WorldWideScience

Sample records for water system evaluation

  1. Evaluation index system for positive operation of water conservancy projects

    Directory of Open Access Journals (Sweden)

    Qing-yuan ZHU

    2009-12-01

    Full Text Available The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis, and expert consultation. This evaluation index system can be divided into six first-level indices: the degree to which facilities are intact and functionality standards are reached, the status of operation and management funds, the rationality and degree of advancement of the management team structure, the adaptability and rationality of the water conservancy project management system, the degree of automatization and informationization of the management techniques, and the conduciveness of the exterior environment. The weights for evaluation indices were obtained through the analytic hierarchy process method with consideration of the difference between public welfare and profit-oriented water conservancy projects. This study provides a scientific method for evaluating the positive operation of water conservancy projects.

  2. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  3. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  4. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  5. Evaluation and optimization of secondary water supply system renovation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Due to pollution in second water supply system (SWSS), nine renovation alternative plans were proposed and comprehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appropriate plan for engineering projects. In addition, a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study, the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system, an optimal scheme was obtained, the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the comprehensive analysis. The analysis revealed that the optimal scheme, compared with two other randomly calculated ones, increased the percentage of service population by 19.6% and 13.6% respectively, which significantly improved social and economical benefits.

  6. Evaluating integrated urban water systems alternatives for Brisbane, Australia.

    Science.gov (United States)

    Mitchell, G; Gray, S; Shipton, B; Woolley, R; Erbacher, J; Egerton, G; McKnoulty, J

    2003-01-01

    The Brazil Development Study investigates the feasibility of alternative approaches to providing sustainable water services to a 226 ha mixed residential and industrial greenfield development within the city of Brisbane, Australia. The alternatives include techniques such a the use of rainwater tanks, water use efficiency, a local wastewater treatment plant for recycling of reclaimed water and composting toilets amongst others. This paper evaluates a series of urban development scenarios against the objectives of the study. The insights gained into the drivers for cost and environmental impact for this particular site are discussed as well as a number of issues of concern and challenges to Council and the community.

  7. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    Science.gov (United States)

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  8. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    Science.gov (United States)

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  9. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  10. Side-by-Side Testing of Water Heating Systems: Results from the 2013-2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Bulding America Partnership for Improved Residential Construction

    2017-07-12

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  11. Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for US Type Approval

    Science.gov (United States)

    2016-01-01

    water options are summarized in Table 5. Additionally, NIOZ offers BWMS vendors the option to experiment using the NIOZ facility prior to setting up... supply volume and pressure requirements Fresh water requirements Volume and flow requirements for fresh water supply Electrical supply requirements...Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for US Type Approval Lisa A. Drake1, Timothy P. Wier2, Evan

  12. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  13. Corrosion risk assessment and comprehensive evaluation of ship sea water pipe systems

    Directory of Open Access Journals (Sweden)

    YANG Guangfu

    2017-05-01

    Full Text Available In order to propose a comprehensive corrosion risk evaluation model based on an analysis of the corrosion risk of sea water pipe systems of ships in service,the modes of potential corrosion and their causes were first analyzed by identifying the origins of the inner and outer corrosion of the sea water pipe systems. In accordance with the matrixes of corrosion occurrence possibility and corrosion risk consequence,a corrosion risk matrix was established for a sea water pipe system. The method for the quantitative evaluation value of each mode of corrosion possibly occurring in a sea water pipe system was then presented. The comprehensive evaluation model of the corrosion was first built using the Analytical Hierarchy Process(AHP,which can be used for the comprehensive corrosion evaluation. The results show that the comprehensive evaluation value will be expressed as the corrosion risk level and corrosion-induced consequence of the sea water pipe system. This will be very useful for accurately protecting the sea water pipe systems of ships in service from corrosion,thereby attaining the goals of economy,rationality and timeliness.

  14. Emergy evaluation of a pumping irrigation water production system in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-03-01

    The emergy concept was used to evaluate a pumping irrigation water production system in China. A framework for emergy evaluation of the significance of irrigation water and its production process was developed. The results show that the irrigation water saved has the highest emergy value (8.73E + 05 sej·J-1), followed by the irrigation water supplied to farmlands (1.72E + 05 sej·J-1), the pumped water (4.81E + 04 sej·J-1), with the lowest value shown from water taken from the local river (3.72E + 04 sej·J-1). The major contributions to the emergy needed for production are the inputs of soil and water. This production system could contribute to the irrigated agriculture and economy, according to several calculated emergy indices: emergy yield ratio ( EYR), emergy investment ratio ( EIR), environmental load ratio ( ELR), and environmental sustainability index ( ESI). The comparative analysis shows that the emergy theory and method, different from the conventional monetary-based analysis, could be used to evaluate irrigation water and its production process in terms of the biophysical account. Additional emergy evaluations should be completed on different types of water production and irrigated agricultural systems to provide adequate guidelines for the sustainability of irrigation development.

  15. Evaluation of oxygen corrosion in waterflood and disposal water systems

    Energy Technology Data Exchange (ETDEWEB)

    Conger, H.C.

    1967-01-01

    The case histories presented illustrate how specially polished pipe nipples have been used and examined in the field to evaluate the seriousness of an oxygen corrosion problem. The case histories also illustrate how these test pipe nipples have been used to evaluate actual, not relative, effectiveness of a chemical treatment program to control oxygen corrosion. Data are presented and discussed showing the relationship between corrosion rates of test pipe nipples and actual in-service equipment. The case histories show how corrosion rates based on pipe test nipple data were used to project equipment life under no chemical treatment vs. chemical treatment. A comparative study of corrosion rates between the use of pipe nipples and coupons as a means of measuring oxygen corrosion is discussed. A further comparative study is made between coupon corrosion rates based on weight loss and pit depth penetration.

  16. Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study.

    Science.gov (United States)

    Chien, C C; Kao, C M; Chen, C W; Dong, C D; Chien, H Y

    2009-06-01

    The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (water distribution system for maintaining a safe drinking water quality.

  17. A Modeling Tool for Evaluating Climate Change Impacts on Water Supply System

    Science.gov (United States)

    Chuang, L.; Tung, C.; Liu, T.

    2009-12-01

    Climate change may exacerbate short-term climate variability and more extreme hydrological events, and then may impact on human society and natural environment. Socioeconomic development is dependent on adequate water resources, but climate change may impact on such supply system, including available streamflow, groundwater, irrigation water demand. The purpose of this study is to apply an integrated modeling tool to assess the climate change impacts on regional water supply systems and then to propose response strategies to strengthen adaptive capacity to achieve sustainable water uses. The modeling tool integrates the functions of downscaling, weather generation, hydrological modeling, and an interface for linking system dynamics models. The Touchien river basin in Taiwan is chosen as a study area, which has a high-tech industry park. The vulnerability of the water supply system was evaluated for present and future conditions. The results demonstrated that the water supply system could meet current water demand, but might be subjected to serious water shortage due to future climate change and increasing water demand. At last, this study provides suggestions to government agency to develop better water resources management strategies to mitigate the impacts of changing climate.

  18. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  19. A New System for Households in Spain to Evaluate and Reduce Their Water Consumption

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-01-01

    Full Text Available The objective of this paper is to describe a developed model and its corresponding application, known as System to Evaluate the Water Consumption at Home (SEWAT. The aim is to create a new model to evaluate the efficiency of water consumption. Thanks to the input of the water bills by users, the model allows them to check if water consumption is efficient, in order to give them an opportunity to evaluate their water usage. To succeed in it, several researches were tracked in order to establish consumer trends and to identify the most efficient value for this magnitude. Furthermore, a survey was conducted to obtain updated values to validate information from previous studies. However, the main aim of this model is to use the resources efficiently, so it has to be useful accordingly. Therefore, after the evaluation, the application has a section with recommendations for the users to reduce their water consumption through a range of different indications. This section is divided into four: bathroom, kitchen, new appliance and reusing water. Each section shows the expected benefits if the users follow the recommended options. The main result is a unique application in Spain, which includes a system of evaluation, comparison and a section of recommendations for the users. Eventually, the model will have a promising outcome, because it surely will change the awareness of citizens about this subject.

  20. An evaluation index system of water security in China based on macroeconomic data from 2000 to 2012

    Science.gov (United States)

    Li, X. S.; Peng, Z. Y.; Li, T. T.

    2016-08-01

    This paper establishes an evaluation index system of water security. The index system employs 5 subsystems (water circulation security, water environment security, water ecology security, water society security and water economy security) and has 39 indicators. Using the AHP method, each indicator is given a relative weight to integrate within the whole system. With macroeconomic data from 2000 to 2012, a model of water security evaluation is applied to assess the state of water security in China. The results show an improving trend in the overall state of China's water security. In particular, the cycle of water security is at a high and low fluctuation. Water environment security presents an upward trend on the whole; however, this trend is unsteady and has shown a descending tendency in some years. Yet, water ecology security, water society security, and water economy security are basically on the rise. However, the degree of coordination of China's water security system remains in need of consolidation.

  1. Linking Health Concepts in the Assessment and Evaluation of Water Distribution Systems

    Science.gov (United States)

    Karney, Bryan W.; Filion, Yves R.

    2005-01-01

    The concept of health is not only a specific criterion for evaluation of water quality delivered by a distribution system but also a suitable paradigm for overall functioning of the hydraulic and structural components of the system. This article views health, despite its complexities, as the only criterion with suitable depth and breadth to allow…

  2. Evaluation system of water ecological civilization of irrigation area in China

    Science.gov (United States)

    Liu, Z.; Chen, J.; Chen, D.; Zhang, S.; Li, X. C.; Zhu, Y.; Li, Y.

    2016-08-01

    Irrigation area is an important carrier, and also has a pivotal role in the construction of water ecological civilization in China, as well as worldwide. This work extracted the five basic characteristics of water ecological civilization of irrigated area, namely "resource saving, efficient production, ecological nature, beautiful environment, and civilized consciousness". Further, based on the frequency analysis of indicators related to the evaluation of irrigation area, we proposed the evaluation system of water ecological civilization of irrigated area. Taking an irrigation district of Huaian City, Jiangsu Province, China as an example, we carried out the case evaluation in use of the fuzzy comprehensive evaluation method. Thus, we provide the theoretical and technical reference for the construction and assessment of water ecological civilization of irrigation district to both China and abroad.

  3. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States)

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from a standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.

  4. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  5. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    Science.gov (United States)

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...Engineer Center Tyndall Air Force Base, FL 32403-5319 ERDC/GSL TR-14-11 ii Abstract Runway rubber removal is a maintenance function employed to

  6. Design, construction and evaluation of a system of forced solar water heating.

    Science.gov (United States)

    Hernández, E.; Bautista, G. A.; Ortiz, I. L.

    2016-07-01

    The main purpose of this project was to design, construct and evaluate a system of forced solar water heating for domestic consumption, at the Universidad Pontificia Bolivariana-Bucaramanga, Colombia; using solar energy. This is a totally system independent of the electrical grid and an important characteristic is the heating water doesn't mix with the consumption water. The system receives the solar radiation through a flat-plate collector, which it transmits the heat to the water that it flow with impulse from the centrifugal pump of 12VDC, the water circulates toward helical serpentine it is inside of the tank of the storage whose capacity is 100 liters of water. The temperature of the tank is regulated with a controller in such a way that de-energized the pump when it gets the temperature required. The performance thermal or efficiency of the system was evaluated like a relationship between the delivered energy to the water in storage tank and the incident energy in the flat-plate collector.

  7. Evaluation of a rainbow trout (Oncorhynchus mikyss) culture water recirculating system

    OpenAIRE

    Iván Sánchez O; Wilmer Sanguino O.; Ariel Gómez C.; Roberto García C

    2014-01-01

    ABSTRACTObjective. To evaluate a water recirculation system for rainbow trout fish cultures at the recirculating laboratory of the Aquaculture Engineering Production Program of University of Nariño. Materials and Methods. 324 rainbow trout (Oncorhynchus mikyss) fries were cultured in 12 plastic tanks with a capacity of 250 L in an aquaculture recirculating system the treatment system of which was made up by a conventional sedimentation tank, a fixed stand upflow biofilter with recycled PVC tu...

  8. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta

    Directory of Open Access Journals (Sweden)

    E. Farg

    2017-04-01

    Full Text Available Traditional methods for center pivot evaluation depend on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient of uniformity (CU of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heerman and Hein (1968 modified equation for center pivot evaluation. Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI in addition to land surface temperature. Results of the statistical analysis showed that the collected water depth in catchment cans is also highly correlated negatively with NDVI. On the other hand water, depth was positively correlated with NDWI and LST. Multi-linear regression analysis using stepwise selection method was applied to estimate and map the water depth distribution. The results showed R2 and adjusted R2 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

  9. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    Science.gov (United States)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-08-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference (p > 0.05).

  10. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  11. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Directory of Open Access Journals (Sweden)

    Fabio V. Goncalves, Helena M. Ramos, Luisa Fernanda R. Reis

    2010-01-01

    Full Text Available Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator – CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator – HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  12. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  13. In Vitro and In Vivo Evaluation of a Water-in-Oil Microemulsion System for Enhanced Peptide Intestinal Delivery

    National Research Council Canada - National Science Library

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    .... The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration...

  14. Fuzzy Comprehensive Evaluation for Decision Making of Water Saving Irrigation System

    Institute of Scientific and Technical Information of China (English)

    LuoJin-yao; QiuYuan-feng

    2003-01-01

    A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.

  15. Fuzzy Comprehensive Evaluation for Decision Making of Water Saving Irrigation System

    Institute of Scientific and Technical Information of China (English)

    Luo Jin-yao; Qiu Yuan-feng

    2003-01-01

    A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted dis tance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.

  16. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  17. Evaluation of a rainbow trout (Oncorhynchus mikyss culture water recirculating system

    Directory of Open Access Journals (Sweden)

    Iván Sánchez O.

    2014-09-01

    Full Text Available Objective. To evaluate a water recirculation system for rainbow trout fish cultures at the recirculating laboratory of the Aquaculture Engineering Production Program of University of Nariño. Materials and Methods. 324 rainbow trout (Oncorhynchus mikyss fries were cultured in 12 plastic tanks with a capacity of 250 L in an aquaculture recirculating system the treatment system of which was made up by a conventional sedimentation tank, a fixed stand upflow biofilter with recycled PVC tube pieces and a natural degassing system; the sedimentation unit effluent was pumped up to a reservoir tank using a 2 HP centrifugal pump after being subject to gravity through the biofilter and to be then distributed to the 12 culture units to which a constant amount of air from a blower was injected. Results. The water treatment system removed 31% of total suspended solids, 9.5% of total ammonia nitrogen, and increased dissolved oxygen to the final effluent in 6.5%. An increase of 305% in biomass was calculated during 75 days, the mortality percentage registered throughout the study period was 4.9%. Conclusions. The water treatment system maintained the physicochemical water quality parameters within the values recommended for the species. The increase in weight and size, food conversion, mortality and biomass production reported normal values for rainbow trout fish culture in recirculating systems.

  18. Conceptualization of a robust performance assessment and evaluation model for consolidating community water systems.

    Science.gov (United States)

    Rogers, Jeffrey W; Louis, Garrick E

    2009-02-01

    Community water systems (CWS) face significant competing forces for change from decreasing water resource availability, stricter water quality regulations, decreasing federal subsidies, increasing public scrutiny, decreasing financial health, and increasing infrastructure replacement costs. These competing forces necessitate increasing consolidation responses among financially stressed CWS. Consolidation responses allow financially stressed CWS to increase levels of service by taking advantage of economy of scale benefits, such as eliminating service duplications across administration and operational functions. Consolidation responses also promote improved financial accountability among consolidating CWS, especially when operating as integral subsystems of a larger regional drinking water supply (RDWS) system. The goal of this paper is to propose a conceptual model for robust performance assessment and evaluation (PAE) among consolidating CWS. The objectives of this paper are to conceptualize methods for: (1) consistent performance assessment and (2) uniform summative performance evaluation among consolidating CWS. The expected outcome from implementing robust PAE among consolidating CWS is increased levels of service through transparent benchmarking and improved financial accountability. The proposed robust PAE model provides the basis for constructing decision support system (DSS) tools that estimate efficient solutions for allocating limited financial resources among consolidating CWS. The paper is a significant departure from current CWS PAE approaches in two ways. First, it provides a goal-oriented approach for robust PAE among consolidating CWS. Second, it constructs efficiency-based performance metrics to temporally and spatially monitor the degree of attainment of the RDWS systems' goal.

  19. Evaluating the risk of water distribution system failure: A shared frailty model

    Institute of Scientific and Technical Information of China (English)

    Robert M. Clark; Robert C. Thurnau

    2011-01-01

    Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure.This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie,Wyoming,USA).Using the risk model a cost/benefit analysis incorporating the inspection value method (IVM),is used to assist in making improved repair,replacement and rehabilitation decisions for selected drinking water distribution system pipes.A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP).Various currently available inspection technologies are presented and discussed.

  20. Design and Evaluation of a Photovoltaic/Thermal-Assisted Heat Pump Water Heating System

    Directory of Open Access Journals (Sweden)

    Huan-Liang Tsai

    2014-05-01

    Full Text Available This paper presents the design, modelling and performance evaluation of a photovoltaic/thermal-assisted heat pump water heating (PVTA-HPWH system. The cooling effect of a refrigerant simultaneously enhances the PVT efficiency and effectively improves the coefficient of performance (COP of the HPWH system. The proposed model was built in the MATLAB/Simulink environment by considering the reciprocal energy exchange between a PVT evaporator and a HPWH system. In addition, the power consumption needs of the HPWH are provided by the PV electricity using a model-based control methodology. System performance is evaluated through a real field test. The results have demonstrated the power autarchy of the proposed PVTA-HPWH system with better PVT efficiency and COP. In addition, the good agreement between the model simulation and the experimental measurements demonstrate the proposed model with sufficient confidence.

  1. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  2. A thermodynamic evaluation of chilled water central air conditioning systems using artificial intelligence tools

    Directory of Open Access Journals (Sweden)

    Juan Carlos Armas

    2011-05-01

    Full Text Available  An analysis of a chilled water central air conditioning system is presented. The object was to calculate main cycle component irreversibility, as well as evaluating this indicator’s sensitivity to operational variations. Artificial neural networks (ANN, genetic algorithms (GA and Matlab tools were used to calculate refrigerant thermodynamic properties during each cycle stage. These tools interacted with equations describing the system’s thermodynamic behaviour. Refrigerant temperature, when released from the compressor, was determined by a hybrid model combining the neural model with a simple genetic algorithm used as optimisation tool; the cycle’s components which were most sensitive to changes in working conditions were identified. It was concluded that the compressor, evaporator and expansion mechanism (in that order represented significant exergy losses reaching 85.62% of total system irreversibility. A very useful tool was thus developed for evaluating these systems

  3. Ecosystem health evaluation system of the water-fluctuating zone in the Three Gorges Area

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ao; YUAN Hui; ZHANG Yan-hui; HU Gang

    2004-01-01

    This paper discribes the definition of ecosystem health for the water-level flutuation zone of the Three Gorges Region and puts forward an evaluation system involving indicators in three groups: 1) structural indicators comprise slope, biodiversity,environmental capacity, stability, restoration ability and damage situation; 2) functional indicators including probability of geological hazard, erosion rate, habitat rate, land use intension and days of tourist season; 3) environmental indicatiors made up of population quality, potential intension of human, ground water quality, ambient air quality, wastewater treatment rate, pesticide use rate, fertilizer use rate, environmental management and public participation. In the design of the system, the subject zone is regarded as the type similar to wetland and the impacts of human activities on the zone are attached great importance to.

  4. Toward a comprehensive and realistic risk evaluation of engineered nanomaterials in the urban water system.

    Science.gov (United States)

    Duester, Lars; Burkhardt, Michael; Gutleb, Arno C; Kaegi, Ralf; Macken, Ailbhe; Meermann, Björn; von der Kammer, Frank

    2014-01-01

    The European COoperation in Science and Technology (COST) Action ES1205 on the transfer of Engineered Nano materials from wastewater Treatment and stormwatEr to Rivers (ENTER) aims to create and to maintain a trans European network among scientists. This perspective article delivers a brief overview on the status quo at the beginning of the project by addressing the following aspects on engineered nano materials (ENMs) in the urban systems: (1) ENMs that need to be considered on a European level; (2) uncertainties on production-volume estimations; (3) fate of selected ENMs during waste water transport and treatment; (4) analytical strategies for ENM analysis; (5) ecotoxicity of ENMs, and (6) future needs. These six step stones deliver the derivation of the position of the ES1205 network at the beginning of the projects runtime, by defining six fundamental aspects that should be considered in future discussions on risk evaluation of ENMs in urban water systems.

  5. Determination and evaluation of solubility parameter of satranidazole using dioxane-water system

    Directory of Open Access Journals (Sweden)

    Rathi P

    2010-01-01

    Full Text Available Satranidazole, a potent broad spectrum antiprotozoal, is a poorly water-soluble drug and has low bioavailability on oral administration. One of the important methods to improve the solubility and bioavailability of a less water-soluble drug is by the use of cosolvents. The solubility enhancement produced by binary blends with a cosolvent (dioxane was studied against the solubility parameter of solvent blends (d1 to evaluate the solubility parameter of drug (d2 . Solubility parameter of drug (d2 was evaluated in blends of dioxane-water system. The results obtained were compared with the d2 values obtained using Molar Volume Method and Fedor′s Group Substitution Method. The binary blend water-dioxane (10:90 gave maximum solubility with an experimental d2 value of 11.34 (Cal/cm 3 0.5 that was comparable to the theoretical values of 11.34 (Cal/cm 3 0.5 determined by Molar Volume Method and 11.3928 (Cal/cm 3 0.5 when determined by Fedor′s Group Substitution Method, which is in good agreement with solubility measurement method.

  6. Evaluating Vulnerability and Resilience between Urban and Rural Area in a Regional Water Resources System under Climate Change

    Science.gov (United States)

    Liu, T. M.; Tung, C. P.; Li, M. H.; Tsao, J. H.; Lin, C. Y.

    2014-12-01

    To the threat of climate change, the risk of water resources vary in different area but the same system because of the structure of water supply system and the different sensitivity and exposure to climate for different urbanization area. For example, the urban area with high population density is sensitive to any disturbance from drought and the rural area with unpopular tap water system is insensitive to disturbance of drought but highly risk to water shortage. The resilience of water supply relies on water storage from reservoirs or lakes and water management in urban area but relies on intake from groundwater in rural area. The strategies to water resources should be considered with the water mass flow between urban and rural area. To strengthen the whole water resources system, also, it is important to find where the vulnerability from, how to reduce it and how to build up the resilience for both urban and rural area. This study aims to evaluate the vulnerability and resilience of water resources in different township and city but in the same system. An integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources is used for climate impact assessment. For the simulation of the complex water supply system, the system dynamics model- VENSIM which is connected with TaiWAP is adopted to simulate a water supply system and evaluate risk of each township and city in a water supply system. The cause of vulnerability will be identified and discussed in both urban and rural. The strategies to reduce vulnerability of water resources for urban and rural will be proposed and discussed in this study.

  7. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    Science.gov (United States)

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data.

  8. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.

    Science.gov (United States)

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.

  9. Georgia Institute of Technology chilled water system evaluation and master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-15

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  10. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    CERN Document Server

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  11. Title III Evaluation Report for the Subsurface Fire Water System and Subsurrface Portion of the Non-Portable Water System

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Flye

    1998-09-29

    The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed SFWS/SNPWS. Recommendations for resolving discrepancies between the as-constructed systems, the technical baseline requirements, and the baseline design are included in this report. Cost and schedule estimates are provided for all recommended modifications. This report does not address items which do not meet current safety or code requirements. These items are identified to the CMO and immediate action is taken to correct the situation. The report does identify safety and code items for which the A/E is recommending improvements. The recommended improvements will exceed the minimum requirements of applicable code and safety guidelines. These recommendations are intended to improve and enhance the operation and maintenance of the facility.

  12. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

  13. Structural evaluation report of piping and support structure for HANARO hot-water layer system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo

    1997-02-01

    The major goal of this report is to assess the structural integrity on the piping and the support structures of HANARO hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pipings subjected to dead weight, pressure, thermal expansion and seismic loadings. The pipings to evaluate the structural integrity are the pump suction line and the pump discharge line near safety related structures in reactor pool. Based on the reaction forces from the piping stress analysis, the design of support structure was carried out. The results of structural evaluation for the piping and the support structure showed that the structural acceptance criteria were satisfied, in compliance with ASME B and PV code, section III, subsection ND for the pipings and Subsection NF for the support structures. Therefore based on results of the analysis and the design, the structural integrity on the piping and the support structures of HANARO hot-water layer system proved. (author). 9 tabs., 14 figs. 9 refs.

  14. Evaluation of trigeneration system using microturbine, ammonia-water absorption chiller, and a heat recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br

    2010-07-01

    In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)

  15. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  16. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  17. Evaluation of a common commercial surfactant in a water recycle system

    Energy Technology Data Exchange (ETDEWEB)

    Rector, T.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Texas (United States); Pickering, S. [Johnson Space Center, NASA, Houston, Texas (United States)

    2002-06-15

    The fate of a common commercial surfactant was investigated in the biological reactors of a water recycle system. A NO{sub 2}{sup -} reducing packed-bed bioreactor was employed to evaluate degradation of surfactant present in a typical greywater stream. The research was conducted to determine if an alternative commercial surfactant could be used in a biological water recycle system proposed for space travel in place of the current surfactant. The commercial soap used in the research was Pert Plus for Kids (PPK), which contains sodium laureth sulfate (SLES) as the active surfactant. Experiments included a combination of microcosm studies as well as a continuous-flow packed-bed bioreactor. The hydraulic retention time of the packed-bed bioreactor was varied through changes in flow rate to yield different steady-state values for NO{sub 2}-N, TOC, and COD. Steady-state values will allow the determination of the bacterial kinetic parameters. Initial results suggest that the commercial surfactant may be difficult to treat in the time frame of typical biological systems. NO{sub 2}{sup -} reduction was favorable in the packed-bed reactor, but TOC removal rates did not correspond to the NO{sub 2}{sup -} removal. It is theorized that, due to its high K{sub oc} value (1200), SLES has an affinity to absorb to the media contained in the bed, which in turn allows for adsorption of the surfactant. Future research will include development of an isotherm model to characterize the adsorption rates and correlate them to surfactant removal. (author)

  18. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    Science.gov (United States)

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  19. Uncertainty analysis of daily potable water demand on the performance evaluation of rainwater harvesting systems in residential buildings.

    Science.gov (United States)

    Silva, Arthur Santos; Ghisi, Enedir

    2016-09-15

    The objective of this paper is to perform a sensitivity analysis of design variables and an uncertainty analysis of daily potable water demand to evaluate the performance of rainwater harvesting systems in residential buildings. Eight cities in Brazil with different rainfall patterns were analysed. A numeric experiment was performed by means of computer simulation of rainwater harvesting. A sensitivity analysis was performed using variance-based indices for identifying the most important design parameters for rainwater harvesting systems when assessing the potential for potable water savings and underground tank capacity sizing. The uncertainty analysis was performed for different scenarios of potable water demand with stochastic variations in a normal distribution with different coefficients of variation throughout the simulated period. The results have shown that different design variables, such as potable water demand, number of occupants, rainwater demand, and roof area are important for obtaining the ideal underground tank capacity and estimating the potential for potable water savings. The stochastic variations on the potable water demand caused amplitudes of up to 4.8% on the potential for potable water savings and 9.4% on the ideal underground tank capacity. Average amplitudes were quite low for all cities. However, some combinations of parameters resulted in large amplitude of uncertainty and difference from uniform distribution for tank capacities and potential for potable water savings. Stochastic potable water demand generated low uncertainties in the performance evaluation of rainwater harvesting systems; therefore, uniform distribution could be used in computer simulation.

  20. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-09-01

    Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water ( FIW), and the irrigation intensity of agriculture ( IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems' products represented different energy efficiencies for rice (2.50E + 05 sej·J-1), wheat (1.66E + 05 sej·J-1) and oilseed rape (2.14E + 05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.

  1. A spatial evaluation of global wildfire-water risks to human and natural systems.

    Science.gov (United States)

    Robinne, François-Nicolas; Bladon, Kevin D; Miller, Carol; Parisien, Marc-André; Mathieu, Jérôme; Flannigan, Mike D

    2018-01-01

    The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for human activities and ecosystems is required for sustainable development; however, no global assessment of wildfire impacts on water supply is currently available. Here, we provide the first global evaluation of wildfire risks to water security, in the form of a spatially explicit index. We adapted the Driving forces-Pressure-State-Impact-Response risk analysis framework to select a comprehensive set of indicators of fire activity and water availability, which we then aggregated to a single index of wildfire-water risk using a simple additive weighted model. Our results show that water security in many regions of the world is potentially vulnerable, regardless of socio-economic status. However, in developing countries, a critical component of the risk is the lack of socio-economic capability to respond to disasters. Our work highlights the importance of addressing wildfire-induced risks in the development of water security policies; the geographic differences in the components of the overall risk could help adapting those policies to different regional contexts. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Development and evaluation of a helicopter-borne water-quality monitoring system

    Science.gov (United States)

    Wallace, J. W.; Jordan, R. A.; Flynn, J.; Thomas, R. W.

    1978-01-01

    A small, helicopter-borne water-quality monitoring package is being developed by the NASA/EPA using a combination of basic in situ water quality sensors and physical sample collector technology. The package is a lightweight system which can be carried and operated by one person as a passenger in a small helicopter typically available by rental at commercial airports. Real-time measurements are made by suspending the water quality monitoring package with a cable from the hovering helicopter. Designed primarily for use in rapidly assessing hazardous material spills in inland and coastal zone water bodies, the system can survey as many as 20 data stations up to 1.5 kilometers apart in 1 hour. The system provides several channels of sensor data and allows for the addition of future sensors. The system will also collect samples from selected sites with sample collection on command. An EPA Spill Response Team member can easily transport, deploy, and operate the water quality monitoring package to determine the distribution, movement, and concentration of the spilled material in the water body.

  3. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  4. Criticality safety evaluation report for the Cold Vacuum Drying Facility`s process water handling system

    Energy Technology Data Exchange (ETDEWEB)

    Roblyer, S.D.

    1998-02-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO`s interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck.

  5. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    Science.gov (United States)

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.

  6. θ-improved limited tolerance relation model of incomplete information system for evaluation of water conservancy project management modernization

    Directory of Open Access Journals (Sweden)

    Yu-qin GAO

    2013-10-01

    Full Text Available The modernization of water conservancy project management is a complicated engineering system involving a management system, a management method, management personnel, the exertion of social, economic, and ecological effects, and so on. However, indices for evaluating the modernization of water conservancy project management are usually unobtainable in practical applications. Conducting appropriate extension of the classical rough set theory and then applying it to an incomplete information system are the key to the application of the rough set theory. Based on analysis of some extended rough set models in incomplete information systems, a rough set model based on the θ-improved limited tolerance relation is put forward. At the same time, upper approximation and lower approximation are defined under this improved relation. According to the evaluation index system and management practices, the threshold for θ is defined. An example study indicates the practicability and maneuverability of the model.

  7. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Science.gov (United States)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  8. Environmental performance evaluation of hot water supplying systems for domestic use

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Kulay

    2015-04-01

    Full Text Available The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmental perspective. The systems were operated under similar conditions. The analysis was conducted by using the Life Cycle Assessment technique, for the impact categories of Climate Change, Acidification Eutrophication and Water, Metal and Fossil Resource depletion. The results indicated that the electric and hybrid systems are less harmful to the environment for all the impact categories under analysis. On the other hand, the gas system provided the worst performance of the group. The solar heating system was penalized due to its dependence on electricity to operate under the conditions in which the study was conducted.

  9. The evaluation of secondary system oxygen-scavenging chemicals using a water-circulating rig

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M.W. [Nuclear Dept., HMS Sultan (United Kingdom)

    2002-07-01

    To assess the efficiency, mode of action and possible by-products of chemical dosing agents, e.g. oxygen scavengers, a circulating water rig was constructed. The rig uses a demineralized water supply as a source of make-up water to fill a recirculating loop of approx. 10 litres volume. The rig pipework is made of polythene with standard off-the shelf pipe fittings and connectors. The following parameters can be measured within the rig: pH and conductivity measured by in-line monitor, dissolved oxygen level, temperature. The system has already been used for some preliminary testing. The following oxygen scavengers have been used for tests: ascorbic acid (vitamin C), N,N-diethyl-hydroxylamine (DEHA), Hydroquinone, hydrazine hydrate and anhydrous sodium sulfite. (authors)

  10. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  11. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  12. EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER

    Directory of Open Access Journals (Sweden)

    Carolina Mercado

    2015-12-01

    Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.

  13. Seismic re-evaluation of piping systems of heavy water plant, Kota

    CERN Document Server

    Mishra, R; Soni, R S; Venkat-Raj, V

    2002-01-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic e...

  14. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use.

  15. Use of GRACE Terrestrial Water Storage Retrievals to Evaluate Model Estimates by the Australian Water Resources Assessment System

    Science.gov (United States)

    van Dijk, A. I. J. M.; Renzullo, L. J.; Rodell, M.

    2011-01-01

    Terrestrial water storage (TWS) estimates retrievals from the Gravity Recovery and Climate Experiment (GRACE) satellite mission were compared to TWS modeled by the Australian Water Resources Assessment (AWRA) system. The aim was to test whether differences could be attributed and used to identify model deficiencies. Data for 2003 2010 were decomposed into the seasonal cycle, linear trends and the remaining de-trended anomalies before comparing. AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (greater than 15 millimeter per year) drying trend in northwest Australia that was associated with a preceding period of unusually wet conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western Australia were associated with relatively dry conditions. AWRA estimated trends were less negative for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in 2009. For 2003-2009, a decrease of 7-8 millimeter per year (50-60 cubic kilometers per year) was estimated from GRACE, enough to explain 6-7% of the contemporary rate of global sea level rise. This trend was not reproduced by the model. Agreement between model and data suggested that the GRACE retrieval error estimates are biased high. A scaling coefficient applied to GRACE TWS to reduce the effect of signal leakage appeared to degrade quantitative agreement for some regions. Model aspects identified for improvement included a need for better estimation of rainfall in northwest Australia, and more sophisticated treatment of diffuse groundwater discharge processes and surface-groundwater connectivity for some regions.

  16. Microbiological evaluation of chicken carcasses in an immersion chilling system with water renewal at 8 and 16 hours.

    Science.gov (United States)

    Souza, L C T; Pereira, J G; Spina, T L B; Izidoro, T B; Oliveira, A C; Pinto, J P A N

    2012-05-01

    Since 2004, Brazil has been the leading exporter of chicken. Because of the importance of this sector in the Brazilian economy, food safety must be ensured by control and monitoring of the production stages susceptible to contamination, such as the chilling process. The goal of this study was to evaluate changes in microbial levels on chicken carcasses and in chilling water after immersion in a chilling system for 8 and 16 h during commercial processing. An objective of the study was to encourage discussion regarding the Brazilian Ministry of Agriculture Livestock and Food Supply regulation that requires chicken processors to completely empty, clean, and disinfect each tank of the chilling system after every 8-h shift. Before and after immersion chilling, carcasses were collected and analyzed for mesophilic bacteria, Enterobacteriaceae, coliforms, and Escherichia coli. Samples of water from the chilling system were also analyzed for residual free chlorine. The results do not support required emptying of the chiller tank after 8 h; these tanks could be emptied after 16 h. The results for all carcasses tested at the 8- and 16-h time points indicated no significant differences in the microbiological indicators evaluated. These data provide both technical and scientific support for discussing changes in federal law regarding the management of immersion chilling water systems used as part of the poultry processing line.

  17. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    Science.gov (United States)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  18. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF)

    OpenAIRE

    Laura Silva; Eucario Gasca-Leyva; Edgardo Escalante; Kevin M Fitzsimmons; David Valdés Lozano

    2015-01-01

    The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF). A separate recirculation aquaculture system (RAS) was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus). The hydroponic culture in one treatment (PAK) was pak choy (Brassica chinensis,) and in the other (COR) coriander (Coriandrum sativum). Initial and final weights were determined for the fis...

  19. Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

    Science.gov (United States)

    Torres, P. D.

    2015-01-01

    A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.

  20. Evaluation of approaches to quantify total residual oxidants in ballast water management systems employing chlorine for disinfection.

    Science.gov (United States)

    Zimmer-Faust, Amity G; Ambrose, Richard F; Tamburri, Mario N

    2014-01-01

    With the maturation and certification of several ballast water management systems that employ chlorine as biocide to prevent the spread of invasive species, there is a clear need for accurate and reliable total residual oxidants (TRO) technology to monitor treatment dose and assure the environmental safety of treated water discharged from ships. In this study, instruments used to measure TRO in wastewater and drinking water applications were evaluated for their performance in scenarios mimicking a ballast water treatment application (e.g., diverse hold times, temperatures, and salinities). Parameters chosen for testing these technologies in the past do not reflect conditions expected during ballast water treatment. Salinity, temperature, and oxidant concentration all influenced the response of amperometric sensors. Oxidation reduction potential (ORP) sensors performed more consistently than amperometric sensors under different conditions but it may be difficult to correlate ORP and TRO measurements for the multitude of biogeochemical conditions found naturally in ballast water. N,N-diethyl-p-phenylenediamine (DPD) analyzers and amperometric sensors were also tested under intermittent sampling conditions mimicking a ballasting scenario, with cyclical dosage and discharge operations. When sampling was intermittent, amperometric sensors required excessive response and conditioning times, whereas DPD analyzers provided reasonable estimates of TRO under the ballasting scenario.

  1. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages.

    Science.gov (United States)

    Belgini, D R B; Dias, R S; Siqueira, V M; Valadares, L A B; Albanese, J M; Souza, R S; Torres, A P R; Sousa, M P; Silva, C C; De Paula, S O; Oliveira, V M

    2014-10-01

    Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.

  2. Evaluating Responses in Complex Adaptive Systems: Insights on Water Management from the Southern African Millennium Ecosystem Assessment (SAfMA

    Directory of Open Access Journals (Sweden)

    Erin Bohensky

    2005-06-01

    Full Text Available Ecosystem services are embedded in complex adaptive systems. These systems are riddled with nonlinearities, uncertainties, and surprises, and are made increasingly complex by the many human responses to problems or changes arising within them. In this paper we attempt to determine whether there are certain factors that characterize effective responses in complex systems. We construct a framework for response evaluation with three interconnected scopes or spatial and temporal domains: the scope of an impact, the scope of the awareness of the impact, and the scope of the power or influence to respond. Drawing from the experience of the Southern African Millennium Ecosystem Assessment (SAfMA, we explore the applicability of this framework to the example of water management in southern Africa, where an ongoing paradigm shift in some areas has enabled a transition from supply-side to demand-side responses and the creation of new institutions to manage water across scales. We suggest that the most effective responses exhibit congruence between the impact, awareness, and power scopes; distribute impacts across space and time; expand response options; enhance social memory; and depend on power-distributing mechanisms. We conclude by stressing the need for sufficient flexibility to adapt responses to the specific, ever-evolving contexts in which they are implemented. Although our discussion focuses on water in southern Africa, we believe that the framework has broad applicability to a range of complex systems and places.

  3. NCA-LDAS: An Integrated Terrestrial Water Analysis System for Development, Evaluation, and Dissemination of Climate Indicators

    Science.gov (United States)

    Jasinski, M. F.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kumar, S.; Peters-Lidard, C. D.; Li, B.; Liu, Y.; Mocko, D. M.; Rodell, M.

    2014-12-01

    An Integrated Terrestrial Water Analysis System, or NCA-LDAS, has been created to enable development, evaluation, and dissemination of terrestrial hydrologic climate indicators focusing on the continental U.S. The purpose is to provide quantifiable indicators of states and estimated trends in our nation's water stores and fluxes over a wide range of scales and locations, to support improved understanding and management of water resources and numerous related sectors such as agriculture and energy. NCA-LDAS relies on improved modeling of terrestrial hydrology through assimilation of satellite imagery, building upon the legacy of the Land Information System modeling framework (Kumar et al, 2006; Peters-Lidard et al, 2007). It currently employs the Noah or Catchment Land Surface Model, run with a number of satellite data assimilation scenarios. The domain for NCA-LDAS is the continental U.S. at 1/8 degree grid for the period 1979 to present. Satellite-based variables that are assimilated are soil moisture and snow water equivalent from principally microwave sensors such as SMMR, SSM/I and AMSR, snow covered area from multispectral sensors such as AVHRR, and MODIS, and terrestrial water storage from GRACE. Once simulated, output are evaluated in comparison to independent datasets using a variety of metrics using the Land Surface Verification Toolkit (LVT). LVT schemes within NCA-LDAS also include routines for computing standard statistics of time series such means, max, and linear trends, at various scales. The dissemination of the NCA-LDAS, including model descriptions, forcings, parameters, daily output, indicator results and LVT tools, have been made available to the public through dissemination on NASA GES-DISC.

  4. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from 2013-2014 Evaluation Final Report, Cocoa, FL

    Energy Technology Data Exchange (ETDEWEB)

    Rothgeb, Stacey K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colon, C. [BA-PIRC; Martin, E. [BA-PIRC

    2017-08-24

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  5. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon and E. Martin

    2017-08-24

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  6. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  7. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  8. Method of evaluation of efficiency improvement potential for water supply systems with focus on variable speed centrifugal pumps

    Directory of Open Access Journals (Sweden)

    D. Pilscikovs

    2012-11-01

    Full Text Available The goal of this research is the derivation of the method for evaluation of efficiency improvement potential for public water supply systems with a focus on centrifugal network pumps. The efficiency of proportional pressure control usage has been analyzed for variable speed pumps. It has been done if proportional pressure control is used in comparison with constant pressure control mode. For this reason, energy calculation analyses have been realized for variable speed centrifugal pumps, and the theoretical tool of estimation of the efficiency improvement potential for public water supply systems has been derived. The conclusions are as follows: (1 it has been found that 1110 MWh of annually consumed electrical energy can be saved up, if the control mode of variable speed network pumps will be changed from constant pressure to proportional pressure control mode with the deviation of 20% from head value of duty point at zero flow; (2 about 13 MWh of annually consumed electrical energy can be saved up, if the proportional pressure control mode with the deviation of 15% will be changed to the deviation of 20%; (3 totally about 1123 MWh or 1.12 GWh (14% of the annually consumed electrical energy by variable speed network pumps can be saved up in small public water supply systems in Latvia.

  9. Evaluating water management strategies with the Systems Impact Assessment Model: SIAM version 4

    Science.gov (United States)

    Bartholow, John M.; Heasley, John; Hanna, Blair; Sandelin, Jeff; Flug, Marshall; Campbell, Sharon; Henriksen, Jim; Douglas, Aaron

    2005-01-01

    Water from many of California's coastal rivers has been used for a wide variety of development ventures, including major agricultural diversions, hydropower generation, and contaminant assimilation from industry, agriculture and logging. Anthropogenic impacts often degrade water quality and decrease the quantity and quality of aquatic habitat. Reallocating streamflow away from uses that degrade water quality to uses that foster higher water quality is a critical step in restoring riverine habitat and the anadromous fish that rely on that habitat for a portion of their life cycle. Reallocation always brings with it the need to examine the economic efficiency of the proposed changes. If the dollar benefits of improving water quality are greater than the costs, the criterion of improving economic efficiency is satisfied, a fact that can be highly persuasive to decision makers contemplating reallocation.

  10. EVALUATION OF WATER AND SEDIMENT QUALITIES AT RIVER MOUTHS IN THE HAIHE RIVER SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Cheng LIU; Zhaoyin WANG; Yun HE; Dongsheng CHENG

    2007-01-01

    Water and sediment qualities are studied by analyzing samples taking from the mouths of the Haihe, Duliujian, New Ziya and Beipai rivers in the Haihe river basin in north China in 2005 and 2001, in order to find the changes of water and sediment pollutions. The concentrations of heavy metals, arsenic, total nitrogen (TN) and total phosphorus (TP) are analyzed and results have been compared for the two times. The in-situ measurement for Dissolved Oxygen (DO) and Sediment Oxygen Demand (SOD) rates were carried at the Haihe and Duliujian river mouths in 2006. The results show that the waters of the 4 river mouths are still seriously polluted, though much improved in the case of the Haihe and Duliujian rivers. The main pollutants are TP and TN in the New Ziya and Beipai rivers and mercury (Hg) at all 4 river mouths. Compared with those in 2001, the concentrations of almost all metals and arsenic in the 4 river mouths have decreased. Water quality at Haihe and Duliujian shows an improving trend, while the water quality at Beipai is similar to that of 2001. In contrast, water at the New Ziya river mouth is more severely polluted. The sediments in the 4 river mouths are not seriously polluted by heavy metals but are polluted by nitrogen and phosphorus. Most of the pollutant contents in the sediments show little change between 2001 and 2005. The in-situ DO and SOD measurement shows that the waters at the Haihe river mouth is in the state of oxygen depletion, and SOD is important consumer of DO at the river mouths. The overall analysis shows that increasing water pollution and eutrophication in waters far from cities are ongoing causes of concern.

  11. Evaluation of water resources system vulnerability based on co-operative co-evolutionary genetic algorithm and projection pursuit model under the DPSIR framework

    Science.gov (United States)

    Zhao, Y.; Su, X. H.; Wang, M. H.; Li, Z. Y.; Li, E. K.; Xu, X.

    2017-08-01

    Water resources vulnerability control management is essential because it is related to the benign evolution of socio-economic, environmental and water resources system. Research on water resources system vulnerability is helpful to realization of water resources sustainable utilization. In this study, the DPSIR framework of driving forces-pressure–state–impact-response was adopted to construct the evaluation index system of water resources system vulnerability. Then the co-evolutionary genetic algorithm and projection pursuit were used to establish evaluation model of water resources system vulnerability. Tengzhou City in Shandong Province was selected as a study area. The system vulnerability was analyzed in terms of driving forces, pressure, state, impact and response on the basis of the projection value calculated by the model. The results show that the five components all belong to vulnerability Grade II, the vulnerability degree of impact and state were higher than other components due to the fierce imbalance in supply-demand and the unsatisfied condition of water resources utilization. It is indicated that the influence of high speed socio-economic development and the overuse of the pesticides have already disturbed the benign development of water environment to some extents. While the indexes in response represented lower vulnerability degree than the other components. The results of the evaluation model are coincident with the status of water resources system in the study area, which indicates that the model is feasible and effective.

  12. Drinking water treatment with ultraviolet light for travelers -- Evaluation of a mobile lightweight system.

    Science.gov (United States)

    Timmermann, Lisa F; Ritter, Klaus; Hillebrandt, David; Küpper, Thomas

    2015-01-01

    The SteriPEN(®) is a handheld device for disinfecting water with ultraviolet (UV) radiation. The manufacturer claims a reduction of at least 99.9% of bacteria, viruses, and protozoa. The present study intends to verify the general effectiveness of the device. Furthermore, the influence of bottle geometry and water movement is examined and the issue of user safety with regard to UV-C radiation is addressed. The device was applied on water containing a known number of microorganisms (Escherichia coli, Staphylococcus aureus, and the spore of Geobacillusstearothermophilus) and the survival rate was examined. Three different types of bottles commonly used among travelers served as test containers. All tests were conducted with and without agitating the water during irradiation. Furthermore, a spectral analysis was performed on the light of the device. The SteriPEN(®) reached a mean reduction of more than 99.99% of bacteria and 99.57% of the spores when applied correctly. However, the results of the trials without agitating the water only yielded a 94.98% germ reduction. The device's maximal radiation intensity lies at 254 nm which is the wavelength most efficient in inactivating bacteria. The UV-C fraction is filtered out completely by common bottle materials. However, when applied in larger containers a portion of the UV-C rays exits the water surface. If applied according to the instructions the device manages a satisfactory inactivation of bacteria. However, it bears the danger of user errors relevant to health. Therefore, education on the risks of incorrect application should be included in the travel medical consultation. Also there are still aspects that need to be subject to further independent research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  14. Evaluation of alternative pollutant emission control strategies to urban water systems using substance flow analysis

    DEFF Research Database (Denmark)

    Lundy, L.; Revitt, D. M.; Eriksson, Eva;

    2011-01-01

    The EU Water Framework Directive (WFD) requires Member States to protect their inland (and coastal) surface and groundwater bodies. However, the way in which WFD requirements can be met, including the associated stringent environmental quality standards, is less clear. This paper presents selecte...

  15. Piloting a method to evaluate the implementation of integrated water ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... water resource management in the Inkomati River Basin. Melanie J ..... Water Act of 1967 (Zaikowski, 2007) to establish a new system of water rights. ..... are required to support water decision making, evaluation and review of ...

  16. Water quality management system; Suishitsu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H.; Hanawa, T.; Hatano, K.; Fujiu, M. [Meidensha Corp., Tokyo (Japan)

    1997-12-19

    Water quality management system designed in consideration of compliance with the environmental ISO is outlined. The water quality management system is positioned at the center, connected to water quality monitors that are deployed at various parts of the water supply facility, and performs the real-time display of information about water quality and the operating status of the water quality monitors for every one of the monitoring locations. The communication software run on this system supports 30 water quality monitors and performs uninterrupted surveillance using dedicated lines. It can also use public lines for periodic surveillance. Errors in communication if any are remedied automatically. A pipeline diagnosing/estimating function is provided, which utilizes water quality signals from received water quality monitors for estimating the degree of corrosion of pipelines in the pipeline network. Another function is provided of estimating water quality distribution throughout the pipeline network, which determines the residual chlorine concentration, conductivity, pH level, water temperature, etc., for every node in the pipeline network. A third function estimates water quality indexes, evaluating the trihalomethane forming power through measuring the amounts of low-concentration organic matters and utilizing signals from low-concentration UV meters in the water purification process. 3 refs., 7 figs.

  17. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF

    Directory of Open Access Journals (Sweden)

    Laura Silva

    2015-11-01

    Full Text Available The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF. A separate recirculation aquaculture system (RAS was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus. The hydroponic culture in one treatment (PAK was pak choy (Brassica chinensis, and in the other (COR coriander (Coriandrum sativum. Initial and final weights were determined for the fish culture. Final edible fresh weight was determined for the hydroponic plant culture. TAN, NO2−–N, NO3−–N, and PO43− were measured in fish culture and hydroponic culture once a week at two times, morning (9:00 a.m. and afternoon (3:00 p.m.. The fish biomass production was not different in any treatment (p > 0.05 and the total plant yield was greater (p < 0.05 in PAK than in COR. For the hydroponic culture in the a.m., the PO43− was lower (p < 0.05 in the PAK treatment than in COR, and in the p.m. NO3−–N and PO43− were lower (p < 0.05 in PAK than in COR. The PAK treatment demonstrated higher food production and water treatment efficiency than the other two treatments.

  18. Cost and evaluation of Karkheh Dam foundation and water-sealing system

    Energy Technology Data Exchange (ETDEWEB)

    Shadravan, B.; Pakzad, M.; Tarkeshdooz, N. [Mahab Ghodss Consulting Eng. Co. (Iran, Islamic Republic of)

    2003-07-01

    This paper describes the various water sealing options which were considered for the Karkheh dam foundation, located on the Karkheh River, north of Khuzestan province in the southwest of Iran. A grout curtain was the first alternative considered. It was favored mainly for its availability and the lower cost of grouting technology within the country. In addition, engineers anticipated suitable performance speed, and a lack of other suitable technologies. However, grouting tests and economical studies proved that the anticipated theoretical advantages of a grout curtain would not materialize. The cost of a grout curtain was estimated at $90 million US. As a result, the engineers considered a second alternative, a cutoff wall (estimated cost: $35 million US). There were uncertainties with the cutoff wall as well, including cost, scheduling and planning of construction, and the time schedule. This paper highlighted the experience gained by providing exact critical comparison of economics, time schedule, and technical factors between the two alternatives: a grout curtain and a cutoff wall. The probability of applying a cutoff wall as the main water-tightness component for dam foundations was also examined. 7 refs., 4 figs.

  19. Regional systems development for geothermal energy resources: Pacific Region (California and Hawaii). Task 3: water resources evaluation, topical report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-19

    The appendices for the water resources evaluation report are included for the Imperial Valley KGRA's, Coso, Mono-Long Valley, Geysers Calistoga, Surprise Valley, Wendell Amedee, Glass Mountain, Lassen, Puna, and for power plant case studies. (MHR)

  20. Evaluation Use in Evaluation Systems

    DEFF Research Database (Denmark)

    Højlund, Steven

    2014-01-01

    This article investigates the European Union’s evaluation system and its conduciveness to evaluation use. Taking the European Commission’s LIFE programme as its case, the article makes an empirical contribution to an emerging focus in the literature on the importance of organization...... and institutions when analyzing evaluation use. By focusing on the European Union’s evaluation system the article finds that evaluation use mainly takes place in the European Commission and less so in the European Parliament and the European Council. The main explanatory factors enabling evaluation use relate...... to the system’s formalization of evaluation implementation and use; these factors ensure evaluation quality, timeliness and capacity in the Commission. At the same time, however, the system’s formalization also impedes evaluation use, reducing the direct influence of evaluations on policy-making and effectively...

  1. Purge water management system

    Science.gov (United States)

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  2. An evaluation of the residual toxicity and chemistry of a sodium hydroxide-based ballast water treatment system for freshwater ships

    Science.gov (United States)

    Elskus, Adria; Ingersoll, Christopher G.; Kemble, Nile E.; Echols, Kathy R.; Brumbaugh, William G.; Henquinet, Jeffrey; Watten, Barnaby J.

    2015-01-01

    Nonnative organisms in the ballast water of freshwater ships must be killed to prevent the spread of invasive species. The ideal ballast water treatment system (BWTS) would kill 100% of ballast water organisms with minimal residual toxicity to organisms in receiving waters. In the present study, the residual toxicity and chemistry of a BWTS was evaluated. Sodium hydroxide was added to elevate pH to >11.5 to kill ballast water organisms, then reduced to pH water under an air atmosphere (pH drifted to ≥9) or a 2.5% CO2 atmosphere (pH 7.5–8.2), then transferred to control water for 5 d to assess potential delayed toxicity. Chemical concentrations in the BWTS water met vessel discharge guidelines with the exception of concentrations of copper. There was little to no residual toxicity to cladocerans or fish, but the BWTS water was toxic to amphipods. Maintaining a neutral pH and diluting BWTS water by 50% eliminated toxicity to the amphipods. The toxicity of BWTS water would likely be minimal because of rapid dilution in the receiving water, with subsurface release likely preventing pH rise. This BWTS has the potential to become a viable method for treating ballast water released into freshwater systems.

  3. Evaluation of dual-mode rainwater harvesting system to mitigate typhoon-induced water shortage in Taiwan.

    Science.gov (United States)

    Islam, M M; Chou, F N-F; Liaw, C-H

    2010-01-01

    The water shortage of today's world is one of the most challenging problems and the world is looking for the best solution to reduce it. Some human made causes and also natural causes are liable for the shortage of the existing water supply system. In Taiwan, especially during typhoon, the turbidity of raw water increases beyond the treatment level and the plant cannot supply required amount of water. To make the system effective, a couple of days are needed and the shortage occurs. The purpose of this study is to solve this emergency shortage problem. A dual-mode Rainwater Harvesting System (RWHS) was designed for this study as a supplement to the existing water supply system to support some selected non-potable components such as toilet and urinal flushing of an elementary school. An optimal design algorithm was developed using YAS (yield after spillage) and YBS (yield before spillage) release rules. The study result proved that an optimum volume of tank can solve the emergency water shortage properly. The system was found to be more reliable in Taipei area than that of Tainan area. The study also discovered that a government subsidy would be needed to promote the system in Taiwan.

  4. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  5. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Becthel Jacobs Company LLC

    2002-11-01

    UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.

  6. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  7. Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    Directory of Open Access Journals (Sweden)

    Mazari-Hiriart Marisa

    2009-10-01

    Full Text Available Abstract Background Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. Methods The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR. Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. Results The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Conclusion Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.

  8. [Hygienic evaluation of hydrophobic turgid Perlite and the materials of powder composition used in water supply systems].

    Science.gov (United States)

    Tsapko, V V; Shmargun, L M; Gakal, R K; Konovalov, V S; Meleshko, G I

    1989-06-01

    Sanitary, hygienic, toxicologic, pathomorphologic and genetic studies revealed that hydrophobic pearlites g A-1 and g A-2 and the material from powder composition of the brand of zh g p1, 5 d 2.5 had no unfavourable effect on physicochemical water characteristics, warm-blooded animals and poorly organized organisms. Hydrophobic pearlites were recommended for application in water reservoirs for the removal of petroleum films and the material from powder composition of the above brand for manufacturing cocks, sleeves, showers and other devices for water supply systems used for economic and drinking purposes.

  9. Evaluation of the Submerged Demineralizer System (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. O.; Collins, E. D.; King, L. J.; Knauer, J. B.

    1980-07-01

    This report discusses the Submerged Demineralizer System (SDS) flowsheet for decontamination of the high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station was evaluated at Oak Ridge National Laboratory in a study that included filtration tests, ion exchange column tests, and ion exchange distribution tests. The contaminated waters, the SDS flowsheet, and the experiments made are described. The experimental results were used to predict the SDS performance and to indicate potential improvements.

  10. An evaluation of climate change effects in estuarine salinity patterns: Application to Ria de Aveiro shallow water system

    Science.gov (United States)

    Vargas, Catarina I. C.; Vaz, Nuno; Dias, João M.

    2017-04-01

    It is of global interest, for the definition of effective adaptation strategies, to make an assessment of climate change impacts in coastal environments. In this study, the salinity patterns adjustments and the correspondent Venice System zonations adaptations are evaluated through numerical modelling for Ria de Aveiro, a mesotidal shallow water lagoon located in the Portuguese coast, for the end of the 21st century in a climate change context. A reference (equivalent to present conditions) and three future scenarios are defined and simulated, both for wet and dry conditions. The future scenarios are designed with the following changes to the reference: scenario 1) projected mean sea level (MSL) rise; scenario 2) projected river flow discharges; and scenario 3) projections for both MSL and river flow discharges. The projections imposed are: a MSL rise of 0.42 m; a freshwater flow reduction of ∼22% for the wet season and a reduction of ∼87% for the dry season. Modelling results are analyzed for different tidal ranges. Results indicate: a) a salinity upstream intrusion and a generalized salinity increase for sea level rise scenario, with higher significance in middle-to-upper lagoon zones; b) a maximum salinity increase of ∼12 in scenario 3 and wet conditions for Espinheiro channel, the one with higher freshwater contribution; c) an upstream displacement of the saline fronts occurring in wet conditions for all future scenarios, with stronger expression for scenario 3, of ∼2 km in Espinheiro channel; and d) a landward progression of the saltier physical zones established in the Venice System scheme. The adaptation of the ecosystem to the upstream relocation of physical zones may be blocked by human settlements and other artificial barriers surrounding the estuarine environment.

  11. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  12. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  13. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  14. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  15. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    - & stormwater harvesting as the most environmentally friendly technology followed by the cases relying on groundwater abstraction. The least favorable case is desalination of seawater. Rain- & stormwater harvesting and desalination have markedly lower environmental impacts in the use stage compared to the base...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle...... to the grave. The first aim of this PhD thesis was to assess the environmental impacts of water supply technologies. For this LCA was used to compare the impacts of Copenhagen’s water supply technology of today with relevant cases considered for implementation in future water supply. The importance of placing...

  16. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.

    Science.gov (United States)

    Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki

    2010-07-15

    An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns.

  17. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    Science.gov (United States)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  18. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from water recirculation aquaculture systems

    Science.gov (United States)

    Common “off-flavors” in fish cultured in water recirculation aquaculture systems (WRAS) are “earthy” and “musty” due to the presence of the off-flavor metabolites geosmin and 2-methylisoborneol (MIB), respectively. Previously, ozone addition has been applied to WRAS at relatively low doses to break...

  19. A water quality analysis system to evaluate the impact of agricultural activities on N outflow in river basins in Japan

    Institute of Scientific and Technical Information of China (English)

    Makoto Takeuchi; Sunao Itahashi; Masanori Saito

    2005-01-01

    We have developed a personal-computer-based water quality analysis system for river basins. The system estimates potential N outflow by model and calculates actual N outflow from monitoring data. For the former it uses the potential load factor method to estimate annual nitrogen load from various sources and runoff potential from each area of land in a basin. For the latter it analyzes water quality monitoring data in relation to meteorological data. We used the system to analyze N outflow in basins around Lake Kasumigaura and the Yahagi River in central Honshu, Japan. The land around Lake Kasumigaura is rather flat, and about 25% is periodically flooded for rice and lotus cultivation. The land around the Yahagi River is mountainous, and much less land is flooded. In the Yahagi River basin the actual N outflow agreed closely with the potential. However, the actual N outflow in the basin around Lake Kasumigaura was much less than the potential, suggesting that a large part of the N load is denitrified in flooded soils. This further indicates that a sequence of different land uses including flooded rice fields is an important factor determining N outflow in basins in Japan. On the basis of the above analyses, we incorporated a denitrification model into the system that enables us to estimate N balance in a designated basin;this system may be helpful in the formulation of scenarios of land use andsoil management for improving water quality.

  20. [Evaluation of chlorine dioxide concentrations needed to effectively control contamination by Legionella spp in hospital hot water distribution systems].

    Science.gov (United States)

    Fusaroli, Paolo; Ravaioli, Cinzia; Gabutti, Giovanni; Caroli, Maria; Stefanati, Armando

    2016-01-01

    This aim of the study was to identify effective levels of ClO2 for control of Legionella spp. contamination in the hot water (45-55 °C.) distribution system of a 579-bed hospital in Ravenna (Italy). Overall, 663 hot water samples were collected from the hospital's sinks and shower taps and were analyzed. Trend line analysis, which describes the trend in the number of positive samples collected according to disinfectant concentration, shows that the lowest number of positive samples was achieved with concentrations of ClO2 between 0.22 and 0, 32 mg /l.

  1. Complex of computer models for cold stress evaluation in water

    OpenAIRE

    І. I. Ermakova; N. G. Ivanushkina; A. Yu. Nikolaenko; Yu. N. Solopchuk

    2015-01-01

    Introduction. Due to the high value of water thermal conductivity comparing to air, stay of man in cold water (water temperature lower than 25 sup>°C) is associated with high life and health hazard. One of the ways to evaluate survival time of human in water is usage of statistics data about survivors and water temperature organized as tables and curves. Another method to evaluate survival time and physiological state of man in water is computer modelling of human thermoregulatory system. ...

  2. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  3. Media Specialists Evaluation System.

    Science.gov (United States)

    Reese, Carol; Marsen, Louise

    Intended to provide a comprehensive system for the evaluation of a media specialist's total job performance, this three-part evaluation form is based on the St. Louis Community College's Faculty Evaluation System: Instructional Resources Faculty, August 1981. Designed for peer evaluation of media specialists, the first form includes a rating scale…

  4. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    Science.gov (United States)

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters.

  5. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    Directory of Open Access Journals (Sweden)

    Yoonjin Lee

    2013-09-01

    Full Text Available The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  6. An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system.

    Science.gov (United States)

    Lee, Yoonjin

    2013-09-06

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city "N" were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply.

  7. Evaluation Effects of Different Planting Systems on Water Use Efficiency, Relative Water Content and some Plant Growth Parameters in Onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Mousa IZADKHAH

    2010-03-01

    Full Text Available To evaluate the effect of different sowing methods on water use efficiency, relative water content and some vegetative growth parameters of onion a study was carried out in the Agriculturalr research Center of East Azarbayjan in 2007-2008 cropping season. The experiment was a factorial by using the randomized complete block design with 4 treaments and 4 replications. The first factor was consistting of two sowing methods, dirct sowing (DS and the transplanting method (TM, the second factor was including two onion cultivars �Azarshahr� (red hull and later maturing and �Gooli-Ghesseh Zanjan� (bright-red, early maturing. Analysis of variance for the measured traits indicated that except for the relative water content (RWC, other traits were significant influenced by the sowing methods. TM had higher values of water use efficiency (WUE, bulbing ratio (BR, aerial leaves length (ALL, leaf area (LA, leaf area index (LAI, leaves dry weight (LDW, leaves fresh weight (LFW and leaves saturation weight (LSW than the DS methods. Maximum WUE (6.07 kg m3 and minimum WU (9381 m3 ha-1 were obtained in TM. However, the lowest WUE (4.19 kg m3 and the highest WU (115921 m3 ha-1 was obtained with DS. In other words, in TM water economizing was 1.5 tim, amount of yield was increased up 15% (in comparison with DS. Also among the cultivars except for the RWC, WUE and BR other traits were significantly. The sowing method x cultivar interaction were not significant. For the studied traits, TM and red �Azarshahr� cv. were better than the DS and �Gooli-Ghesseh Zanjan�, thus thy were identified the best treatments for experiment therefore it is recommended for the places with the same environmental conditions of this experiment.

  8. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...... was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous organic micropollutants. Ibuprofen and naproxen had the highest degradation rates with values....... Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed....

  9. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  10. Evaluation of corrosion and scaling tendency indices in a drinking water distribution system: a case study of Bandar Abbas city, Iran.

    Science.gov (United States)

    Alipour, Vali; Dindarloo, Kavoos; Mahvi, Amir Hossein; Rezaei, Leila

    2015-03-01

    Corrosion and scaling is a major problem in water distribution systems, thus evaluation of water corrosivity properties is a routine test in water networks. To evaluate water stability in the Bandar Abbas water distribution system, the network was divided into 15 clusters and 45 samples were taken. Langelier, Ryznar, Puckorius, Larson-Skold (LS) and Aggressive indices were determined and compared to the marble test. The mean parameters included were pH (7.8 ± 0.1), electrical conductivity (1,083.9 ± 108.7 μS/cm), total dissolved solids (595.7 ± 54.7 mg/L), Cl (203.5 ± 18.7 mg/L), SO₄(174.7 ± 16.0 mg/L), alkalinity (134.5 ± 9.7 mg/L), total hardness (156.5 ± 9.3 mg/L), HCO₃(137.4 ± 13.0 mg/L) and calcium hardness (71.8 ± 4.3 mg/L). According to the Ryznar, Puckorius and Aggressive Indices, all samples were stable; based on the Langelier Index, 73% of samples were slightly corrosive and the rest were scale forming; according to the LS index, all samples were corrosive. Marble test results showed tested water of all 15 clusters tended to scale formation. Water in Bandar Abbas is slightly scale forming. The most appropriate indices for the network conditions are the Aggressive, Puckorius and Ryznar indices that were consistent with the marble test.

  11. Smart Water: Energy-Water Optimization in Drinking Water Systems

    Science.gov (United States)

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  12. Relative Efficiency Evaluation on Water Resource Utilization

    Institute of Scientific and Technical Information of China (English)

    MA Ying

    2011-01-01

    Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators

  13. An evaluation of deep thin coal seams and water-beating/resisting layers in the quaternary system using seismic inversion

    Institute of Scientific and Technical Information of China (English)

    XU Yong-zhong; HUANG Wei-chuan; CHEN Tong-jun; CUI Ruo-fei; CHEN Shi-zhong

    2009-01-01

    Non-liner wave equation inversion, wavelet analysis and artificial neural networks were used to obtain stratum parame-ters and the distribution of thin coal seams. The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted. The implementation process included calculating the well log parameters, stratum contrasting the seismic data and the well logs, and extracting, studying and predicting seismic attributes. Seismic inversion parameters, including the layer velocity and wave impedance, were calculated and effectively used for prediction and analysis. Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure. This enhanced the stability of the inversion method. Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the wa-ter-bearing/resisting layer in the Quaternary system. Interpretation of the 1-2 m thin coal seams, and also of the wa-ter-bearing/resisting layer in the Quaternary system, is provided. The upper mining limit can be lifted from 60 m to 45 m. The pre-dictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit, which is one of the principles of green mining.

  14. Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: Evaluation with the system PES-PVP-NMP-water

    NARCIS (Netherlands)

    Boom, R.M.; Boom, R.M.; van den Boomgaard, Anthonie; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    An extended version of the mass transfer model by Reuvers et al. for a four-component system is evaluated, which is shown to be generally valid for short times. The thermodynamics under these circumstances are evaluated, together with the kinetics. Initial composition paths (concentration profiles)

  15. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  16. Water Quality Evaluation Index System of Freshwater Aquaculture Pond%淡水养殖池塘水质评价指标体系研究

    Institute of Scientific and Technical Information of China (English)

    刘曼红; 于洪贤; 刘其根; 王瑞梅

    2011-01-01

    [Objective] The aim was to establish the water quality evaluation index system of freshwater aquaculture pond. [Method] The ex-pert survey, DELPHI, field research and other methods were used. Based on the analysis of factors influencing water quality of freshwater aq-uaculture pond, and the importance degree of 14 factors influencing water quality of freshwater aquaculture pond was ordered. Then, five factors were selected as index to establish the water quality evaluation index system of freshwater aquaculture with the determination of thresholds of these factors. [ Result] The importance degree of water quality of freshwater aquacultuie pond showed an order of disslved oxygen > pH > phytoplankton quantity > transparency > total Nitrogen > zooplankton quantity > water temperature > biochemical oxygen demand > water color > salinity > total hardness; according to the value of importance degree, the dissolved oxygen, pH, transparency, phytoplankton quantity and total nitrogen these five factors were selected as the index system of water quality evaluation of pond. The level of water quality of freshwater aquaculture pond was divided into five, and the tolerance range of fish to each index was obtained by expert observation. [Conclusion ] This study had provided a scientific basis for water quality evaluation system of freshwater aquaculture pond.%[目的]建立淡水养殖池塘水质评价指标体系.[方法]通过专家访谈法、问卷调查法、实地调研法及DELPHI法,在综合分析淡水养殖池塘水质各影响因子的基础上,对14个淡水养殖池塘水环境因子的重要程度进行了排序,选择其中5个因素作为指标建立了淡水养殖池塘水质评价指标体系,并确定了各指标的阈值.[结果]淡水养殖池塘水质因子重要程度排序为溶解氧>pH>浮游植物量>透明度>总氮>浮游动物量>水温>生化需氧量>水色>盐度>总硬度;根据重要程度的天小,

  17. 淡水养殖池塘水质评价指标体系研究%Water Quality Evaluation Index System for Freshwater Aquaculture Pond

    Institute of Scientific and Technical Information of China (English)

    刘曼红; 于洪贤; 刘其根; 王瑞梅

    2011-01-01

    [目的]建立淡水养殖池塘水质评价指标体系。[方法]通过专家访谈法、问卷调查法、实地调研法及DELPHI法,在综合分析淡水养殖池塘水质各影响因子的基础上,对14个淡水养殖池塘水环境因子的重要程度进行了排序,选择其中5个因素作为指标建立了淡水养殖池塘水质评价指标体系,并确定了各指标的阈值。[结果]淡水养殖池塘水质因子重要程度排序为溶解氧〉pH〉浮游植物量〉透明度〉总氮〉浮游动物量〉水温〉生化需氧量〉水色〉盐度〉总硬度;根据重要程度的大小,确定溶解氧、pH、透明度、浮游植物量、总氮5个指标为池塘水质评价的指标体%[Objective] The aim was to establish the water quality evaluation index system for freshwater aquaculture pond.[Method] The expert survey,DELPHI,field research and other methods were used.Based on the analysis of factors influencing water quality of freshwater aquaculture pond,and the importance degree of 14 factors influencing water quality of freshwater aquaculture pond was ordered.Then,five factors were selected as index to establish the water quality evaluation index system of freshwater aquaculture with the determination for thresholds of these factors.[Result] The importance degree of water quality of freshwater aquaculture pond showed an order of Dissolved oxygenpHPhytoplankton biomassSecchi depthTotal NitrogenZooplankton biomassWater temperatureBiochemical Oxygen DemandWater colorSalinityTotal hardness;according to the value of importance degree,the dissolved oxygen,pH,secchi depth,phytoplankton biomass and total nitrogen these five factors were selected as the index system of water quality evaluation of pond.The level of water quality of freshwater aquaculture pond was divided into five,and the tolerance range of fish to each index was obtained by expert observation.[Conclusion] This study had provided a scientific basis for water quality evaluation system

  18. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    National Research Council Canada - National Science Library

    Nutakki Tirumala Uday Kumar; Andrew R Martin

    2017-01-01

    ... (POU) water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks...

  19. Modelling the hydrologic role of glaciers within a Water Evaluation and Planning System (WEAP: a case study in the Rio Santa watershed (Peru

    Directory of Open Access Journals (Sweden)

    T. Condom

    2011-01-01

    Full Text Available For the past 30 years, a process of glacier retreat has been observed in the Andes, raising alarm among regional water resources managers. The purpose of this paper is to develop a model of the role of Andean glaciers in the hydrology of their associated watersheds, which is appropriate for application at a river basin scale, with an eye towards creating an analytical tool that can be used to assess the water management implications of possible future glacier retreat. While the paper delves deeply into our formulation of a glacier module within a water resources management modelling system, the widely subscribed Water Evaluation and Planning System (WEAP, the originality of our work lies less in the domain of glaciology and more in how we apply an existing reduced form representation of glacier evolution within a model of the climate-glacier-hydrology-water management continuum. Key insights gained pertain to appropriate ways to deploy these reduced form representations in a relatively data poor environment and to effectively integrate them into a modelling framework that places glaciers within a wider water management context. The study area is the Rio Santa watershed in Peru which contains many of the expansive glaciers of the singular Cordillera Blanca. The specific objectives of this study included: (i adequately simulating both monitored glacier retreat and observed river flows from the last forty years using historical climate time series as model input; (ii quantifying the proportion of river flow in the Rio Santa produced from melting glaciers during this period; (iii estimating the historical contribution of groundwater accretions to river flows; and (vi reproducing a reasonable simulation of recent hydropower operations in the Rio Santa system. In pursuit objective (i, a split sample calibration-validation of the model was conducted by comparing the simulated glacier area to Landsat images taken in 1987 and 1998 and observed and

  20. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants.

    Science.gov (United States)

    Arriaga, Sonia; de Jonge, Nadieh; Nielsen, Marc Lund; Andersen, Henrik Rasmus; Borregaard, Vibeke; Jewel, Kevin; Ternes, Thomas A; Nielsen, Jeppe Lund

    2016-12-15

    Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/gVSS·h and 71 μg/gVSS·h, whereas diclofenac was a more persistent OMP (7.28 μg/gVSS·h). Mineralization of (14)C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mgTSS·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  2. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  3. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  4. Evaluating intensified camera systems

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Baker

    2000-07-01

    This paper describes image evaluation techniques used to standardize camera system characterizations. Key areas of performance include resolution, noise, and sensitivity. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data, to aid an experimenter in measuring a set of camera performance metrics. These performance metrics identify capabilities and limitations of the camera system, while establishing a means for comparing camera systems. Analysis software is used to evaluate digital camera images recorded with charge-coupled device (CCD) cameras. Several types of intensified camera systems are used in the high-speed imaging field. Electro-optical components are used to provide precise shuttering or optical gain for a camera system. These components including microchannel plate or proximity focused diode image intensifiers, electro-static image tubes, or electron-bombarded CCDs affect system performance. It is important to quantify camera system performance in order to qualify a system as meeting experimental requirements. The camera evaluation tool is designed to provide side-by-side camera comparison and system modeling information.

  5. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  6. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  7. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  8. 中国农村水利现代化指标体系构建%Evaluation index system for rural water conservancy modernization in China

    Institute of Scientific and Technical Information of China (English)

    邱元锋; 孟戈; 雷声隆

    2016-01-01

    Evaluating China's rural water conservancy modernization level objectively and scientifically is very important. In this paper, an evaluation system of rural water conservancy modernization in China was established based on modernization theory: the first rural water conservancy modernization mainly to improve the ability of disaster prevention and reduction and the second water conservancy modernization mainly on how to realize the sustainable utilization of water resources. It puts forward the first and second rural water conservancy modernization evaluation index system. The first rural water conservancy modernization evaluation indexes were given priority to infrastructure, including 4 indexes such as dependable farmland, projects supporting, drinking water safety and disaster reduction. The secondary rural water conservancy modernization evaluation indexes were given priority to quality, efficiency, and good governance, a total of 17 indicators. Using weighted evaluation model and SAS statistical software to analyze the basic parameters of every province (municipality or autonomous region), such as land treatment,farmers inputs,technology input, irrigation benefit, water supply, water quality, pollution control, resource exploitation, wet land index, charging level, participation level, water right trade and management quality, the first rural and the second rural water conservancy modernization index of every province (municipality or autonomous region) in China were calculated respectively. Results showed that the development trend of China’s first rural water conservancy modernization was similar with the development trend of the first modernization of China's economy and the world’s economy, and the modernization level was promoted with the growth of the first economic modernization. The modern index of 13 provinces (municipalities or autonomous regions) such as Shanghai, Beijing, Zhejiang and others was higher than the national average index and the

  9. Service Water System Inspection Locator (SWSIL)

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, M.L.; Tang, S.S.; Carney, C.E.; Licina, G.J. (Structural Integrity Associates, Inc., San Jose, CA (United States))

    1993-04-01

    Inspection and maintenance of a service water system is a key to reliable system operation. As emphasized by NRC Generic Letter 89-13, service water system reliability in nuclear plants must by assured since the SWS may support safety related equipment The diversity of design, water chemistry, and operating regimens, coupled with the tremendous size of these systems (literally miles of piping and hundreds of heat exchangers) makes the selection of locations to be inspected a difficult chore. In cooperation with the Electric Power Research Institute (EPRI) and the New York Power Authority (NYPA), a Service Water System Inspection Locator (SWSIL) has been developed to explore the feasibility of using an expert system to evaluate the corrosion susceptibility of the thousands of locations and components associated with nuclear service water systems (SWS). Such an expert system provides utilities with a method for planning and prioritizing inspections. SWSIL, Version 1.0, has been applied to the emergency diesel generator service water cooling loop of the emergency service water (ESW) system of the James A. FitzPatrick plant. The feasibility demonstration described in this report provided a framework for applying SWSIL to a system of any size. The demonstration also showed that refinement of the plant data input interface and flow modeling are required. Applicability of SWSIL in its current configuration to large systems is limited and awaits these improvements.

  10. Deterministic evaluation of collapse risk for a decomissioned flooded mine system: 3D numerical modelling of subsidence, roof collapse and impulse water flow.

    Science.gov (United States)

    Castellanza, Riccardo; Fernandez Merodo, Josè Antonio; di Prisco, Claudio; Frigerio, Gabriele; Crosta, Giovanni B.; Orlandi, Gianmarco

    2013-04-01

    Aim of the study is the assessment of stability conditions for an abandoned gypsum mine (Bologna , Italy). Mining was carried out til the end of the 70s by the room and pillar method. During mining a karst cave was crossed karstic waters flowed into the mine. As a consequence, the lower level of the mining is completely flooded and portions of the mining levels show critical conditions and are structurally prone to instability. Buildings and infrastructures are located above the first and second level and a large portion of the area below the mine area, and just above of the Savena river, is urbanised. Gypsum geomechanical properties change over time; water, or even air humidity, dissolves or weaken gypsum pillars, leading progressively to collapse. The mine is located in macro-crystalline gypsum beds belonging to the Messinian Gessoso Solfifera Formation. Selenitic gypsum beds are interlayered with by centimetre to meter thick shales layers. In order to evaluate the risk related to the collapse of the flooded level (level 3) a deterministic approach based on 3D numerical analyses has been considered. The entire abandoned mine system up to the ground surface has been generated in 3D. The considered critical scenario implies the collapse of the pillars and roof of the flooded level 3. In a first step, a sequential collapse starting from the most critical pillar has been simulated by means of a 3D Finite Element code. This allowed the definition of the subsidence basin at the ground surface and the interaction with the buildings in terms of ground displacements. 3D numerical analyses have been performed with an elasto-perfectly plastic constitutive model. In a second step, the effect of a simultaneous collapse of the entire level 3 has been considered in order to evaluate the risk of a flooding due to the water outflow from the mine system. Using a 3D CFD (Continuum Fluid Dynamics) finite element code the collapse of the level 3 has been simulated and the volume of

  11. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  12. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  13. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  14. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  15. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  16. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  17. Part Machinability Evaluation System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In the early design period, estimation of the part or the whole product machinability is useful to consider the function and process request of the product at the same time so as to globally optimize the design decision. This paper presents a part machinability evaluation system, discusses the general restrictions of part machinability, and realizes the inspection of these restrictions with the relation between tool scan space and part model. During the system development, the expansibility and understandability were considered, and an independent restriction algorithm library and a general function library were set up. Additionally, the system has an interpreter and a knowledge manager.

  18. Water inrush evaluation of coal seam floor by integrating the water inrush coefficient and the information of water abundance

    Institute of Scientific and Technical Information of China (English)

    Shi Longqing; Qiu Mei; Wei Wenxue; Xu Dongjing; Han Jin

    2014-01-01

    The method of singular coefficient of water inrush to achieve safety mining has limitation and one sidedness. Aiming at the problem above, large amounts of data about water inrush were collected. Then the data, including the maximum water inrush, water inrush coefficient and water abundance in aquifers of working face, were processed by the statistical analysis. The analysis results indicate that both water inrush coefficient and water abundance in aquifers should be taken into consideration when evaluating the danger of water inrush from coal seam floor. The prediction model of safe-mining evaluation grade was built by using the support vector machine, and the result shows that this model has high classifica-tion accuracy. A feasible classification system of water-inrush safety evaluation can be got by using the data visualization method which makes the implicit support vector machine models explicit.

  19. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  20. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  1. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  2. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  3. evaluation index system

    Directory of Open Access Journals (Sweden)

    Liu Jiankun

    2017-01-01

    Full Text Available Flexible AC transmission system (FACTS has the control characteristics of efficiency, flexibility and reliability. The introduction of FACTS in power system is superior to any other control methods, and different FACTS devices have different features. In this paper, a comprehensive evaluation index system is developed to study a variety of comparisons on different FACTS devices. The proposed index takes power flow controllability as its main indicator, and loss reduction, static voltage stability improvement and load shedding reduction as complementary indicators. Finally, the peak load case in 2016 of a province is adopted for case studies. The results not only show that the proposed comprehensive evaluation index is systematic, scientific, practical, but also show the superiority of unified power flow controller (UPFC.

  4. Research on Evaluation Index System Based on the Strictest Water Resources Management System%最严格水资源管理考核指标体系研究

    Institute of Scientific and Technical Information of China (English)

    于璐; 王偲; 窦明

    2016-01-01

    In order to service the "three red lines",the evaluation index system in water resources management was established in this paper. The assessment indexes were classified and the warning light map assessment method with the warning function was put forward. Meanwhile,the evaluation process was elaborated. Four regulation and control schemes according to the "three red lines" were designed on the basis of the water resources regulation model to regulate and control the over-standard problems of evaluation results. Then,the evaluation index system was applied in Yantai City to carry out the evaluation of water resources supply and demand situation in different level years and different scenarios. At last,the recommended suitable scheme for the development of the city was put forward,which could provide a reference for the formulation of the water management strategies by the water conservancy administrative departments.%通过构建基于“三条红线”的水资源管理考核指标体系,对考核指标进行分级,提出了具有警示作用的预警灯号图考核方法,并详细阐述了指标考核流程;为了对考核结果中的超标问题进行调控,依托水资源调控模型设计了4种基于“三条红线”的水资源调控情景。将该考核指标体系应用于烟台市,对其不同水平年、不同方案下的水资源供需状况开展考核评价,优选出适合该市发展的推荐方案。

  5. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  6. A Process for Evaluating Adverse Environmental Impacts by Cooling-Water System Entrainment at a California Power Plant

    Directory of Open Access Journals (Sweden)

    C.P. Ehrler

    2002-01-01

    Full Text Available A study to determine the effects of entrainment by the Diablo Canyon Power Plant (DCPP was conducted between 1996 and 1999 as required under Section 316(b of the Clean Water Act. The goal of this study was to present the U.S. Environmental Protection Agency (EPA and Central Coast Regional Water Quality Control Board (CCRWQCB with results that could be used to determine if any adverse environmental impacts (AEIs were caused by the operation of the plant’s cooling-water intake structure (CWIS. To this end we chose, under guidance of the CCRWQCB and their entrainment technical working group, a unique approach combining three different models for estimating power plant effects: fecundity hindcasting (FH, adult equivalent loss (AEL, and the empirical transport model (ETM. Comparisons of the results from these three approaches provided us a relative measure of confidence in our estimates of effects. A total of 14 target larval fish taxa were assessed as part of the DCPP 316(b. Example results are presented here for the kelp, gopher, and black-and-yellow (KGB rockfish complex and clinid kelpfish. Estimates of larval entrainment losses for KGB rockfish were in close agreement (FH is approximately equals to 550 adult females per year, AEL is approximately equals to 1,000 adults [male and female] per year, and ETM = larval mortality as high as 5% which could be interpreted as ca. 2,600 1 kg adult fish. The similar results from the three models provided confidence in the estimated effects for this group. Due to lack of life history information needed to parameterize the FH and AEL models, effects on clinid kelpfish could only be assessed using the ETM model. Results from this model plus ancillary information about local populations of adult kelpfish suggest that the CWIS might be causing an AEI in the vicinity of DCPP.

  7. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  8. Water in the Solar System

    Science.gov (United States)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  9. Selection of an evaluation index for water ecological civilizations of water-shortage cities based on the grey rough set

    Science.gov (United States)

    Zhang, X. Y.; Zhu, J. W.; Xie, J. C.; Liu, J. L.; Jiang, R. G.

    2017-08-01

    According to the characteristics and existing problems of water ecological civilization of water-shortage cities, the evaluation index system of water ecological civilization was established using a grey rough set. From six aspects of water resources, water security, water environment, water ecology, water culture and water management, this study established the prime frame of the evaluation system, including 28 items, and used rough set theory to undertake optimal selection of the index system. Grey correlation theory then was used for weightings in order that the integrated evaluation index system for water ecology civilization of water-shortage cities could be constituted. Xi’an City was taken as an example, for which the results showed that 20 evaluation indexes could be obtained after optimal selection of the preliminary framework of evaluation index. The most influential indices were the water-resource category index and water environment category index. The leakage rate of the public water supply pipe network, as well as the disposal, treatment and usage rate of polluted water, urban water surface area ratio, the water quality of the main rivers, and so on also are important. It was demonstrated that the evaluation index could provide an objectively reflection of regional features and key points for the development of water ecology civilization for cities with scarce water resources. It is considered that the application example has universal applicability.

  10. Using Rowers’ Perceptions of On-Water Stroke Success to Evaluate Sculling Catch Efficiency Variables via a Boat Instrumentation System

    Directory of Open Access Journals (Sweden)

    Sarah-Kate Millar

    2015-11-01

    Full Text Available Aim: An effective catch in sculling is a critical determinant of boat velocity. This study used rowers’ performance-based judgments to compare three measures of catch slip efficiency. Two questions were addressed: (1 would rower-judged Yes strokes be faster than No strokes? and (2 which method of quantifying catch slip best reflected these judgements? Methods: Eight single scullers performed two 10-min blocks of sub maximal on-water rowing at 20 strokes per minute. Every 30 s, rowers reported either Yes or No about the quality of their stroke at the catch. Results: It was found that Yes strokes identified by rowers had, on average, a moderate effect advantage over No strokes with a standardised effect size of 0.43. In addition, a quicker time to positive acceleration best reflected the change in performance; where the standardised mean difference score of 0.57 for time to positive acceleration was larger than the scores of 0.47 for time to PowerLine force, and 0.35 for time to 30% peak pin force catch slip measures. For all eight rowers, Yes strokes corresponded to time to positive acceleration occurring earlier than No strokes. Conclusion: Rower judgements about successful strokes was linked to achieving a quicker time to positive acceleration, and may be of the most value in achieving a higher average boat velocity.

  11. Sustainability criteria for water resource systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Professionals in the water resource industry have an obligation to design and manage water resource systems which can contribute to an improved quality of life for all humans. This book reviews various guidelines that have been suggested for achieving a greater degree of sustainability and the extent to which they have been applied. The authors online some approaches for measuring and modeling sustainability and illustrate ways in which these measures and models might be used when evaluating alternative designs and operating policies.

  12. Evaluation of Water Efficiency in Green Building in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Li Cheng

    2016-06-01

    Full Text Available Low carbon policies, including those aimed at increasing water efficiency, have been adopted as a crucial strategy for combating global warming and climate change. The green building evaluation system used in Taiwan was first applied in 1999 and initially utilized a building’s water efficiency as the threshold index for determining the building’s environmental impact. Since 1999, more than a thousand buildings have been certified as green buildings using this evaluation system. The quantitative effects of water conservation efforts should be provided to policy makers as a form of positive feedback. To that end, the present study offers a calculation process for estimating the quantitative volume of water saved by practical green buildings. The baseline water usage for all kinds of buildings was determined to serve as the criterion for determining the water-saving efficiency of individual buildings. An investigation of the average water-saving rate from 2000 to 2013 for 1320 buildings certified as green buildings was also conducted to validate the estimation results and found that these green buildings saved an average of approximately 37.6% compared to the baseline water usage rate for all buildings. Water savings will inevitably follow from the use of water-saving appliances or water-saving designs for buildings. The proposed calculation process can be used to clarify the relationships between specific water-saving concepts and the real water usage efficiency of green buildings.

  13. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    OpenAIRE

    Shaharudin Nuraida; Suradi Nurfarhana; Mohd Kamil Nor Amani Filzah

    2017-01-01

    An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters ...

  14. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  15. MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system

    Science.gov (United States)

    Mortazavi, Seyed Mohammad; Mohamadi, Maryam; Jouzdani, Javid

    2017-08-01

    In many cases, redundant systems are beset by both independent and dependent failures. Ignoring dependent variables in MTBF evaluation of redundant systems hastens the occurrence of failure, causing it to take place before the expected time, hence decreasing safety and creating irreversible damages. Common cause failure (CCF) and cascading failure are two varieties of dependent failures, both leading to a considerable decrease in the MTBF of redundant systems. In this paper, the alpha-factor model and the capacity flow model are combined so as to incorporate CCF and cascading failure in the evaluation of MTBF of a 2-out-of-3 repairable redundant system. Then, using a transposed matrix, the MTBF function of the system is determined. Due to the fact that it is difficult to estimate the independent and dependent failure rates, industries are interested in considering uncertain failure rates. Therefore, fuzzy theory is used to incorporate uncertainty into the model presented in this study, and a nonlinear programming model is used to determine system's MTBF. Finally, in order to validate the proposed model, evaluation of MTBF of the redundant system of a centrifugal water pumping system is presented as a practical example.

  16. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    Science.gov (United States)

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-08-18

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  18. Evaluation of the degradation of the service water system in nuclear plants; Evaluacion de la degradacion del sistema de agua de servicio en plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salaices A, E. [IIE, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The service water system, the circulation water system, the cooling water system and the protection against fires system so much in nuclear plants as in fossils plants they are being degraded by a wide variety of mechanisms. These mechanisms include microbiologically influenced corrosion, cavitation, erosion-corrosion, erosion by solid particles, corrosion in cracks, stings, general corrosion, galvanic corrosion, sedimentation and obstructions and incrustations in the heat exchangers. In the last years were developed predictive models for the more common degradation forms and were installed in a new application of the CHECWORKS{sup TM} code called Cooling Water Application (CWA). This application of the code provides a new technology that so much nuclear facilities as fossil ones can use to modelling specific systems and to carry out corrosion predictions in each one of its components. Presently work the results of the employment of the CHECWORKS CWA code are described to carry out predictions of 12 different corrosion mechanisms that affect to the service water system of a nuclear plant, as well as the recommendations and options that the plant can to consider to reduce indexes of damages. This work can be used for to optimize inspections to the service water system and it gives the bases for similar changes in other nuclear plants. (Author)

  19. Development and evaluation of novel solid nanodispersion system for oral delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Nkansah, Paul; Antipas, Amy; Lu, Ying; Varma, Manthena; Rotter, Charles; Rago, Brian; El-Kattan, Ayman; Taylor, Graeme; Rubio, Mario; Litchfield, John

    2013-07-10

    The aim of the present study was to develop and evaluate a novel drug solubilization platform (so-called solid nanodispersion) prepared by a simple co-grinding and solvent-free process. Using structurally diverse model compounds from the Pfizer drug library, including ingliforib, furosemide and celecoxib, we successfully prepared stable solid nanodispersions (SNDs) without the use of solvent or heat. Stable colloidal particles (<350 nm) containing drug, polyvinylpyrrolidone (PVP) K12 and sodium dodecyl sulfate (SDS) in 1:2.75:0.25 ratio were produced after 2 h of co-grinding. The composition and particle size of SNDs were optimized by varying the grinding media size, powder-to-grinding media ratio, milling speed and milling time. The resulting formulations contained crystalline drug and were stable at room temperature for over one month. Greater than 80% of the drug was released from the SND in less than 30 min, with sustained supersaturation over 4 h. Using furosemide (BCS class IV compound) as a model compound, we conducted transport studies with Madin-Darby canine kidney cells transfected with human MDR1 gene (MDCK/MDR1), followed by pharmacokinetics studies in rats. Results showed that the SND formulation enhanced the absorptive flux of furosemide by more than 3-fold. In the pharmacokinetics studies, the SND formulation increased C(max) and AUC of furosemide by 36.6 and 43.2 fold respectively, relative to Methocel formulation. Interestingly, physical mixture containing furosemide, PVP K12 and SDS produced a similar level of oral exposure as the SNDs, albeit with a longer T(max) than the SND formulation. The results suggest that PVP K12 and SDS were able to increase the furosemide free fraction available for oral absorption. Low solubility, poor permeability, and high first-pass effect of furosemide may also have produced the effect that small improvements in solubilization resulted in significant potentiation of the oral exposure of the physical mixture

  20. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  1. Ultrapure Water System for Hemodialysis Therapy

    Science.gov (United States)

    2011-07-21

    The Change of Biomarkers CRP, CBC With the Use of Ultra Pure Water System for; Hemodialysis.; The Rate of Adverse Events Such as Hypotension During Hemodialysis Therapy With Ultra Pure Water; System as Compared to Conventional Water System.

  2. Hospitalization records as a tool for evaluating performance of food- and water-borne disease surveillance systems: a Massachusetts case study.

    Directory of Open Access Journals (Sweden)

    Siobhan M Mor

    Full Text Available We outline a framework for evaluating food- and water-borne surveillance systems using hospitalization records, and demonstrate the approach using data on salmonellosis, campylobacteriosis and giardiasis in persons aged ≥65 years in Massachusetts. For each infection, and for each reporting jurisdiction, we generated smoothed standardized morbidity ratios (SMR and surveillance to hospitalization ratios (SHR by comparing observed surveillance counts with expected values or the number of hospitalized cases, respectively. We examined the spatial distribution of SHR and related this to the mean for the entire state. Through this approach municipalities that deviated from the typical experience were identified and suspected of under-reporting. Regression analysis revealed that SHR was a significant predictor of SMR, after adjusting for population age-structure. This confirms that the spatial "signal" depicted by surveillance is in part influenced by inconsistent testing and reporting practices since municipalities that reported fewer cases relative to the number of hospitalizations had a lower relative risk (as estimated by SMR. Periodic assessment of SHR has potential in assessing the performance of surveillance systems.

  3. Global resilience analysis of water distribution systems.

    Science.gov (United States)

    Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David

    2016-12-01

    Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies.

  4. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  5. WATER SUPPLY SYSTEMS OPERATIONAL PROGNOSIS

    Directory of Open Access Journals (Sweden)

    Bruno Santos Vieira

    2016-12-01

    Full Text Available The actions planning to minimize risks and ensure the effectiveness of water supply systems requires the use of appropriate forecasting models. In fact, forecasting the behavior and analysis of future scenarios can be supported with the use of techniques and simulation models. In this article, we propose a procedure to simulate the actions of decision-makers in planning the operation of this system type in order to obtain an operating and financial prognosis that consider dynamic influences. The applicability of the proposed procedure is demonstrated through an urban systems planning problem of water supply. As a result we obtained a system costs distribution odds, which improves decision making in the context of the analyzed system. Additionally, the proposed procedure is applicable to other types of complex systems subject to dynamic influences.

  6. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public

  7. Assessment on reliability of water quality in water distribution systems

    Institute of Scientific and Technical Information of China (English)

    伍悦滨; 田海; 王龙岩

    2004-01-01

    Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.

  8. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  9. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  10. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  11. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 水产养殖过程水质模糊综合评价系统的设计%The Fuzzy Comprehensive Evaluation System Design of Aquaculture Process Water Quality

    Institute of Scientific and Technical Information of China (English)

    马从国; 赵德安

    2011-01-01

    Taking water quality of aquaculture pond as study object, the evaluation system and evaluation criteria of pond water quality were proposed and the fuzzy comprehensive evaluation model was set up and the fuzzy comprehensive evaluation system of pond water were designed and implemented based on the comprehensive analysis of the impact factors. The system was applied into the enterprise evaluation of aquaculture pond water quality, and good results were achieved. Many experimental results showed that the fuzzy comprehensive evaluation system can gain the reasonable and objective evaluation results of fishery water quality. It was easy to use the system and it can improve the economic and social benefits of the aquaculture industry.%以池塘水产养殖水质为研究对象,在综合分析池塘水质各影响因子的基础上,提出了水质评价指标体系和评价标准,建立了渔业水质模糊综合评价模型,设计和实现了池塘养殖水质模糊综合评价系统.将该系统应用于某企业养殖池塘水质的评价,取得了较好效果.大量试验结果表明,该模糊综合评价系统对渔业水质的综合评价结果客观、合理,使用简便,提高了水产养殖业的经济和社会效益.

  13. Characterization and in-vivo evaluation of potential probiotics of the bacterial flora within the water column of a healthy shrimp larviculture system

    Science.gov (United States)

    Xue, Ming; Liang, Huafang; He, Yaoyao; Wen, Chongqing

    2016-05-01

    A thorough understanding of the normal bacterial flora associated with shrimp larviculture systems contributes to probiotic screening and disease control. The bacterial community of the water column over a commercial Litopenaeus vannamei larval rearing run was characterized with both culture-dependent and culture-independent methods. A total of 27 phylotypes at the species level were isolated and identified based on 16S rDNA sequence analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of the V3-V5 region of 16S rRNA genes showed a dynamic bacterial community with major changes occurred from stages zoea to mysis during the rearing run. The sequences retrieved were affiliated to four phyla, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, with the family Rhodobacteraceae being the most frequently recovered one. Subsequently, 13 representative strains conferred higher larval survival than the control when evaluated in the in-vivo experiments; in particular, three candidates, assigned to Phaeobacter sp., Arthrobacter sp., and Microbacterium sp., significantly improved larval survival ( P probiotics.

  14. Evaluation and application of a semi-continuous chemical characterization system for water soluble inorganic PM2.5 and associated precursor gases

    Directory of Open Access Journals (Sweden)

    E. Dabek-Zlotorzynska

    2008-11-01

    Full Text Available Water soluble inorganic particles components (Cl−, SO42−, NO3−, and NH4+ and concentrations of their associated precursor gases (HCl, SO2, HNO3, NH3 were semi-continuously measured using the Dionex Gas Particle Ion Chromatography (GPIC system. Sampling was conducted adjacent to a high traffic street in downtown Toronto, Canada from June 2006 to March 2007. This study evaluated the precision and accuracy of field sampling measurements with the GPIC both relative to filter based measurements and other co-located semi-continuous instruments (R&P 8400N Nitrate Monitor, API Fluorescent SO2 Gas Analyzer, and Aerodyne C-ToF-AMS. High temporal resolution PM2.5 mass reconstruction is presented by combining GPIC measured inorganic species concentrations and Sunset Laboratory OCEC Analyzer determined organics concentrations. Field sampling results were also examined for seasonal and diurnal variations. HNO3 and particulate nitrate exhibited diurnal variation and strong partitioning to the gas phase was observed during the summer. Ammonia and particulate ammonium also demonstrated seasonal differences in their diurnal profiles. However, particulate sulphate and SO2 showed no diurnal variation regardless of season suggesting dominant transport from regional sources throughout the year.

  15. The Influence and Safety Evaluation of Reclaimed Water Irrigation in City Greenbelt Ecological System%中水灌溉对城市绿地生态系统的影响及安全性评价

    Institute of Scientific and Technical Information of China (English)

    曹铁然

    2012-01-01

    中水灌溉是利用中水作为城市景观、农业灌溉、市政园林绿化灌溉的水源。随着水回用率越来越高,中水回用的安全性也越来越为社会所关注。就中水灌溉对城市绿地生态系统的影响及安全性进行探讨。%Reclaimed water irrigation is reclaimed water used as water source of cityscape, agricultural irrigation ,municipal langscap- ing. With the rate of water recovery more and more higher, the society pay closer attention to the safety of reclaimed water. This article is about the influence and salty evaluation of reclaimed water irrigation in city greenbelt ecological system.

  16. Water Districts - MO 2010 Active Public Drinking Water Systems (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This point layer represents active public drinking water systems. Each public drinking water system's distribution or service area is represented by a single point.

  17. Technical and systems evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Skolnik, E.G.; DiPietro, J.P. [Energetics, Inc., Washington, DC (United States)

    1998-08-01

    During FY 1998 Energetics performed a variety of technology-based evaluations for the Hydrogen Program. Three evaluations are summarized below: hydrogen bromine-based electricity storage, carbon-based hydrogen storage, and hydrogen-fueled buses.

  18. Drought risk and vulnerability in water supply systems.

    OpenAIRE

    Garrote de Marcos, Luis; Cubillo, Francisco

    2008-01-01

    This paper provides an overview of the challenges presented to the managers of water supply systems by drought and water scarcity. Risk assessment is an essential tool for the diagnostic of water scarcity in this type of systems. The evaluation of the risk of water shortage is performed with the use of complex mathematical models. Different alternatives to address the problem are presented, covering a range of methodological approaches. The actions adopted to prevent or mitigate the effects o...

  19. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  20. WATER RESOURCE EVALUATION ON HUNGARY NOWADAYS

    OpenAIRE

    Éva, Neubauer

    2013-01-01

    In our work we tried to determine asset value of water from natural resources. After reviewing existing methods with formatting specific system, we tried to model the value added framework in which so-called sustainability values, values of natural conditions of water resource and values of social utilization appear with different weight. In the model these factors can be upgraded as well, by adopting and taking into consideration economic, social and environmental changes. During the researc...

  1. A Study of Failure Events in Drinking Water Systems As a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes.

    Science.gov (United States)

    Onyango, Laura A; Quinn, Chloe; Tng, Keng H; Wood, James G; Leslie, Greg

    2015-01-01

    Potable reuse is implemented in several countries around the world to augment strained water supplies. This article presents a public health perspective on potable reuse by comparing the critical infrastructure and institutional capacity characteristics of two well-established potable reuse schemes with conventional drinking water schemes in developed nations that have experienced waterborne outbreaks. Analysis of failure events in conventional water systems between 2003 and 2013 showed that despite advances in water treatment technologies, drinking water outbreaks caused by microbial contamination were still frequent in developed countries and can be attributed to failures in infrastructure or institutional practices. Numerous institutional failures linked to ineffective treatment protocols, poor operational practices, and negligence were detected. In contrast, potable reuse schemes that use multiple barriers, online instrumentation, and operational measures were found to address the events that have resulted in waterborne outbreaks in conventional systems in the past decade. Syndromic surveillance has emerged as a tool in outbreak detection and was useful in detecting some outbreaks; increases in emergency department visits and GP consultations being the most common data source, suggesting potential for an increasing role in public health surveillance of waterborne outbreaks. These results highlight desirable characteristics of potable reuse schemes from a public health perspective with potential for guiding policy on surveillance activities.

  2. Evaluation method for regional water cycle health based on nature-society water cycle theory

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial

  3. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  4. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  5. A novel water poverty index model for evaluation of Chinese regional water security

    Science.gov (United States)

    Gong, L.; Jin, C. L.; Li, Y. X.; Zhou, Z. L.

    2017-08-01

    This study proposed an improved Water Poverty Index (WPI) model employed in evaluating Chinese regional water security. Firstly, the Chinese WPI index system was constructed, in which the indicators were obtained according to China River reality. A new mathematical model was then established for WPI values calculation on the basis of Center for Ecology and Hydrology (CEH) model. Furthermore, this new model was applied in Shiyanghe River (located in western China). It turned out that the Chinese index system could clearly reflect the indicators threatening security of river water and the Chinese WPI model is feasible. This work has also developed a Water Security Degree (WSD) standard which is able to be regarded as a scientific basis for further water resources utilization and water security warning mechanism formulation.

  6. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  7. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  8. Life cycle assessment of three water systems in Copenhagen-a management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K C; Trautner, A.

    2011-01-01

    Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate...

  9. An evaluation of Hanford water treatment practices

    Energy Technology Data Exchange (ETDEWEB)

    Touhill, C.J.

    1965-09-01

    An evaluation of Hanford reactor process water treatment practices was made in an effort to ascertain the reasons for variations in the effluent activity between reactors. Recommendations are made for improvements in unit processes as well as for the over-all treatment process based on field inspection of the water treatment plants. In addition, a research program is proposed to supplement the recommendations. The proposed research is designed to uncover methods of more efficient filtration as well as other procedures which might eventually lead to significant effluent activity reductions. The recommendations and research results will be applied toward process optimization.

  10. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  11. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  12. Distributed System Evaluation

    Science.gov (United States)

    1990-07-01

    computers. If a distributed operating system is designed with aschrony in mind efficient usage of overall system resources can be employed through the...the complex problem of efficiently balancing CPU, disk, and communications resource usage in the distributed environment mast be solved by the...throughput (concuirent processing capability), survivability and availabilty , and finally interprocess communication. In measuning the concurrent

  13. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  14. Evaluation of the effectiveness of a water lift system in the sinus membrane-lifting operation as a sinus surgical instrument.

    Science.gov (United States)

    Kim, Dae Y; Itoh, Yusaku; Kang, Tae H

    2012-08-01

    The effectiveness of a Water Lift System in the sinus membrane-lifting operation was examined. This investigation focused on the capability of this equipment to reduce the risk of Schneiderian membrane perforation. A preliminary clinical study on the use of the Water Lift System in sinus membrane elevation to place implants through the sinus floor was conducted. A total of 70 sinus membrane-lifting operations were performed on patients with various bone heights ranging from 1.2 to 9.9 mm (most commonly in the range of 4-6 mm) through the lateral approach (four cases) or the crestal approach (66 cases). In all of the cases performed using the lateral approach, sinus membrane perforation did not occur. In the 66 cases performed using the crestal approach, Schneiderian membrane tearing occurred in two cases. The membrane tearing occurred during elevation of the Schneiderian membrane but not when a hole was drilled to access the Schneiderian membrane. One case of membrane tearing resulted from previous inflammation in the maxillary sinus, and the other case of membrane tearing was caused by application of excessive hydraulic pressure. In addition, similar outcomes were obtained and no microbial infections were observed in a total of 68 successful cases. In this study, the Water Lift System was confirmed to effectively reduce the risk of Schneiderian membrane perforation during the sinus membrane-lifting operation. We conclude that the Water Lift System deserves to be considered as a sinus surgical instrument, which ensures safety in the sinus membrane-lifting operation. © 2010 Wiley Periodicals, Inc.

  15. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.

    Science.gov (United States)

    Yihdego, Yohannes; Drury, Len

    2016-11-01

    The efficient use of water resources in arid region has become highly relevant in the evaluation and mining planning, since the exploration phase to closure. The objective of the numerical groundwater model was to assess the potential for groundwater extraction to meet mine water demand from one of the driest area in the world. Numerical groundwater models were used to assess groundwater resource. Modelling was undertaken using MODFLOW-SURFACT code, an advanced MODFLOW based code, within the framework of Visual MODFLOW version 4.6. A steady state model was developed to assess the regional groundwater flow pattern and to calibrate the recharge and hydraulic conductivity parameters in the model. The model was calibrated with a correlation of coefficient of 0.997, and root-mean-squared error is 0.3 m. A transient simulation model was used to predict the impact of 1.5 million cubic metre/year extraction for 10 years on the main aquifer hydrogeological regime, including after cession of pumping. Modelling simulated four hydrogeological scenarios. Model results for the 'worst case' scenario suggested that the Saq Sandstone aquifer should be capable of supplying the mine water demand (1.5 million cubic metre (MCM)/year) for 10 years. However, the long-term water-level drawdown shows a continuous decrease without achieving steady state conditions; thus, the majority of water is being taken from aquifer storage, and in the long term, there will be a mutual interference from a borefield located to the north of the model area. In this area, the hydraulic gradient is relatively steep and over-pumped for more than 28 years. Other scenario shows that there will be a recovery of around 8 m out of the 11.6-m drawdown, after 18 years of cession of pumping, implying that the aquifer will be stressed and a large percentage of water taken from aquifer storage. To minimise hydrogeological impacts, it is recommended to laterally spread out production bores, bores should be located

  16. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  17. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Science.gov (United States)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  18. Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India: I. Current water management and its productivity

    NARCIS (Netherlands)

    Singh, R.; Kroes, J.G.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    Distributed ecohydrological modelling can provide a useful toot to evaluate the performance of irrigation systems at different spatial and temporal scales. Sirsa district, covering 4270 km(2) in the western part of Haryana State (India), has been selected for a case study with typical problems of

  19. Integrated Metagenomic and Physiochemical Analyses to Evaluate the Potential Role of Microbes in the Sand Filter of a Drinking Water Treatment System

    Science.gov (United States)

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ∼1011 prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn2+ and As3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water. PMID:23593378

  20. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11 prokaryotes per gram in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90% dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+ and As(3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  1. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia

    Science.gov (United States)

    Zaidi, Faisal K.; Mogren, Saad; Mukhopadhyay, Manoj; Ibrahim, Elkhedr

    2016-08-01

    The present study deals with the assessment of groundwater with respect to the main hydrological processes controlling its chemistry and its subsequent impact on groundwater quality for drinking and irrigation purposes in the eastern part of the Central Arabian graben and trough system. Groundwater samples were collected from 73 bore wells tapping the Cretaceous Biyadh and Wasia sandstone aquifers. The main groundwater facies in the area belong to the mixed Casbnd Mgsbnd SO4/Cl type and the SO4sbnd Cl type. Prolonged rock water interaction has resulted in high TDS (average of 2131 mg/l) and high EC (average of 2725 μS/cm) of the groundwater. The average nitrate (56.38 mg/l) value in the area is higher than the WHO prescribed limits of 50 mg/l in drinking water and is attributed to agricultural activities. The Drinking Water Quality Index (DWQI) shows that 33% of the water samples fall within the excellent to good category whereas the remaining samples fall in the poor to unsuitable for drinking category. In terms of Sodium Adsorption Ratio (SAR), Sodium percentage (Na %) and Residual Sodium Carbonate (RSC) the groundwater is suitable for irrigation however the high salinity values can adversely affect the plant physiology.

  2. Optimization and capacity expansion of a water distribution system

    Science.gov (United States)

    Hsu, Nien-Sheng; Cheng, Wei-Chen; Cheng, Wen-Ming; Wei, Chih-Chiang; Yeh, William W.-G.

    2008-05-01

    This paper develops an iterative procedure for capacity expansion studies for water distribution systems. We propose a methodology to analyze an existing water distribution system and identify the potential bottlenecks in the system. Based on the results, capacity expansion alternatives are proposed and evaluated for improving the efficiency of water supply. The methodology includes a network flow based optimization model, four evaluation indices, and a series of evaluation steps. We first use a directed graph to configure the water distribution system into a network. The network flow based model optimizes the water distribution in the system so that different expansion alternatives can be evaluated on a comparable basis. This model lends itself to linear programming (LP) and can be easily solved by a standard LP code. The results from the evaluation tool help to identify the bottlenecks in the water distribution system and provide capacity expansion alternatives. A useful complementary tool for decision making is composed of a series of evaluation steps with the bottleneck findings, capacity expansion alternatives, and the evaluation of results. We apply the proposed methodology to the Tou-Qian River Basin, located in the northern region of Taiwan, to demonstrate its applicability in optimization and capacity expansion studies.

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Monitoring and modeling of water flow and solute transport in the soil-plant-atmosphere system of poplar trees to evaluate the effectiveness of phytoremediation techniques.

    Science.gov (United States)

    Palladino, Mario; Di Fiore, Paola; Speranza, Giuseppe; Sica, Benedetto; Romano, Nunzio

    2015-04-01

    This work is part of a series of studies being carried out within the EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS). The project refers to Litorale Domitio-Agro Aversano that has been identified as National Interest Priority Site (NIPS) and includes some polluted agricultural land belonging to more than 61 municipalities in the Naples and Caserta provinces of the Campania Region. The major aim of the project is to define an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of plant extracting pollutants to be used as biomasses for renewable energy production. This contribution specifically address the question of evaluating the effectiveness of phytoremediation actions selected by the project in the pilot area of Trentola-Ducenta and will provide some preliminary results of monitoring and modeling activities. A physical and hydraulic characterization has been carried out in this area where poplar trees were planted. Monitoring of water flow, root water uptake and solute transport in the soil-plant-atmosphere is under way with reference to two trees using capacitance soil moisture and matric potential sensors located at three different soil depths, whereas plant water status and evapotranspiration fluxes are indirectly estimated using fast-responding stem dendrometers.

  6. Flexible manufacturing system (FMS) evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Setter, D.L.

    1993-02-01

    The applicability of the flexible manufacturing system (FMS) concept to automate machining and inspecting a family of stainless steel and aluminum hardware for electrical components has been evaluated. FMS was found to be appropriate and justifiable and a project was initiated to purchase and implement an FMS system. System specifications and procurement methodologies were developed that resulted in a conventional competitive bid procurement A proposal evaluation technique was developed consisting of 40% price, 40% technical compliance, and 20% supplier management capabilities.

  7. Electroporation System for Sterilizing Water

    Science.gov (United States)

    Schlager, Kenneth J.

    2005-01-01

    A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination. The transient changes that occur in micro-organisms at lower electric-field strengths include significantly increased uptake of ions and molecules. Such increased uptake makes it possible to achieve disinfection at lower doses of chemicals (e.g., chlorine or ozone) than would otherwise be needed. Lower doses translate to lower costs and reduced concentrations of such carcinogenic chemical byproducts as trichloromethane. Higher electric fields cause cell membranes to lose semipermeability and thereby become unable to function as selective osmotic barriers between the cells and the environment. This loss of function is the cause of the cell death at higher electric-field intensities. Experimental evidence does not indicate cell lysis but, rather, combined leaking of cell proteins out of the cells as well as invasion of foreign chemical compounds into the cells. The concept of electroporation is not new: it has been applied in molecular biology and genetic engineering for decades. However, the laboratory-scale electroporators used heretofore have been built around small (400-microliter) cuvettes, partly because the smallness facilitates the generation of electric fields of sufficient magnitude to cause electroporation. Moreover, most laboratory- scale electroporators have been designed for testing static water. In contrast, the treatment cell in the present system is much larger and features a flow

  8. Water quality management in shrimp aquaculture ponds using remote water quality logging system

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Kulkarni, S.; Suryavanshi, U.; Ingole, B.S.; Drensgstig, A.; Braaten, B.

    Currently an institutional co-operation project funded by NORAD is evaluating different environmental management strategies for sustainable aquaculture in India. A brief description of a remote water quality logging system installed in shrimp ponds...

  9. Design and installation package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

  10. Evaluating Water Quality in a Suburban Environment

    Science.gov (United States)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  11. Evaluating Electoral Systems

    Directory of Open Access Journals (Sweden)

    Gary W Cox

    2006-01-01

    Full Text Available Scholars have suggested that electoral systems should be designed to promote (1 fair representation of parties, (2 good governmental performance and/or (3 adequate local representation. These three criteria pertain to three different kinds of accountability-the accountability of parties to their supporters; the accountability of governments to their citizens; and the accountability of MPs to their supporters-which cannot be simultaneously maximized. In this essay, I discuss each criterion in the abstract and with specific reference to the current Chilean electoral system and proposals to reform itLa academia especializada ha sugerido que los sistemas electorales tienen como propósito promover (1 la representación justa de los partidos, (2 la ejecución adecuada de las políticas gubernamentales, y/o (3 la representación correspondiente a los intereses de los votantes de cada circunscripción electoral. Estos tres criterios pertenecen a tres diversas clases de rendición de cuentas _la que existe de los partidos con sus seguidores; la del gobierno con la ciudadanía, y la de los legisladores con su circunscripción electoral_ que no puede ser maximizadas simultáneamente. Este ensayo discute cada uno de estos criterios en abstracto para luego hacer referencia específica a las implicaciones del sistema electoral chileno en estos y a las propuestas para reformarlo

  12. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  13. MTA Computer Based Evaluation System.

    Science.gov (United States)

    Brenner, Lisa P.; And Others

    The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…

  14. MTA Computer Based Evaluation System.

    Science.gov (United States)

    Brenner, Lisa P.; And Others

    The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…

  15. Emergy evaluation of polygeneration systems

    Institute of Scientific and Technical Information of China (English)

    WANG Lingmei; LI Zheng; NI Weidou

    2007-01-01

    To expand the application range of the emergy evaluation method, an emergy evaluation index, which can reflect the particular feature of polygeneration systems, has been elaborated on the basis of energy and emergy conservation, guided by the fundamental principle of emergy analysis. With this index, the cost structure, emission effect and energy saved were all considered on the same level of importance. To exemplify, some power polygeneration systems (methanol-power generation, hydrogen-power generation) are considered using coal as the basic fuel. The results showed that emergy evaluation indices are practical for comprehensively evaluating polygeneration systems and their sustainability, which is influenced by such factors as the joining mode of polygeneration and the technologies used. The sustainability ofpolygeneration systems, which work on an appropriate ratio of fuel-to-electric power basis, is higher than that of singular production systems.

  16. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  17. Evaluation of Information Retrieval Systems

    Directory of Open Access Journals (Sweden)

    Keneilwe Zuva

    2012-07-01

    Full Text Available One of the challenges of modern information retrieval is to adequately evaluate Information RetrievalSystem (IRS in order to estimate future performance in a specified application domain. Since there aremany algorithms in literature the decision to select one for usage depends mostly on the evaluation of thesystems’ performance in the domain. This paper presents how visual and scalar evaluation methodscomplement one another to adequately evaluate information retrieval systems. The visual evaluationmethods are capable of indicating whether one IRS performs better than another IRS fully or partially. Anoverall performance of IRS is revealed using scalar evaluation methods. The use of both types of evaluationmethods will give a clear picture of the performance of the IRSs. The Receiver Operator Characteristic(ROC curve and Precision-Recall (P-R curve were used to illustrate the visual evaluation methods. Scalarmethods notably precision, recall, Area Under Curve (AUC and F measure were used.

  18. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  19. Control Evaluation Information System Savings

    Directory of Open Access Journals (Sweden)

    Eddy Sutedjo

    2011-05-01

    Full Text Available The purpose of this research is to evaluate the control of information system savings in the banking and to identify the weaknesses and problem happened in those saving systems. Research method used are book studies by collecting data and information needed and field studies by interview, observation, questioner, and checklist using COBIT method as a standard to assess the information system control of the company. The expected result about the evaluation result that show in the problem happened and recommendation given as the evaluation report and to give a view about the control done by the company. Conclusion took from this research that this banking company has met standards although some weaknesses still exists in the system.Index Terms - Control Information System, Savings

  20. Non-destructive evaluation of water ingress in photovoltaic modules

    Science.gov (United States)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  1. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  2. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  3. Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  4. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  5. Systematic evaluation of bundled SPC water for biomolecular simulations.

    Science.gov (United States)

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-07

    molecules between the active site and the bulk. Our results form a basis for assessing the accuracy that can be expected from bundled SPC water models. At the same time, this study also highlights the importance of evaluating beforehand the effects of water bundling on the biomolecular system of interest for a particular multiscale simulation application.

  6. Water activity in polyol/water systems: new UNIFAC parameterization

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2005-01-01

    Full Text Available Water activities of a series of polyol/water systems were measured with an AquaLab dew point water activity meter at 298K. The investigated polyols with carbon numbers from n=2-7 are all in liquid state at room temperature and miscible at any molar ratio with water. In aqueous solutions with the same molar concentration, the diols with lower molecular weight lead to lower water activities than those with higher molecular weights. For diols with four or more carbon atoms, the hydrophilicity shows considerable differences between isomers: The 1,2-isomers - consisting of a hydrophilic and a hydrophobic part - bind less strongly to water than isomers with a more balanced distribution of the hydroxyl groups. The experimental water activities were compared with the predictions of the group contribution method UNIFAC: the model predictions overestimate the water activity of water/polyol systems of substances with two or more hydroxyl groups and can not describe the decreased binding to water of isomers with hydrophobic tails. To account for the differences between isomers, a modified UNIFAC parameterization was developed, that allows to discriminate between three types of alkyl groups depending on their position in the molecule. These new group interaction parameters were calculated using water activities of alcohol/water mixtures. This leads to a distinctly improved agreement of model predictions with experimental results while largely keeping the simplicity of the functional group approach.

  7. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  8. [Present-day problems of complex hygienic evaluation of drinking water use].

    Science.gov (United States)

    Tulakin, A V; Novikov, Iu V; Tsyplakova, G V; Ampleeva, G P; Shukelaĭt', A B

    2005-01-01

    The authors offer substantiated methodical approaches to complex evaluation of the sanitary reliability of drinking water supply systems. They recommend not only evaluating drinking water quality, but also assessing the sanitary state of water sources (catchment areas), the reliability of water preparation and transportation, the standards of water supply and the reliability of production laboratory control. A range of complex hygienic studies have demonstrated that the problems of Voronezh interurban reservoir as a water source are caused by its multi-purpose use. Under these conditions insufficient hygienic efficiency of the conventional water preparation schemes and low sanitary reliability of water transportation systems favors negative influence of water factor on population mortality. The offered methodical approaches give the systematic idea of factors that determine drinking water quality. Operative administrative decisions concerning hygienic safety of public water use may be made with these methodical approaches taken into consideration.

  9. 水源热泵与蓄能结合系统的评价体系研究%Evaluation methods of water-source heat pump systems combined with thermal storage

    Institute of Scientific and Technical Information of China (English)

    白雪莲; 张南桥

    2011-01-01

    针对水源热泵和冰蓄冷的技术特点,确定了水源热泵与蓄能结合的系统的评价指标.对系统的经济性、节能性、安全性、环境效益、特性进行分析,提出该系统的综合评价体系.采用模糊综合评价方法,建立了评价模型,并得到相应的评价步骤.结合工程实例,分析了综合评价体系的应用结果,研究表明,综合评价体系可以全面反映该系统的特性,为方案决策和系统设计提供了量化依据.%Aiming at the characteristics of water-source heat pump and ice storage, determines the evaluation indices for the system of water-source heat pump combined with thermal storage. Analysing economic effects, energy saving, safety, environment benefits and exergy characteristics, puts forward a comprehensive evaluation method for the system. Adopting fuzzy comprehensive evaluation method, sets up an evaluation model and presents corresponding steps. Taking an actual project as example, analyses the application results of the evaluation method. The results show that the evaluation method can reflect totally the characteristics of the system and provide quantitative reference for scheme decision and system design.

  10. Price System for Water Supply and its Economic Impact Analysis

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-04-01

    Full Text Available In light of the actual economic circumstances and water price level, the CGE model to simulate the price policy for multiple water sources is modified and expanded. A water price reform plan is proposed to meet water-saving requirements and water resources allocation. The affected scale and scope for implementing the water price policy is evaluated on a quantitative basis. Research results indicate that a reasonable water price system in Tianjin in 2020 should be set up as follows: the comprehensive tap water price stands at 4$/m3, the tap water price for industrial, administrative and business service sectors is 2.4$/m3, and the tap water price for special industry and domestic use are 8.8$/m3 and 1.4$/m3 respectively. The adjusted water price will bring about tangible results to water resources allocation optimization and water conservation. Although most sectors are negatively affected to varying degrees after raising the water price, particularly the lodging and catering sectors, a 100% water price rising will produce only little impact on price index, and sectoral output and employment will not cause economic fluctuations or social instability. Water price adjustments, as long as it is reasonable, will be more positive than negative on the whole. Research outcomes will provide a scientific decision-making basis for formulating the local water price policy.

  11. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  12. Using WNTR to Model Water Distribution System Resilience

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of di...

  13. ASPECTS OF OPTIMIZATION OF WATER MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    E. BEILICCI

    2013-03-01

    Full Text Available Water management system include all activities and works which providing the administration of public domain of water, with local / national interest, and qualitative, quantitative and sustainable management of water resources. Hydrotechnical arrangements, consisting of a set of hydraulic structures, produce both a favorable and unfavorable influences on environment. Their different constructive and exploitation solutions exercise a significantly impact on the environment. Therefore the advantages and disadvantages of each solution must be weighed and determined to materialize one or other of them seriously argued.The optimization of water management systems is needed to meet current and future requirements in the field of rational water management in the context of integrated water resources management. Optimization process of complex water management systems includes several components related to environmental protection, technical side and the business side. This paper summarizes the main aspects and possibilities of optimization of existing water management systems and those that are to be achieved.

  14. Assessment of the urban water system with an open, reproducible process applied to Chicago

    Science.gov (United States)

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green...

  15. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Science.gov (United States)

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401..., maintenance, and monitoring compliance of a public water system to evaluate the adequacy of the system, its sources and operations and the distribution of safe drinking water. (c) The sanitary survey must include...

  16. Energy and water remote monitoring systems within municipalities of Hollola and Nastola. Evaluation of implementation possibilities; Energian- ja vedenkulutuksen etaeluentajaerjestelmaet Hollolan ja Nastolan kunnissa. Toteutusvaihtoehtojen arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Pesola, A.

    2010-07-01

    Remote electricity monitoring systems have been studied broadly. Yet the research on this technology has been done mainly from the perspective of energy companies. The objective of this study is to assess implementation possibilities of automatic meter reading (AMR) systems within mediumsized municipalities. The study compares alternative means to carry out hourly-based electricity, heat and water monitoring within municipal buildings of Hollola and Nastola. Implementation guidelines are given as a result of this research. Theory part of the study combines relevant legislation, existing monitoring systems within municipalities and energy companies and AMR technology survey. Empirical part of the study compares four alternative means to implement a comprehensive AMR system. The alternatives being considered are outsourced system model, energy company's system model, self-build system model and so called 0-alternative, which indicates situation where AMR system is not implemented. These four alternatives are compared with each other based on their characteristics that are weighted to correspond specified preferences of Hollola and Nastola. The raw data is compiled using interviews and inquiries addressed to relevant stakeholders. The comparison between different implementation models is done from the municipalities' perspective. Yet other stakeholder preferences are taken into account when comparison is enforced. Research method being used for comparison is stochastic multicriteria acceptability analysis (SMAA). SMAA is a family of methods for aiding multicriteria group decision-making in problem settings with uncertain, imprecise or partially missing information. In this study SMAA is used for simulating different value combinations and computing statistics that are interpreted in order to rank different AMR implementation models. Ranking is based on predefined preferences that have a primary influence on the attained results. The results show that the

  17. An evaluation method of the sustainability of water resource in karst region: a case study of Zunyi, China

    Science.gov (United States)

    Li, Bo; Wang, Ganlu; Ding, Hanghang; Chen, Yulong

    2017-06-01

    Water resource is of great significance to the survival and development of human. However, the water resource system in karst regions is sensitive to external interference owing to the special geological processes which cause soil impoverishment, severe rocky desertification and large topographic height difference. Therefore, evaluating the sustainability of the water resource in karst regions is beneficial to reasonably use and protect water resource. This paper puts forward to evaluate the water resource from four aspects, including water resources system, water requirement system, ecosystem and social economic system. Moreover, on this basis, 18 evaluation indexes were selected to construct the sustainability evaluation index system and method. This method was used to evaluate the sustainability of the water resource in the typical karst region—Zunyi, Guizhou province, China, and was verified according to the actual situation in the research area. All these provide reference for the evaluation of the sustainability of the water resource in similar regions.

  18. "System evaluates system": method for evaluating the efficiency of IS

    Directory of Open Access Journals (Sweden)

    Dita Blazkova

    2016-10-01

    Full Text Available In paper I deal with the possible solution of evaluating the efficiency of information systems in companies. The large number of existing methods used to address the efficiency of information systems is dependent on the subjective responses of the user that may distort output evaluation. Therefore, I propose a method that eliminates the subjective opinion of a user as the primary data source. Applications, which I suggests as part of the method, collects relevant data. In this paper I describe the application in detail. This is a follow-on program on any system that runs parallel with it. The program automatically collects data for evaluation. Data include mainly time data, positions the mouse cursor, printScreens, i-grams of previous, etc. I propose a method of evaluation of the data, which identifies the degree of the friendliness of the information system to the user. Thus, the output of the method is the conclusion whether users, who work with the information system, can handle effectively work with it.

  19. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  20. An Integrated Framework for Assessment of Hybrid Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2015-12-01

    Full Text Available Urban water managers around the world are adopting decentralized water supply systems, often in combination with centralized systems. While increasing demand for water arising from population growth is one of the primary reasons for this increased adoption of alternative technologies, factors such as climate change, increased frequency of extreme weather events and rapid urbanization also contribute to an increased rate of adoption of these technologies. This combination of centralized-decentralized water systems approach is referred to as “hybrid water supply systems” and is based on the premise that the provision of alternative water sources at local scales can both extend the capacity of existing centralized water supply infrastructures, and improve resilience to variable climatic conditions. It is important to understand, however, that decentralized water production and reuse may change the flow and composition of wastewater and stormwater, thereby potentially also having negative impacts on its effectiveness and performance. This paper describes a framework to assess the interactions between decentralized water supply systems and existing centralized water servicing approaches using several analytical tools, including water balance modelling, contaminant balance modelling and multi-criteria decision analysis. The framework enables the evaluation of impacts due to change in quantity and quality of wastewater and stormwater on the existing centralized system arising from the implementation of hybrid water supply systems. The framework consists of two parts: (1 Physical system analysis for various potential scenarios and (2 Ranking of Scenarios. This paper includes the demonstration of the first part of the framework for an area of Melbourne, Australia by comparing centralized water supply scenario with a combination of centralized water supply and reuse of treated waste water supply scenario.

  1. Small Drinking Water Systems Research and Development

    Science.gov (United States)

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  2. LARGO hot water system thermal performance test report

    Science.gov (United States)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  3. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  4. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  5. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Yates, Brian J.; Lal, Vivek; Darlington, Ramona [Battelle, 505 King Avenue, Columbus, OH 43201 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)

    2013-08-15

    The function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate and extent of methylation. This research examined low cost, readily available, capping materials for their ability to sequester Hg and MeHg. Furthermore, selected capping materials were evaluated to inhibit the methylation of Hg in an incubation study as well as the capacity of a selected capping material to inhibit translocation of Hg and MeHg with respect to ebullition-facilitated contaminant transport in a column study. Results indicated that bauxite had a better capacity for mercury sorption than the other test materials. However, bauxite as well as soil capping materials did not decrease methylation to a significant extent. Materials with larger surface areas, higher organic matter and acid volatile sulfide (AVS) content displayed a larger partitioning coefficient. In the incubation experiments, the presence of a carbon source (lactate), electron acceptor (sulfate) and the appropriate strains of SRB provided the necessary conditions for Hg methylation to occur. The column study showed effectiveness in sequestering Hg and MeHg and retarding transport to the overlying water column; however, disturbances to the soil capping material resulting from gas ebullition negated its effectiveness.

  6. Comprehensive evaluation system of coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Lian, D.; Wang, Y. [University of Science and Technology of Suzhou, Suzhou (China). Dept. of City and Environment

    2005-01-01

    In order to ensure the sustainable and effective coal mining under buildings, railways and water bodies and reduce the influence on the ground establishment and the ecological environments, from the view of technology, economics, resources and society, the three-underground mining was evaluated and the comprehensive evaluating system was constructed. The evaluation of the three-underground mining was carried out with combination of qualitative with quantitative analysis, macro with micro discussion, the technical and the economic analysis and theory with practice. Such subjects as engineering economy, science of mining subsidence, fuzzy maths, operational research, theory of information and theory of system were adopted. The results can provide the theoretical basis and practical guidance for decision-making and related policy about three-underground mining. 8 refs., 5 figs., 3 tabs.

  7. Terahertz-dependent evaluation of water content in high-water-cut crude oil using additive-manufactured samplers

    Science.gov (United States)

    Guan, LiMei; Zhan, HongLei; Miao, XinYang; Zhu, Jing; Zhao, Kun

    2017-04-01

    The evaluation of water content in crude oil is of significance to petroleum exploration and transportation. Terahertz (THz) waves are sensitive to fluctuations in the dipole moment of water. However, due to the strong absorption of water in the THz range, it is difficult for the THz spectrum to determine high water content with the common sampler. In this research, micron-grade samplers for THz detection were designed and manufactured using additive manufacturing (AM) technology. Oil-water mixtures with water content from 1.8% to 90.6% were measured with the THz-TDS system using sample cells. In addition, a detailed analysis was performed of the relationships among THz parameters such as signal peak, time delay, and refractive index as well as absorption coefficient and high water content (>60%). Results suggest that the combination of THz spectroscopy and AM technique is effective for water content evaluation in crude oil and can be further applied in the petroleum industry.

  8. Terahertz-dependent evaluation of water content in high-water-cut crude oil using additive-manufactured samplers

    Science.gov (United States)

    Guan, LiMei; Zhan, HongLei; Miao, XinYang; Zhu, Jing; Zhao, Kun

    2017-04-01

    The evaluation of water content in crude oil is of significance to petroleum exploration and transportation. Terahertz (THz) waves are sensitive to fluctuations in the dipole moment of water. However, due to the strong absorption of water in the THz range, it is difficult for the THz spectrum to determine high water content with the common sampler. In this research, micron-grade samplers for THz detection were designed and manufactured using additive manufacturing (AM) technology. Oil-water mixtures with water content from 1.8% to 90.6% were measured with the THz-TDS system using sample cells. In addition, a detailed analysis was performed of the relationships among THz parameters such as signal peak, time delay, and refractive index as well as absorption coefficient and high water content (>60%). Results suggest that the combination of THz spectroscopy and AM technique is effective for water content evaluation in crude oil and can be further applied in the petroleum industry.

  9. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a sm

  10. Using the Method of Water Poverty Index (WPI) to Evaluate the Region Water Security

    Science.gov (United States)

    Fu, Q.; Kachanoski, G.

    2008-12-01

    Water security is a widely concerned issue in the world nowadays. A new method, water poverty index (WPI), has been used to evaluate the regional water security. Twelve state farms in Heilongjiang Province, Northeastern China were selected to evaluate water security status based on the data of 2006 by using WPI and mean deviation grading method. The method of WPI includes five key indexes, such as resources(R), access (A), capacity(C), utilization (U) and environment (E). Each key index includes several sub-indexes. According to the results of WPI, the grade of each farm has been calculated by using the method of mean deviation grading. Thus, the radar images can be protracted of each farm. From the radar images, the conclusions can be drawn that the WPI values of Farms 853 and Hongqiling were in very safe status, while that of Farm Raohe was in safe status, those of Farms Youyi, 597, 852, 291 and Jiangchuan were in moderate safe status, that of Farm Beixing was in low safe status and those of Farms Shuangyashan, Shuguang and Baoshan were in unsafe status. The results from this study can provide basic information for decision making on rational use of water resources and regulations for regional water safety guarantee system.

  11. Evaluation of Survivor-06 Water Purification Device

    Science.gov (United States)

    1993-03-01

    is extensive literature documenting the efficacy of reverse osmosis for sterilising and desalinating water (Scott, 1981; Wellon and Soucey, 1987...as a moderately brackish water With biological i 6 contamination. The beach effluent water was chosen as a salty water with biological contamination...for crashed aircrew at sea. It may have limited applications for Army to desalinate bore water for small groups. However, a larger unit would be more

  12. Water masers in the Saturnian system

    Science.gov (United States)

    Pogrebenko, S. V.; Gurvits, L. I.; Elitzur, M.; Cosmovici, C. B.; Avruch, I. M.; Montebugnoli, S.; Salerno, E.; Pluchino, S.; Maccaferri, G.; Mujunen, A.; Ritakari, J.; Wagner, J.; Molera, G.; Uunila, M.

    2009-02-01

    Context: The presence of water has long been seen as a key condition for life in planetary environments. The Cassini spacecraft discovered water vapour in the Saturnian system by detecting absorption of UV emission from a background star. Investigating other possible manifestations of water is essential, one of which, provided physical conditions are suitable, is maser emission. Aims: We report detection of water maser emission at 22 GHz associated with several Kronian satellites using Earth-based radio telescopes. Methods: We searched for water maser emission in the Saturnian system in an observing campaign using the Metsähovi and Medicina radio telescopes. Spectral data were Doppler-corrected over orbital phase for the Saturnian satellites, yielding detections of water maser emission associated with the moons Hyperion, Titan, Enceladus, and Atlas. Results: The detection of Saturnian water molecules by remote astronomical observation can be combined with in situ spacecraft measurements to harmonise the physical model of the Saturnian system.

  13. Evaluation of the COGITO system

    DEFF Research Database (Denmark)

    Andersen, V.; Andersen, H.H.K.

    2002-01-01

    This report covers the deliverable D7.2 of the COGITO project. It presents the evaluation of an 'intelligent' agent integrated into an e-commerce system. The aim of the agent is to support the user partly through direct communication and partly by guidinghim/her for navigating the web-site...

  14. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems

    Science.gov (United States)

    Rainbow trout Oncorhynchus mykiss performance and water quality were evaluated and compared within six replicated 9.5 cubic meter water recirculating aquaculture systems (WRAS) operated with and without ozone at various water exchange rates. Three separate studies were conducted: 1) low water exchan...

  15. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available This paper presents a technique for grassroot design of cooling water system for wastewater minimization which incorporates the performances of the cooling towers involved. The study focuses mainly on cooling systems consisting of multiple cooling...

  16. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  17. Technologies and Techniques for Early Warning Systems to Monitor and Evaluate Drinking Water Quality: A State-of-the-Art Review

    Science.gov (United States)

    2005-08-25

    such as LSD, PCP, and heroin Schedule 1 Chemical Weapons Organophosphate nerve agents (e.g., sarin, tabun, VX), vesicants, [nitrogen and sulfur...Water Institute is supported in part by the Water Harvesting and Water Purification Program at DARPA. The monitor consists of a fiber optic cable run...disruption and DNA extraction- purification necessary for PCR. Reaction volume is 10 to 20 µL. The thermal cycler has preprogrammed tests and automatic data

  18. Evaluating MT systems with BEER

    Directory of Open Access Journals (Sweden)

    Stanojević Miloš

    2015-10-01

    Full Text Available We present BEER, an open source implementation of a machine translation evaluation metric. BEER is a metric trained for high correlation with human ranking by using learning-to-rank training methods. For evaluation of lexical accuracy it uses sub-word units (character n-grams while for measuring word order it uses hierarchical representations based on PETs (permutation trees. During the last WMT metrics tasks, BEER has shown high correlation with human judgments both on the sentence and the corpus levels. In this paper we will show how BEER can be used for (i full evaluation of MT output, (ii isolated evaluation of word order and (iii tuning MT systems.

  19. Systems modelling for effective mine water management

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.M.; Moran, C.J.; Hedemann, C.J.; Koch, C. [University of Queensland, Brisbane, Qld. (Australia)

    2010-12-15

    Concerns about the difficulties in securing water have led the Australian coal mining industry to seek innovative ways to improve its water management and to adopt novel strategies that will lead to less water being used and more water being reused. Simulation tools are essential to assess current water management performance and to predict the efficiency of potential strategies. As water systems on coal mines are complex and consist of various inter-connected elements, a systems approach was selected, which views mine site water management as a system that obtains water from various sources (surface, groundwater), provides sufficient water of suitable quality to the mining tasks (coal beneficiation, dust suppression, underground operations) and maintains environmental performance. In this paper, the model is described and its calibration is illustrated. The results of applying the model for the comparison of the water balances of 7 coal mines in the northern Bowen Basin (Queensland, Australia) are presented. The model is used to assess the impact of applying specific water management strategies. Results show that a simple systems model is an appropriate tool for assessing site performance, for providing guidance to improve performance through strategic planning, and for guiding adoption of site objectives.

  20. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Values Connecting Societies and Water Systems

    NARCIS (Netherlands)

    J.A. van Ast (Jacko); J.J. Bouma (Jan Jaap); M. Bal (Mansee)

    2013-01-01

    markdownabstract__Introduction__ Water systems such as rivers and lakes have many important values for ecosystems and human societies. Both economical, social-ecological, cultural and political values are met by the water systems, connecting different activities in human society and ecosystem

  3. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients.

  4. Digital Identifier Systems: Comparative Evaluation

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khedmatgozar

    2015-02-01

    Full Text Available Identifier is one of the main elements in identifying an object in digital environment. Digital identifier systems were developed followed by a lot of problems such as violation of persistency and uniqueness of physical identifiers and URL in digital environment. These identifiers try to guarantee uniqueness and persistency of hostnames by using indirect names for Domain Name System (DNS. The main objective of this research is to identify qualified digital identifier system among other systems. To achieve the research objective, researchers have considered two major steps: first, identifying main criteria for distinguishing digital identifier based on literature review and focus group interview; and second, performing a comparative evaluation on common identifier systems in the world. Findings of first step demonstrated seven main criteria in three domains for distinguishing digital identifier systems: identifier uniqueness and persistency in the identifier features domain, digital identification, digital uniqueness, digital persistency and digital actionability in the digital coverage domain, and globality in the comprehensiveness of scope domain. In the second step, results of the comparative evaluation on common identifier systems indicated that six identifier systems, included, DOI, Handle, UCI, URN, ARK and PURL, are appropriate choices for using as a digital identifier system. Also, according to these results, three identification systems Including NBN, MARIAM and ISNI were identified as suitable choices for digital identification in certain specialized fields. According to many benefits of using these identifiers in important applied fields, such as, digital content chains and networks integration, digital right management, cross referencing, digital libraries and citation analysis, results of this study can help digital environment experts to diagnose digital identifier and their effective use in applied fields.

  5. Final Irondale Gulch storm water evaluation : Appendix E

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report on the Irondale Gulch Storm Water Evaluation and effects of routing off-site storm water flows through Rocky Mountain Arsenal. Retention facilities for...

  6. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  7. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  8. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  9. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  10. Evaluation of the exploitation of nontraditional water resources-Case study of Yantian District in Shenzhen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Yantian District in Shenzhen is a water deficient area. Water shortage has become a major obstacle to its further economic progress. Consequently, rational exploitation of nontraditional water resources (NWR) has been naturally adopted to increase local available water volume. The purpose of this paper is to analyse the exploitation of two kinds of NWR, namely wastewater reuse and seawater utilization, in Yantian District, and assess the contribution of each mode to deal with the water crisis. Two different nontraditional water supply systems respectively based on the reclaimed water and sea water were presented. And the effects of each system were evaluated in terms of technology. Economy and environment. The result shows that both wastewater reclamation and reuse (WRR) and direct utilization of seawater (DUS) are of great importance to cope with the tight water resource situation in the district. The data indicate that the fresh water saved by WRR system and DUS system is 29 and 17 million m3/a respectively. Moreover, the BOD. COD, NH3-N and T-P reduced by the WRR system are 870, 2900, 725 and 87 t/a, respectively. Considering the integrated effectiveness, the development of WRR system, which is of specific significance to exploiting new water resource and save natural fresh water supplied from distant water diversion project, is the preferred methods used to solve the water shortage problem in Yantian District and recover the water environment as well as maintain the sustainable development of the city zone.

  11. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  12. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. An Advanced Microturbine System with Water-Lubricated Bearings

    Directory of Open Access Journals (Sweden)

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  14. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  15. Data processing for water monitoring system

    Science.gov (United States)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  16. Life cycle assessment of three water systems in Copenhagen - A management tool of the future

    DEFF Research Database (Denmark)

    Godskesen, Berit; Zambrano, K.C.; Trautner, A.

    2010-01-01

    Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate...... the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorized in environmental impact categories. The use of LCA in the water sector...

  17. Active Water Explosion Suppression System

    Science.gov (United States)

    2002-06-01

    efficient in eliminating the heat of detonation , thereby eliminating the heat of combustion and the associated burning of explosive by-products in the...efficiency in eliminating the heat of detonation . In any case, the net effect of the water absorbing the detonation energy of the explosive is a major

  18. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy

  19. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  20. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  1. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    Science.gov (United States)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  2. Evaluation of Select Sensors for Real-Time Monitoring of Escherichia coli in Water Distribution Systems▿

    OpenAIRE

    Miles, Syreeta L.; Sinclair, Ryan G.; Riley, Mark R; Pepper, Ian L

    2011-01-01

    This study evaluated real-time sensing of Escherichia coli as a microbial contaminant in water distribution systems. Most sensors responded to increased E. coli concentrations, showing that select sensors can detect microbial water quality changes and be utilized as part of a contaminant warning system.

  3. Evaluation of water resource economics within the Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Leaming, G F

    1981-09-30

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant.

  4. 基于水足迹理论的老挝南欧江流域水资源利用评价指标体系设计%The Water Resource Utilization Evaluation Index System Design on the Basis of Water Footprint Theory in Nanou River Basin of Laos

    Institute of Scientific and Technical Information of China (English)

    于佳; 黄晶

    2014-01-01

    This article introduces water footprint theory, analyzes the influence factors of water resource utilization, identifies the four types of index evaluation system of supply and demand of river basin water footprint index, efficiency of river basin water footprint benefit index, index of river basin water resources security and river basin water resources sustainable utilization index framework, and puts forward seven secondary indexes according to the framework, and finally determine the evaluation index by quantify the each indicator, and each index and its quantitative factors systematical y construct the evaluation index system of water resource utilization.%文章引入水足迹理论,分析了影响水资源利用的因素,确定了由流域水足迹供需指标、流域水足迹效益效率指标、流域水资源安全指标和流域水资源可持续利用指标等四类指标构成的评价体系框架,并根据此框架提出了七个二级指标,最后通过对每一个指标进行量化最终确定了评价的指标集,并综合各指标及其定量因子较为系统地构建出了水资源利用评价指标体系。

  5. Evaluation of Tourism Water Capacity in Agricultural Heritage Sites

    Directory of Open Access Journals (Sweden)

    Mi Tian

    2015-11-01

    Full Text Available Agricultural heritage sites have been gaining popularity as tourism destinations. The arrival of large numbers of tourists, however, has created serious challenges to these vulnerable ecosystems. In particular, water resources are facing tremendous pressure. Thus, an assessment of tourism water footprint is suggested before promoting sustainable tourism. This paper uses the bottom-up approach to construct a framework on the tourism water footprint of agricultural heritage sites. The tourism water footprint consists of four components, namely accommodation water footprint, diet water footprint, transportation water footprint and sewage dilution water footprint. Yuanyang County, a representative of the Honghe Hani rice terraces, was selected as the study area. Field surveys including questionnaires, interviews and participant observation approaches were undertaken to study the tourism water footprint and water capacity of the heritage site. Based on the results, measures to improve the tourism water capacity have been put forward, which should provide references for making policies that aim to maintain a sustainable water system and promote tourism development without hampering the sustainability of the heritage system. The sewage dilution water footprint and the diet water footprint were top contributors to the tourism water footprint of the subject area, taking up 38.33% and 36.15% of the tourism water footprint, respectively, followed by the transportation water footprint (21.47%. The accommodation water footprint had the smallest proportion (4.05%. The tourism water capacity of the heritage site was 14,500 tourists per day. The water pressure index was 97%, indicating that the water footprint was still within the water capacity, but there is a danger that the water footprint may soon exceed the water capacity. As a consequence, we suggest that macro and micro approaches, including appropriate technologies, awareness enhancement and diversified

  6. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  7. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  8. A changing framework for urban water systems.

    Science.gov (United States)

    Hering, Janet G; Waite, T David; Luthy, Richard G; Drewes, Jörg E; Sedlak, David L

    2013-10-01

    Urban water infrastructure and the institutions responsible for its management have gradually evolved over the past two centuries. Today, they are under increasing stress as water scarcity and a growing recognition of the importance of factors other than the cost of service provision are forcing a reexamination of long-held ideas. Research and development that supports new technological approaches and more effective management strategies are needed to ensure that the emerging framework for urban water systems will meet future societal needs.

  9. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  10. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    Directory of Open Access Journals (Sweden)

    Shaharudin Nuraida

    2017-01-01

    Full Text Available An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters were compared with National Drinking Water Quality Standards. Collection of data were involved three housing areas in Johor. The quality of drinking water from water filter system were analysed using pH meter, turbidity meter, DR6000 and Inductively Coupled Plasma-Mass Spectrometer. pH value was increased from 16.4% for before maintenance services to 30.7% for after maintenance service. Increment of removal percentage for turbidity, residual chlorine and nitrate after maintenance were 21.5, 13.6 and 26.7, respectively. This result shows that maintenance service enhance the performance of the system. However, less significant of maintenance service for enhance the removal of heavy metals which the increment of removal percentage in range 0.3 to 9.8. Only aluminium shows percentage removal for after maintenance with 92.8% lower compared to before maintenance service with 95.5%.

  11. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  12. A VV&A evaluation system based on hierarchical evaluation

    Institute of Scientific and Technical Information of China (English)

    FANG Ke; YANG Ming; WANG Zi-cai

    2005-01-01

    Evaluation is the major activity of performing Verification, Validation and Accreditation (VV&A) of a simulation system. Unfortunately, there is a lack of reasonable and operable evaluation methods. Moreover,there are other problems to address in VV&A evaluation, such as index definition, conclusion analysis, etc. In this paper, a VV&A evaluation system is introduced to try to resolve these problems. The system is based on a method called hierarchical evaluation, and it uses a good combination of evaluation processes and indexes.First, a thorough analysis of the VV&A evaluation' s essentials and principles are given, then the uncertainty of the evaluation results caused by various analysis of the evaluators is pointed out, then a hierarchical evaluation mechanism based on evaluator weight and evaluation hierarchy is brought forward, and finally a comprehensive VV&A evaluation system with evaluation flow processing, index management and hierarchical evaluation fulfillment is established. The system gives good consideration to ease of operation, reasonableness of evaluation conclusion, and the ability to comprehensively resolve VV&A problems. Since VV&A is attracting more and more recognition, it is meaningful to provide a good system for implementing credible simulation systems. It is hoped that this VV&A evaluation will provide a good way.

  13. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we starte

  14. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  15. Integrated system for seismic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.

  16. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  17. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  18. Water system microbial check valve development

    Science.gov (United States)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.

    1978-01-01

    A residual iodine microbial check valve (RIMCV) assembly was developed and tested. The assembly is designed to be used in the space shuttle potable water system. The RIMCV is based on an anion exchange resin that is supersaturated with an iodine solution. This system causes a residual to be present in the effluent water which provides continuing bactericidal action. A flight prototype design was finalized and five units were manufactured and delivered.

  19. Evaluating Storage Systems for Lustre

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-20

    Storage systems are complex, including multiple subsystems and components. Sustained operations with top performance require all these subsystems and components working as expected. Having a detailed performance profile helps establishing a baseline. This baseline can be used for easier identification of possible future problems. A systematic bottom-to-top approach, starting with a detailed performance analysis of disks and moving up across layers and subsystems, provides a quantitative breakdown of each component's capabilities and bottlenecks. Coupling these low-level tests with Lustre-level evaluations will present a better understanding of performance expectations under different I/O workloads.

  20. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    Science.gov (United States)

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  1. Study on hydrodynamics associated with quality of water in water distribution system

    Institute of Scientific and Technical Information of China (English)

    李欣; 顾大明; 赵洪宾; 袁一星

    2002-01-01

    The quality of water in water distribution system may vary with both location and time. Water quality models were used to predict spatial and temporal variation of water quality throughout the water system. Before analyzing the variations of water quality, it is necessary to determine the hydrodynamics in water distribution system. Analytical methods for the flow path from water sources to the observed point and water age of every observed node are proposed. This paper makes a further study on water supply route of multi-sources water supply network system. These studies have been applied to an actual water distribution system.

  2. Evaluation of water-jet-assisted cutting

    National Research Council Canada - National Science Library

    1987-01-01

    Recent studies show that the addition of a water jet to the cutting bit can improve cutting performance in harder materials, significantly reduce respirable dust and bit wear, and increase particle size...

  3. Urban water quality evaluation using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Petr Praus

    2007-06-01

    Full Text Available A data set, obtained for the sake of drinking water quality monitoring, was analysed by multivariate methods. Principal component analysis (PCA reduced the data dimensionality from 18 original physico-chemical and microbiological parameters determined in drinking water samples to 6 principal components explaining about 83 % of the data variability. These 6 components represented inorganic salts, nitrate/pH, iron, chlorine, nitrite/ammonium traces, and heterotrophic bacteria. Using the PCA scatter plot and the Ward's clustering of the samples characterized by the first and second principal components, three clusters were revealed. These clusters sorted drinking water samples according to their origin - ground and surface water. The PCA results were confirmed by the factor analysis and hierarchical clustering of the original data.

  4. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  5. Teaching Systems Thinking in the Context of the Water Cycle

    Science.gov (United States)

    Lee, Tammy D.; Gail Jones, M.; Chesnutt, Katherine

    2017-06-01

    Complex systems affect every part of our lives from the ecosystems that we inhabit and share with other living organisms to the systems that supply our water (i.e., water cycle). Evaluating events, entities, problems, and systems from multiple perspectives is known as a systems thinking approach. New curriculum standards have made explicit the call for teaching with a systems thinking approach in our science classrooms. However, little is known about how elementary in-service or pre-service teachers understand complex systems especially in terms of systems thinking. This mixed methods study investigated 67 elementary in-service teachers' and 69 pre-service teachers' knowledge of a complex system (e.g., water cycle) and their knowledge of systems thinking. Semi-structured interviews were conducted with a sub-sample of participants. Quantitative and qualitative analyses of content assessment data and questionnaires were conducted. Results from this study showed elementary in-service and pre-service teachers applied different levels of systems thinking from novice to intermediate. Common barriers to complete systems thinking were identified with both in-service and pre-service teachers and included identifying components and processes, recognizing multiple interactions and relationships between subsystems and hidden dimensions, and difficulty understanding the human impact on the water cycle system.

  6. A Visual Insight into the Degradation of Metals Used in Drinking Water Distribution Systems Using AFM

    Science.gov (United States)

    Evaluating the fundamental corrosion and passivation of metallic copper used in drinking water distribution materials is important in understanding the overall mechanism of the corrosion process. Copper pipes are widely used for drinking water distribution systems and although it...

  7. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  8. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  9. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  10. Hydro static water level systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  11. Considerations in designing an evaluation system for adaptive delta management

    NARCIS (Netherlands)

    Hermans, L.M.; Maat, J.; Haasnoot, M.; Kwakkel, J.H.

    2014-01-01

    New planning approaches put new requirements on evaluation. A recent innovation in the water domain is adaptive delta management (ADM). ADM supports long-term planning in the face of uncertainty. This paper discusses the main considerations for the design of an evaluation system for ADM, departing f

  12. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  13. Jordan Water Project: an interdisciplinary evaluation of freshwater vulnerability and security

    Science.gov (United States)

    Gorelick, S.; Yoon, J.; Rajsekhar, D.; Muller, M. F.; Zhang, H.; Gawel, E.; Klauer, B.; Klassert, C. J. A.; Sigel, K.; Thilmant, A.; Avisse, N.; Lachaut, T.; Harou, J. J.; Knox, S.; Selby, P. D.; Mustafa, D.; Talozi, S.; Haddad, Y.; Shamekh, M.

    2016-12-01

    The Jordan Water Project, part of the Belmont Forum projects, is an interdisciplinary, international research effort focused on evaluation of freshwater security in Jordan, one of the most water-vulnerable countries in the world. The team covers hydrology, water resources systems analysis, economics, policy evaluation, geography, risk and remote sensing analyses, and model platform development. The entire project team communally engaged in construction of an integrated hydroeconomic model for water supply policy evaluation. To represent water demand and allocation behavior at multiple levels of decision making,the model integrates biophysical modules that simulate natural and engineered hydrologic phenomena with human behavioral modules. Hydrologic modules include spatially-distributed groundwater and surface-water models for the major aquifers and watersheds throughout Jordan. For the human modules, we adopt a multi-agent modeling approach to represent decision-making processes. The integrated model was developed in Pynsim, a new open-source, object-oriented platform in Python for network-based water resource systems. We continue to explore the impacts of future scenarios and interventions.This project had tremendous encouragement and data support from Jordan's Ministry of Water and Irrigation. Modeling technology is being transferred through a companion NSF/USAID PEER project awarded toJordan University of Science and Technology. Individual teams have also conducted a range of studies aimed at evaluating Jordanian and transboundary surface water and groundwater systems. Surveys, interviews, and econometric analyses enabled us to better understandthe behavior of urban households, farmers, private water resellers, water use pattern of the commercial sector and irrigation water user associations. We analyzed nationwide spatial and temporal statistical trends in rainfall, developed urban and national comparative metrics to quantify water supply vulnerability

  14. Evaluation of the Aggressiveness of Slovak Mineral Water Sources

    Science.gov (United States)

    Vrablíková, Dana; Porubská, Diana; Fendeková, Miriam; Božíková, Jarmila; Kókaiová, Denisa

    2014-07-01

    The aggressive properties of natural waters arise due to their specific physical properties and chemical composition. The latest analyses of certified natural and healing mineral water sources according to Act No. 538/2005 were used for the evaluation. A total of 53 sources in 26 localities were evaluated; they comprised 25 sources of bottled natural mineral and healing waters and 28 sources of natural healing waters in 9 spas. The aggressiveness of the water against concrete was weak (17 sources), medium (17 sources), or none (19 sources). The aggressiveness was mostly caused by low pH values and/or increased SO42- content. Their corrosiveness to metal was mostly very high. The results showed that the disintegration of concrete building constructions, well casings and pipelines could occur in most of the evaluated localities in the case of mineral water contacting them. Therefore, preventive measures are necessary.

  15. Biofuels, land, and water: a systems approach to sustainability.

    Science.gov (United States)

    Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  16. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  17. System design package for IBM system one: solar heating and domestic hot water

    Science.gov (United States)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  18. Evaluation of a newly developed piezo actuator-driven pulsed water jet system for liver resection in a surviving swine animal model.

    Science.gov (United States)

    Nakanishi, Chikashi; Nakano, Toru; Nakagawa, Atsuhiro; Sato, Chiaki; Yamada, Masato; Kawagishi, Naoki; Tominaga, Teiji; Ohuchi, Noriaki

    2016-01-25

    Preservation of the hepatic vessels while dividing the parenchyma is key to achieving safe liver resection in a timely manner. In this study, we assessed the feasibility of a newly developed, piezo actuator-driven pulsed water jet (ADPJ) for liver resection in a surviving swine model. Ten domestic pigs underwent liver resection. Parenchymal transection and vessel skeletonization were performed using the ADPJ (group A, n = 5) or an ultrasonic aspirator (group U, n = 5). The water jet was applied at a frequency of 400 Hz and a driving voltage of 80 V. Physiological saline was supplied at a flow rate of 7 ml/min. After 7 days, the animals were killed and their short-term complications were examined and compared between the two groups. No significant complications, such as massive bleeding, occurred in either group during the surgical procedures. The transection time per transection area was significantly shorter in group A than in group U (1.5 ± 0.3 vs. 2.3 ± 0.5 min/cm(2), respectively, P = 0.03). Blood loss per transection area was not significantly different between groups A and U (9.3 ± 4.2 vs. 11.7 ± 2.3 ml/cm(2), P = 0.6). All pigs in group A survived for 7 days. No postoperative bleeding or bile leakage was observed in any animal at necropsy. The present results suggested that the ADPJ reduces transection time without increasing blood loss. ADPJ is a safe and feasible device for liver parenchymal transection.

  19. Evaluating fractionated space systems - Status

    Science.gov (United States)

    Cornford, S.; Jenkins, S.; Wall, S.; Cole, B.; Bairstow, B.; Rouquette, N.; Dubos, G.; Ryan, T.; Zarifian, P.; Boutwell, J.

    DARPA has funded a number of teams to further refine its Fractionated Spacecraft vision. Several teams, including this team led by JPL, have been tasked to develop a tool for the evaluation of the Business case for a fractionated system architecture. This evaluation is to understand under what conditions and constraints the fractionated architecture make more sense (in a cost/benefit sense) than the traditional monolithic paradigm. Our approach to this evaluation is to generate and evaluate a variety of trade space options. These options include various sets of stimuli, various degrees of fractionation and various subsystem element properties. The stimuli include many not normally modeled such as technology obsolescence, funding profile changes and changes in mission objectives during the mission itself. The degrees of fractionation enable various traditional subsystem elements to be distributed across different free flyers which then act in concert as needed. This will enable key technologies to be updated as need dictates and availability allows. We have described our approach in a previous IEEE Aerospace conference paper but will briefly summarize here. Our approach to generate the Business Case evaluation is to explicitly model both the implementation and operation phases for the life cycle of a fractionated constellation. A variety of models are integrated into the Phoenix ModelCenter framework and are used to generate various intermediate data which is aggregated into the Present Strategic Value (PSV). The PSV is essentially the value (including the value of the embedded real options) minus the cost. These PSVs are calculated for a variety of configurations and scenarios including variations of various stimuli or uncertainties (e.g. supply chain delays, launch vehicle failures and orbital debris events). There are various decision options (e.g. delay, accelerate, cancel) which can now be exercised for each stimulus. We can compute the PSV for the various comb

  20. Research on evaluating water resource resilience based on projection pursuit classification model

    Science.gov (United States)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  1. Java Mission Evaluation Workstation System

    Science.gov (United States)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff

    2006-01-01

    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  2. Dishwashing water recycling system and related water quality standards for military use.

    Science.gov (United States)

    Church, Jared; Verbyla, Matthew E; Lee, Woo Hyoung; Randall, Andrew A; Amundsen, Ted J; Zastrow, Dustin J

    2015-10-01

    As the demand for reliable and safe water supplies increases, both water quality and available quantity are being challenged by population growth and climate change. Greywater reuse is becoming a common practice worldwide; however, in remote locations of limited water supply, such as those encountered in military installations, it is desirable to expand its classification to include dishwashing water to maximize the conservation of fresh water. Given that no standards for dishwashing greywater reuse by the military are currently available, the current study determined a specific set of water quality standards for dishwater recycling systems for U.S. military field operations. A tentative water reuse standard for dishwashing water was developed based on federal and state regulations and guidelines for non-potable water, and the developed standard was cross-evaluated by monitoring water quality data from a full-scale dishwashing water recycling system using an innovative electrocoagulation and ultrafiltration process. Quantitative microbial risk assessment (QMRA) was also performed based on exposure scenarios derived from literature data. As a result, a specific set of dishwashing water reuse standards for field analysis (simple, but accurate) was finalized as follows: turbidity (reuse and will be expected to ensure that water quality is safe for field operations, but not so stringent that design complexity, cost, and operational and maintenance requirements will not be feasible for field use. In addition the parameters can be monitored using simple equipment in a field setting with only modest training requirements and real-time or rapid sample turn-around. This standard may prove useful in future development of civilian guidelines.

  3. Biologically-Inspired Water Propulsion System

    Institute of Scientific and Technical Information of China (English)

    Andrzej Sioma

    2013-01-01

    Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers.Observations of nature,however,show that the absolute majority of organisms travel through water using wave motion,paddling or using water jet power.Inspired by these observations of nature,an innovative propulsion system working in aquatic environment was developed.This paper presents the design of the water propulsion system.Particular attention was paid to the use of paddling techniques and water jet power.A group of organisms that use those mechanisms to travel through water was selected and analysed.The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment.A method for modelling a propulsion system using a combination of the two solutions and the result were described.A conceptual design and a prototype constructed based on the solution were presented.With respect to the solution developed,studies and analyses of selected parameters of the prototype were described.

  4. Development of a control system for evaluation of renewable power plants in the water pumping; Desenvolvimento de um sistema de controle para avaliacao de fontes de energias renovaveis no bombeamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Presenco, Jose Fernando [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Pos-graduacao em Agronomia; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural

    2010-07-01

    The use of alternative energy systems in the current days is an urgent necessity due to the problems that the planet is facing as the heating and loss of ozone layer. The scarcity of conventional energy is another problem that must be solved for the future of humanity. It must be considered that the people are inhabiting places moved away not always with available energy. The application of technologies as automation and control can help us to solve this problem. Therefore, this work aimed at apply an equipment of industrial usage, the Programmable Logical Controller, PLC, in alternative energies systems, as eolic generation and photovoltaic generation used for water pumping, aiming the automatic control and the efficiency in the places where it has simultaneous availability of these sources, based in criterion of priority that previously established itself between them. It was made a hydraulic and energetic evaluation of the energy system, eolic and photovoltaic, used in the automatic control system of pumping, in the place of accomplishment of the experiment, according to previously established physical conditions. The results have shown that the control system using the PLC is practicable and has trustworthiness. The program developed can be adapted for the use with several power plants in a specific application place. The photovoltaic system of pumping, using a polycrystalline of 70 Watts connected to a pump Shurflo 8000, showed to be efficient with significant flows in almost all the months. The eolic system of pumping, using an eolic generator of 400 Watts assembled in place of experiment, did not demonstrate energetic capacity for use in this specific type of application. (author)

  5. Energy optimization of water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  6. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  7. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  8. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    by the Energy Independence and Security Act (EISA). Reducing potable water demand for landscape irrigation correlates to lower energy costs necessary...irrigation is necessary. Typically, timer-based systems are adjusted higher than needed to account for consecutive hot days that stress turf beyond the...implementation at sports field, parade grounds, and/or landscape near buildings. Appendix C details the life cycle cost for the smart water

  9. Guidelines for transient analysis in water transmission and distribution systems

    OpenAIRE

    Pothof, Ivo; Karney, Bryan

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent, monitor and mitigate water losses in water transmission and distribution systems. One of the causes of water losses are transient phenomena, caused by normal and accidental pump and valve operations. ...

  10. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines

    Science.gov (United States)

    Becker, Arthur

    2006-01-01

    This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

  11. Quality Evaluation and Its Application to Surface Water Ecosystem Based on Maximum Flux Principle

    Institute of Scientific and Technical Information of China (English)

    刘年磊; 毛国柱; 赵林

    2010-01-01

    Based on the maximum flux principle(MFP),a water quality evaluation model for surface water ecosystem is presented by using self-organization map(SOM) neural network simulation algorithm from the aspect of systematic structural evolution.This evaluation model is applied to the case of surface water ecosystem in Xindu District of Chengdu City in China.The values reflecting the water quality of five cross-sections of the system at different developing stages are obtained,with stable values of 1.438,2.952,1.86...

  12. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  13. Water quality modeling using geographic information system (GIS) data

    Science.gov (United States)

    Engel, Bernard A

    1992-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.

  14. Characteristics of Trihalomethanes in Water Distribution System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming; ZHANG Jie; ZHANG Xin-yu; ZHENG Shuang-ying; LI Xin

    2008-01-01

    To investigate the characteristics of disinfection by-products (DBPs) in an actual water distribution system using the raw water with high bromide ion concentration, the composition and concentration of trihalomethanes (THMs) formed by chlorination of the water in the presence of bromide ion were measured in a city water distribution system during one year. The results show that brominated THMs contributed a great part (83%89%) to the index for additive toxicity (ATI) and resulted in the ATI of most of the samples exceeding WHO guideline standard for total THMs (TTHMs), especially during the summer (rainy season). This indicates that the chlorination of water in the presence of bromide ion leaded to high ratios of brominated THMs to TTHMs. However, a visible increase in the concentration of THMs with increasing residence time in the distribution system was not observed. Additionally, based on alternatives analysis, packed tower aeration method is proposed to reduce THMs level of the finished water leaving the treatment plant.

  15. Fungal evaluation on green tea irradiated with different water activities

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo B.; Duarte, Renato C.; Rodrigues, Flavio T.; Villavicencio, Anna Lucia C.H., E-mail: gbfanaro@ipen.b, E-mail: villavic@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CTR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Correa, Benedito, E-mail: correabe@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Ciencias Biologicas. Dept. de Micologia

    2011-07-01

    The aim of this study was evaluate the fungal contamination in green tea irradiated with different radiation doses and water activities. Samples were irradiated in {sup 60}Co irradiator at doses of 0, 2.5, 5.0, 7.5 and 10.0kGy with three different water activities. In the sample with decreased water activity, the count of fungi was lower than others samples followed by original Aw and the samples with the higher water activity, however there is no difference between the increased and decreased water activities samples after the irradiation on fungi contamination at dose of 2.5 kGy. (author)

  16. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  17. System design package for SIMS Prototype System 2, solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report is a collection of documents and drawings that describe a solar hot water system. The necessary information to evaluate the design and with information sufficient to assemble a similar system is presented. The International Business Machines Corporation developed prototype system 2 solar hot water for use in a single family dwelling. The system has been installed in Building Number 20, which is a single family residence on the grounds of the Veterans Administration Hospital at Togus, Maine. It consists of the following subsystems: collector, storage, energy transport, and control. It is a design with wide-spread application potential with only slight adjustments necessary in system size.

  18. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  19. AOIPS water resources data management system

    Science.gov (United States)

    Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.

    1976-01-01

    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.

  20. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2016-12-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  1. Effect of hydraulic head and slope on water distribution uniformity of the IDE drip irrigation system

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; R. Yoder

    2008-01-01

    Assessment of the effect of topography and operating heads on the emission uniformity distribution in drip irrigation systems is important in water management and could serve as the basis for optimizing water-use efficiency and crop productivity. This study was carried out to evaluate the effect of slope and hydraulic head on the water distribution uniformity of a low-cost drip irrigation system developed by International Development Enterprises (IDE). The drip system was tested for water dis...

  2. Evaluation of the Influence of Conventional Water Coolers on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    M Nikaeen

    2010-02-01

    Full Text Available "n "nBackgrounds and Objectives: Drinking water quality after treatment and before reaching  the consumer could be affected by distribution pipes, service lines and Home devices. The structure of water coolers, a home device that are widely used in warm months of the year, could potentially affect the quality of drinking water. The aim of this study was to assess the microbial and chemical quality of water from conventional water coolers."nMaterials and Methods : Water samples were collected from 29 water cooler systems at the Isfahan  university of medical sciences. 29 control samples also obtained from the nearest drinking water taps. All samples were examined for total heterotrophic bacteria and physicochemical parameters including temperature, ph, turbidity and heavy metals."nResults: All samples from the water cooler systems complied with the EPA guidelines for total heterotrophic bacteria count. There were no significant differences between the levels of heavy metals in water samples from the water cooler systems and taps. There was only a significant difference between the level of Cu in the water samples from cooler systems and taps "nConclusion: The overall results of this study indicated that the use of water cooler systems from hygienic point of view could not cause any problems for consumers

  3. Water Curriculum Evaluation for Educators in Pennsylvania

    Science.gov (United States)

    Gruver, Joshua B.; Smith, Sanford S.; Finley, James C.

    2008-01-01

    Results are presented from a formal evaluation of The Pennsylvania Bureau of State Park's Watershed Education (WE) curriculum developed for students in grades 6-12. The primary research objective was to measure the impact the training and subsequent use of the WE curriculum had on teachers' behavior, confidence, and self-efficacy in teaching about…

  4. Evaluation of Security of Mine Ventilation Systems

    Institute of Scientific and Technical Information of China (English)

    何书建; 彭担任; 翟成

    2002-01-01

    A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an importa nt meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the saf ety degree. Finally, an example of the security evaluation was given .

  5. Efficiency evaluation of urban and rural municipal water service ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Efficiency evaluation of urban and rural municipal water service authorities in South Africa: A data .... and equipment value, population size and length of pipes. The outputs used in the ..... Rank Municipality. Pr. Cat. DEAVRS.

  6. Toxicity Evaluation and Cytogenetic Screening of Process Water 2

    African Journals Online (AJOL)

    Dr. K.J. Umar

    1Department of Plant and Biotechnology, University of Benin, Benin City. 2Department ... Macroscopic evaluation of A. cepa cultivated in the wastewater resulted in significant (p<0.05) ... With respect to the Oil and Gas industry, process water.

  7. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  8. Systems Evaluation Methods, Models, and Applications

    CERN Document Server

    Liu, Siefeng; Xie, Naiming; Yuan, Chaoqing

    2011-01-01

    A book in the Systems Evaluation, Prediction, and Decision-Making Series, Systems Evaluation: Methods, Models, and Applications covers the evolutionary course of systems evaluation methods, clearly and concisely. Outlining a wide range of methods and models, it begins by examining the method of qualitative assessment. Next, it describes the process and methods for building an index system of evaluation and considers the compared evaluation and the logical framework approach, analytic hierarchy process (AHP), and the data envelopment analysis (DEA) relative efficiency evaluation method. Unique

  9. Urban-Water Harmony model to evaluate the urban water management.

    Science.gov (United States)

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  10. Evaluation and Prediction of Water Resources Based on AHP

    Science.gov (United States)

    Li, Shuai; Sun, Anqi

    2017-01-01

    Nowadays, the shortage of water resources is a threat to us. In order to solve the problem of water resources restricted by varieties of factors, this paper establishes a water resources evaluation index model (WREI), which adopts the fuzzy comprehensive evaluation (FCE) based on analytic hierarchy process (AHP) algorithm. After considering influencing factors of water resources, we ignore secondary factors and then hierarchical approach the main factors according to the class, set up a three-layer structure. The top floor is for WREI. Using analytic hierarchy process (AHP) to determine weight first, and then use fuzzy judgment to judge target, so the comprehensive use of the two algorithms reduce the subjective influence of AHP and overcome the disadvantages of multi-level evaluation. To prove the model, we choose India as a target region. On the basis of water resources evaluation index model, we use Matlab and combine grey prediction with linear prediction to discuss the ability to provide clean water in India and the trend of India’s water resources changing in the next 15 years. The model with theoretical support and practical significance will be of great help to provide reliable data support and reference for us to get plans to improve water quality.

  11. Economic evaluation of water loss saving due to the biological ...

    African Journals Online (AJOL)

    Economic evaluation of water loss saving due to the biological control of water hyacinth at New ... Log in or Register to get access to full text downloads. ... The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that ...

  12. Distribution of Complex Chemicals in Oil-Water Systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad

    . In order to inhibit gas hydrate formation in subsea pipelines monoethylene glycol (MEG) and methanol are injected in large amounts. It is important to know the distribution of these chemicals in oil and water systems for economical operation of a production facility and to evaluate their impact on marine...... life. Furthermore distribution of chemicals is important information for downstream processing of oil and gas. The purpose of this project is the experimental measurement and the thermodynamic modeling of distribution of these complex chemicals in oil-water systems. Traditionally distribution...... and limited information about the molecular structure of production chemicals the correlation could only be obtained for few families like alcohols, glycols and alkanolamines with varying degree of reliability. In order to develop a thermodynamic model for the distribution of chemicals in oil-water systems...

  13. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  14. Some aspects of the design and operation of water management systems

    NARCIS (Netherlands)

    Volp, C.

    1989-01-01

    This study deals with the design of water management systems. Attention is focused on that phase in the design process in which variants are developed and evaluated with emphasis on the evaluation. The proposed evaluation procedure combines an economic evaluation with an evaluation of the hydraulic

  15. Serious Gaming for Water Systems Planning and Management

    Directory of Open Access Journals (Sweden)

    Dragan A. Savic

    2016-10-01

    Full Text Available Water systems planning and management share the same roots with gaming, as they rely on concepts in systems analysis, operations research and decision sciences. This paper focuses on Serious Games (those used for purposes other than mere entertainment, with applications in the area of water systems planning and management. A survey of published work on gaming is carried out with particular attention given to applications of Serious Gaming to water systems planning and management. The survey is also used to identify the principal criteria for the classification of Serious Gaming for water related applications, including application areas, goals, number and type of players, user interface, type of simulation model used, realism of the game, performance feedback, progress monitoring and game portability. The review shows that game applications in the water sector can be a valuable tool for making various stakeholders aware of the socio-techno-economic issues related to managing complex water systems. However, the critical review also indicates a gap that exists in the Serious Game application area with the lack of water distribution system games. A conceptually simple, but computationally elaborate new game for water distribution system analysis, design and evaluation (SeGWADE is presented in this paper. It has a main goal of finding a least-cost design for a well-known benchmark problem, for which the game environment takes the computational and visualisation burden away from the simulation tool and the player. The game has been evaluated in a classroom environment in which a high degree of player engagement with the game was observed, due to its basic game ingredients and activities, i.e., challenge, play and fun. In addition, a clear improvement in learning has been observed in how players attempted to identify solutions that satisfy the pressure criterion with players readily identifying the proximity of the better solutions to the starting

  16. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  17. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  18. Evaluation Model of System Survivability

    Institute of Scientific and Technical Information of China (English)

    LIU Yuling; PAN Shiying; TIAN Junfeng

    2006-01-01

    This paper puts forward a survivability evaluation model, SQEM(Survivability Quantitative Evaluation Model), based on lucubrating the main method existed. Then it defines the measurement factors and parses the survivability mathematically, introduces state change probability and the idea of setting the weights of survivability factors dynamically into the evaluating process of SQEM, which improved the accuracy of evaluation. An example is presented to illustrate the way SQEM works, which demonstrated the validity and feasibility of the method.

  19. the systemic approach to teaching and learning: water chemistry

    African Journals Online (AJOL)

    unesco

    including tourism, commerce, economy, security, education etc. and after globalization became a reality .... of water & water in our environment, Water cycle, Water pollution , etc. ... The undefined relationships are developed systemically. After.

  20. Management of the Israeli National Water System under Uncertainty

    Science.gov (United States)

    Shamir, U.; Housh, M.; Ostfeld, A.; Zaide, M.

    2009-12-01

    Uncertainty in our region is due to the natural variability of hydrological patterns, with recurring extended droughts, reduced average and broadening variability of recharge that seem to indicate the effect of climate change, as well as to deterioration of water quality in the natural sources, to population growth and distribution, to shifting demand patterns among consumer sectors, and to expected future regional water agreements. These factors combine to create a challenging environment in which highly stressed water resources and water systems have to be developed, operated and managed. The natural sources have been used to their sustainable capacity and often beyond. The main policy responses are a shift of fresh water from agriculture to the cities, replacing it with treated wastewater for irrigation, and a major program for construction of sea-water desalination plants and the associated infrastructure needed for its integration into the supply systems. Organizational reforms, regulation, and demand management options are also being developed, including full-cost pricing. Management of the water resources and systems under these conditions requires a long-term perspective. The methodologies for supporting management decisions that have been used to date by the Israeli Water Authority include evaluation by scenarios, simulation, and optimization with sensitivity analysis. We review existing approaches and models for management of the Israeli water system (Zaide 2006) and then present some new methodologies for addressing operational decisions under hydrological uncertainty, which include generation of tradeoffs between the expected value and variability of the outcomes, and an Info-Gap (Ben-Haim 2006) based approach. These methodologies are demonstrated on examples that emulate portions of a regional water system and are then applied to the Israeli National Water System. Ben-Haim, Y. (2006) Info-Gap Theory: Decisions under Severe Uncertainty, 2nd Ed

  1. A biological safety evaluation on reclaimed water reused as scenic water using a bioassay battery

    Institute of Scientific and Technical Information of China (English)

    Dongbin Wei; Zhuowei Tan; Yuguo Du

    2011-01-01

    An assessment method based on three toxicity tests (algae growth inhibition,daphnia immobilization and larval fish toxicity) was used to screen the biological safety of reclaimed water which was reused as sole replenishment for scenic water system in a park (SOF Park) in northern China.A total of 24 water samples were collected from six sites of water system in the SOF Park in four different seasons.The results indicated that:(1) the reclaimed water directly discharged from a reclamation treatment plant near the SOF Park as influent of park had relatively low biological safety (all samples were ranked as C or D); (2) the biological safety of reclaimed water was improved greatly with the ecological reclamation treatment processes composing of artificial wetland system and followed oxidation pond system; (3) the biological safety of reclaimed water in the main lake of SOF Park kept at a health status during different seasons (all samples were ranked as A); (4) there was some certain correlation (R2 =0.5737) between the sum of toxicity scores and dissolved organic carbon for the studied water samples.It was concluded that the assessment method was reliable to screen the safety of reclaimed water reused as scenic water,and the reclaimed water with further ecological purification processes such as artificial wetland and oxidation pond system can be safely reused as scenic water in park.

  2. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  3. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  4. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  5. Culturally Responsive Evaluation Meets Systems-Oriented Evaluation

    Science.gov (United States)

    Thomas, Veronica G.; Parsons, Beverly A.

    2017-01-01

    The authors of this article each bring a different theoretical background to their evaluation practice. The first author has a background of attention to culturally responsive evaluation (CRE), while the second author has a background of attention to systems theories and their application to evaluation. Both have had their own evolution of…

  6. Standing Rock Rural Water System NPDES Permit

    Science.gov (United States)

    Under NPDES permit SD-0030996, the Standing Rock Rural Water System is authorized to discharge from its wastewater treatment facility in Corson County, South Dakota, to an unnamed tributary to Fisher Creek, a tributary to Oahe Reservoir on the Missouri R.

  7. Statistical mechanics of the shallow water system

    CERN Document Server

    Chavanis, P H

    2000-01-01

    We extend the formalism of the statistical theory developed for the 2D Euler equation to the case of shallow water system. Relaxation equations towards the maximum entropy state are proposed, which provide a parametrization of sub-grid scale eddies in 2D compressible turbulence.

  8. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...

  9. Probing water motion in heterogeneous systems.

    NARCIS (Netherlands)

    Dusschoten, van D.

    1996-01-01

    In this Thesis a practical approach is presented to study water mobility in heterogeneous systems by a number of novel NMR sequences. The major part of this Thesis describes how the reliability of diffusion measurements can be improved using some of the novel NMR sequences. The reliability of the da

  10. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  11. Evaluation of tolerance to water stress in beans

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Köop

    2012-09-01

    Full Text Available The goal of this study was to evaluate the genotypes of beans, and to sort them into groups that are tolerant and sensitive to water stress, by assessing their morphological characteristics for use in blocks of crosses and the study of gene expression. We evaluated nine bean genotypes: IAPAR 14, IAPAR 81, Pérola, IPR Colibri, IPR Juriti, IPR Chopim, IPR Gralha, and IPR Tiziu IPR Uirapuru. The genotypes were subjected to two irrigation conditions: i irrigation water as needed throughout the culture cycle and ii irrigation water as needed until the appearance of the first bud, followed by no irrigation water for 15 days. The experimental design was in randomized blocks with three replications. The characteristics evaluated were: i plant height; ii stem diameter, iii number of pods per plant, iv number of grains per pod, v root length and vi root dry mass. Stem diameter should not be used to determine if bean genotypes are tolerant or susceptible to water shortages. The results for the Pérola genotype were the highest for most of the characteristics evaluated, and, for this reason, it was classified as tolerant to water stress during flowering. The genotypes IAPAR and 81 IPR Juriti had the lowest results for the most features and were classified as susceptible to water stress during flowering.

  12. Observing System Evaluations Using GODAE Systems

    Science.gov (United States)

    2009-09-01

    Journal of Marine Systems 35...dimensional temperature fields: A first approach based on simulated observations. Journal of Marine Systems 46:85-98. Langland, R.H., and N.L. Baker...capabilities of multisatellite altimeter missions: First results with real data in the Mediterranean Sea. Journal of Marine Systems 65:190-211.

  13. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  14. Avaliação de controles PID adaptativos para um sistema de aquecimento resistivo de água Evaluation of adaptive PID controls for a resistive system of heating water

    Directory of Open Access Journals (Sweden)

    Maria Isabel Berto

    2004-09-01

    pasteurizer heating section. As the water temperature behavior according to the same step change on the potency of the resistance depends on the working flow rate, a single controller was designed to keep this temperature at its desirable set-point, for the water flow rate, within the range of 300 to 700L/h. Three different tunings for the PID were tested: the first consisted on the implementation of a function for the calculation of the PID parameters fitted to individual values obtained from each flow rate, according to process reaction curve methodology; the second consisted on using the PID parameters calculated as the average of these individual values; at the third tuning, an adaptive function fitted with the individual parameters obtained with Aström & Hägglund methodology was used. The performance evaluation of the configured PID controllers was carried out by comparing the error index values, obtained after disturbances in the water flow rate in the closed loop system. The error indexes calculated after step changes in the water flow rate were used to evaluate the tunings. The results have shown that the third tuning, called "Bang Bang" presented minor oscillations and smaller error indexes compared to the other two methods.

  15. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    olayemitoyin

    Safety Evaluation of Osun River Water Containing Heavy. Metals and ... evaluated its safety in rats. Heavy metals .... levels of liver GSH and activities of AST and ALT in. Table 1: pH .... been observed previously in rats treated with aflatoxin.

  16. Solar energy system performance evaluation: Seasonal report for Fern Lansing, Lansing, Michigan

    Science.gov (United States)

    1980-01-01

    A solar space heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. Solar energy satisfied 15 percent of the total measured load (hot water plus space heating). Net savings were approximately 21 million BTUs.

  17. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    evaluation sub-models, with the capacity to investigate alternative environmental flow requirements. The long term changes in the performance of the Saskatchewan's water resources system with respect to the considered shifts in the inflow regime are quantified using different assessment indices. Indices, such as vulnerability and reliability, are visualized in 2D maps in which the axes are describing the shifts in streamflow characteristics. Results indicate that the economy and environment in Saskatchewan are sensitive to the shifts in Alberta's streamflow regime. Most importantly, hydropower production, lake levels, and the apportionment to the downstream province of Manitoba are among the most sensitive components of the water resource system.

  18. Flood risk assessment of fresh water supply systems

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-04-01

    Flooding is a common hazard causing damages to people, buildings and infrastructures. Often located in low-lying areas or nearby rivers, water utilities are particularly vulnerable to flooding. Water and debris can inundate the facility, thereby damaging equipment and causing power outages. Such impacts can lead to costly repairs, disruptions of service, hazardous situations for personnel and public health advisories. While flood damage evaluation to buildings and their contents is becoming increasingly available, the quantification of impact on critical infrastructures is less common. In this work, we present the flood risk assessment of a fresh water supply system considering the hazard of a riverine flooding and exposure and vulnerability of the system components (i.e. pipes, junctions, lifting stations etc.). The evaluation of flood impact on the aqueduct network is carried out for flood scenarios with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to determine their residual functionality. Above a selected threshold, the affected elements are considered as failed. The water distribution piping system is modelled through a model based on EPANET designed so as to implement Pressure-Driven Demand (PDD), which is more appropriate when modelling water distribution networks with a high number of offline nodes. Results of piping system model affected by the flood are then compared in a QGIS environment with flood depth to identify the location of service outages and potential risk of contamination. The application to the water supply system of the city of Florence (Italy), serving approximately 385000 inhabitants through 900 km of piping is presented and discussed.

  19. Feedback Improvement in Automatic Program Evaluation Systems

    Science.gov (United States)

    Skupas, Bronius

    2010-01-01

    Automatic program evaluation is a way to assess source program files. These techniques are used in learning management environments, programming exams and contest systems. However, use of automated program evaluation encounters problems: some evaluations are not clear for the students and the system messages do not show reasons for lost points.…

  20. Water delivery in the Early Solar System

    CERN Document Server

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  1. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  2. Failure Effects Evaluation for ATC Automation System

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-01-01

    Full Text Available ATC (air traffic control automation system is a complex system, which helps maintain the air traffic order, guarantee the flight interval, and prevent aircraft collision. It is essential to ensure the safety of air traffic. Failure effects evaluation is an important part of ATC automation system reliability engineering. The failure effects evaluation of ATC automation system is aimed at the effects of modules or components which affect the performance and functionality of the system. By analyzing and evaluating the failure modes and their causes and effects, some reasonable improvement measures and preventive maintenance plans can be established. In this paper, the failure effects evaluation framework considering performance and functionality of the system is established on the basis of reliability theory. Some algorithms for the quantitative evaluation of failure effects on performance of ATC automation system are proposed. According to the algorithms, the quantitative evaluation of reliability, availability, maintainability, and other assessment indicators can be calculated.

  3. Simulation of Water Movement through Unsaturated Infiltration- Redistribution System

    Directory of Open Access Journals (Sweden)

    T Bunsri

    2009-01-01

    Full Text Available This paper deals with the movement of water in a natural unsaturated zone, focusing on infiltration-redistribution system. Infiltration refers to the downward movement of water due to the gravitational force and redistribution defines the upward movement of water due to the capillary rise. Under natural conditions, the movement of water through an infiltrationredistribution depended upon the relations among water content, hydraulic conductivity and tension of soil pore. Various combinations of water balance concepts, Richards’ equation, soil-physics theory and capillary height concepts were applied to mathematically model the movement of water through infiltration-redistribution system. The accuracy and computational efficiency of the developed model were evaluated for the case study. Besides the laboratory scale sand/soil columns with the inner diameter of 10.4 cm were investigated in order to provide the supporting data for model calibration. Sand/soil layers were packed with a bulk density of 1.80 and 1.25 g/cm3, respectively. The infiltration was sprayed uniformly at the soil surface with the constant rate of 66.1 and 7.18 cm3/h for sand and soil columns, respectively. The redistribution process was developed by which water arriving at the column base enter to the sand/soil column due to capillary rise. The laboratory observations were simulated using the developed model. The results indicate that the developed model could well estimate the movement of water in the infiltration-redistribution system that observed in the case study and the experiments.

  4. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  5. Biotreatment of red water with fungal systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, TenLin S.; Turner, R.J.; Sanville, C.J.

    1990-01-01

    Red water generated during the manufacture of trinitrotoluene (TNT) is an environmental concern because it contaminates ground surfaces and groundwaters. Past methods for the management of this hazardous waste stream did not meet pollution compliance or were not cost effective. Biodegradation of TNT by bacteria has been reported, but no conclusive evidence supports its biotransformation to harmless products or its complete mineralization. The lignin peroxidase (ligninase) secreted by the white rot fungus (Phanerochaete chrysosporium) has been shown to degrade a broad spectrum of organic pollutants. In this study, the efficacy of treating red water with the P. chrysosporium system was investigated.

  6. Evaluation of annual corrosion tests for aggressive water

    Science.gov (United States)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  7. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  8. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  9. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  10. Uncertainty of Water-hammer Loads for Safety Related Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Chan; Yoon, Duk Joo [Korea Hydro and Nuclear Power Co., LT., Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the basic methodology is base on ISO GUM (Guide to the Expression of Uncertainty in Measurements). For a given gas void volumes in the discharge piping, the maximum pressure of water hammer is defined in equation. From equation, uncertainty parameter is selected as U{sub s} (superficial velocity for the specific pipe size and corresponding area) of equation. The main uncertainty parameter (U{sub s}) is estimated by measurement method and Monte Carlo simulation. Two methods are in good agreement with the extended uncertainty. Extended uncertainty of the measurement and Monte Carlo simulation is 1.30 and 1.34 respectively in 95% confidence interval. In 99% confidence interval, the uncertainties are 1.95 and 1.97 respectively. NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the possibility of noncondensable gas accumulation for the Emergency Core Cooling System. Specially, gas accumulation can result in system pressure transient in pump discharge piping at a pump start. Consequently, this evolves into a gas water, a water-hammer event and the force imbalances on the piping segments. In this paper, MCS (Monte Carlo Simulation) method is introduced in estimating the uncertainty of water hammer. The aim is to evaluate the uncertainty of the water hammer estimation results carried out by KHNP CRI in 2013.

  11. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-ye

  12. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  13. Uninhabited Traffic Management System Evaluator (UTME) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this effort is the development of an Uninhabited Aerial System (UAS) Traffic Manager Evaluator (UTME) specifically targeted at evaluating...

  14. Microbial Analysis of Drinking Water and Water Distribution System in New Urban Peshawar

    Directory of Open Access Journals (Sweden)

    Roohul-Amin

    2012-11-01

    . On the other hand, 6 samples of drinking water from distribution system were fecal coliform positive and 4 samples were E. coli positive. Further epidemiological studies are on-going and more drinking water samples from old urban Peshawar are being evaluated.

  15. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  16. Comprehensive evaluation for nitrogen footprint and gray water footprint of agricultural land use system%农业土地利用系统氮足迹与灰水足迹综合评价

    Institute of Scientific and Technical Information of China (English)

    付永虎; 刘黎明; 袁承程

    2016-01-01

    Footprint research has gained more and more attention in ecology and sustainable development research fields. Nitrogen (N) footprint has theoretical and practical significance in evaluating the effect of activities on reactive N emission. Grey water footprint (GWF) is an indicator of aquatic pollution, which is important in the assessment of environmental effects of pollutants on water resource. In this paper, we employed both N footprint and GWF to evaluate environmental effects of agricultural land use system on reactive N loss and water quality. Based on the framework of the N footprint and the GWF, we built up an indicator system and assessed the environmental effects of agricultural land use system at the regional scale. To test the approach, the Taojiang County was chosen as the case study area. We assessed the N footprint and the GWF by using the official statistics during 1980 and 2010. The N footprints and the GWFs of the past agricultural land use system showed a large variation from 1980 to 2010 in Taojiang County: the total N footprint and the GWF increased drastically by 102.18% and 136.42%(i.e., from 15135.09 to 30599.40 t, and from 4.35×108 to 10.27×108 m3) respectively during the period of 1980-2010. The unit area N footprint and GWF were 0.35 t/hm2, 1.01×104 m3/hm2 in 1980 and increased to 0.70 t/hm2, 2.33×104 m3/hm2 in 2010. The input N footprint was increased from 15 084.23 t in 1980 to 30 551.39 t in 2010, while the unit area input N footprint were 0.35 t/hm2 in 1980 and then increased to 0.69 t/hm2 in 2010. The results indicated that the growth of fertilizer input was the main reason for N footprint increasing, which accounted for 72.72%of the input N footprint in 2010. Compared with 1980, the pollution N footprint gradually increased to 10 032.79 t in 2010. The proportion of pollution N footprint reached 32.84%in 2010. The unit area pollution N footprint was 0.10 t/hm2 in 1980 and increased to 0.23 t/hm2 in 2010. Based on the results, the

  17. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  18. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  19. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent, mon

  20. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  1. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  2. Rapid Evaluation of Water-in-Oil (w/o) Emulsion Stability by Turbidity Ratio Measurements.

    Science.gov (United States)

    Song; Jho; Kim; Kim

    2000-10-01

    In this Note, we investigated the turbidity ratio method for the evaluation of water-in-oil emulsion stability. The slope of turbidity ratio of water-in-oil emulsions with time was taken as an index of stability; the higher the slope, the less stable the system. Various factors affecting the stability of emulsion such as HLB of emulsifier, amount of emulsifiers, and water were tested using this technique. The results of the turbidity ratio technique for the evaluation of emulsion stability were well consistent with those obtained by the measurement of phase separation when incubated for 30 days at room temperature. Copyright 2000 Academic Press.

  3. Evaluation of Video Teleconference Systems.

    Science.gov (United States)

    1981-02-01

    Utility Analysis ( MAUA ). MAUA techniques are designed for the evaluation of fixed options that can be characterized as having values on each of a number...uncertainty or disagreement about weights. 6. Draw conclusions--decision implications. 56 4.3 Model and Results A MAUA model was developed to evaluate four...Discussion - The results of the MAUA model indicate that video teleconferencing can offer a cost- effective solution to problems of scheduling meetings

  4. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  5. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  6. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  7. Performance of constructed wetland system for public water supply.

    Science.gov (United States)

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.

  8. Framework for continuous performance improvement in small drinking water systems.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-01-01

    Continuous performance improvement (CPI) can be a useful approach to overcome water quality problems impacting small communities. Small drinking water systems (SDWSs) struggle to meet regulatory requirements and often lack the economic and human resource flexibility for immediate improvement. A CPI framework is developed to provide SDWS managers and operators an approach to gauge their current performance against similar systems and to track performance improvement from the implementation of the new technologies or innovations into the future. The proposed CPI framework incorporates the use of a water quality index (WQI) and functional performance benchmarking to evaluate and compare drinking water quality performance of an individual water utility against that of a representative benchmark. The results are then used to identify and prioritize the most vulnerable water quality indicators and subsequently identify and prioritize performance improvement strategies. The proposed CPI framework has been demonstrated using data collected from SDWSs in the province of Newfoundland and Labrador (NL), Canada and using the Canadian Council of Ministers of the Environment (CCME) WQI.

  9. Test and evaluation of a solar-heating system

    Science.gov (United States)

    1980-01-01

    Report documents results of evaluation tests performed on components of commerical solar heating and hot water system. Subsystems tested include flat plate solar collector, energy transport module, and control panel. Tests conducted include snow and wind loads, flame spread, and smoke classification as well as solar heating operation.

  10. A Knowledge-based Stampability Evaluation System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aim, characteristics and requirements of stampability evaluation are identified.As sam-pability evaluation is highly skill-intensive and requires a wide variety of design expertise and knowledge, a knowledge based system is proposed for implementing the stampability evaluation.The stampability eval uation knowledge representation,and processing phases are illustrated. A case study demonstrates the feasibility of the knowledge based approach to stampability evalu-ation.

  11. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has...

  12. 21 CFR 1240.86 - Protection of pier water system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protection of pier water system. 1240.86 Section... DISEASES Source and Use of Potable Water § 1240.86 Protection of pier water system. No vessel engaged in interstate traffic shall make a connection between its nonpotable water system and any pier potable...

  13. Solar production of industrial process hot water: Operation and evaluation of the Campbell Soup hot water solar facility

    Science.gov (United States)

    Kull, J. I.; Neimeyer, W. N.; Youngblood, S. B.

    1980-12-01

    The operation and evaluation of a solar hot water facility is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation and of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large scale solar facilities based on this project's experience are given, and an environmental impact assessment is provided.

  14. Assimilation potential of water column biota: Mesocosm-based evaluations

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Ansari, Z.A.; Sadhasivan, A.; Naik, S.; Sawkar, K.

    -demanding wastes • Water-soluble inorganic chemicals and nutrients • Organic chemicals (insoluble, water-soluble, oil, gasoline, plastics, pesticides, cleaning solvents, etc.) I NRamaiah, Azra Ansari, Anita Sadhasivan, Sushant Naik, and KSawkar • Sediment loads... policy-making efforts to know the assimilation potential of the biotic components of any given ecosystem. Although satisfac tory answers are difficult to obtain through efforts to evaluate assimilation potential, a general understanding of the organismic...

  15. Web-based Projects Evaluation Management System

    Directory of Open Access Journals (Sweden)

    S. Al-Zoubi

    2008-01-01

    Full Text Available This project designs a Web-based evaluation management system for the College of Arts and Sciences (CAS. Problem statement: The Msc students in College of Arts and Sciences (CAS in applied sciences had to take their final project as a project paper in order to fulfill the requirements of their programs and be able to graduate. The final project was evaluated in two parts; first part is representing 40% of the total mark and evaluated by evaluators. Second part was representing 60% of the total mark and evaluated by the student's supervisor. These evaluation were done manually. Both the evaluators and supervisors had to fill in the evaluation forms manually and submit them to the office. Approach: The design research methodology or sometimes called "improvement research" contained the major steps: Awareness the problem, suggestion, development, evaluation and conclusion. Results: Both evaluators and supervisors can fill in the evaluation forms through the Internet. Bring the advantage of saving time and resources over traditional paper and pencil scan sheet method. For enhancing the performance of current final project evaluation process in College of Arts and Sciences (CAS this study proposed a web based evaluation management system to replace the current paper forms used by the evaluators and supervisors. Conclusion: Implementing this system will enable the evaluation results to be entered, presume and retrieved anytime anywhere.

  16. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    Science.gov (United States)

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  17. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Seitzler, Matthew [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  18. Flexible Reconfiguration of Existing Urban Water Infrastructure Systems.

    Science.gov (United States)

    Perelman, Lina Sela; Allen, Michael; Preis, Ami; Iqbal, Mudasser; Whittle, Andrew J

    2015-11-17

    This paper presents a practical methodology for the flexible reconfiguration of existing water distribution infrastructure, which is adaptive to the water utility constraints and facilitates in operational management for pressure and water loss control. The network topology is reconfigured into a star-like topology, where the center node is a connected subset of transmission mains, that provides connection to water sources, and the nodes are the subsystems that are connected to the sources through the center node. In the proposed approach, the system is first decomposed into the main and subsystems based on graph theory methods and then the network reconfiguration problem is approximated as a single-objective linear programming problem, which is efficiently solved using a standard solver. The performance and resiliency of the original and reconfigured systems are evaluated through direct and surrogate measures. The methodology is demonstrated using two large-scale water distribution systems, showing the flexibility of the proposed approach. The results highlight the benefits and disadvantages of network decentralization.

  19. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    Science.gov (United States)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  20. Water masers in the Kronian system

    Science.gov (United States)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we started an observational campaign for search of another manifestation of the water vapour in the Kronian system, its maser emission at the frequency of 22 GHz (1.35 cm wavelength). Observations with the 32 m Medicina radio telescope (INAF-IRA, Italy) started in 2006 using Mk5A data recording and the JIVE-Huygens software correlator. Later on, an on-line spectrometer was used at Medicina. The 14 m Metsähovi radio telescope (TKK-MRO, Finland) joined the observational campaign in 2008 using a locally developed data capture unit and software spectrometer. More than 300 hours of observations were collected in 2006-2008 campaign with the two radio telescopes. The data were analysed at JIVE using the Doppler tracking technique to compensate the observed spectra for the radial Doppler shift for various bodies in the Kronian system (Pogrebenko et al. 2009). Here we report the observational results for Hyperion, Titan, Enceladus and Atlas, and their physical interpretation. Encouraged by these results we started a campaign of follow up observations including other radio telescopes.

  1. Toward Water Conservation Society:the Connotation and Assessment Indication System

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Zhao Yong; Liu Changming

    2004-01-01

    Water saving and developing water conservation society are the two key strategies both for wise water allocation and sustainable utilization.The paper analyses the connotation of water saving and water conservation society. Essentially, water saving means freeing up water from non-beneficial uses and providing it to some more productive uses.Basic principles for setting indicator are presented by providing efficient use of water, considering social issues and ecological protection. An integrated assessing water saving system aiming at more sustainable and efficient consumption is given considering unbalanced social and economic development in regions and basins. The hierarchy indicator system provides qualified tools to the practice of water conservation and evaluates the value for water conservation society construction.

  2. Scatterscore method to evaluate changes in water quality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.G.; Cardone, C. [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2001-07-01

    In Pennsylvania, water quality is monitored at mine sites remediated with coal combustion by-products (CCB), on a quarterly or annual basis. This produces extensive data files including values for 32 parameters that are difficult to evaluate for overall changes in water quality. Tracking a few major parameters, such as pH, Fe or acidity, produces a complex data set that excludes other significant values. A quantitative measure of estimating if the overall change in water quality is an improvement, no significant change or deterioration should take into account all measured quantities. To assess the change in water quality at a site, a scatterscore evaluation was developed. In this reconnaissance method, a score is calculated based on the differences between up gradient (control) versus down gradient (treatment) water quality data sets. All parameters measured over a period of time at two sampling points are compared. This evaluation method indicated that there was slight to moderate improvement in water quality at 30% of the CCB remediated sites and slight deterioration at 25% of the sites. The scatterscore at the remaining sites indicated random change in the measured parameters. 19 refs., 7 figs., 5 tabs.

  3. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  5. Evaluation of water quality at Fort Monmouth, New Jersey, using the epanet model. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walski, T.M.; Draus, S.J.

    1995-09-01

    Under the Facilities Engineering Applications Program, the U.S. Army Corps of Engineers wanted to test the capability of the EPANET computer model for evaluating water quality in water distribution systems. Fort Monmouth, New Jersey, has experienced low chlorine residuals levels. The EPANET model was calibrated using hydrant flow tests to predict chlorine die-off in the distribution system at the Fort. The model was then used to compare the effects of flushing and chlorine addition to improve water quality. Because of the high chlorine die-off rates in warm weather, it appears that chlorine addition is the only way to significantly improve chlorine residuals during summer months.

  6. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  7. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  8. Politics of innovation in multi-level water governance systems

    Science.gov (United States)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  9. Modular system design and evaluation

    CERN Document Server

    Levin, Mark Sh

    2015-01-01

    This book examines seven key combinatorial engineering frameworks (composite schemes consisting of algorithms and/or interactive procedures) for hierarchical modular (composite) systems. These frameworks are based on combinatorial optimization problems (e.g., knapsack problem, multiple choice problem, assignment problem, morphological clique problem), with the author’s version of morphological design approach – Hierarchical Morphological Multicritieria Design (HMMD) – providing a conceptual lens with which to elucidate the examples discussed. This approach is based on ordinal estimates of design alternatives for systems parts/components, however, the book also puts forward an original version of HMMD that is based on new interval multiset estimates for the design alternatives with special attention paid to the aggregation of modular solutions (system versions). The second part of ‘Modular System Design and Evaluation’ provides ten information technology case studies that enriches understanding of th...

  10. A Decision Support System for Evaluatingquality Safety Risk Contaminated By Water Pollution in Aquaculture Pond

    Science.gov (United States)

    Tian, Dong; Li, Nan; Huang, Honghui; Fu, Zetian; Zhang, Xiaoshuan

    Water pollution is becoming the major factor damaging the sustainable development of aquaculture and the quality security of aquatic product in China. This paper introduces a decision support system for evaluating and managing quality risk contaminated by water pollution. The architecture, main components and their functions, especially a series of risk evaluation methods and models are described. At present, the system is in pilot in the city of Beijing in China. The stage achievements in developing the system are summarized.

  11. HACCP and water safety plans in Icelandic water supply: preliminary evaluation of experience.

    Science.gov (United States)

    Gunnarsdóttir, María J; Gissurarson, Loftur R

    2008-09-01

    Icelandic waterworks first began implementing hazard analysis and critical control points (HACCP) as a preventive approach for water safety management in 1997. Since then implementation has been ongoing and currently about 68% of the Icelandic population enjoy drinking water from waterworks with a water safety plan based on HACCP. Preliminary evaluation of the success of HACCP implementation was undertaken in association with some of the waterworks that had implemented HACCP. The evaluation revealed that compliance with drinking water quality standards improved considerably following the implementation of HACCP. In response to their findings, waterworks implemented a large number of corrective actions to improve water safety. The study revealed some limitations for some, but not all, waterworks in relation to inadequate external and internal auditing and a lack of oversight by health authorities. Future studies should entail a more comprehensive study of the experience with the use of HACCP with the purpose of developing tools to promote continuing success.

  12. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  13. Evaluation Methods for Intelligent Tutoring Systems Revisited

    Science.gov (United States)

    Greer, Jim; Mark, Mary

    2016-01-01

    The 1993 paper in "IJAIED" on evaluation methods for Intelligent Tutoring Systems (ITS) still holds up well today. Basic evaluation techniques described in that paper remain in use. Approaches such as kappa scores, simulated learners and learning curves are refinements on past evaluation techniques. New approaches have also arisen, in…

  14. Complex Evaluation of Hierarchically-Network Systems

    CERN Document Server

    Polishchuk, Dmytro; Yadzhak, Mykhailo

    2016-01-01

    Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.

  15. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  16. UNIX-based operating systems robustness evaluation

    Science.gov (United States)

    Chang, Yu-Ming

    1996-01-01

    Robust operating systems are required for reliable computing. Techniques for robustness evaluation of operating systems not only enhance the understanding of the reliability of computer systems, but also provide valuable feed- back to system designers. This thesis presents results from robustness evaluation experiments on five UNIX-based operating systems, which include Digital Equipment's OSF/l, Hewlett Packard's HP-UX, Sun Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments were performed. The methodology for evaluation tested (1) the exception handling mechanism, (2) system resource management, and (3) system capacity under high workload stress. An exception generator was used to evaluate the exception handling mechanism of the operating systems. Results included exit status of the exception generator and the system state. Resource management techniques used by individual operating systems were tested using programs designed to usurp system resources such as physical memory and process slots. Finally, the workload stress testing evaluated the effect of the workload on system performance by running a synthetic workload and recording the response time of local and remote user requests. Moderate to severe performance degradations were observed on the systems under stress.

  17. Evaluation index system of ecological environmental impact of water conservancy projects in plain river network area%平原河网地区水利工程水生态环境效应评估指标构建

    Institute of Scientific and Technical Information of China (English)

    韩龙喜; 贾更华; 杨钟凯; 杨磊; 孙明园

    2011-01-01

    Taking the plain river network area of the Taihu Lake Basin as an example, starting from the basin water ecological safety concept of river development and protection, and based on the hydrology and hydrodynamics; the characteristics of the water ecological environment of the water system in the plain river network area; the development, construction, and operation conditions of water conservancy projects; and the effects on the water ecological environment, the water conservancy projects were classified, and the effects of different water conservancy projects on the hydrology and hydrodynamics, water environment quality, hydrobios, and benthos were identified. The main evaluation indexes of the water ecological environmental impact assessment of the water conservancy projects were put forward. The evaluation index system of the water ecological environment of water conservancy projects in the plain river network area was established.%以太湖流域平原河网地区为例,从河流开发与保护的流域水生态安全概念出发,基于平原河网地区水系的水文水动力、水生态环境特征,根据水利工程的开发建设及运行状况,及其对水生态环境产生的不同影响,对水利工程进行分类,分别辨析不同水利工程对水文水动力、水环境质量、水生生物、底栖生物的影响,提出水利工程水生态环境影响评价的主要评价指标,构建平原河网地区水利工程水生态环境效应评估指标体系.

  18. Bacteriological problems in water supply systems; Bakteriologische Probleme bei Wassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, P.

    2007-07-01

    This article takes a look at bacteriological problems in hot-water distribution system and, in particular looks at the situation concerning legionella bacteria which thrive in standing water at temperatures often encountered in domestic hot water systems. The article is based on experience gained in the analysis of over 1500 hot-water systems. Diseases caused by the inhalation of water droplets emanating from domestic hot-water systems are discussed and showers are mentioned as being a problem zone. An ecological thermal protective system is described. Problems that can be encountered in ventilation and air-conditioning systems and other potential sources are also mentioned.

  19. Manganese deposition in drinking water distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Tammie L., E-mail: Tammie.Gerke@miamioh.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States); Little, Brenda J., E-mail: brenda.little@nrlssc.navy.mil [Naval Research Laboratory, Stennis Space Center, MS 39529 (United States); Barry Maynard, J., E-mail: maynarjb@ucmail.uc.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States)

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn{sup 3+} and Mn{sup 4+}) and hollandite (Mn{sup 2+} and Mn{sup 4+}), and a Mn silicate, braunite (Mn{sup 2+} and Mn{sup 4+}), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. - Highlights: • Oxidation and deposition of Mn deposits in drinking water distribution pipes • In-situ synchrotron-based μ-XANES and μ-XRF mapping • Toxic metal sorption in Mn deposits.

  20. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)

    2002-08-01

    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  1. The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    Science.gov (United States)

    Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael

    2007-01-01

    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.

  2. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  3. Miniature-Autopilot Evaluation System

    Directory of Open Access Journals (Sweden)

    Kamal Ali

    2008-01-01

    Full Text Available This research describes a Hardware in the Loop Simulator (HILS that was developed to enhance the quality of attitude data received from autopilots. The described system aided in adjusting the contribution of individual IMU sensors and thereby improved the accuracy of IMU data. The HILS system outlined in this research is a gimbaled platform equipped with four stepper motors and two optical shaft encoders. The stepper motors simulated flight, while the shaft encoders reported the platform's exact angular position. Having exact attitude information to compare with IMU data allowed for the filtering of IMU errors. The HILS system was also used as an inertial frame of reference to which IMU data was synchronized.

  4. Development of a Sound Quality Evaluation System

    DEFF Research Database (Denmark)

    Kvist, Preben; Thomsen, Carsten; Lee, Sanjil

    2004-01-01

    This paper describes the development of the first version of the Sound Quality Evaluation System. The purpose of the system is to predict the subjective sound quality of home theater systems from objective measurements. 16 home theater systems were measured in an anechoic room. Several metrics...... expected to correlate w ith the subjective quality were proposed and tested. A model for the sound quality was created by mapping the subjective evaluations of the Home Theater System s with the metrics calculated for each system. Correlation between subjective listening test and the prediction is presente...

  5. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  6. Implications of Israeli Agricultural Water Price Sharing System to China

    Institute of Scientific and Technical Information of China (English)

    Yifan LI; Fusheng LIU

    2016-01-01

    This paper introduces Israeli agricultural water price sharing system. According to Israeli agricultural water cost composition,water price sharing by farmers as well as government subsidy and its forms,the financial subsidy-based agricultural water price system has been established on the basis of the farmers’ income in our country and reasonable water price sharing,thus to promote the development of water-saving agriculture in China.

  7. Freezing phenomena in ice-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Zaki, G.; Habeebullah, B. [Fakieh Center for Applied Research, Makkah Al-Mukarramah (Saudi Arabia); King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2002-09-01

    The characteristics of solidification and melting are reviewed. The properties of water and ice and the phase diagram of water are discussed with special emphasis on ice density. A concise account of the freezing process and the Stefan problem is presented. To this end, the four stages of freezing are identified, supercooling, nucleation and the formation of dendritic ice, the growth of concentric rings of solid ice at 0{sup o}C and the final cooling of the solid ice are treated in some detail. The subject of bursting of pipes is given particular emphasis. Attention is drawn to a common misconception on pipe bursting and to misleading relationships for the computation of freezing time for ice blockage. Several current applications of melting and freezing systems are outlined. (author)

  8. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  9. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  10. Evaluation of the Ecosystem Services of Inland Waters in the Slovak Republic - To Date Findings

    Directory of Open Access Journals (Sweden)

    Bujnovský Radoslav

    2015-03-01

    Full Text Available Ecosystem services (ES (goods and services represent the outputs of natural systems from which people can have benefits. Evaluation of the benefits resulting from ES of inland waters or the benefits, which are lost when the necessary measures are not implemented, is one of the methods of evaluating the external costs of environmental damage - environmental and resource costs. Evaluation of ES is based on the CICES classification v. 4.3, which defines provision, regulation/ maintenance and cultural services. In the assessment of ES also enters groundwater, although in comparison with surface waters in lesser extent. At present, the evaluation is performed at the level of sub-basins of the Slovak Republic. In this paper, evaluation of selected ES is presented. Use of evaluation in practice is also discussed.

  11. What’s in Your Water? Development and Evaluation of the Virginia Household Water Quality Program and Virginia Master Well Owner Network

    Directory of Open Access Journals (Sweden)

    Brian Benham

    2016-02-01

    Full Text Available Approximately one-fifth of Virginians (about 1.7 million people rely on private water supplies (e.g., wells, springs, cisterns for their household water. Unlike public water systems, the Environmental Protection Agency (EPA does not regulate private systems. As a result, private water system owners are solely responsible for system maintenance and water quality but are often unaware of common issues and lack access to objective information. We report on the development and evaluation of the Virginia Household Water Quality Program (VAHWQP, an ongoing Virginia Cooperative Extension (VCE program that provides affordable water testing and education about private water supply system maintenance and groundwater protection. A companion capacity-building program, the Virginia Master Well Owner Network (VAMWON, provides training to volunteers, agency collaborators, and VCE agents who support the goals and objectives of the VAHWQP by conducting VAHWQP drinking water clinics and other outreach efforts. Program assessment findings indicate that VAHWQP drinking water clinic participants regard this programming favorably and are taking recommended actions. We discuss the program assessment framework and continued efforts to improve these programs to achieve long-term behavioral changes regarding water testing and system maintenance, which will yield safer private water supplies and improved environmental stewardship.

  12. Flexible manufacturing system (FMS) evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Setter, D.L.

    1993-02-01

    The applicability of the flexible manufacturing system (FMS) concept to automate machining and inspecting a family of stainless steel and aluminum hardware for electrical components has been evaluated. FMS was found to be appropriate and justifiable and a project was initiated to purchase and implement an FMS system. System specifications and procurement methodologies were developed that resulted in a conventional competitive bid procurement A proposal evaluation technique was developed consisting of 40% price, 40% technical compliance, and 20% supplier management capabilities.

  13. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  14. 24 CFR 3280.609 - Water distribution systems.

    Science.gov (United States)

    2010-04-01

    ..., and bathtub and/or shower shall be provided with a hot water supply system including a listed water... to the manufactured home or water supply piping. When a master cold water shutoff full flow valve is... screw piping shall be less than 1/2 inch iron pipe size. (2) Sizing procedure. Both hot and cold water...

  15. Progress of the Water Cooling System for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-guo; WU; Long-cheng; LIU; Geng-guo

    2013-01-01

    The water cooling system for CYCIAE-100 has achieved a significant progress in 2013,its progress can be summarized as follows:1)The deionized water production equipment and the main circulating water cooling unit are installed and tested.2)The circulating water cooling unit for high power target and circulating water cooling unit for vacuum helium compressor are installed and tested.

  16. The Evaluation of Automated Systems

    Science.gov (United States)

    2007-11-02

    enable mission focused planning. This technology package was named, Distributed Analysis and Visualization Infrastructure for C4I, Da Vinci . Viecore...commanders and staffs to focus on the higher-level concepts.29 Originally, Viecore developed the Da Vinci technology as a self-contained application...the Division Capstone Exercise (DCX). The Da Vinci technology using the new operating system was called CAPES. The CAPES Reference Manual

  17. Computerized ultrasound risk evaluation system

    Science.gov (United States)

    Duric, Nebojsa; Littrup, Peter J.; Holsapple, III, Earle; Barter, Robert Henry; Moore, Thomas L.; Azevedo, Stephen G.; Ferguson, Sidney W.

    2007-10-23

    A method and system for examining tissue are provided in which the tissue is maintained in a position so that it may be insonified with a plurality of pulsed spherical or cylindrical acoustic waves. The insonifying acoustic waves are scattered by the tissue so that scattered acoustic radiation including a mix of reflected and transmitted acoustic waves is received. A representation of a portion of the tissue is then derived from the received scattered acoustic radiation.

  18. Analysis on Systematic Water Scarcity Based on Establishment of Water Scarcity Classification System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    It would be very helpful for making countermeasures against complex water scarcity by analysis on systematic water scarcity.Based on the previous researches on water scarcity classification,a classification system of water scarcity was established according to contributing factors,which comprises three water scarcity categories caused by anthropic factors,natural factors and mixed factors respectively.Accordingly,the concept of systematic water scarcity was proposed,which can be defined as one type of water...

  19. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  20. Evaluation of actions for better water supply and demand management in Fayoum, Egypt using RIBASIM

    Directory of Open Access Journals (Sweden)

    Mohie M. Omar

    2013-10-01

    Full Text Available Fayoum Governorate faces many water-related challenges being; compensating the water shortage and controlling the volumes of drainage water effluents into Quarun Lake. There are many actions, based on water resources management approach, which can help overcome these water-related challenges. These actions are classified to developing additional water resources (supply management, and properly using the existing water resources (demand management. This study investigates using the RIBASIM (RIver BAsin SIMulation model, the most suitable actions for the future. RIBASIM was used to simulate the current condition and evaluate various scenarios in 2017 based on different actions. Three scenarios were formulated being optimistic, moderate, and pessimistic which represent different implementation rates of the tested actions. RIBASIM results indicated a water shortage of 0.59, 1, and 1.85 Billion Cubic Meter (BCM/year, for the simulated scenarios, respectively. Since Fayoum is a miniature of Egypt with respect to both, the natural and water resources systems, the results of this study can be used as guidelines for optimization of the water resources system in Egypt.

  1. Financial tools to induce cooperation in power asymmetrical water systems

    Science.gov (United States)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2017-04-01

    In multi-purpose water systems, power asymmetry is often responsible of inefficient and inequitable water allocations. Climate Change and anthropogenic pressure are expected to exacerbate such disparities at the expense of already disadvantaged groups. The intervention of a third party, charged with redefining water sharing policies to give greater consideration to equity and social justice, may be desirable. Nevertheless, to be accepted by private actors, this interposition should be coupled with some form of compensation. For a public agency, compensation measures may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are subject to uncertainty. In this context, index based insurance contracts may represent a viable alternative option and reduce the cost of achieving socially desirable outcomes. In this study we explore soft measures to achieve global change mitigation by designing a hybrid coordination mechanism composed of i) a direct normative constraint and ii) an indirect financial compensatory tool. The performance of an index-based insurance (i.e. hedging) contract to be used as a compensation tool is evaluated relative to more traditional alternatives. First, the performance of the status quo system, or baseline (BL), is contrasted to an idealized scenario in which a central planner (CP) maximizes global efficiency. Then, the CP management is analyzed in order to identify an efficient water rights redistribution to be legally imposed on the advantaged stakeholders in the BL scenario. Finally, a hedging contract is designed to compensate those stakeholders more negatively affected by the legal constraint. The approach is demonstrated on a multi-purpose water system in Italy, where different decision makers individually manage the same resource. The system is characterized by a manifest power asymmetry: the upstream users, i.e., hydropower companies, are free to release their stored water in time

  2. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the distribut

  3. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  4. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  5. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  6. Evaluation of a method to measure water content in porous media by employing ultrasound

    Directory of Open Access Journals (Sweden)

    Luis Leonardo Sáenz Cruz

    2010-06-01

    Full Text Available A method to measure water content in porous media, such as solis and grains, was developed as a real time nondestructive test. The method was based on piezoelectric ultrasonic transducers as a sensor system. Transmiters and receivers was developed to administrate the sensors system and ultrasonic signal. Transmiters and receivers are placed facing each other and located inside the porous media 10 cm apart. The method was evaluated in two porous meda, namely a column 30 cm coarse sand and a paddy rice variety Fedearroz 50, in order to evaluate the sensors system performance in two different porous media with different water holder capacity. Tools were developed for data acquisition, capacity of 16 analog signal, 12 bits resolution. Electronic circuits, C++ OPP programming and Matlab were used. The results showed a monotonically increment of millivolts as a response of the transducer as the water content was decreasing

  7. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.

    1984-11-01

    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.

  8. Inactivation of protozoan parasites in food, water, and environmental systems.

    Science.gov (United States)

    Erickson, Marilyn C; Ortega, Ynes R

    2006-11-01

    Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.

  9. Design Considerations for Hydropower Development In a Water Distribution System

    Institute of Scientific and Technical Information of China (English)

    DavidP.Chamberlain; EdStewart; Fei-FanYeh; MichaelT.Stift

    2004-01-01

    Installation of a hydraulic turbine in a water distribution system involving long pipeline reaches requires several unique design considerations. For a fixed speed unit, the selection of design points for head and flow needs to be optimized to provide an operating envelope that would maximize the return on the investment given the widely varied flow and pressure conditions imposed by the water distribution system. The selection of a turbine design speed is essential in facilitating runner design, which must minimize the hydraulic pressure transients on turbine runaway that may result in overstressing the existing pipelines. Method and approach to evaluate these considerations are outlined. Relevant results for the selected design are presented using the 4.3 MW Rancho Penasquitos Pressure Control/Hydroelectric Facility as an illustrative example. Licensing requirements for small inline hydroelectric facilities are also briefly discussed.

  10. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the ...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases.......This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from...... the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...

  11. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  12. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  13. How to Evaluate Integrated Library Automation Systems.

    Science.gov (United States)

    Powell, James R.; Slach, June E.

    1985-01-01

    This paper describes methodology used in compiling a list of candidate integrated library automation systems at a corporate technical library. Priorities for automation, identification of candidate systems, the filtering process, information for suppliers, software and hardware considerations, on-site evaluations, and final system selection are…

  14. Earth orbital teleoperator visual system evaluation program

    Science.gov (United States)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  15. Long-term evaluation of the performance of four point-of-use water filters.

    Science.gov (United States)

    Pérez-Vidal, Andrea; Diaz-Gómez, Jaime; Castellanos-Rozo, Jose; Usaquen-Perilla, Olga Lucía

    2016-07-01

    Despite technological advances water supply quality and poor access to safe water remain a major problem in developing countries, especially in rural areas. Point-of-use (POU) water treatment has been shown to be a viable option to produce safe drinking water quality. The aim of this study was to evaluate, under laboratory conditions over 14 months, the performance of four household filtration systems: membrane filter (MF), one-candle ceramic filter (1CCF), two-candle ceramic filter (2CCF) and pot ceramic filter (PCF). The evaluation was made using spiked water having the required concentrations of turbidity, Escherichia coli and Total Dissolved Solids (TDS). The results show that all systems have high removal efficiencies for turbidity (98-99%), and E. coli 4-5 Log Reduction Value (LRV). The poorest efficiency was for TDS (9-18%). The MF and the CCF displayed no significant difference in efficiencies for these parameters. The PCF had less significant differences for turbidity removal than the other systems. The average filtration rate for all systems decreased during the operation time. The CPF showed the major potential to be used in rural communities mainly for its low operational level and maintenance requirements as well as its local craftsmanship. It was observed that the efficiency of the systems is highly sensitive to cleaning and maintenance activities and therefore, the system sustainability will depend considerably on the training and education of the potential users.

  16. Water use and water availability constraints to decarbonised electricity systems

    Science.gov (United States)

    Byers, Edward; Qadrdan, Meysam; Hall, Jim; Amezaga, Jaime; Chaudry, Modassar; Kilsby, Chris; Martino, Tran; Alderson, David

    2016-04-01

    Analysis of numerous low carbon electricity strategies have been shown to have very divergent water requirements, normally needed for cooling of thermoelectric power stations. Our regional river-basin scale analysis of water use for future UK electricity strategies shows that, whilst in the majority of cases freshwater use is expected to decline, pathways with high levels of carbon capture and storage (CCS) will result in significantly elevated and concentrated water demands in a few key river basins. Furthermore, these growing demands are compared to both current water availability, and our expected regional water availability under the impacts of climate change. We identify key freshwater constraints to electricity strategies with high levels of CCS and show how these risks may be mitigated with higher levels of hybrid cooling and alternative cooling water sources.

  17. Risk indicators for water supply systems for a drought Decision Support System in central Tuscany (Italy)

    Science.gov (United States)

    Rossi, Giuseppe; Garrote, Luis; Caporali, Enrica

    2010-05-01

    Identifying the occurrence, the extent and the magnitude of a drought can be delicate, requiring detection of depletions of supplies and increases in demand. Drought indices, particularly the meteorological ones, can describe the onset and the persistency of droughts, especially in natural systems. However they have to be used cautiously when applied to water supply systems. They show little correlation with water shortage situations, since water storage, as well as demand fluctuation, play an important role in water resources management. For that reason a more dynamic indicator relating supply and demand is required in order to identify situations when there is risk of water shortages. In water supply systems there is great variability on the natural water resources and also on the demands. These quantities can only be defined probabilistically. This great variability is faced defining some threshold values, expressed in probabilistic terms, that measure the hydrologic state of the system. They can identify specific actions in an operational context in different levels of severity, like the normal, pre-alert, alert and emergency scenarios. They can simplify the decision-making required during stressful periods and can help mitigate the impacts of drought by clearly defining the conditions requiring actions. The threshold values are defined considering the probability to satisfy a given fraction of the demand in a certain time horizon, and are calibrated through discussion with water managers. A simplified model of the water resources system is built to evaluate the threshold values and the management rules. The threshold values are validated with a long term simulation that takes into account the characteristics of the evaluated system. The levels and volumes in the different reservoirs are simulated using 20-30 years time series. The critical situations are assessed month by month in order to evaluate optimal management rules during the year and avoid conditions

  18. Commercial double-indicator-dilution densitometer using heavy water: Evaluation in oleic-acid pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Leksell, L.G.; Schreiner, M.S.; Sylvestro, A.; Neufeld, G.R. (Univ. of Pennsylvania School of Medicine, Philadelphia (USA))

    1990-04-01

    We evaluated a commercially available, double-indicator-dilution densitometric system for the estimation of pulmonary extravascular water volume in oleic acid-induced pulmonary edema. Indocyanine green and heavy water were used as the nondiffusible and diffusible tracers, respectively. Pulmonary extravascular water volume, measured with this system, was 67% of the gravimetric value (r = 0.91), which was consistent with values obtained from the radioisotope methods. The measured volume was not influenced by changes in cardiac index over a range of 1 to 4 L.min.m2. This system is less invasive than the thermal-dye technique and has potential for repeated clinical measurements of pulmonary extravascular lung water and cardiac output.

  19. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  20. Evaluation of the NucleDyne Passive Containment System

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, W. J.; Coleman, J. H.; Merrell, W. W.

    1981-04-01

    This reports contains: (1) an evaluation by Gilbert/Commonwealth (G/C) of the NucleDyne passive Containment System (PCS) as that conceptual design is applied to a Westinghouse, two loop, Pressurized Water Reactor; (2) an evaluation by Westinghouse of two questions about the impact of the PCS on the Nuclear Steam Supply System (NSSS), which were posed by G/C and best answered by an NSSS vendor; and (3) replies to both the Gilbert/Commonwealth report and the Westinghoue report by NucleDyne Engineering Corporation.