante o período de maio a agosto de 1996. A evapotranspiração da cultura foi determinada pelo método do balanço hídrico no solo, e a evapotranspiração de referência foi estimada pelo método de Penman, visando avaliar o comportamento do coeficiente de cultura (Kc ao longo do ciclo da cultura. O parreiral, com cinco anos de idade, foi conduzido em sistema de latada a 2 m acima da superfície do solo, num espaçamento de 4 m x 2 m e irrigado diariamente por gotejamento. O consumo hídrico diário máximo da cultura foi de 4,33 mm dia-1, totalizando 333,6 mm no período de observações. Os valores de Kc variaram de 0,50 a 0,74. Determinou-se uma curva característica de Kc para o ciclo vegetativo da videira, a qual permite obter o Kc diário em função dos dias após a poda.This study used data of a field experiment conducted at the Bebedouro experimental base of the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido in Petrolina, PE, Brazil, from May to August, 1996, during the growing period of a five-year-old table grape (Vitis vinifera L., Italy cultivar. The plants were conducted in a two-meter above soil surface trellis system, four meters between rows by two meters between plants, and daily irrigated by trickling system. The crop evapotranspiration was determined by the soil water balance method, and the reference evapotranspiration was estimated by the method of Penman, used to analyse the behaviour of the crop coefficient (Kc throughout the crop growing period. The maximum crop daily water use was 4.33 mm d-1 and the total water consumption was 333.6 mm for the whole

  20. The dependence of maize (Zea mays hybrids yielding potential on the water amounts reaching the soil surface

    Directory of Open Access Journals (Sweden)

    Kresović Branka

    2013-01-01

    Full Text Available The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341; 12.76 t ha-1 (ZP 434; 13.17 t ha-1 (ZP 578; 14.03 t ha-1 (ZP 684 and 13.75 t ha-1 (ZP 704 under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341, 156.7 kg ha-1 (ZP 434, 172.3 kg ha-1 (ZP 578, 148.9 kg ha-1 (ZP 684 and 151.1 kg ha-1 (ZP 704. [Projekat Ministarstva nauke Republike Srbije, br. TR 31037

  1. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  2. The Dependence of Amyloid‐β Dynamics on Protein Force Fields and Water Models

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Kepp, Kasper Planeta

    2015-01-01

    We studied the dynamics of Aβ40, involved in Alzheimer's disease, by using 21 methods combined from Amber03, Amber99sb‐ILDN, Charmm27, Charmm22*, OPLS‐2001, OPLS‐2006, OPLS‐2008, Gromos96‐43a1, Gromos96‐53a6, Gromos96‐54a7, and the water models SPC, TIP3P, TIP4P. Major differences in the structur...

  3. Water table and the neutron moisture meter

    Energy Technology Data Exchange (ETDEWEB)

    Visvalingam, M [Hull Univ. (UK). Geography Dept.

    1975-12-01

    Measurements with a neutron moisture meter at Westlands, near Hull, showed count rates at capillary saturation to be within the error limits of count rates at full saturation. However, the saturation profiles in themselves were interesting as they indicated not only the zonation of the soil but also differences in drainable porosity when compared to count-rate profiles at the end of November.

  4. Water Table Recession in Subsurface Drained Soils

    OpenAIRE

    Moustafa, Mahmoud Mohamed; Yomota, Atsushi

    1999-01-01

    Theoretical drainage equations are intensively tested in many parts of humid and arid regions and are commonly used in drainage design. However, this is still a great concern in Japan as the drainage design is exclusively based on local experiences and empirical basis. There is a need therefore to evaluate the theoretical drainage equations under Japanese field conditions to recommend equations for design of subsurface drainage systems. This was the main motivation for this study. While drain...

  5. Use of Decision Tables to Simulate Management in SWAT+

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Arnold

    2018-05-01

    Full Text Available Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are easily programmed in several current languages. Land management and river–reservoir models simulate complex land management operations and reservoir management in highly regulated river systems. Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+ model. Decision tables are developed to simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily Nash–Sutcliffe Efficiency (NSE of 0.52 and a percent bias of −1.1%. Using decision tables to simulate management in land, river, and reservoir models was shown to have several advantages over current approaches, including: (1 mature technology with considerable literature and applications; (2 ability to accurately represent complex, real world decision-making; (3 code that is efficient, modular, and easy to maintain; and (4 tables that are easy to maintain, support, and modify.

  6. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    Science.gov (United States)

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Volume tables for red alder.

    Science.gov (United States)

    Floyd A. Johnson; R. M. Kallander; Paul G. Lauterbach

    1949-01-01

    The increasing importance of red alder as a commercial species in the Pacific Northwest has prompted the three agencies listed above to pool their tree measurement data for the construction of standard regional red alder volume tables. The tables included here were based on trees from a variety of sites and form classes. Approximately one quarter of the total number of...

  8. Produtividade de beterraba em função de doses de sulfato de amônio em cobertura Table beet yield depending on rates of ammonium sulphate applied as side dressing

    Directory of Open Access Journals (Sweden)

    Paulo E. Trani

    2005-07-01

    Full Text Available No estado de São Paulo foram conduzidos, em duas localidades, três experimentos de campo com a beterraba cultivar Top Tall Early Wonder com o objetivo de avaliar a produção total de raízes e parte aérea sob diferentes doses de N aplicadas em cobertura. O primeiro experimento foi realizado em Monte Alegre do Sul (SP em um Argissolo Vermelho Amarelo distrófico e os dois últimos foram instalados em Campinas (SP em um Latossolo Vermelho Amarelo distrófico. Os três experimentos foram conduzidos no delineamento de blocos casualizados com seis repetições. As doses de nitrogênio foram parceladas em duas aplicações, na forma de sulfato de amônio, e variaram de zero a 200 kg ha-1. No primeiro experimento a produtividade máxima de raízes de beterraba foi atingida com 92 kg de N ha-1 em cobertura, no segundo com 179 kg de N ha-1, e no último experimento com 151 kg N ha-1. A produtividade da parte aérea em todos os experimentos foi linear e positiva. As maiores produtividades de beterraba para a comercialização em maços (raízes e folhas foram obtidas com a maior dose de N em cobertura, ou seja, 200 kg N ha-1. Foi encontrada uma relação linear e positiva entre o teor de N das raízes e parte aérea com as doses de N aplicadas em cobertura.Three field experiments were carried out in two locations in São Paulo State, Brazil, to evaluate the total root and above ground yields of table beets under different nitrogen rates. One experiment was carried out in Monte Alegre do Sul on a Typic Kandaudult and the others in Campinas on a Typic Hapludox. The experimental design was of complete randomized blocks with six replications. Nitrogen rates varying from zero to 200 kg ha-1 were split in two applications using ammonium sulphate. In the first field trial the maximum root yield of table beets was reached with 92 kg of N ha-1, in the second with 179 kg of N.ha-1, and in the third with 151 kg of N.ha-1. The yield response of above ground to N

  9. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption

    Science.gov (United States)

    Zhang, Chaoying; Ning, Zhiyuan; Liu, Yang; Xu, Tingting; Guo, Yao; Zak, Alla; Zhang, Zhiyong; Wang, Sheng; Tenne, Reshef; Chen, Qing

    2012-09-01

    The electrical properties of WS2 nanotubes (NTs) were studied through measuring 59 devices. Important electrical parameters, such as the carrier concentration, mobility, and effective barrier height at the contacts, were obtained through fitting experimental non-linear I-V curves using a metal-semiconductor-metal model. The carrier mobility was found to be several orders of magnitude higher than that have been reported previously for WS2 NTs. Water absorption was found to decrease the conductivity and carrier mobility of the NTs, and could be removed when the sample was dried. Oxygen absorption also slightly decreased the conductivity of WS2 NTs.

  10. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  11. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  12. MCNPX Model/Table Comparison

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables

  13. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    Science.gov (United States)

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.

    2017-01-01

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).

  14. Water transport through the intestinal epithelial barrier under different osmotic conditions is dependent on LI-cadherin trans-interaction.

    Science.gov (United States)

    Weth, Agnes; Dippl, Carsten; Striedner, Yasmin; Tiemann-Boege, Irene; Vereshchaga, Yana; Golenhofen, Nikola; Bartelt-Kirbach, Britta; Baumgartner, Werner

    2017-04-03

    In the intestine water has to be reabsorbed from the chymus across the intestinal epithelium. The osmolarity within the lumen is subjected to high variations meaning that water transport often has to take place against osmotic gradients. It has been hypothesized that LI-cadherin is important in this process by keeping the intercellular cleft narrow facilitating the buildup of an osmotic gradient allowing water reabsorption. LI-cadherin is exceptional among the cadherin superfamily with respect to its localization along the lateral plasma membrane of epithelial cells being excluded from adherens junction. Furthermore it has 7 but not 5 extracellular cadherin repeats (EC1-EC7) and a small cytosolic domain. In this study we identified the peptide VAALD as an inhibitor of LI-cadherin trans-interaction by modeling the structure of LI-cadherin and comparison with the known adhesive interfaces of E-cadherin. This inhibitory peptide was used to measure LI-cadherin dependency of water transport through a monolayer of epithelial CACO2 cells under various osmotic conditions. If LI-cadherin trans-interaction was inhibited by use of the peptide, water transport from the luminal to the basolateral side was impaired and even reversed in the case of hypertonic conditions whereas no effect could be observed at isotonic conditions. These data are in line with a recently published model predicting LI-cadherin to keep the width of the lateral intercellular cleft small. In this narrow cleft a high osmolarity can be achieved due to ion pumps yielding a standing osmotic gradient allowing water absorption from the gut even if the faeces is highly hypertonic.

  15. Fully coupled modeling of burnup dependent light water reactor fuel performance using COMSOL Multiphysics

    International Nuclear Information System (INIS)

    Liu Rong; Zhou Wenzhong; Prudil, Andrew

    2015-01-01

    This paper presents the development of a light water reactor fuel performance code, which considers almost all the related physical models, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the equations are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. Comparisons are made for the simulation results between COMSOL and another simulation tool of BISON. The comparisons show the capability of our simulation tool to predict light water UO 2 fuel performances. In our modeling and simulation work, the performance of enhanced thermal conductivity UO 2 -BeO fuel and newly-adopted corrosion resistant SiC cladding material was also studied. UO 2 -BeO high thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction through lessening thermal stresses that result in fuel cracking, relocation, and swelling. The safety of the reactor would be improved. However, for SiC cladding, although due to its high thermal expansion, the gap closure time is delayed, irradiation induced point defects and defect-clusters in the SiC crystal will dramatically decrease SiC thermal conductivity, and cause significant increase in the fuel temperature. (author)

  16. Time-dependent radiolytic product concentrations in the water flow of a spinning wheel target

    International Nuclear Information System (INIS)

    Burns, W.G.; Goodall, J.A.B.

    1989-01-01

    Using the Harwell Facsimile computer simulation package, values of water radiolytic product concentrations, for both transient radicals and stable molecules were calculated for a single revolution of the cooling water at 75 0 C in a spallation neutron source target wheel irradiated with 1000 MeV protons and consequential secondary radiation. The radiation was pulsed except for part of the γ radiation, which was continuous. The stable product concentrations at first rose and eventually came to steady values before the end of the revolution. Comparison with results for steady radiation suggested that with the mixed radiation molecular products from the more densely ionizing radiation were largely destroyed by the radicals from the more lightly ionizing radiation. The distribution of the dose rate in time and space also tended to give a lower extent of radiolysis than calculated for uniform irradiation at the arithmetic mean dose rate. The effect of a second revolution on the diluted products showed a smaller increase in product concentrations than for the first revolution. The Authors consider that the extent of radiolysis should be manageable. (author)

  17. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  18. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    Science.gov (United States)

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  19. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  20. Spatial Dependence and Determinants of Dairy Farmers' Adoption of Best Management Practices for Water Protection in New Zealand

    Science.gov (United States)

    Yang, Wei; Sharp, Basil

    2017-04-01

    This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.

  1. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  2. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank.

    Science.gov (United States)

    Prins, Anneke; Mukubi, Josephine Muchwesi; Pellny, Till K; Verrier, Paul J; Beyene, Getu; Lopes, Marta Silva; Emami, Kaveh; Treumann, Achim; Lelarge-Trouverie, Caroline; Noctor, Graham; Kunert, Karl J; Kerchev, Pavel; Foyer, Christine H

    2011-02-01

    The responses of C(3) plants to rising atmospheric CO(2) levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C(4) plants to high CO(2) remains controversial because of the absence of CO(2) -dependent effects on photosynthesis. In this study, the effects of atmospheric CO(2) availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zea mays L.) were studied in plants grown under ambient CO(2) conditions (350 +/- 20 µL L(-1) CO(2) ) or with CO(2) enrichment (700 +/- 20 µL L(-1) CO(2) ). Growth at high CO(2) had no effect on photosynthesis, photorespiration, leaf C/N ratios or anthocyanin contents. However, leaf transpiration rates, carbohydrate metabolism and protein carbonyl accumulation were altered at high CO(2) in a leaf-rank specific manner. Although no significant CO(2) -dependent changes in the leaf transcriptome were observed, qPCR analysis revealed that the abundance of transcripts encoding a Bowman-Birk protease inhibitor and a serpin were changed by the growth CO(2) level in a leaf rank specific manner. Moreover, CO(2) -dependent changes in the leaf proteome were most evident in the oldest source leaves. Small changes in water status may be responsible for the observed responses to high CO(2,) particularly in the older leaf ranks. © 2010 Blackwell Publishing Ltd.

  3. Qualification of the calculational methods of the fluence in the pressurised water reactors. Improvement of the cross sections treatment by the probability table method; Qualification des methodes de calculs de fluence dans les reacteurs a eau pressurisee. Amelioration du traitement des sections efficaces par la methode des tables de probabilite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S H

    1994-01-01

    It is indispensable to know the fluence on the nuclear reactor pressure vessel. The cross sections and their treatment have an important rule to this problem. In this study, two ``benchmarks`` have been interpreted by the Monte Carlo transport program TRIPOLI to qualify the calculational method and the cross sections used in the calculations. For the treatment of the cross sections, the multigroup method is usually used but it exists some problems such as the difficulty to choose the weighting function and the necessity of a great number of energy to represent well the cross section`s fluctuation. In this thesis, we propose a new method called ``Probability Table Method`` to treat the neutron cross sections. For the qualification, a program of the simulation of neutron transport by the Monte Carlo method in one dimension has been written; the comparison of multigroup`s results and probability table`s results shows the advantages of this new method. The probability table has also been introduced in the TRIPOLI program; the calculational results of the iron deep penetration benchmark has been improved by comparing with the experimental results. So it is interest to use this new method in the shielding and neutronic calculation. (author). 42 refs., 109 figs., 36 tabs.

  4. Disponibilidade de água em pomar de citros submetido a poda e subsolagem em latossolo amarelo dos tabuleiros costeiros Water availability in citros orchard, under prunning and subsoiling, on yellow latosol of coastal table land

    Directory of Open Access Journals (Sweden)

    Laercio Duarte Souza

    2004-04-01

    Full Text Available Um pomar de laranja 'Baianinha' enxertada sobre limão 'Cravo' com 10 anos de idade, recebeu, neste período, práticas culturais de roçadeira no inverno e grade no verão, com três capinas manuais na linha por ano. Instalado em Latossolo Amarelo, nos Tabuleiros Costeiros, apresentava problemas de fitossanidade e produtividade, oriundos do impedimento ao desenvolvimento de raízes e exploração do solo e da água, ocasionados pelas camadas coesas características destes solos. Com o objetivo de aumentar a disponibilidade de água no solo para as plantas, aplicaram-se tratamentos de subsolagem, em interação com diferentes sistemas de poda da parte aérea. Realizaram-se uma amostragem de parâmetros físicos e químicos do solo, e um monitoramento da água nas profundidades de 0,30; 0,50; 0,70; 0,90; 1,10; 1,30 e 1,50 m com sonda de nêutrons, no período de dois anos ( 1º março/96 a 1º março/98, com duas repetições, em leituras semanais. As melhores respostas foram obtidas com os tratamentos subsolados sem poda e com poda leve. O tratamento subsolado com poda brusca apresentou as maiores deficiências de água disponível no solo, superando, inclusive, a testemunha.A ten years old orchard of orange 'Baianinha' grafted on lemon 'Cravo' was submitted, to cultural practices of mower in the winter and grating in the summer, with three hand weedings, within crop line, a year. The work was carried out in a Yellow Latosol in the Coastal Table Land ecosystem. The orchard presented phytopathological and production problems, which were attributed to the impediment of the development of roots and storage of water, caused by the cohesive layers, characteristics of these soils. This study was to increase the water availability to the plants by treatments with subsoiling combined with different pruning systems. Physical and chemical parameters of the soil were evaluated and the behavior of the water, in the depths of 0,30; 0,50; 0,70; 0,90; 1,10; 1

  5. Microscopic properties of nanopore water from its time-dependent dielectric response

    International Nuclear Information System (INIS)

    Koefinger, Juergen; Dellago, Christoph

    2010-01-01

    We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

  6. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  7. MCNPX Model/Table Comparison

    CERN Document Server

    Hendricks, J S

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO sub 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data t...

  8. Analysis of uncertainties, associated to the calculating hypothesis, in discharge tables for high flows estimating, based on mathematics models for calculating water surface profiles fore steady gradually varied flow; Analisis de las incertidumbres, asociadas a las hipotesis de calculo, en la estimacion de curvas de gasto para crcidas, basada en el empleo de modelo matematico de calculo hidraulico en regimen permanente

    Energy Technology Data Exchange (ETDEWEB)

    Aldana Valverde, A. L.; Gonzalez Rodriguez, J. C.

    1999-08-01

    In this paper are analyzed some of the most important factors which can influence on the results of calculating water surface profiles for steady gradually varied flow. In this case, the objective of this kind of modeling, has been the estimation of discharges tables for high flows of river station gages connected to the hydrologic automatic information system (SAIH) of the Confederacion Hidrografica del Sur de Espana, system named red Hidrosur. (Author) 3 refs

  9. Elekta Precise Table characteristics of IGRT remote table positioning

    International Nuclear Information System (INIS)

    Riis, Hans L.; Zimmermann, Sune J.

    2009-01-01

    Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. Material and methods. The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). Results and discussion. Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion

  10. The Periodic Table in Croatia

    Directory of Open Access Journals (Sweden)

    Raos, N.

    2011-12-01

    Full Text Available The Croatian (Yugoslav Academy of Sciences and Arts was the first academy to elect D. I. Mendeleev as its honorary member (1882, whereas the periodic table of the elements has been taught regularly at the Zagreb University since 1888. The early interest of Croatian chemists in the periodic table should be attributed primarily to their pan-Slavic attitude, particularly as proof that Slavic people were able to produce "their own Newtons" (M. V. Lomonosov and D. I. Mendeleev. Such enthusiastic views, however, did not help in analyzing the contribution of Mendeleev and other scientists to the discovery and development of the periodic table of the elements.

  11. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  12. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Science.gov (United States)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).

  14. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    International Nuclear Information System (INIS)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-01-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  15. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)

    2014-08-28

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  16. Identifying the principal driving factors of water ecosystem dependence and the corresponding indicator species in a pilot City, China

    Science.gov (United States)

    Zhao, C. S.; Shao, N. F.; Yang, S. T.; Xiang, H.; Lou, H. Z.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Zhang, C. B.; Yu, Q.

    2018-01-01

    The world's aquatic ecosystems yield numerous vital services, which are essential to human existence but have deteriorated seriously in recent years. By studying the mechanisms of interaction between ecosystems and habitat processes, the constraining factors can be identified, and this knowledge can be used to improve the success rate of ecological restoration initiatives. At present, there is insufficient data on the link between hydrological, water quality factors and the changes in the structure of aquatic communities to allow any meaningful study of driving factors of aquatic ecosystems. In this study, the typical monitoring stations were selected by fuzzy clustering analysis based on the spatial and temporal distribution characteristics of water ecology in Jinan City, the first pilot city for the construction of civilized aquatic ecosystems in China. The dominant species identification model was used to identify the dominant species of the aquatic community. The driving effect of hydrological and water quality factors on dominant species was analyzed by Canonical Correspondence Analysis. Then, the principal factors of aquatic ecosystem dependence were selected. The results showed that there were 10 typical monitoring stations out of 59 monitoring sites, which were representative of aquatic ecosystems, 9 dominant fish species, and 20 dominant invertebrate species. The selection of factors for aquatic ecosystem dependence in Jinan were highly influenced by its regional conditions. Chemical environmental parameters influence the temporal and spatial variation of invertebrate much more than that of fish in Jinan City. However, the methodologies coupling typical monitoring stations selection, dominant species determination and driving factors identification were certified to be a cost-effective way, which can provide in-deep theoretical and technical directions for the restoration of aquatic ecosystems elsewhere.

  17. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  18. Automation of BESSY scanning tables

    International Nuclear Information System (INIS)

    Hanton, J.; Kesteman, J.

    1981-01-01

    A micro processor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the micro processor are: 1. control of spooling of the four asynchronous film winding devices and switching on and off the 4 projections lamps, 2. pre-processing of the data coming from a bi-polar coordinates measuring device, 3. bi-directional interchange of informations between the operator, the BESSY table and the DEC PDP 11/34 mini computer controling the scanning operations, 4. control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with point 4, study is being made for the use of BESSY tables for accurate measurements (+/-5 microns), by encoding the displacements of the projections lenses. (orig.)

  19. The Table Mountain Field Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Table Mountain Field Site, located north of Boulder, Colorado, is designated as an area where the magnitude of strong, external signals is restricted (by State...

  20. The redoubtable ecological periodic table

    Science.gov (United States)

    Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...

  1. Table 1: Biofuels simulation scenarios

    Data.gov (United States)

    U.S. Environmental Protection Agency — A spreadsheet containing information used to generate Table 1. Agricultural Market sector results presented in the spreadsheet were generated elsewhere (non-EPA) and...

  2. Analysis of underlying and multiple-cause mortality data: the life table methods.

    Science.gov (United States)

    Moussa, M A

    1987-02-01

    The stochastic compartment model concepts are employed to analyse and construct complete and abbreviated total mortality life tables, multiple-decrement life tables for a disease, under the underlying and pattern-of-failure definitions of mortality risk, cause-elimination life tables, cause-elimination effects on saved population through the gain in life expectancy as a consequence of eliminating the mortality risk, cause-delay life tables designed to translate the clinically observed increase in survival time as the population gain in life expectancy that would occur if a treatment protocol was made available to the general population and life tables for disease dependency in multiple-cause data.

  3. NNDSS - Table I. infrequently reported notifiable diseases

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2016. In this Table, provisional* cases of selected† infrequently reported notifiable diseases...

  4. Laser-induced breakdown spectroscopy at a water/gas interface: A study of bath gas-dependent molecular species

    International Nuclear Information System (INIS)

    Adamson, M.; Padmanabhan, A.; Godfrey, G.J.; Rehse, S.J.

    2007-01-01

    Single-pulse laser-induced breakdown spectroscopy has been performed on the surface of a bulk water sample in an air, argon, and nitrogen gas environment to investigate emissions from hydrogen-containing molecules. A microplasma was formed at the gas/liquid interface by focusing a Nd:YAG laser beam operating at 1064 nm onto the surface of an ultra-pure water sample. A broadband Echelle spectrometer with a time-gated intensified charge-coupled device was used to analyze the plasma at various delay times (1.0-40.0 μs) and for incident laser pulse energies ranging from 20-200 mJ. In this configuration, the dominant atomic spectral features at short delay times are the hydrogen H-alpha and H-beta emission lines at 656 and 486 nm, respectively, as well as emissions from atomic oxygen liberated from the water and air and nitrogen emission lines from the air bath gas. For delay times exceeding approximately 8 μs the emission from molecular species (particularly OH and NH) created after the ablation process dominates the spectrum. Molecular emissions are found to be much less sensitive to variations in pulse energy and exhibit a temporal decay an order of magnitude slower than the atomic emission. The dependence of both atomic hydrogen and OH emission on the bath gas above the surface of the water was studied by performing the experiment at standard pressure in an atmospheric purge box. Electron densities calculated from the Stark broadening of the H-beta and H-gamma lines and plasma excitation temperatures calculated from the ratio of H-beta to H-gamma emission were measured for ablation in the three bath gases

  5. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.

    Science.gov (United States)

    Barnett, Gregory V; Razinkov, Vladimir I; Kerwin, Bruce A; Blake, Steven; Qi, Wei; Curtis, Robin A; Roberts, Christopher J

    2016-04-07

    Preferential interactions of proteins with water and osmolytes play a major role in controlling the thermodynamics of protein solutions. While changes in protein stability and shifts in phase behavior are often reported with the addition of osmolytes, the underlying protein interactions with water and/or osmolytes are typically inferred rather than measured directly. In this work, Kirkwood-Buff integrals for protein-water interactions (G12) and protein-osmolyte interactions (G23) were determined as a function of osmolyte concentration from density measurements of antistreptavidin immunoglobulin gamma-1 (AS-IgG1) in ternary aqueous solutions for a set of common neutral osmolytes: sucrose, trehalose, sorbitol, and poly(ethylene glycol) (PEG). For sucrose and PEG solutions, both protein-water and protein-osmolyte interactions depend strongly on osmolyte concentrations (c3). Strikingly, both osmolytes change from being preferentially excluded to preferentially accumulated with increasing c3. In contrast, sorbitol and trehalose solutions do not show large enough preferential interactions to be detected by densimetry. G12 and G23 values are used to estimate the transfer free energy for native AS-IgG1 (Δμ2N) and compared with existing models. AS-IgG1 unfolding via calorimetry shows a linear increase in midpoint temperatures as a function of trehalose, sucrose, and sorbitol concentrations, but the opposite behavior for PEG. Together, the results highlight limitations of existing models and common assumptions regarding the mechanisms of protein stabilization by osmolytes. Finally, PEG preferential interactions destabilize the Fab regions of AS-IgG1 more so than the CH2 or CH3 domains, illustrating preferential interactions can be specific to different protein domains.

  6. Culture of microalgae biomass for valorization of table olive processing water; Cultivo de biomasa de microalgas para la valorización del agua de elaboración de las aceitunas de mesa

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-07-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [Spanish] El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW) presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de annochloropsis gaditana en TOPW a distintas concentraciones (10-80%) con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV)/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%). Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  7. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  8. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  9. An Application of Planned Behavior Theory in Predicting Nicotine Dependence among Water pipe Consumer Women in Bushehr City in 2013-14

    Directory of Open Access Journals (Sweden)

    M Saeed Firoozabadi

    2016-07-01

    Full Text Available Abstract Introduction: Today, water pipe smoking is widespread in the world that can lead to death of million individuals. This study aimed to determine the predictors of nicotine dependence among women water pipe consumers in Bushehr in 2013-2014. Methods: In this cross-sectional (descriptive and analytical study, 430 women water pipe smokers were selected via simple sampling and snowball methods. A structured interview was conducted on 20 women water pipe consumers in order to design a researcher-made questionnaire via appropriate statistical tests. The collected data were analyzed using SPSS statistical software. Results: The overall mean and standard deviation scores for nicotine dependence were 36.73±13.57 and 40.71±12.63, respectively. The highest and the lowest score were related to nicotine dependence and perceived behavioral control, respectively. All constructs explained water pipe dependence behavior except instrumental attitude and subjective norm. In fact, self-efficacy and affective attitude were introduced as the strongest and the weakest predictors respectively. Conclusion: Regarding unfavorable status of nicotine dependence behavior among water pipe consumer women, intervention programs are recommended in order to enhance the self-efficacy in decreasing this behavior, decrease appropriate affection to water pipe and decrease descriptive norm among these women.

  10. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  11. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1965-12-01

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 μs. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P 1 -calculations by Claesson

  12. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1965-12-15

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 {mu}s. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P{sub 1}-calculations by Claesson.

  13. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.

    2013-01-01

    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  14. The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    The aim of this paper is to localize the position of a point source and recover the history of its time-dependent intensity function that is both unknown and constitutes the right-hand side of a 1D linear transport equation. Assuming that the source intensity function vanishes before reaching the final control time, we prove that recording the state with respect to the time at two observation points framing the source region leads to the identification of the source position and the recovery of its intensity function in a unique manner. Note that at least one of the two observation points should be strategic. We establish an identification method that determines quasi-explicitly the source position and transforms the task of recovering its intensity function into solving directly a well-conditioned linear system. Some numerical experiments done on a variant of the water pollution BOD model are presented

  15. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    Science.gov (United States)

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  16. Mathematical tables tables of in g [z] for complex argument

    CERN Document Server

    Abramov, A A

    1960-01-01

    Mathematical Tables of In ? (z) for Complex Argument is a compilation of tables of In ? (z), z = x + iy, calculated for steps in x and y of 0.01 and with an accuracy of one unit in the last (the sixth) decimal place. Interpolation is used to calculate In ? (z) for intermediate values and is carried out separately for the real and imaginary parts of In ? (z). Six places are retained in interpolation.This book first explains how the values of In ? (z) are calculated using the asymptotic formula in a wide lattice with step h = 0.16, and how the tables and the nomograph are used. The values in the

  17. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  18. Water Oxidation by Ru-Polyoxometalate Catalysts: Overpotential Dependency on the Number and Charge of the Metal Centers

    Directory of Open Access Journals (Sweden)

    Simone Piccinin

    2015-09-01

    Full Text Available Water oxidation is efficiently catalyzed by several Ru-based polyoxometalate (POM molecular catalysts differing in the number, local atomistic environment and oxidation state of the Ru sites. We employ density functional theory calculations to rationalize the dependency of the reaction overpotential on the main structural and electronic molecular properties. In particular, we compare the thermodynamics of the water oxidation cycle for single-site Ru-POM and multiple-site Ru4-POM complexes. For the Ru-POM case, we also investigate the reaction free energy as a function of the Ru oxidation state. We find that the overpotential of these molecular catalysts is primarily determined by the oxidation state of the metal center and is minimum for Ru(IV. In solution, the number of active sites is shown to play a minor role on the reaction energetics. The results are rationalized and discussed in terms of the local structure around the active sites and of the electrostatic screening due to the molecular structure or the solvent.

  19. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Mu, Bo-Zhong [East China Univ. of Science and Technology, Shanghai (China). State Key Lab. of Bioreactor Engineering and Inst. of Applied Chemistry; Gu, Ji-Dong [Hong Kong Univ. (China). School of Biological Sciences

    2012-10-15

    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 C for 528 days with a mixture of long-chain n-alkanes (C{sub 15}-C{sub 20}). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO{sub 2}-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis. (orig.)

  20. The Reynolds number dependence of the velocity field in the BNL Jet-in-Pool water experiments

    International Nuclear Information System (INIS)

    Szczepura, R.T.

    1981-02-01

    The water Jet-in-Pool experiment at Berkeley Nuclear Laboratories consists of an axisymmetric sudden expansion. A series of measurements was performed in this rig, using a single-channel Laser/Doppler Anemometer system, over a Reynolds number range of 1.4 x 10 4 - 6.1 x 10 4 to determine any dependence in the flow. The mean axial velocity data showed a slight variation, but the root-mean-square fluctuations of the axial velocity had a far more pronounced dependence. This was attributed to upstream conditions in the rig, specifically the nozzle used for injecting the central portion of the flow. The variations in the mean velocity data are sufficiently small for one set of data to act as a basis for calculations at any Reynolds number when a simple closure scheme such as a prescribed effective viscosity is used. However the variation in turbulence parameters will complicate the use of second-order closure schemes and this will be examined further. (author)

  1. Monthly tables of measurements. October 2000; Tableaux mensuels des mesures. Octobre 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  2. 30 CFR 250.1401 - Index table.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Index table. 250.1401 Section 250.1401 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil Penalties § 250.1401 Index table. The following table is an index of the sections in this subpart: § 250.1401Table Definitions...

  3. The Alfonsine tables of Toledo

    CERN Document Server

    Chabás, José

    2003-01-01

    The Alfonsine Tables of Toledo is for historians working in the fields of astronomy, science, the Middle Ages, Spanish and other Romance languages. It is also of interest to scholars interested in the history of Castile, in Castilian-French relations in the Middle Ages and in the history of patronage. It explores the Castilian canons of the Alfonsine Tables and offers a study of their context, language, astronomical content, and diffusion. The Alfonsine Tables of Toledo is unique in that it: includes an edition of a crucial text in history of science; provides an explanation of astronomy as it was practiced in the Middle Ages; presents abundant material on early scientific language in Castilian; presents new material on the diffusion of Alfonsine astronomy in Europe; describes the role of royal patronage of science in a medieval context.

  4. INTRODUCTION Outline of Round Tables Outline of Round Tables

    Science.gov (United States)

    Abarzhi, Snezhana I.; Sreenivasan, Katepalli R.

    2010-12-01

    -canonical" turbulent processes, identified problems which are most appealing to a broad international and interdisciplinary TMB community, focused on selecting quantitative criteria for the estimation of the quality and information capacity of experimental and numerical data sets, and outlined the needs and requirements for the TMB cyber-infrastructure. Upon intense discussions, participants of the Round Table agreed that it is still unclear if Kolmogorov turbulence is an observable physical phenomenon. Even for canonical (e.g. local, isotropic and homogeneous) turbulent flows the corrections to Kolmogorov theory are essential to incorporate. Several definitions of canonical turbulence were considered. It was noted that in a vast variety of realistic problems (under high and low energy density conditions from microscopic to astrophysical scales) the flow conditions depart from the assumptions of Kolmogorov theory. It is uncertain whether these distinctions can be completely accounted for with some higher-order corrections to Kolmogorov theory, whether such corrections are "continuous" or "singular", and whether their quantitative influence on the values of observables in a given parameter regime is small. It was stressed that in experiments on canonical turbulence the conditions of isotropy, locality and homogeneity are hard to achieve. Numerical simulations can open exciting avenues for accurate studies of fundamental theoretical issues provided their accuracy and dynamic range, requiring computations of peta-scale and higher levels, are satisfactory. Participants of the Round Table stressed that realistic turbulent processes depart from classical scenarios. They are characterized by sharp gradients of pressure and density, and may be subject to spatially varying and time-dependent acceleration, rotation and shocks, and are often influenced by diffusion of species, heat release and changes in chemical composition. Their sensitivity to details and transient character of the dynamics

  5. Statistical probability tables CALENDF program

    International Nuclear Information System (INIS)

    Ribon, P.

    1989-01-01

    The purpose of the probability tables is: - to obtain dense data representation - to calculate integrals by quadratures. They are mainly used in the USA for calculations by Monte Carlo and in the USSR and Europe for self-shielding calculations by the sub-group method. The moment probability tables, in addition to providing a more substantial mathematical basis and calculation methods, are adapted for condensation and mixture calculations, which are the crucial operations for reactor physics specialists. However, their extension is limited by the statistical hypothesis they imply. Efforts are being made to remove this obstacle, at the cost, it must be said, of greater complexity

  6. 7 CFR 457.149 - Table grape crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... grown for commercial sale for human consumption as fresh fruit on acreage where the cultural practices... determine the minimum quality grade will be: (i) The United States Standards for Grades of Table Grapes...; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of irrigation water supply, if caused by an...

  7. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    Science.gov (United States)

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  8. Breakdown concepts for contingency tables

    NARCIS (Netherlands)

    Kuhnt, S.

    2010-01-01

    Loglinear Poisson models are commonly used to analyse contingency tables. So far, robustness of parameter estimators as well as outlier detection have rarely been treated in this context. We start with finite-sample breakdown points. We yield that the breakdown point of mean value estimators

  9. Influence of Flow Sequencing Attributed to Climate Change and Climate Variability on the Assessment of Water-dependent Ecosystem Outcomes

    Science.gov (United States)

    Wang, J.; Nathan, R.; Horne, A.

    2017-12-01

    Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum

  10. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2014-01-01

    Graphical abstract: The standard molar volume of tetrahydrofuran (THF) in water, V THF ∘ (■), is a close-to-linear function of temperature and becomes increasingly appreciable with rising of the latter. Herewith the molar volume of pure THF, V THF (□), is retained to be larger, as compared to V THF ∘ , over all the temperature range studied. - Highlights: • Densities of aqueous THF at nine temperatures from (278.15 to 318.15) K were measured. • Temperature-dependent standard molar volumes of THF in water were calculated. • The analysis of excess standard molar volumes in the (water + THF) system was made. • The use of Redlich–Kister equation to obtain standard molar volumes is discussed. - Abstract: This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made

  11. Glycerolysis of sardine oil catalyzed by a water dependent lipase in different tert-alcohols as reaction medium

    Directory of Open Access Journals (Sweden)

    Solaesa, Á. G.

    2015-12-01

    Full Text Available The production of monoacylglycerol rich in polyunsaturated fatty acids (PUFA via enzymatic glycerolysis of sardine oil in a homogeneous system was evaluated. Reactions were conducted in two different tert-alcohols. Based on the phase equilibrium data, the amount of solvent added to create a homogeneous system has been calculated and optimized. The immobilized lipase used in this work was Lipozyme RM IM from Rhizomucor miehei, a water dependent lipase. The amount of water added as well as other reaction parameters were studied to evaluate the optimum conditions for monoacylglycerol obtencion. An initial reactant mole ratio glycerol to sardine oil 3:1, 12 wt% of water based on glycerol content and 10 wt% of lipase loading (based on weight of reactants, achieved a MAG yield of around 70%, with nearly 28 wt% PUFA, with low free fatty acid content (lower than 18 wt%.En este trabajo se ha estudiado la producción de monoacilglicéridos, ricos en ácidos grasos poliinsaturados (AGPI, mediante glicerolisis enzimática de aceite de sardina. La reacción se ha llevado a cabo en dos tert-alcoholes para conseguir de esta forma un medio homogéneo de reacción. La cantidad de disolvente añadida al medio de reacción se ha optimizado y calculado en base al equilibrio de fases de los componentes del sistema. La lipasa empleada como biocatalizador ha sido la enzima inmovilizada Lipozyme RM IM de Rhizomucor miehei, una lipasa dependiente de agua. Se ha estudiado el efecto de distintos parámetros cinéticos, así como de la cantidad de agua añadida al medio de reacción, en la producción de monoacilglicéridos. De los resultados obtenidos, se puede concluir que, para una relación molar inicial de reactantes glicerol:aceite de sardina de 3:1, un 12 % en peso de agua en base al glicerol y un 10 % en peso de lipasa, en base al peso de reactantes; se puede llegar a conseguir un rendimiento en monoacilglicéridos alrededor del 70 % en peso, con casi un 28 % en

  12. Conception, implementation and effect of the consumption-dependent billing of heating and hot-water costs

    International Nuclear Information System (INIS)

    Rieder, S.; Schwenkel, Ch.

    2008-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the experience gained from the operation of the consumption-dependent billing of heating and hot-water costs (Verbrauchsabhaengigen Heiz- und Warmwasserkostenabrechnung, VHKA), a system introduced in Switzerland as one of the first energy-policy measures in the nineteen-eighties. The study examines the strategic possibilities of the VHKA within the framework of future efficiency strategies. Also, as an operative goal, the study takes a look at the acceptance of the VHKA and its effectiveness. In this way, an indication on how the instrument can be optimised can be obtained. The report consists of five chapters that look at the concept and implementation of the VHKA, its effect on the lessees of apartments and real estate owners and, finally, presents a cost-benefit analysis of the VHKA. The methods used in the study include the analysis of documents, personal and telephone interviews and the evaluation of billing data and other data collected.

  13. The use of Fenton's reagent in treating waste waters from the table olive producing industry; Aplicacion del reactivo de Fenton para la depuracion de las aguas residuales de la industria productora de aceituna de mesa

    Energy Technology Data Exchange (ETDEWEB)

    Beltran de Heredia, J.; Dominguez, J. R.

    2001-07-01

    A study was made of the chemical oxidation by means of Fenton's reagent (H{sub 2}O{sub 2}/Fe''24) on the lye used in pickling black olives. The aim of this process is to eliminate the organic materials from the waste water. It was monitored by tracking several overall reaction parameters such as Chemical Oxygen Demand (COD), total polyphenols, the aromaticity of the sample and the concentration of hydrogen peroxide in the reactor. The elimination rate obtained for the chemical oxygen demand after 90 minutes of reaction varied between 28 and 73% (depending on the conditions of the operation). Polyphenols were reduced by between 26 and 90%, while aromaticity was reduced by between 36 and 94%. In addition, the stechiometric coefficient of the reaction was determined for different operating conditions and was found to range from 0.11 to 1.82 g COD/gH{sub 2}O{sub 2}. An analysis of the results shows that the higher the dose of hydrogen peroxide, the greater the reduction of COD, but also the lower the stechiometric coefficient and, therefore, the less efficient the use made of the hydrogen peroxide. (Author) 19 refs.

  14. Steam table routines for the simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Hall, C.A.; Mutafelija, B.A.; Rapp, J.P.

    1976-01-01

    The dynamic simulation of nuclear power generating stations requires evaluation of a large number of steam and water properties at every integration time step. Some of the interpolation/approximation methods presently used are described with particular emphasis on the use of the bilinear transfinite interpolation method. The fundamental requirements for the steam table routines are outlined and different approaches are compared. The superiority of the bilinear transfinite interpolation method is discussed. The use of the steam table functions in real-time simulation is of particular interest

  15. Modelling of pressurized water reactor fuel, rod time dependent radial heat flow with boundary element method; Modeliranje spremenljivega radijalnega toplotnega toka tlacnovodne gorivne palice z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Sarler, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1987-07-01

    The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)

  16. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  17. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    Science.gov (United States)

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  18. Superconductivity and the Periodic Table

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    In view of the inability of the present theory of superconductivity to make reliable predictions for the magnitude of Tsub(c) it seems useful to search for empirical relationships between the composition of the compound and the Tsub(c) value. Table I gives a list of the available Tsub(c) data for transition metals (TM) having from 3 to 9 outer electrons and Tsub(c) data for non-transition elements (NTE) of groups IIB, IIIB and IVB, including data for amorphous (Am) structures and structures (marked by triangles) obtained at high pressures. The analogous metals have therefore the same structure. In Tables II to IV the Tsub(c) data are presented for analogous compounds of NTE from IB - VIB group. Conclusions are presented. (author)

  19. The Dependence of Chlorine Decay and DBP Formation Kinetics On Pipe Flow Properties in Drinking Water Distribution

    Science.gov (United States)

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation has long been discussed because of its regulatory and operational significance. This study further examines the water quality changes under hydrodynamic settings during drinking water distribution. Comparative...

  20. NNDSS - Table I. infrequently reported notifiable diseases

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2017. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...

  1. NNDSS - Table I. infrequently reported notifiable diseases

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2014.In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...

  2. NNDSS - Table I. infrequently reported notifiable diseases

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2015. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...

  3. NNDSS - Table I. infrequently reported notifiable diseases

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2018. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...

  4. Toddlers at the Table: Avoiding Power Struggles

    Science.gov (United States)

    ... Search English Español Toddlers at the Table: Avoiding Power Struggles KidsHealth / For Parents / Toddlers at the Table: ... common concerns into opportunities to teach healthy eating habits. Most Toddlers Are Picky Eaters Many toddlers express ...

  5. NNDSS - Table II. Babesiosis to Campylobacteriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  6. NNDSS - Table II. Cryptosporidiosis to Dengue

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  7. NNDSS - Table II. Cryptosporidiosis to Dengue

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  8. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2015. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  9. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  10. Handbook of thermodynamic tables and charts

    International Nuclear Information System (INIS)

    Raznjevic, K.

    1976-01-01

    A compilation of thermodynamic and thermophysical tables and charts is presented. Numerical values are cited in both technical and SI units. Solid, liquid, vapor, and gaseous forms of organic and inorganic materials are included. 12 figures, 137 tables

  11. Global Reference Tables for Management Information Systems

    Data.gov (United States)

    Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardize code structures and code usage of SSA...

  12. NNDSS - Table II. Mumps to Rabies, animal

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases but...

  13. NNDSS - Table II. Mumps to Rabies, animal

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  14. NNDSS - Table II. Mumps to Rabies, animal

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  15. NNDSS - Table II. Legionellosis to Malaria

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Legionellosis to Malaria - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  16. NNDSS - Table II. Hepatitis (viral, acute) C

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) C - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  17. NNDSS - Table II. Babesiosis to Campylobacteriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  18. NNDSS - Table II. West Nile virus disease

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...

  19. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  20. NNDSS - Table II. Meningococcal to Pertussis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Meningococcal to Pertussis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...