WorldWideScience

Sample records for water surface tension

  1. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  2. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  3. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  4. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics

    Science.gov (United States)

    Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.

    2017-06-01

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  5. Effects of surface tension on tray point efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.X.; Afacan, A.; Chuang, K.T. (Alberta Univ., Edmonton, AB (Canada))

    1994-08-01

    Sieve tray efficiencies for the distillation of methanol/water, acetic acid/water, and cyclohexane/n-heptane mixtures were measured as a function of composition under fixed vapor and liquid rates in a 0.15 m diameter distillation column. The three binary distillation systems used in the study had a wide range of surface tensions measured as a function of composition. From the efficiencies measured, the number of vapor- and liquid-phase transfer units (Ng and Nl) was determined and the effects of surface tension on Ng and Nl were identified. To further verify the results obtained from the distillation column, bubble sizes in froths for air/water, air/methanol, and air/(water + surfactant) systems with different surface tensions were measured. The results show that surface tension has a significant effect on tray efficiency and the number of transfer units. Bubble sizes in the tray froths were mainly determined by surface tension, and bubble breakup and coalescence occur in the froths. 45 refs., 15 figs., 1 tab.

  6. Surface tension of H2O and D2O

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.

    1975-01-01

    There is a great number of works on surface tension of clean water (H 2 O) at temperatures up to 100 deg C and very few above the boiling point. Works on surface tension of heavy water (D 2 O) are insufficient. A review of works on surface tension of both kinds of water is given

  7. Spreading of oil on water in the surface-tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.; Berg, J.C.

    1987-11-01

    Data which describe the unidirectional spreading of several pure oils and oil-surfactant mixtures on water in the surface-tension regime are reported. Leading-edge position and profiles of velocity, thickness and film tension are given as functions of time. The data are consistent with the numerical similarity solution of Foda and Cox (1980), although the measured dependence of the film tension on the film thickness often differs from the equilibrium relationship. The configuration of the oil film near the spreading origin may be either a coherent multimolecular layer or a multitude of thinning, outward-moving lenses surrounded by monolayer. The pure oils show an acceleration zone connecting the slow-moving inner region to a fast-moving outer region, while the oil-surfactant mixtures show a much more gradual increase in film velocity.

  8. Measurement for Surface Tension of Aqueous Inorganic Salt

    Directory of Open Access Journals (Sweden)

    Jiming Wen

    2018-03-01

    Full Text Available Bubble columns are effective means of filtration in filtered containment venting systems. Here, the surface tension has a significant influence on bubble size distribution and bubble deformation, which have a strong impact on the behavior of the bubble column. The influence of aqueous inorganic compounds on the surface tension depends on the electrolytic activity, Debye length, entropy of ion hydration, and surface deficiencies or excess. In this work, the surface tensions of same specific aqueous solutions have been measured by different methods including platinum plate method, platinum ring method, and maximum bubble pressure method. The measured surface tensions of both sodium hydroxide and sodium thiosulfate are less than that of water. As solution temperature ranges from 20 to 75°C, the surface tension of 0.5 mol/L sodium hydroxide solution decreases from 71 to 55 mN/m while that of 1 mol/L solution decreases from 60 to 45 mN/m. Similarly during the same temperature range, the surface tension of 0.5 mol/L sodium thiosulfate decreases from 70 to 38 mN/m, and that of 1 mol/L sodium thiosulfate is between 68 and 36 mN/m. The analysis for the influence mechanism of aqueous inorganic on surface tension is provided. In addition, experimental results show that the surface tension of solid aerosol suspension liquid has no obvious difference from that of distilled water.

  9. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  10. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  11. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  12. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  13. Generation of Recommendable Values for the Surface Tension of Water Using a Nonparametric Regression

    Czech Academy of Sciences Publication Activity Database

    Pátek, Jaroslav; Součková, Monika; Klomfar, Jaroslav

    2016-01-01

    Roč. 61, č. 2 (2016), s. 928-935 ISSN 0021-9568 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : water * surface tension * experimental data * recommended data Subject RIV: BJ - Thermodynamics Impact factor: 2.323, year: 2016

  14. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  15. Surface tension of compositions of polyhexametyleneguanidine hydrochloride - surfactants

    Directory of Open Access Journals (Sweden)

    S. Kumargaliyeva

    2012-12-01

    Full Text Available We made up songs bactericidal polyhexamethyleneguanidine hydrochloride (metacyde with the surface-active substances - anionic sodium dodecylsulfate, cationic cetylpyridinium bromide, and nonionic Tween-80 and measured the surface tension of water solutions. The study showed that the composition metacyde with surface-active agents have a greater surface activity than the individual components.

  16. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  17. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  18. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  19. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    journal of. May 2005 physics pp. 785–801. Classical charged fluids at equilibrium near ... is provided by the excess surface tension for an air–water interface, which is determined ... the potential drop created by the electric layer which appears as soon as the fluid has ...... radii, by symmetry, the charge density profile is flat,.

  20. Density and surface tension of ionic liquids.

    Science.gov (United States)

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.

  1. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.

    Science.gov (United States)

    Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben

    2017-08-22

    A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.

  2. A micro surface tension pump (MISPU) in a glass microchip.

    Science.gov (United States)

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  3. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation

    Science.gov (United States)

    Leong, Kai-Yang; Wang, Feng

    2018-04-01

    The surface tension of nanoscale droplets of water was studied with molecular dynamics simulations using the BLYPSP-4F water potential. The internal pressure of the droplet was measured using an empirical correlation between the pressure and density, established through a series of bulk simulations performed at pressures from 1 to 1000 bars. Such a procedure allows for reliable determination of internal pressure without the need to calculate the local virial. The surface tension, estimated with the Young-Laplace relation, shows good agreement with the Tolman equation with a Tolman length of -0.48 Å. The interface of a liquid water droplet is shown to be around 1.1-1.3 nm thick depending on radii. The fairly thick interface region puts a lower limit on the size of droplets that still have a bulk-like interior.

  4. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  5. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  6. Interfacial tension and wettability in water-carbon dioxide systems: Experiments and self-consistent field modeling

    NARCIS (Netherlands)

    Banerjee, S.; Hassenklover, E.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    This paper presents experimental and modeling results on water–CO2 interfacial tension (IFT) together with wettability studies of water on both hydrophilic and hydrophobic surfaces immersed in CO2. CO2–water interfacial tension (IFT) measurements showed that the IFT decreased with increasing

  7. On relation between the quark-gluon bag surface tension and the colour tube string tension

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Zinovjev, G.M.

    2010-01-01

    We revisit the bag phenomenology of deconfining phase transition aiming to replenish it by introducing systematically the bag surface tension. Comparing the free energies of such bags and the strings confining the static quark-antiquark pair, we express the string tension in terms of the bag surface tension and the bulk pressure in order to estimate the bag characteristics using the lattice QCD (LQCD) data. Our analysis of the bag entropy density demonstrates that the surface tension coefficient is amazingly negative at the cross-over (continuous transition). The approach developed allows us to naturally account for an origin of a pronounced maximum (observed in the LQCD studies) in the behaviour of heavy quark-antiquark pair entropy. The vicinity of the (tri-)critical endpoint is also analyzed to clarify the meaning of vanishing surface tension coefficient.

  8. Surface tension of liquid Al-Cu binary alloys.

    OpenAIRE

    Schmitz, Julianna; Brillo, Jürgen; Egry, Ivan; Schmid-Fetzer, Rainer

    2009-01-01

    Surface tension data of liquid Al–Cu binary alloys have been measured contactlessly using the technique of electromagnetic levitation. A digital CMOS-camera (400 fps) recorded image sequences of the oscillating liquid sample and surface tensions were determined from analysis of the frequency spectra. Measurements were performed for samples covering the entire range of composition and precise data were obtained in a broad temperature range. It was found that the surface tensions can ...

  9. Surface tension in soap films: revisiting a classic demonstration

    International Nuclear Information System (INIS)

    Behroozi, F

    2010-01-01

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  10. Surface tension in soap films: revisiting a classic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States)], E-mail: behroozi@uni.edu

    2010-01-15

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  11. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  12. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  13. The law of corresponding states and surface tension of metals

    International Nuclear Information System (INIS)

    Digilov, R.

    2001-01-01

    Full Text: Surface tension of liquid metals is one of fundamental and most important quantities in theory and practice of material processing and its temperature dependence leads to the well-known Marangoni convection. Although currently methods are sufficiently precise to measure the surface tension, there are uncertainties in experimental data and its temperature dependence mainly due to impurity, which even a trace of it strongly affects the results of measurements. The theoretical treatment from the first principles is unwieldy and not always permits one to calculate the surface tension with certainty. Another active research field deals with empirical correlation between the surface tension and bulk thermodynamic properties, which we interpret as a simple consequence of the law of corresponding states. In order to relate the surface tension and to bulk properties of liquid metals the reduced formula is derived by scaling with the melting point T m (0) at p = 0 and atomic volume Ω 0 2/3 at T = 0 K as macroscopic parameters for scaling ε and a characterizing the interatomic potential in metals. The reduced surface tension and the reduced surface entropy obtained in high temperature limit are discussed and compared with the experiment. The reduced temperature coefficient of the surface tension found is a universal constant for the metals of the same structure. It is shown that pressure dependence of the surface tension, so called baric coefficient of the surface tension, can be described by pressure dependence of scaling parameters T m (p) and Ω 0 (p). (author)

  14. Effect of electrolytes on surface tension and surface adsorption of 1-hexyl-3-methylimidazolium chloride ionic liquid in aqueous solution

    International Nuclear Information System (INIS)

    Ghasemian, Ensieh; Najafi, Mojgan; Rafati, Amir Abbas; Felegari, Zahra

    2010-01-01

    Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C 6 mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (A min ) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C 6 mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I - > Br - > Cl - for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.

  15. Tensioned Fabric Structures with Surface in the Form of Chen-Gackstatter

    Directory of Open Access Journals (Sweden)

    Yee Hooi Min

    2016-01-01

    Full Text Available Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and prestress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Chen-Gackstatter. Computational form-finding using nonlinear analysis method is used to determine the Chen-Gackstatter form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Chen-Gackstatter applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface.

  16. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Science.gov (United States)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  17. Modeling of surface tension effects in venturi scrubbing

    Science.gov (United States)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  18. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  19. A Computational Study of Richtmyer-Meshkov Instability with Surface Tension

    Science.gov (United States)

    Francois, Marianne; Velechovsky, Jan; Jibben, Zach; Masser, Thomas; LANL Collaboration

    2017-11-01

    We have added the capability to model surface tension in our adaptive mesh refinement compressible flow solver, xRage. Our surface tension capability employs the continuum surface force to model surface tension and the height function method to compute curvatures. We have verified our model implementation for the static and oscillating droplets test cases and the linear regime of the Rayleigh-Taylor instability. With this newly added capability, we have performed a numerical study of the effects of surface tension on single-mode and multi-mode Richtmyer-Meshkov instability. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52 - 06NA25396.

  20. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  1. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H [Toyo Construction Co. Ltd., Tokyo (Japan)

    1997-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  2. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  3. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  4. Surface tension and density of Si-Ge melts

    Science.gov (United States)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  5. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  6. The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature

    International Nuclear Information System (INIS)

    Maroto, J A; Nieves, F J de las; Quesada-Perez, M

    2004-01-01

    A classical experience in a physics student laboratory is to determine the surface tension of a liquid versus the temperature and to check the linear appearance of the obtained graph. In this work we show a simple method to estimate the critical temperature of three liquids by using experimental data of surface tension at different temperatures. By a logarithm fitting between surface tension and temperature, the critical temperature can be determined and compared with data from the literature. For two liquids (butanol and nitrobenzene) the comparison is acceptable but the differences are too high for the third liquid (water). By discussing the results it seems to be clear that the difference between the critical temperature of the liquid and the maximum temperature of the surface tension measurements is the determining factor in obtaining acceptable results. From this study it is possible to obtain more information on the liquid characteristics from surface tension measurements that are currently carried out in a student laboratory. Besides, in this paper it is shown how to select the most suitable liquids which provide both acceptable values for the critical temperature and measurements of the surface tension at moderate temperatures. The complementary use of numerical methods permits us to offer a complete experience for the students with a simple laboratory experiment which we recommend for physics students in advanced university courses

  7. Account for the surface tension in hydraulic modeling of the weir with a sharp threshold

    Directory of Open Access Journals (Sweden)

    Medzveliya Manana Levanovna

    Full Text Available In the process of calculating and simulating water discharge in free channels it is necessary to know the flow features in case of small values of Reynolds and Weber numbers. The article considers the influence of viscosity and surface tension on the coefficient of a weir flow with sharp threshold. In the article the technique of carrying out experiments is stated, the equation is presented, which considers the influence of all factors: pressure over a spillway threshold, threshold height over a course bottom, speed of liquid, liquid density, dynamic viscosity, superficial tension, gravity acceleration, unit discharge, the width of the course. The surface tension and liquid density for the applied liquids changed a little. In the rectangular tray (6000x100x200 spillway with a sharp threshold was established. It is shown that weir flow coefficient depends on Reynolds number (in case Re < ~ 2000 and Webers number. A generalized expression for determining weir flow coefficient considering the influence of the forces of viscosity and surface tension is received.

  8. Prediction of surface tension of binary mixtures with the parachor method

    Directory of Open Access Journals (Sweden)

    Němec Tomáš

    2015-01-01

    Full Text Available The parachor method for the estimation of the surface tension of binary mixtures is modified by considering temperature-dependent values of the parachor parameters. The temperature dependence is calculated by a least-squares fit of pure-solvent surface tension data to the binary parachor equation utilizing the Peng-Robinson equation of state for the calculation of equilibrium densities. A very good agreement between experimental binary surface tension data and the predictions of the modified parachor method are found for the case of the mixtures of carbon dioxide and butane, benzene, and cyclohexane, respectively. The surface tension is also predicted for three refrigerant mixtures, i.e. propane, isobutane, and chlorodifluoromethane, with carbon dioxide.

  9. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    Science.gov (United States)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  10. Quantum surface tension in ideal gases

    International Nuclear Information System (INIS)

    Sisman, A.

    2005-01-01

    Due to wave character of atoms, an ideal gas confined in a finite domain exhibits Casimir like size effects. These effects become appreciable in a domain with at least one dimension in the order of micron. On this scale, thermodynamic state functions of an ideal gas become shape and size dependent and some new effects appear. In the literature, only some domains of regular shapes have been considered. In this study, the results are generalized to a domain of an arbitrary shape by using Weyl s conjecture for density of states. It is seen that free energy expression of an ideal Maxwellian gas consists of a classical volume dependent term and also a quantum originated surface dependent term, which causes a quantum surface tension. In a rectangular box filled by an ideal gas and separated by a movable wall into two parts, it is shown that a lateral force appears on the movable wall due to quantum surface tension

  11. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    International Nuclear Information System (INIS)

    Mulero, A; Galan, C; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs

  12. Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants.

    Science.gov (United States)

    Mohammed, I U; Deeni, Y; Hapca, S M; McLaughlin, K; Spiers, A J

    2015-01-01

    Bacteria produce a variety of biosurfactants capable of significantly reducing liquid (aqueous) surface tension (γ) with a range of biological roles and biotechnological uses. To determine the lowest achievable surface tension (γMin ), we tested a diverse collection of Pseudomonas-like isolates from contaminated soil and activated sludge and identified those expressing biosurfactants by drop-collapse assay. Liquid surface tension-reducing ability was quantitatively determined by tensiometry, with 57 isolates found to significantly lower culture supernatant surface tensions to 24·5-49·1 mN m(-1) . Differences in biosurfactant behaviour determined by foaming, emulsion and oil-displacement assays were also observed amongst isolates producing surface tensions of 25-27 mN m(-1) , suggesting that a range of structurally diverse biosurfactants were being expressed. Individual distribution identification (IDI) analysis was used to identify the theoretical probability distribution that best fitted the surface tension data, which predicted a γMin of 24·24 mN m(-1) . This was in agreement with predictions based on earlier work of published mixed bacterial spp. data, suggesting a fundamental limit to the ability of bacterial biosurfactants to reduce surface tensions in aqueous systems. This implies a biological restriction on the synthesis and export of these agents or a physical-chemical restriction on their functioning once produced. Numerous surveys of biosurfactant-producing bacteria have been conducted, but only recently has an attempt been made to predict the minimum liquid surface tension these surface-active agents can achieve. Here, we determine a theoretical minimum of 24 mN m(-1) by statistical analysis of tensiometry data, suggesting a fundamental limit for biosurfactant activity in bacterial cultures incubated under standard growth conditions. This raises a challenge to our understanding of biosurfactant expression, secretion and function, as well as

  13. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  14. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig; Zheng, Wen; Fedkiw, Ronald

    2012-01-01

    -implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension

  15. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  16. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer

    International Nuclear Information System (INIS)

    Dilmohamud, B A; Seeneevassen, J; Rughooputh, S D D V; Ramasami, P

    2005-01-01

    An apparatus was devised using the Traube Stalagmometer for the determination of the surface tension of the alcohols methanol, ethanol, propan-1-ol and butan-1-ol. Measurements were made under atmospheric pressure at temperatures between 288.15 K and 313.15 K. The surface tension values were correlated with temperature and surface thermodynamic parameters, namely surface entropy and surface enthalpy, were also calculated. The results obtained are in agreement with the literature and they are promising for the use of this low cost arrangement for accurate measurement of surface tension. Surface tension values were obtained with a maximum error of 0.5 mN m -1 and a maximum standard deviation of 0.8 mN m -1 . We recommend this arrangement for students in advanced university courses and it can also be used for research work

  17. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  18. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  19. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  20. Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Khattab

    2017-02-01

    Full Text Available Density, viscosity, surface tension and molar volume of propylene glycol + water mixtures at 293, 298, 303, 308, 313, 318, and 323 K are reported, compared with the available literature data and the Jouyban–Acree model was used for mathematical correlation of the data. The mean relative deviation (MRD was used as an error criterion and the MRD values for data correlation of density, viscosity, surface tension and molar volume at different investigated temperatures are 0.1 ± 0.1%, 7.6 ± 6.4%, 3.4 ± 3.7%, and 0.4 ± 0.4%, respectively. The corresponding MRDs for the predicted properties after training the model using the experimental data at 298 K are 0.1 ± 0.2%, 12.8 ± 9.3%, 4.7 ± 4.1% and 0.6 ± 0.5%, respectively for density, viscosity, surface tension, and molar volume data.

  1. Effect of Vegetable Oils on the Surface Tension, Diffusion and Efficiency of Sethoxydim to Control Wild oat (Avena ludoviciana Durieu.

    Directory of Open Access Journals (Sweden)

    H. Hammami

    2017-08-01

    Full Text Available Introduction: During last century, population explosion has been pressing man to produce more supplies of food by consuming more energy in agroecosystems like applying chemical management strategies. herbicides have increasingly become a key component of weed management programs. In Iran, using herbicides led to increasing wheat yield about 20% and 22% in rainfed and irrigated farms respectively (20. Nonetheless, herbicides have also a negative impact on environment. A tool for reducing the herbicide usage which allows to decreasing their cost and side effects is the use of adjuvants. They increase the effectiveness of the post-emergence herbicides. Some adjuvants have toxic effects on living organisms such as Polyethoxylated tallowamine adjuvants that they are very toxic in fairy shrimp (Thamnocephalus platyurus (6. Vegetable oils are not phytotoxic and likely are degraded and metabolized quickly in the environment (8. Sethoxydim is an acetyl coenzyme A carboxylase (ACCase inhibitor that is considered to be a key enzyme in lipid biosynthesis. Similar to other foliar applied herbicides, it need to be associated with an adjuvant for more effective control. Vegetable oils can be developed characteristics of sethoxydim solution such as surface tension and spry drop diffusion. Therefore, the objective of this research is to determine the effect of vegetable oils on the surface tension, diffusion and efficiency of sethoxydim to control wild oat (Avena ludoviciana Durieu.. Materials and Metods: To evaluate the effect of vegetable oils on properties of sethoxydim solution, a series of experiments were separately conducted at Ferdowsi University of Mashhad and Khorasan Science and Technology Park in 2012. For evaluating the effect of vegetable oils on surface tension of distilled water and sethoxydim solution and the sethoxydim efficiency on wild oat control, three experiments were conducted as factorial based on completely randomized design. In other

  2. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Pan; Du, LeiXia; Fu, Dong

    2014-01-01

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF 4 ])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF 4 ]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  3. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Science.gov (United States)

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  4. Investigations of surface-tension effects due to small-scale complex boundaries

    Science.gov (United States)

    Feng, Jiansheng

    In this Ph.D. dissertation, we have investigated some important surface-tension phenomena including capillarity, wetting, and wicking. We mainly focus on the geometric aspects of these problems, and to learn about how structures affect properties. . In the first project (Chapter 2), we used numerical simulations and experiments to study the meniscus of a fluid confined in capillaries with complicated cross-sectional geometries. In the simulations, we computed the three-dimensional shapes of the menisci formed in polygonal and star-shaped capillaries with sharp or rounded corners. Height variations across the menisci were used to quantify the effect of surface tension. Analytical solutions were derived for all the cases where the cross-sectional geometry was a regular polygon or a regular star-shape. Power indices that characterize the effects of corner rounding were extracted from simulation results. These findings can serve as guide for fabrications of unconventional three-dimensional structures in Capillary Force Lithography experiments. Experimental demonstrations of the working principle was also performed. Although quantitative matching between simulation and experimental results was not achieved due to the limitation of material properties, clear qualitative trends were observed and interesting three-dimensional nano-structures were produced. A second project (Chapter 3) focused on developing techniques to produce three-dimensional hierarchically structured superhydrophobic surfaces with high aspect ratios. We experimented with two different high-throughput electron-beam-lithography processes featuring single and dual electron-beam exposures. After a surface modification procedure with a hydrophobic silane, the structured surfaces exhibited two distinct superhydrophobic behaviors---high and low adhesion. While both types of superhydrophobic surfaces exhibited very high (approximately 160° water advancing contact angles, the water receding contact angles on

  5. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  6. Surface tension mediated conversion of light to work

    Science.gov (United States)

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  7. The Equilibrium Spreading Tension of Pulmonary Surfactant

    OpenAIRE

    Dagan, Maayan P.; Hall, Stephen B.

    2015-01-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...

  8. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  9. Density functional theory of simple polymers in a slit pore. III. Surface tension

    International Nuclear Information System (INIS)

    Hooper, Justin B.; McCoy, John D.; Curro, John G.; Swol, Frank van

    2000-01-01

    In a previous study of tangent hard-site chains near a surface, the inhomogeneous density profiles were found through density functional theory. In the current study, the surface tensions of these systems are found from the results of the previous study through a thermodynamic integration. The calculated surface tensions are then compared to those found directly through computer simulation. Both the surface tension and surface excess for polymeric systems are shown to differ qualitatively from those of atomic systems, although certain similarities are seen at high densities. (c) 2000 American Institute of Physics

  10. Generalized surface tension bounds in vacuum decay

    Science.gov (United States)

    Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.

    2018-02-01

    Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.

  11. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  12. Using the surface tension to estimate the condensate density of superfluid 4He

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1983-01-01

    Distortion of the condensate wavefunction at the free surface of superfluid 4 He contributes to the surface tension in proportion to the condensate fraction n 0 (T). Using this to resolve the present discrepancy between the measured and predicted temperature dependencies of the surface tension gives n 0 (T) in good agreement with results from neutron and x-ray scattering measurements. This picture is also consistent with the measured 3 He- 4 He interfacial tension

  13. Surface Tension Measurements with a Smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-01-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept…

  14. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  15. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  16. Reducing surface tension in endodontic chelator solutions has no effect on their ability to remove calcium from instrumented root canals.

    Science.gov (United States)

    Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick

    2005-08-01

    The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).

  17. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  18. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    Science.gov (United States)

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  19. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  20. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  1. Temporal instability of viscous liquid microjets with spatially varying surface tension

    International Nuclear Information System (INIS)

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  2. Dynamical modeling of surface tension

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Kothe, D.B.

    1996-01-01

    In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed

  3. A waveless free surface flow past a submerged triangular obstacle in presence of surface tension

    Directory of Open Access Journals (Sweden)

    Hakima Sekhri

    2016-07-01

    Full Text Available We consider the Free surface flows passing a submerged triangular obstacle at the bottom of a channel. The problem is characterized by a nonlinear boundary condition on the surface of unknown configuration. The analytical exact solutions for these problems are not known. Following Dias and Vanden Broeck [6], we computed numerically the solutions via a series truncation method. These solutions depend on two parameters: the Weber number $\\alpha$ characterizing the strength of the surface tension and the angle $\\beta$ at the base characterizing the shape of the apex. Although free surface flows with surface tension admit capillary waves, it is found that solution exist only for values of the Weber number greater than $\\alpha_0$ for different configurations of the triangular obstacle.

  4. Activity coefficients, interfacial tensions and retention in reversed-phase liquid chormatography on LiChrosorb RP-18 with methanol-water mixtures

    NARCIS (Netherlands)

    Hammers, W.E.; Meurs, G.J.; Ligny, C.L. de

    1982-01-01

    Literature data on activity coefficients of various solutes in water, of some tetraalkyl compounds in methanol-water mixture and of water in organic solvents have been correlated with the product of the molecular surface area of the solute and the solute-solvent interfacial tension at ambient

  5. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  6. Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization

    International Nuclear Information System (INIS)

    Dallaston, Michael C; McCue, Scott W

    2013-01-01

    We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularize the ill-posedness arising from the viscous (Saffman–Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilizing the boundary, and kinetic undercooling destabilizing it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or ‘slit’ of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilizes the applicability of complex variable theory to Hele-Shaw flow. (paper)

  7. Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads

    International Nuclear Information System (INIS)

    Yan Hong; Wei Jiu-An; Cui Shu-Wen; Zhu Ru-Zeng

    2013-01-01

    The expressions of the radius and the surface tension of surface of tension R s and γ s in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first in the literature [Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering, 10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out. (condensed matter: structural, mechanical, and thermal properties)

  8. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  9. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  10. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  11. Surface tension and density of liquid In-Sn-Zn alloys

    Science.gov (United States)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  12. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  13. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  14. Surface Tension of Multi-phase Flow with Multiple Junctions Governed by the Variational Principle

    International Nuclear Information System (INIS)

    Matsutani, Shigeki; Nakano, Kota; Shinjo, Katsuhiko

    2011-01-01

    We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie et al. (J Comput Phys 113:134–147, 1994) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N-phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation for motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show the numerical computational results that for given surface tension coefficients, the contact angles are generated by the surface tension as results of balances of the kinematic energy and the surface energy.

  15. Axelrod's model with surface tension

    Science.gov (United States)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  16. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  17. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  18. A comment on "pH and the surface tension of water" (J. K. Beattie, A. M. Djerdjev, A. Gray-Weale, N. Kallay, J. Lutzenkirchen, T. Preocanin, A. Selmani, J. Colloid Interface Sci. 422 (2014) 54.)

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Tobias, D. J.

    2015-01-01

    Roč. 448, Jun 15 (2015), s. 593 ISSN 0021-9797 Institutional support: RVO:61388963 Keywords : surface tension * Gibbs adsorption equation * hydroxide * water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.782, year: 2015

  19. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    Science.gov (United States)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 point of the reduced functional is found by minimising it over its natural constraint set.

  20. Analytical description of concentration dependence of surface tension in multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  1. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  2. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  3. Two Surface-Tension Formulations For The Level Set Interface-Tracking Method

    International Nuclear Information System (INIS)

    Shepel, S.V.; Smith, B.L.

    2005-01-01

    The paper describes a comparative study of two surface-tension models for the Level Set interface tracking method. In both models, the surface tension is represented as a body force, concentrated near the interface, but the technical implementation of the two options is different. The first is based on a traditional Level Set approach, in which the surface tension is distributed over a narrow band around the interface using a smoothed Delta function. In the second model, which is based on the integral form of the fluid-flow equations, the force is imposed only in those computational cells through which the interface passes. Both models have been incorporated into the Finite-Element/Finite-Volume Level Set method, previously implemented into the commercial Computational Fluid Dynamics (CFD) code CFX-4. A critical evaluation of the two models, undertaken in the context of four standard Level Set benchmark problems, shows that the first model, based on the smoothed Delta function approach, is the more general, and more robust, of the two. (author)

  4. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    Science.gov (United States)

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface tension of a coal extract in an organic solvent; Sekitan chushutsu seibun no kaigo to hyomen choryoku

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Hayasaka, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    The behavior and properties of associated bodies were studied through measurement of surface tension considering acetone-soluble fraction relatively light among various solvent extracts of coal. In experiment, the acetone-soluble fraction was extracted from the substances extracted from Upper Freeport coal as standard specimen using the mixed solvent of carbon disulfide (CS2) and N-methyl-2-pyrrolidinone (NMP), and it was dissolved into NMP after drying. Surface tension was measured by Wilhelmy method. The experimental results are as follows. Equilibrium surface tension is equal to the surface tension of pure solvent in a low concentration range of solution, and decreases with an increase in concentration approaching a fixed value at 0 in log concentration, nearly showing an S curve. Adsorption of species with non-polar aromatic ring of the acetone-soluble fraction on a solution surface probably decreases surface tension. Change with time in surface tension is observed which suggests fast initial reaction and slow subsequent reaction. 4 figs.

  6. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  7. Liquid metal actuator driven by electrochemical manipulation of surface tension

    Science.gov (United States)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  8. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    Science.gov (United States)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  9. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed......) 2005 Elsevier Ltd. All rights reserved....

  10. Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance.

    Science.gov (United States)

    Alméras, Tancrède

    2008-10-01

    Tree stems shrink in diameter during the day and swell during the night in response to changes in water tension in the xylem. Stem shrinkage can easily be measured in a nondestructive way, to derive continuous information about tree water status. The relationship between the strain and the change in water tension can be evaluated by empirical calibrations, or can be related to the structure of the plant. A mechanical analysis was performed to make this relationship explicit. The stem is modeled as a cylinder made of multiple layers of tissues, including heartwood, sapwood, and inner and outer bark. The effect of changes in water tension on the apparent strain at the surface of a tissue is quantified as a function of parameters defining stem anatomy and the mechanical properties of the tissues. Various possible applications in the context of tree physiology are suggested.

  11. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    Science.gov (United States)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  12. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  13. Novel method for the simultaneous estimation of density and surface tension of liquids

    International Nuclear Information System (INIS)

    Thirunavukkarasu, G.; Srinivasan, G.J.

    2003-01-01

    The conventional Hare's apparatus generally used for the determination of density of liquids has been modified by replacing its vertical arms (glass tubes) with capillary tubes of 30 cm length and 0.072 cm diameter. When the columns of liquids are drawn through the capillary tubes with reduced pressure at the top of the liquid columns and kept at equilibrium with the atmospheric pressure acting on the liquid surface outside the capillary tubes, the downward pressure due to gravity of the liquid columns has to be coupled with the pressure arising due to the effect of surface tension of the liquids. A fresh expression for the density and surface tension of liquids has been arrived at while equating the pressure balancing system for the two individual liquid columns of the modified Hare's apparatus. The experimental results showed that the proposed method is precise and accurate in the simultaneous estimation of density and surface tension of liquids, with an error of less than 5%

  14. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig

    2012-02-01

    We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels. © 2011.

  15. Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene)

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2009-01-01

    Surface properties of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene) have been measured by surface tension method at T = 298.15 K and atmospheric pressure. Also, the surface tension has been predicted based on the Suarez method. This method combines a model for the description of surface tension of liquid mixtures with a group contribution method for the calculation of activity coefficient. The mean relative standard deviations obtained from the comparison of experimental (measured) and calculated surface tension values for the eight binary systems are less than 1.5%, which leads to concluding that the model shows a good accuracy in different situations in comparison with other predicted equations. In addition, the relative Gibbs adsorption and the surface mole fraction have been evaluated using this model. The surface tension deviations were calculated from experimental results and have been fitted to the Redlich-Kister type polynomial relation

  16. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory

    Science.gov (United States)

    Rehner, Philipp; Gross, Joachim

    2018-04-01

    The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius Rs, as δ(Rs) = δ0 + δ1/Rs, and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.

  17. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  18. Improvement of gas entrainment prediction method. Introduction of surface tension effect

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki; Ohshima, Hiroyuki; Uchibori, Akihiro; Eguchi, Yuzuru; Monji, Hideaki; Xu, Yongze

    2010-01-01

    A gas entrainment (GE) prediction method has been developed to establish design criteria for the large-scale sodium-cooled fast reactor (JSFR) systems. The prototype of the GE prediction method was already confirmed to give reasonable gas core lengths by simple calculation procedures. However, for simplification, the surface tension effects were neglected. In this paper, the evaluation accuracy of gas core lengths is improved by introducing the surface tension effects into the prototype GE prediction method. First, the mechanical balance between gravitational, centrifugal, and surface tension forces is considered. Then, the shape of a gas core tip is approximated by a quadratic function. Finally, using the approximated gas core shape, the authors determine the gas core length satisfying the mechanical balance. This improved GE prediction method is validated by analyzing the gas core lengths observed in simple experiments. Results show that the analytical gas core lengths calculated by the improved GE prediction method become shorter in comparison to the prototype GE prediction method, and are in good agreement with the experimental data. In addition, the experimental data under different temperature and surfactant concentration conditions are reproduced by the improved GE prediction method. (author)

  19. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  20. Critical Assessment of the Surface Tension determined by the Maximum Pressure Bubble Method

    OpenAIRE

    Benedetto, Franco Emmanuel; Zolotucho, Hector; Prado, Miguel Oscar

    2015-01-01

    The main factors that influence the value of surface tension of a liquid measured with the Maximum Pressure Bubble Method are critically evaluated. We present experimental results showing the effect of capillary diameter, capillary depth, bubble spheroidicity and liquid density at room temperature. We show that the decrease of bubble spheroidicity due to increase of capillary immersion depth is not sufficient to explain the deviations found in the measured surface tension values. Thus, we pro...

  1. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    International Nuclear Information System (INIS)

    L’vov, S. Yu.; Lyut’ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L’vov, Yu. N.; L’vov, M. Yu.; Ershov, B. G.

    2011-01-01

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  2. Flying fish accelerate at 5 G to leap from the water surface

    Science.gov (United States)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  3. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  4. Proceedings of the colloquium: The response of liquids to dynamic tension

    International Nuclear Information System (INIS)

    Jones, A.V.

    1978-01-01

    The contributed papers are: - Tension pulses in a liquid column; - A generalized cavitationn model for liquids; - Transmission of a tension pulse through water; - Current status of the equation of state in Lagrangian codes; - The effects of the reflection of an underwater shock at a free surface; - The calculation of the propagation of tension and recompaction waves

  5. Surface tension of calcium hydroxide associated with different substances Tensão superficial do hidróxido de cálcio associado a diferentes substâncias

    Directory of Open Access Journals (Sweden)

    Carlos Estrela

    2005-06-01

    Full Text Available The purpose of this study was to evaluate the surface tension of calcium hydroxide (CH associated with different substances (deionized distilled water, camphorated paramonochlorophenol, 2% chlorhexidine digluconate, Otosporin, 3% sodium lauryl ether sulphate; Furacin, PMC Furacin using tensiometer. The action of the substances studied on the dentinal structure enhances the property of surface tension. This method consists in the application of force to separate a platinum ring immersed in the substances. Thus, torsion was applied to the screw until the platinum ring separated during substances testing. Considering the methodology applied, the following can be concluded: distilled water alone or associated with CH presented a high surface tension (70.00 and 68.40 dynes/cm; calcium hydroxide in association with anionic detergent showed low surface tension (31.60 dynes/cm; camphorated paramonochlorophenol plus CH presented low surface tension (37.50 dynes/cm; 2% chlorhexidine associated with calcium hydroxide showed high surface tension values (58.00 dynes/cm; Otosporin plus calcium hydroxide showed low surface tension (35.40 dynes/cm; paramonochlorophenol Furacin mixed with calcium hydroxide presented surface tension equal to 45.50 dynes/cm; sodium hypochlorite presented high surface tension (75.00 dynes/cm. Antimicrobial agents more indicated in endodontics, i.e. CH, chlorhexidine and hypochlorite, presented the highest surface tension.Estudou-se a tensão superficial do hidróxido de cálcio associado a diferentes substâncias (água destilada deionizada, paramonoclorofenol canforado, digluconato de clorexidina 2%, Otosporin, sulfato éter lauril sódio 3%, furacin, PMC furacin usando tensiômetro. O modelo experimental consistiu na aplicação de uma força para separar um anel de platina imerso na superfície das substâncias, exercido por um tensiômetro. Considerando a metodologia aplicada, pode-se concluir: a água destilada isolada ou

  6. Effects of reduced surface tension on two-phase diversion cross-flow between subchannels simplifying triangle tight lattice rod bundle

    International Nuclear Information System (INIS)

    Kawahara, Akimaro; Sadatomi, Michio; Higuchi, Tatsuya

    2009-01-01

    Two-phase diversion cross-flow between tight lattice subchannels has been investigated experimentally and analytically. For hydraulically non-equilibrium flows with the pressure difference between the subchannels, experiments were conducted using a vertical multiple-channel with two subchannels simplifying a triangle tight lattice rod bundle. To know the effects of the reduced surface tension on the diversion cross-flow, water and water with a surfactant were used as the test liquids. Data were obtained on the axial variations in the pressure difference between the subchannels, gas and liquid flow rates and void fraction in each subchannel for slug-churn and annular flows. In the analysis, flow redistribution processes due to the diversion cross-flow have been calculated by our subchannel analysis code based on a two-fluid model. From a comparison between the experiment and the code calculation, the code was found to be valid against the present data if the improved constitutive equations of wall and interfacial friction reported in our previous paper were incorporated to account for the reduced surface tension effects. (author)

  7. The surface tension of pure liquids. Thermodynamic components and corresponding states

    NARCIS (Netherlands)

    Lyklema, J.

    1999-01-01

    From the temperature dependency of surface and interfacial tensions the surface excess energy and entropy per unit area can be obtained. The excess energy is a liquid-specific property; it varies over about three decades between liquid helium and molten metals. On the other hand, the excess entropy

  8. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    Science.gov (United States)

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  9. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  10. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  11. Theory of the Maxwell pressure tensor and the tension in a water bridge.

    Science.gov (United States)

    Widom, A; Swain, J; Silverberg, J; Sivasubramanian, S; Srivastava, Y N

    2009-07-01

    A water bridge refers to an experimental "flexible cable" made up of pure de-ionized water, which can hang across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed along with unusual features of dielectric fluid Bernoulli flows in an electric field. The "frictionless" Bernoulli flow is closely analogous to that of a superfluid.

  12. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  13. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  14. Superfluid 3He A-B surface tension

    International Nuclear Information System (INIS)

    Bartkowiak, M.; Haley, R.P.; Fisher, S.N.; Guenault, A.M.; Pickett, G.R.; Skyba, P.

    2003-01-01

    We have made two different measurements of interfacial energies below 300 μK, at zero pressure and in magnetic fields up to 400 mT. A variable magnetic field profile allows us to stabilize and precisely manipulate the position of the A-B interface. First, we can derive the difference in wall wetting energies from the behaviour of the phase boundary as it enters and exits a stack of glass capillary tubes. Secondly, we can measure the surface tension from the level of over- or under-magnetization needed to force the interface through an aperture. These are the first surface energy measurements in high magnetic fields in the zero-temperature limit. Our results are in surprising agreement with earlier measurements at high pressure close to T c

  15. Unusual shapes for a catenary under the effects of surface tension and gravity: A variational treatment

    International Nuclear Information System (INIS)

    Behroozi, F.; Mohazzabi, P.; McCrickard, J.

    1995-01-01

    The familiar catenary is the shape assumed by a chain or string as it hangs from two points. The mathematical equation of the catenary was first published more than three hundred years ago by Leibnitz and Huygen, among others. Here we consider the shapes assumed by a hanging string in the presence of gravity and surface tension. The surface tension is introduced by suspending the string from a thin horizontal rod while the area bounded by the string and the rod is covered with a soap film. The string then assumes new and wonderful shapes depending on the relative strength of the surface tension and the weight per unit length of the string. When surface tension dominates, the string is pulled inward, assuming a convex shape similar to the Greek letter γ. On the other hand, when gravity is dominant the string is pulled outward and assumes a concave shape best described as a distorted catenary. However, when the gravitational force normal to the string matches the surface tension, the string takes a linear configuration similar to the letter V. Under suitable conditions, the string can be made to assume any of the three configurations by adjusting the separation of its end points. The equations that describe the shape of the string are derived by minimizing the total energy of the system and are presented for the three principal configurations

  16. Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    2004-01-01

    Surface tension and viscosity of liquid rhenium, which have hardly been measured due to the extremely high melting temperature of rhenium, were measured using an electrostatic levitation method combined with the oscillation drop technique. Sample position instability problems caused by the photon pressure of the heating lasers and by sample evaporation were solved by modifying the electrodes design. Good sample stability allowed the measurements of the surface tension and the viscosity over wide temperature ranges including the undercooled states. Over the 2800-3600 K interval, the surface tension of rhenium was measured as σ(T)=2.71x10 3 -0.23(T-T m ), where T m is the melting temperature, 3453 K. At T m , the datum agrees well with the literature values. Similarly, on the same temperature range, the viscosity was determined as η(T)=0.08 exp[1.33x10 5 /(RT)] (mPa s)

  17. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  18. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  19. Interfacial tension in systems involving TBP in dodecane, nitric acid, uranyl nitrate and water

    International Nuclear Information System (INIS)

    Kolarik, Z.; Pipkin, N.

    1982-08-01

    The interfacial tension was measured at 25 0 C in the systems TBP - n-dodecane/nitric acid - water and TBP - n-dodecane/nitric acid - uranyl nitrate - water. Empirical equations describing the interfacial tension as a function of the concentration of TBP in the starting organic phase and of uranium-(VI) and nitric acid in the equilibrium aqueous phase were suggested. In the absence of uranium (VI), the interfacial tension can also be correlated with the concentration of water in the equilibrium organic phase. Free TBP, hydrated or nonhydrated, and hydrated TBP solvates of nitric acid are interfacially active. Anhydrous TBP solvates of nitric acid and the TBP solvate of uranyl nitrate, which neither is hydrated, do not exhibit any visible interfacial activity. (orig.) [de

  20. Determination of surface tension coefficient of liquids by diffraction of light on capillary waves

    International Nuclear Information System (INIS)

    Nikolić, D; Nešić, Lj

    2012-01-01

    This paper describes a simple technique for determining the coefficient of the surface tension of liquids, based on laser light diffraction on capillary waves. Capillary waves of given frequency are created by an exciter needle acting on the surface of liquid and represent a reflective diffraction grating, the constant of which (the wavelength of capillary waves) can be determined based on a known incidence angle of light (grazing angle). We obtain the coefficient of the surface tension of liquids by applying the dispersion relation for capillary waves and analyze the difficulties that arise when setting up and conducting the experiment in detail. (paper)

  1. Surface tension and density of fusible metal melt with sulphur and selenium

    International Nuclear Information System (INIS)

    Najdich, Yu.V.; Krasovskij, Yu.P.; Chuvashov, Yu.N.

    1990-01-01

    Surface tension and density at 970 K have been determined for melts of Ga, In, Sn and Pb with S and Se. High surface activity of chalcogens in the melts has been found. A maximal adsorption of the active components and their ultimate surface activity that correlate with thermodinamical strength of the corresponding sulfides and selenides have been calculated

  2. Standard practice for fracture testing with surface-crack tension specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material. 1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined. 1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate pu...

  3. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  4. A hybrid model to predict the onset of gas entrainment with surface tension effects

    International Nuclear Information System (INIS)

    Saleh, W.; Bowden, R.C.; Hassan, I.G.; Kadem, L.

    2008-01-01

    The onset of gas entrainment, in a single downward oriented discharge from a stratified gas-liquid region with was modeled. The assumptions made in the development of the model reduced the problem to that of a potential flow. The discharge was modeled as a point-sink. Through use of the Kelvin-Laplace equation the model included the effects of surface tension. The resulting model required further knowledge of the flow field, specifically the dip radius of curvature prior to the onset of gas entrainment. The dip shape and size was investigated experimentally and correlations were provided to characterize the dip in terms of the discharge Froude number. The experimental correlation was used in conjunction with the theoretical model to predict the critical height. The results showed that by including surface tension effects the predicted critical height showed excellent agreement with experimental data. Surface tension reduces the critical height through the Bond number

  5. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  6. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    , it would appear that in order to model multi-component surface tensions involving compounds used in this study one requires the use of appropriate binary data. However, results indicate that the use of theoretical frameworks which contain parameters derived from binary data may predict unphysical behaviour when taken beyond the concentration ranges used to fit such parameters. The effect of deviations between predicted and measured surface tensions on predicted critical saturation ratios was quantified, by incorporating the surface tension models into an existing thermodynamic framework whilst firstly neglecting bulk to surface partitioning. Critical saturation ratios as a function of dry size for all of the multi-component systems were computed and it was found that deviations between predictions increased with decreasing particle dry size. As expected, use of the surface tension of pure water, rather than calculate the influence of the solutes explicitly, led to a consistently higher value of the critical saturation ratio indicating that neglect of the compositional effects will lead to significant differences in predicted activation behaviour even at large particle dry sizes. Following this two case studies were used to study the possible effect of bulk to surface partitioning on critical saturation ratios. By employing various assumptions it was possible to perform calculations not only for a binary system but also for a mixed organic system. In both cases this effect lead to a significant increase in the predicted critical supersaturation ratio compared to the above treatment. Further analysis of this effect will form the focus of future work.

  7. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  8. Silicon fertilization and soil water tensions on rice development and yield

    Directory of Open Access Journals (Sweden)

    Jakeline R. de Oliveira

    2016-02-01

    Full Text Available ABSTRACT The cultivation of upland rice (Oryza sativa in Brazil occurs mainly in the Cerrado, a region with adverse weather conditions. The use of silicon in its cultivation becomes important, since this nutrient provides higher rigidity, lower transpiration and higher resistance to dry spells in rice plants. The objective of the present study was to evaluate the effect of silicon fertilization and soil water tensions on upland rice development and yield in a Cerrado Oxisol. A 5 x 5 fractionated factorial with five soil water tensions (0, 15, 30, 45 and 60 kPa and five silicon doses (0, 120, 240, 480 and 960 mg dm-3 was used, which were distributed in a randomized block design, with four replicates. Plant height, number of tillers, number of panicles, number of grains per panicle, numbers of full and empty grains and percentage of empty grains were evaluated. Silicon fertilization promotes increased tillering in rice plants at the dose of 960 mg dm-3. The numbers of tillers and panicles decreased with the application of silicon up to the doses of 460 and 490 mg dm-3, respectively. The increase in soil water tensions reduced plant height and the number of full grains, and increased the percentage of empty grains of upland rice.

  9. The effects of temperature and alkyl chain length on the density and surface tension of the imidazolium-based geminal dicationic ionic liquids

    International Nuclear Information System (INIS)

    Moosavi, Majid; Khashei, Fatemeh; Sharifi, Ali; Mirzaei, Mojtaba

    2017-01-01

    Highlights: • Surface tension and density of three GDILs were measured at different temperatures. • Surface entropy and surface enthalpy indicate the surface ordering in these GDILs. • Parachors and critical temperatures of these systems were estimated. • Results of GDILs were compared with the results of corresponding traditional MILs. • Relations between surface tension, density and viscosity of GDILs were demonstrated. - Abstract: Surface tensions and densities of three imidazolium-based geminal dicationic ionic liquids (GDILs) with the bis(trifluoromethylsulfonyl)imide, [NTf 2 ] − , as a common anion, have been measured at ambient pressure at different temperatures in the range from 296.00 to 353.15 K. The surface thermodynamic functions such as surface entropy and surface enthalpy were derived from the temperature dependence of surface tension which indicated the surface ordering in these GDILs. As well as the parachor, the critical temperatures of these systems have been estimated using the Guggenheim and Eotvos correlations. In each case, the results of GDILs have been compared with the results of corresponding traditional monocationic ILs (MILs). Also, the relations between the surface tension and density and also surface tension and viscosity data have been demonstrated and discussed.

  10. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    OpenAIRE

    Deng Zhenghua; Li Huaji; Zhao Wanjun

    2013-01-01

    Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in...

  11. Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Moradian, Zohreh

    2014-01-01

    Highlights: • Surface tension of non-ideal binary systems of alcohol/DMSO determined. • The surface tension data of binary mixtures were correlated with five equations. • The interaction energy values were calculated by using LWW model. • The U 12 value shows different behavior for two systems with increasing temperature. - Abstract: Surface tension of binary mixtures of tert-butyl alcohol (TBA) and iso-amyl alcohol (IAA) with DMSO (dimethyl sulfoxide) were measured over the entire concentration range at pressure of 82.5 kPa at temperatures between (298.15 and 328.15) K. Correlating the surface tension and surface tension deviation of the above mentioned binary systems was performed with empirical and thermodynamic based models. The average relative error obtained from the comparison of experimental and calculated surface tension values for the two binary systems with five models at various temperatures is less than 2%. The effect of temperature on the interaction energy values in binary mixtures has been used to obtain information about solute structural effects on DMSO. Also, the experimental data were used to evaluate the nature and type of intermolecular interactions in binary mixtures

  12. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    Science.gov (United States)

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (p<0.05). Structurally different BSs produced exhibited identical equilibrium surface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  14. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    International Nuclear Information System (INIS)

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  15. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    Science.gov (United States)

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  16. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

    Science.gov (United States)

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen

    2015-12-01

    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species. © 2015 Wiley Periodicals, Inc.

  17. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  18. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  19. Viscosity and surface tension of binary systems of N,N-dimethylformamide with alkan-1-ols at different temperatures

    International Nuclear Information System (INIS)

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2013-01-01

    Highlights: ► Physical properties of binary mixtures of DMF+1-pentanol, 1-hexanol, or 1-heptanol. ► Viscosity and surface tension were measured. ►Δη, Δσ σ and G ∗E were calculated using the experimental data. ► H σ and S σ were determined using the surface tension data. ► Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity η and surface tension σ were measured for binary mixtures of N,N-dimethylformamide DMF with pentan-1-ol, hexan-1-ol, and heptan-1-ol at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure over the entire mole fraction range. Deviations in viscosity Δη and surface tension Δσ were calculated using experimental results. Moreover, the values of the excess Gibbs free energy of activation G ∗E , surface enthalpy H σ and surface entropy S σ of these mixtures were determined. Viscosity measurements of the binary systems were correlated with Grunberg and Nissan, the three-body and four-body McAllister expressions. Viscosity deviation, surface tension deviation and excess Gibbs energy of activation functions were fitted to the method of Redlich–Kister (R–K) polynomial to estimate the coefficients and standard deviations. The effects of chain length of alkan-1-ols and temperature on the thermodynamic properties of binary systems were studied.

  20. Density, viscosity and surface tension of liquid phase Beckmann rearrangement mixtures

    NARCIS (Netherlands)

    Zuidhof, K.T.; Croon, de M.H.J.M.; Schouten, J.C.; Tinge, J.T.

    2015-01-01

    We have determined the density, dynamic viscosity, and surface tension of liquid phase Beckmann rearrangement mixtures, consisting of e-caprolactam and fuming oleum. These important properties have been measured in wide ranges of both temperature and molar ratios of acid and e-caprolactam, covering

  1. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in

  2. Uncovering behavioural diversity amongst high-strength Pseudomonas spp. surfactants at the limit of liquid surface tension reduction.

    Science.gov (United States)

    Kabir, Kamaluddeen; Deeni, Yusuf Y; Hapca, Simona M; Moore, Luke; Spiers, Andrew J

    2018-02-01

    Bacterial biosurfactants have a wide range of biological functions and biotechnological applications. Previous analyses had suggested a limit to their reduction of aqueous liquid surface tensions (γMin), and here we confirm this in an analysis of 25 Pseudomonas spp. strains isolated from soil which produce high-strength surfactants that reduce surface tensions to 25.2 ± 0.1-26.5 ± 0.2 mN m-1 (the surface tension of sterile growth medium and pure water was 52.9 ± 0.4 mN m-1 and 72.1 ± 1.2 mN m-1, respectively). Comparisons of culture supernatants produced using different growth media and semi-purified samples indicate that the limit of 24.2-24.7 mN m-1 is not greatly influenced by culture conditions, pH or NaCl concentrations. We have used foam, emulsion and oil-displacement behavioural assays as a simple and cost-effective proxy for in-depth biochemical characterisation, and these suggest that there is significant structural diversity amongst these surfactants that may reflect different biological functions and offer new biotechnological opportunities. Finally, we obtained a draft genome for the strain producing the highest strength surfactant, and identified a cluster of non-ribosomal protein synthase genes that may produce a cyclic lipopeptide (CLP)-like surfactant. Further investigation of this group of related bacteria recovered from the same site will allow a better understanding of the significance of the great variety of surfactants produced by bacterial communities found in soil and elsewhere. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Cavitation propagation in water under tension

    Science.gov (United States)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  4. Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion

    International Nuclear Information System (INIS)

    Oliveira, M.B.; Domínguez-Pérez, M.; Cabeza, O.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.

    2013-01-01

    Highlights: • Novel data for the surface tensions of mixtures [C 4 mim][NTf 2 ] + [C 4 C 1 mim]/[C 3 mpy]/[C 3 mpyr]/[C 3 mpip][NTf 2 ] are presented. • γ were determined at a fixed temperature, 298.2 K, and at atmospheric pressure, for the whole composition range. • Surface tension deviations showed the near ideal behavior of the selected mixtures. • Gibbs adsorption isotherms showed the surface preferential adsorption of one ionic liquid over the other. -- Abstract: While values for thermophysical properties of ionic liquids are becoming widely available, data for ionic liquid mixtures are still scarce. In an effort to overcome this limitation and understand the behavior of ionic liquid mixtures, novel data for the surface tension of mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 4 mim][NTf 2 ], with other ionic liquids with a common anion, namely 1-butyl-2,3-dimethylimidazolium, [C 4 C 1 mim] + , 3-methyl-1-propylpyridinium, [C 3 mpy] + , 1-methyl-1-propylpyrrolidinium, [C 3 mpyr] + , and 1-methyl-1-propylpiperidinium, [C 3 mpip] + , were measured at T = 298.2 K and atmospheric pressure over the entire composition range. From the surface tension deviations derived from the experimental results, it was possible to infer that the cation alkyl chain length of the second ionic liquid constituting the mixture has a stronger influence in the ideal mixture behavior than the type of family the ionic liquid cation belongs to. The Gibbs adsorption isotherms, estimated from the experimental values, show that the composition of the vapor–liquid interface is not the same as that of the bulk and that the interface is richer in the ionic liquid with the lowest surface tension, [C 4 mim][NTf 2

  5. A new corresponding state-based correlation for the surface tension of organic fatty acids

    Science.gov (United States)

    Zhang, Cuihua; Tian, Jianxiang; Zheng, Mengmeng; Yi, Huili; Zhang, Laibin; Liu, Shuzhen

    2018-01-01

    In this paper, we proposed a new corresponding state-based correlation for organic fatty (aliphatic, carboxylic and polyfunctional) acids. By using the recently published surface tension data of the 99 acids [A. Mulero and I. Cachadiña, J. Phys. Chem. Ref. Data 45 (2016) 033105] and comparing with the recently published other corresponding state correlations, we found that this correlation reproduces the lowest absolute average deviation (AAD) values for 82 acids out of the 99 acids. It can reproduce the surface tension data with AAD less than 10% for 89 out of the 99 acids.

  6. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  7. Prediction of aliphatic and aromatic oil-water interfacial tension at temperatures >100 °C using COSMO-RS

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Eckert, F.; Reinisch, J.

    2017-01-01

    As a contribution to the 9th Industrial Fluid Property Simulation Challenge on predicting interfacial tension between water and a set of non-polar oils at temperatures up to 170 °C we have used our first-principles based model, which is based on density functional theory and uses COSMO-RS implicit...... solvent model thermodynamics. Our calculations predict that the oil-water interfacial tension starts to drop significantly for alkanes at temperatures above ∼100 °C, and the oil-water interfacial tension drops significantly with increased temperature already above ∼25 °C for aromatic oils. In the range...

  8. On the Problem of Determining Aggregation Numbers from Surface Tension Measurements.

    Science.gov (United States)

    Rusanov, Anatoly I

    2017-11-07

    In view of the recent discovery of variable aggregation numbers in the vicinity of the critical micelle concentration (CMC), the mass-action-law theory of the surface tension isotherm of a micellar solution with variable aggregation numbers is formulated both for nonionic and ionic surfactants. It is shown that the shape of the surface tension isotherm should be concave in the logarithmic scale above the CMC. Considering a change in the isotherm slope at the CMC apparent break point, the problems of determining the aggregation number for nonionic micelles and the degree of counterion binding for ionic micelles are discussed. In case of the aggregation number variability near the CMC, finding the aggregation number above the CMC apparent break point is considered and a computational scheme is elaborated, requiring a higher precision for experiment. Some experimental data from the literature are analyzed, and the method of estimating the degree of counterion binding is improved.

  9. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    Science.gov (United States)

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  10. On Surface Tension for Compact Stars R. Sharma & S. D. Maharaj

    Indian Academy of Sciences (India)

    Abstract. In an earlier analysis it was demonstrated that general rel- ativity gives higher values of surface tension in strange stars with quark matter than neutron stars.We generate the modified Tolman–Oppenheimer–. Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides ...

  11. The interfacial surface tension of a quark-gluon plasma fireball in a ...

    Indian Academy of Sciences (India)

    surface tension with the cube of the critical transition temperature is in overall ... more rigorous structures may be built depending on the phenomenological success .... k +dk in a spherically symmetric situation, and gi is the degeneracy factor ( ...

  12. On a Hele-Shaw flow with a time-dependent gap in the presence of surface tension

    International Nuclear Information System (INIS)

    Savina, T V; Nepomnyashchy, A A

    2015-01-01

    The introduction of surface tension into a Hele-Shaw problem makes it more realistic from the physical viewpoint, but more difficult from the mathematical viewpoint. In this paper we discuss a Hele-Shaw flow with a time-dependent gap taking into account the surface tension of the free boundary. We use the Schwarz function method to find asymptotic solutions for the interior problem in the case when the initial shape of the droplet is a weakly distorted circle. (paper)

  13. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  14. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  15. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  16. Horizon effects with surface waves on moving water

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2010-09-15

    Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  17. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  18. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  19. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Abdelkrim [Departement de Mathematiques, Faculte des sciences, Universite Mohamed Boudiaf, M' sila, 28000 (Algeria); Mekias, Hocine [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria); Guechi, Fairouz [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria)

    2007-11-23

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number {alpha} and for various values of the inclination angle {beta} between the horizontal bottom and the inclined wall.

  20. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    Science.gov (United States)

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  1. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    Science.gov (United States)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N)

    International Nuclear Information System (INIS)

    Ghatee, Mohammad Hadi; Bahrami, Maryam; Khanjari, Neda

    2013-01-01

    Highlights: • Characterization of high purity synthesized alkyl quaternary ammonium ionic liquids. • Measurement of temperature dependent surface tension, density, viscosity and critical point. • Systematic increase of surface energy and surface entropy having plateau at high chain length. • Accurate application of VFT and fluidity equations to temperature dependent viscosities. • Particular variation of fluidity exponent with a plateau at high alkyl chain length. -- Abstract: In this work five quaternary ammonium-based ionic liquids with bis(trifluoromethylsulfonyl)imide anion were synthesized and their density, viscosity and surface tensions were measured in the temperature range (298 to 373) K. Surface tensions were measured by capillary rise method using a homemade capillary apparatus, in which the liquid/vapor can be brought into equilibrium practically. Measurements of viscosities and surface tensions were performed under water–vapor free atmosphere. The surface tension of quaternary ammonium-based ILs decreases as the alkyl chain length increases. Also surface energy and surface entropy are found as increasing functions of alkyl chain length with a plateau at high lengths in the surface. The viscosities measured by capillary viscometer fit in VFT equation, indication of non-Arrhenius ionic liquids. Viscosities are also fitted quite accurately in the relation we have developed recently as the fluidity equation with the characteristics exponent ϕ. Values of ϕ for ionic liquids are close to one another and tend to the limiting value, almost 0.328, asymptotically as the alkyl chain length increases. The critical temperatures predicted via the temperature dependent surface tensions decrease with increasing alkyl chain length of the cation. The trend of predicted critical temperature of these ionic liquids conforms to those of imidazolium-based ILs

  3. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  4. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  5. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  6. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  7. Density and surface tension of melts of zirconium and hafnium fluorides with lithium fluoride

    International Nuclear Information System (INIS)

    Katyshev, S.F.; Artemov, V.V.; Desyatnik, V.N.

    1988-01-01

    A study was conducted to determine the temperature dependence of the density and surface tension of melts of LiF-ZrF 4 and LiF-HfF 4 . Density and surface tension were determined by the method of maximum pressure in an argon bubble. On the basis of experimental data over the entire concentration range the molar volumes and their relative deviations from the additive molar volumes were calculated for 1100 0 K. The positive deviations of the molar volumes from additivity in the LiF-HfF 4 system (22.45%) were greater than in the LiF-ZrF 4 system (15.75%). This indicated that the reaction with lithium fluoride is intensified with the switch to the hafnium fluoride. Results also demonstrated that the fluorides are surface-active components in the molten mixtures

  8. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  9. Surface tension driven aggregation of organic nanowires via lab in a droplet.

    Science.gov (United States)

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Feng, Man; Zhang, Ziming; Dong, Haiyun; Gao, Faming; Zhao, Yong Sheng

    2018-06-05

    Directing the architecture of complex organic nanostructures is desirable and still remains a challenge in areas of materials science due to their structure-dependent collective optoelectronic properties. Herein, we demonstrate a simple and versatile solution strategy that allows surface tension to drive low-dimensional nanostructures to aggregate into complex structures via a lab in a droplet technique. By selecting a suitable combination of a solvent and an anti-solvent with controllable surface tension difference, the droplets can be automatically cracked into micro-droplets, which provides an aggregation force directed toward the centre of the droplet to drive the low-dimensional building blocks to form the special aggregations during the self-assembly process. This synthetic strategy has been shown to be universal for organic materials, which is beneficial for further optimizing the optoelectronic properties. These results contribute to gaining an insightful understanding on the detailed growth mechanism of complex organic nanostructures and greatly promoting the development of organic nanophotonics.

  10. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    Science.gov (United States)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  12. Surface tension and wetting behaviour of Bi-In-Sn alloys

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Ahmad Badri Ismail; Soong, T.K.; Chin, Y.T.; Luay Bakir Hussain

    2007-01-01

    Concerns about possible landfill contamination, influent discharge from production process are one of the reasons convert from lead-containing electronics to lead-free containing. The surface and interfacial properties of Bi-In-Sn lead-free solder system as a basic system of multicomponent alloys proposed as lead-free solder materials have been studied. The surface tension of Bi-In-Sn lead-free solder system of melting temperature 60 degree Celsius has been measured the temperature range 80 degree Celsius and 140 degree Celsius. The study of the wetting behaviour of Bi-In-Sn lead-free solder system on a Cu substrate has been performed by measuring contact angle on various metal substrates by Optical Microscopy with software. (author)

  13. Measurement of the surface tension by the method of maximum gas bubble pressure

    International Nuclear Information System (INIS)

    Dugne, Jean

    1971-01-01

    A gas bubble method for measuring surface tension was studied. Theoretical investigations demonstrated that the maximum pressure can be represented by the envelope of a certain family of curves and that the physical nature of the capillary tube imposes an upper limit to its useful radius. With a given tube and a specified liquid, the dynamic evolution of the gas bubble depends only upon the variation of the mass of gas contained with time; this fact may restrict the choice of tubes. The use of one single tube requires important corrections. Computer treatment of the problem led to some accurate equations for calculating γ. Schroedinger equations and Sudgen's table are examined. The choice of tubes, the necessary corrections, density measurement, and the accuracy attainable are discussed. Experiments conducted with water and mercury using the sessile drop method and continuous recording of the pressure verified the theoretical ideas. (author) [fr

  14. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  15. Surface tension, density, and speed of sound for the ternary mixture {l_brace}diethyl carbonate + p-xylene + decane{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, Laura; Casas, Lidia M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Legido, Jose L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)], E-mail: xllegido@uvigo.es

    2009-05-15

    This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {l_brace}diethyl carbonate + p-xylene + decane{r_brace}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.

  16. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    Science.gov (United States)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  17. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias

    2011-10-26

    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  18. Surface Tension of Supercooled Water Determined by Using a Counterpressure Capillary Rise Method

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Fransen, M. A. L. J.; Hykl, Jiří; Hrubý, Jan

    2015-01-01

    Roč. 119, č. 17 (2015), s. 5567-5575 ISSN 1520-6106 R&D Projects: GA MŠk LG13056; GA ČR GJ15-07129Y Institutional support: RVO:61388998 Keywords : capillary tube * interfacial tension * metastable liquid * supercooled liquid Subject RIV: BJ - Thermodynamics Impact factor: 3.187, year: 2015 http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b00545

  19. Surface tension, hydrophobicity, and black holes: The entropic connection

    International Nuclear Information System (INIS)

    Callaway, D.J.

    1996-01-01

    The geometric entropy arising from partitioning space in a fluid open-quote open-quote field theory close-quote close-quote is shown to be linearly proportional to the area of an excluded region. The coefficient of proportionality is related to surface tension by a thermodynamic argument. Good agreement with experimental data is obtained for a number of fluids. The calculation employs a density-matrix formalism developed previously for studying the origin of black hole entropy. This approach may lead to a practical technique for the evaluation of thermodynamic quantities with important entropic components. copyright 1996 The American Physical Society

  20. Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, Farouq S., E-mail: farouqsm@yahoo.com [Petroleum and Chemical Engineering Department, Sultan Qaboos University, 123 Sultanate of Oman (Oman); Vakili-Nezhaad, Gholamreza; Shahbaz, Kaveh [School of Engineering, Taylor' s University, 47500 Selangor (Malaysia); AlNashef, Inas M. [Chemical Engineering Department, King Saud University, Riyadh 11421 (Saudi Arabia)

    2014-01-10

    Highlights: • Critical temperatures of eight common DES were calculated using two methods. • Density and surface tension were calculated using the Rackett and Guggenheim equations. • The Rackett method should be used in the low temperature range only. • The Eötvos and Guggenheim methods gave best density and surface tension predictions. - Abstract: The recent continuing interest in deep eutectic solvents (DES) as ionic liquids analogues and their successful applications in different areas of separation necessities the existence of reliable physical and thermodynamic properties database. The scarcity of data on the physical properties of such solvents, increases the need for their prediction using reliable methods. In this study, first the critical temperatures of eight DES systems have been calculated based on the Eötvos empirical equation using the experimental data of the density and surface tension at various temperatures, then the density and surface tension values of these systems were predicted from the calculated critical temperatures. For the density prediction the Eötvos and Guggenheim equations were combined to introduce a simple power law equation using the estimated critical temperatures from the Eötvos and the Modified Lydersen–Joback–Reid group contribution methods. Finally, the estimated critical temperatures by these two methods were used in the Guggenheim empirical equation to calculate the surface tension of the DES systems. The prediction quality of the two physical properties under investigation were compared and proper recommendations were postulated.

  1. Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues

    International Nuclear Information System (INIS)

    Mjalli, Farouq S.; Vakili-Nezhaad, Gholamreza; Shahbaz, Kaveh; AlNashef, Inas M.

    2014-01-01

    Highlights: • Critical temperatures of eight common DES were calculated using two methods. • Density and surface tension were calculated using the Rackett and Guggenheim equations. • The Rackett method should be used in the low temperature range only. • The Eötvos and Guggenheim methods gave best density and surface tension predictions. - Abstract: The recent continuing interest in deep eutectic solvents (DES) as ionic liquids analogues and their successful applications in different areas of separation necessities the existence of reliable physical and thermodynamic properties database. The scarcity of data on the physical properties of such solvents, increases the need for their prediction using reliable methods. In this study, first the critical temperatures of eight DES systems have been calculated based on the Eötvos empirical equation using the experimental data of the density and surface tension at various temperatures, then the density and surface tension values of these systems were predicted from the calculated critical temperatures. For the density prediction the Eötvos and Guggenheim equations were combined to introduce a simple power law equation using the estimated critical temperatures from the Eötvos and the Modified Lydersen–Joback–Reid group contribution methods. Finally, the estimated critical temperatures by these two methods were used in the Guggenheim empirical equation to calculate the surface tension of the DES systems. The prediction quality of the two physical properties under investigation were compared and proper recommendations were postulated

  2. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  3. Effects of the kinematic viscosity and surface tension on the bubble take-off period in a catalase-hydrogen peroxide system.

    Science.gov (United States)

    Sasaki, Satoshi; Iida, Yoshinori

    2009-06-01

    The effect of kinematic viscosity and surface tension of the solution was investigated by adding catalase, glucose oxidase, or glucose on the bubble movement in a catalase-hydrogen peroxide system. The kinematic viscosity was measured using a Cannon-Fenske kinematic viscometer. The surface tension of the solution was measured by the Wilhelmy method using a self-made apparatus. The effects of the hole diameter/cell wall thickness, catalase concentration, glucose concentration, and glucose oxidase concentration on the kinematic viscosity, surface tension, and bubble take-off period were investigated. With our system, the effects of the changes in the solution materiality on the bubble take-off period were proven to be very small in comparison to the change in the oxygen-producing rate.

  4. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures

    DEFF Research Database (Denmark)

    Rolo, Lara I.; Caco, Ana I.; Queimada, Antonio

    2002-01-01

    Surface tension measurements were performed by the Wilhelmy plate method. Measured systems included pure heptane, decane, hexadecane, eicosane, and some of their binary mixtures at temperatures from 293.15 K to 343.15 K with an average absolute deviation of 1.6%. The results were compared with a ...

  5. Surface tension propulsion of fungal spores by use of microdroplets

    OpenAIRE

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-01-01

    Many edible mushrooms eject their spores (about 10 microns in size) at high speed (about 1 m/s) using surface tension forces in a few microseconds. Basically the coalescence of a droplet with the spore generates the necessary momentum to eject the spore. We have detailed this mechanism in \\cite{noblin2}. In this article, we give some details about the high speed movies (up to 250000 fps) of mushrooms' spores ejection attached to this submission. This video was submitted as part of the Gallery...

  6. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  7. The influence of microstructure on surface strain distributions in a nickel micro-tension specimen

    International Nuclear Information System (INIS)

    Turner, T J; Shade, P A; Schuren, J C; Groeber, M A

    2013-01-01

    This work presents an integrated experimental and modeling approach for examining the deformation of a pure nickel polycrystal utilizing micro-mechanical testing and a crystal-based elasto-viscoplastic finite-element model (CPFEM). The objective is to study the influence of microstructure on the heterogeneous deformation in polycrystalline materials, and to utilize a modeling framework to explore aspects of the deformation that are difficult or impossible to measure experimentally. To accomplish this, a micro-tension specimen containing 259 grains was created from a pure nickel foil material and deformed in uniaxial tension. After the deformation, the specimen was destructively serial sectioned in concert with electron back scattering diffraction, and these data were used to instantiate a CPFEM simulation. The material parameters in the CPFEM model were calibrated by matching the experimental macroscopic stress-strain response of the micro-tension specimen, and then the simulation results were compared with experimental surface deformations measured with digital image correlation. After validating the simulation results by comparing measured and predicted surface strain distributions, a parametric study of the influence of both crystallographic texture and grain morphology is presented to better understand the influence of microstructure on the development of heterogeneous deformation in the pure nickel polycrystalline material. (paper)

  8. Relationship between surface tension and refractive index in binary non-electrolyte mixtures

    International Nuclear Information System (INIS)

    Acevedo, I.L.; Pedrosa, G.C.; Katz, M.

    1990-01-01

    Lorentz-Lorenz equation for molecular refraction has been combined with Sugden's parachor equation for binary non-electrolyte mixtures at 298.15 K. The obtained equation has been shown successful in calculating values of surface tensions, by measuring refractive indices of the binary mixtures at the same mole fractions. The estimated error decreases when the mixtures present possible isorefractives. (Author) [es

  9. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    Science.gov (United States)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  10. On the theory of type-I superconductor surface tension and twinning-plane-superconductivity

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-01-01

    A correction is found to the surface tension in type-I superconductors which is proportional to the square root of the Ginsburg-Landau parameter. This correction is essential for obtaining the phase diagram and other thermodynamical variables of the narrow superconducting layer arising near the twinning plane in some metals

  11. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  12. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi

    2013-01-01

    include critical temperature or temperature/critical volume/acentric factor/critical pressure/reduced temperature/reduced normal boiling point temperature/molecular weight of the compounds. Around 1,300 surface tension data of 118 random compounds are used for developing the first model (a four...

  13. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  14. Surface density profile and surface tension of the one-component classical plasma

    International Nuclear Information System (INIS)

    Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.

    1982-08-01

    The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)

  15. The Cloud Condensation Nuclei (CCN properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements

    Directory of Open Access Journals (Sweden)

    S. Ekström

    2009-02-01

    Full Text Available A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono- and polysaccharides and polyols such as the 2-methyltetrols, methylerythritol and methyltreitol. Because of their high solubility these compounds are considered as potentially efficient CCN material. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Köhler curves for C3-C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what was expected, none of these compounds displayed a higher CCN efficiency than organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as saccharides and polyols would not contribute more to cloud formation than other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, in contrary to recently suggested.

  16. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    Science.gov (United States)

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  17. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  18. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  19. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  20. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    International Nuclear Information System (INIS)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups

  1. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Directory of Open Access Journals (Sweden)

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  2. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  3. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    ) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface....... Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence......Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively...

  4. The Mechanical of the Small Axisymmetric Oscillations of the Liquid with the Surface Tension Forces in Elastic Tank

    Directory of Open Access Journals (Sweden)

    D. A. Goncharov

    2015-01-01

    Full Text Available In this paper we investigate small axisymmetric oscillations of a liquid in an elastic tank. We also take into account the influence of surface tension forces. For this, we turn to the mechanical analogue of the considered mechanical system. To realize the transition to mechanical analogue we use the energy method: postulating the equality of kinetic and potential energy for the investigated mechanical system and the mechanical system analog. Due to this transition we can further investigate the oscillations of a mechanical analogue. As a mechanical analogue, we consider the oscillator in the spring. The mass of the oscillator is calculated as the weight of the fluid to make oscillations. The oscillator spring constant is calculated using the identity of equations, namely, equation of free small oscillations of the oscillator and equation of free small oscillations of the system under investigation: the fluid in the elastic tank. The identity of equations allows us to draw conclusion about the identity of the natural frequencies for the source mechanical system and the system of a mechanical analogue. Next, we take into consideration the action of the surface tension. We record the Laplace condition for excess pressure because of the forces of surface tension. Then we compile the expression for the generalized force, taking into account the phenomenon of the surface tension. Next, we write the equation of oscillations of a mechanical analogue. The surface tension, due to the introduction of the generalized force in the equation for small oscillations of the mechanical analogue will change the natural frequency of the mechanical analogue. The paper presents the appropriate dependencies. The abovementioned allows us to investigate the stability of small motions of fluid in microgravity or low gravity by studying the stability of small motions of mechanical analogue. The latter is especially important due to the design and development of advanced

  5. Standard reference data for the air-liquid and vapor-liquid surface tension of benzene

    Czech Academy of Sciences Publication Activity Database

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2013-01-01

    Roč. 356, October (2013), s. 329-337 ISSN 0378-3812 R&D Projects: GA ČR GA101/09/0010 Institutional support: RVO:61388998 Keywords : benzene * surface tension * experimental data * standard reference data Subject RIV: BJ - Thermodynamics Impact factor: 2.241, year: 2013 http://www.sciencedirect.com/science/article/pii/S0378381213004196

  6. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2015-08-01

    Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.

  7. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.

    Science.gov (United States)

    Giusti, Fabrice; Popot, Jean-Luc; Tribet, Christophe

    2012-07-17

    Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the

  8. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air-water interface: applications to atmospheric aerosol chemistry.

    Science.gov (United States)

    Wellen, Bethany A; Lach, Evan A; Allen, Heather C

    2017-10-11

    There exists large uncertainty in the literature as to the pK a of medium-chain fatty acids at the air-water interface. Via surface tension titration, the surface-pK a values of octanoic (C 8 ), nonanoic (C 9 ), and decanoic (C 10 ) fatty acids are determined to be 4.9, 5.8, and 6.4, respectively. The surface-pK a determined with surface tension differs from the bulk value obtained during a standard acid-base titration. Near the surface-pK a of the C 8 and C 9 systems, surface tension minima are observed and are attributed to the formation of surface-active acid-soap complexes. The direction of the titration is shown to affect the surface-pK a of the C 9 system, as the value shifts to 5.2 with NaOH titrant due to a higher concentration of Na + ions at pH values close to the surface-pK a . As the reactivity and climate-relevant properties of sea spray aerosols (SSA) are partially dictated by the charge and surface activity of the organics at the aerosol-atmosphere interface, the results presented here on SSA-identified C 8 -C 10 fatty acids can be used to better predict the health and climate impact of particles with significant concentrations of medium-chain fatty acids.

  9. Experimental investigation of the stability of the floating water bridge

    Science.gov (United States)

    Montazeri Namin, Reza; Azizpour Lindi, Shiva; Amjadi, Ahmad; Jafari, Nima; Irajizad, Peyman

    2013-09-01

    When a high voltage is applied between two beakers filled with deionized water, a floating bridge of water is formed in between exceeding the length of 2 cm when the beakers are pulled apart. Currently two theories regarding the stability of the floating water bridge exist, one suggesting that the tension caused by electric field in the dielectric medium is holding the bridge and the other suggesting surface tension to be responsible for the vertical equilibrium. We construct experiments in which the electric field and the geometry of the bridge are measured and compared with predictions of theories of the floating water bridge stability. We use a numerical simulation for estimation of the electric field. Our results indicate that the two forces of dielectric and surface tensions hold the bridge against gravity simultaneously and, having the same order of magnitude, neither of the two forces are negligible. In bridges with larger diameters, the effect of dielectric tension is slightly more in the vertical equilibrium than surface tension. Results show that the stability can be explained by macroscopic forces, regardless of the microscopic changes in the water structure.

  10. Estimation of the Critical Temperatures of Some More Deep Eutectic Solvents from Their Surface Tensions

    Directory of Open Access Journals (Sweden)

    Yizhak Marcus

    2018-01-01

    Full Text Available The critical temperatures of two dozen deep eutectic solvents, for only some of which these have been estimated previously, were estimated from the temperature dependences of their surface tensions and densities available in the literature according to the Eötvös and the Guggenheim expressions.

  11. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A. E.; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane ...

  12. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A.E; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane...

  13. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  14. Effect of increased surface tension and assisted ventilation on /sup 99m/Tc-DTPA clearance

    International Nuclear Information System (INIS)

    Jefferies, A.L.; Kawano, T.; Mori, S.; Burger, R.

    1988-01-01

    Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (/sup 99m/Tc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of /sup 99m/Tc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreased arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. /sup 99m/Tc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP [k = 7.57 +/- 0.71%/min (SE)] and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of /sup 99m/Tc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure

  15. Structural design significance of tension-tension fatigue data on composites

    Science.gov (United States)

    Grimes, G. C.

    1977-01-01

    Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.

  16. The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration

    International Nuclear Information System (INIS)

    Behroozi, F; Behroozi, P S

    2011-01-01

    A chain assumes the well-known shape known as a catenary when it hangs loosely from two points in a gravitational field. The correct solution of the catenary was one of the early triumphs of the newly invented calculus of variations at the end of the 17th century. Here we revisit the catenary and show that, for a chain hanging from a horizontal rod, three new and distinct configurations are possible if a soap film covers the area bounded by the chain and the rod. We first review the general problem and discuss the conditions under which the chain assumes a concave, triangular or convex configuration. The deciding factor is the strength of surface tension relative to the gravitational force per unit length of the chain. The conditions under which the chain assumes the shape of a perfect triangle are discussed in greater detail and analysed to obtain the tension along the chain. The triangular configuration is especially intriguing to undergraduates and may be used as a simple experiment to obtain the surface tension of the soap solution by measuring just one angle of the triangle.

  17. The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Behroozi, P S, E-mail: behroozi@uni.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2011-09-15

    A chain assumes the well-known shape known as a catenary when it hangs loosely from two points in a gravitational field. The correct solution of the catenary was one of the early triumphs of the newly invented calculus of variations at the end of the 17th century. Here we revisit the catenary and show that, for a chain hanging from a horizontal rod, three new and distinct configurations are possible if a soap film covers the area bounded by the chain and the rod. We first review the general problem and discuss the conditions under which the chain assumes a concave, triangular or convex configuration. The deciding factor is the strength of surface tension relative to the gravitational force per unit length of the chain. The conditions under which the chain assumes the shape of a perfect triangle are discussed in greater detail and analysed to obtain the tension along the chain. The triangular configuration is especially intriguing to undergraduates and may be used as a simple experiment to obtain the surface tension of the soap solution by measuring just one angle of the triangle.

  18. Effect of viscosity and surface tension on the growth of Rayleigh-Taylor instability and Richtmyer-Meshkov instability under nonlinear domain

    International Nuclear Information System (INIS)

    Rahul Banerjee; Khan, M.; Mandal, L.K.; Roy, S.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. The Rayleigh-Taylor (R-T) instability and Richtmyer-Meshkov (R-M) instability are well known problems in the formation of some astrophysical structures such as the supernova remnants in the Eagle and Crab nebula. A core collapse supernova is driven by an externally powerful shock, and strong shocks are the breeding ground of hydrodynamic instability such as Rayleigh-Taylor instability or Richtmyer-Meshkov instability. These instabilities are also important issues in the design of targets for inertial confinement fusion (ICF). In an ICF target, a high density fluid is frequently accelerated by the pressure of a low density fluid and after ablation the density quickly decays. So, small ripples at such an interface will grow. Under potential flow model, the perturbed interface between heavier fluid and lighter fluid form bubble and spike like structures. The bubbles are in the form of columns of lighter fluid interleaved by falling spike of heavy fluid. In this paper, we like to presented the effect of viscosity and surface tension on Rayleigh-Taylor instability and Richtmyer-Meshkov instability under the non-linear Layzer's approach and described the displacement curvature, growth and velocity of the tip of the bubble as well as spike. It is seen that, in absence of surface tension the lowering of the asymptotic velocity of the tip of the bubble which is formed when the lighter fluid penetrates into the denser fluid and thus encounters the viscous drag due to the denser fluid, which depends only on the denser fluid's viscosity coefficient. On the other hand the asymptotic velocity of the tip of the spike formed as the denser fluid penetrates into the lighter fluid is reduced by an amount which depends only on the viscosity coefficient of the lighter fluid and the spike is resisted by the viscous drag due to the lighter fluid. However, in presence of surface tension the asymptotic velocity of the tip of the bubble (spike) and

  19. A novel technique for including surface tension in PLIC-VOF methods

    Energy Technology Data Exchange (ETDEWEB)

    Meier, M.; Yadigaroglu, G. [Swiss Federal Institute of Technology, Nuclear Engineering Lab. ETH-Zentrum, CLT, Zurich (Switzerland); Smith, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    2002-02-01

    Various versions of Volume-of-Fluid (VOF) methods have been used successfully for the numerical simulation of gas-liquid flows with an explicit tracking of the phase interface. Of these, Piecewise-Linear Interface Construction (PLIC-VOF) appears as a fairly accurate, although somewhat more involved variant. Including effects due to surface tension remains a problem, however. The most prominent methods, Continuum Surface Force (CSF) of Brackbill et al. and the method of Zaleski and co-workers (both referenced later), both induce spurious or 'parasitic' currents, and only moderate accuracy in regards to determining the curvature. We present here a new method to determine curvature accurately using an estimator function, which is tuned with a least-squares-fit against reference data. Furthermore, we show how spurious currents may be drastically reduced using the reconstructed interfaces from the PLIC-VOF method. (authors)

  20. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  1. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  2. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  3. Effects of surface tension and viscosity on the forming and transferring process of microscale droplets

    Science.gov (United States)

    Chen, Shulei; Liu, Kun; Liu, Cunbin; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai; Lin, Qiao

    2016-12-01

    Surface tension and viscosity act as important roles on the fluid flow in microchannel channels. In order to understand the influencing mechanism, three dimensional numerical simulations as well as experimental investigations were carried out on the slug formation and transfer in a rectangle T-junction microchannel. The simulation showed that the increasing Capillary number (Ca) resulted in the decreasing slug volume. Due to the existence of film thickness and corner flow, the characteristic length of slug was not the same trend completely. The results also showed that the pressure of junction point fluctuated periodically in the process of slug formation, which can reflect the slug formation period and the effect of the various conditions on pressure change. Two other pressure monitoring points were located in vertical channel and main channel and they monitored the pressure of two phase flow respectively. The increasing surface tension resulted in an increasing of total pressure, the interface pressure drop of two phases and the period of slug formation. The frequency of slug formation and two phases total pressure increased with the viscosity of continuous phase.

  4. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  5. Free surface flow under gravity and surface tension due to an applied pressure distribution: i Bond number greater than one-third

    Energy Technology Data Exchange (ETDEWEB)

    Maleewong, Montri; Asavanant, Jack [Chulalongkorn University, Department of Mathematics and Advanced Virtual Intelligence Computing Center, Bangkok (Thailand); Grimshaw, Roger [Loughborough University, Department of Mathematical Sciences, Loughborough (United Kingdom)

    2005-08-01

    We consider steady free surface two-dimensional flow due to a localized applied pressure distribution under the effects of both gravity and surface tension in water of constant depth, and in the presence of a uniform stream. The fluid is assumed to be inviscid and incompressible, and the flow is irrotational. The behavior of the forced nonlinear waves is characterized by three parameters: the Froude number, F, the Bond number, {tau}>1/3, and the magnitude and sign of the pressure forcing parameter {epsilon}. The fully nonlinear wave problem is solved numerically by using a boundary integral method. For small amplitude waves and F<1 but not too close to 1, linear theory gives a good prediction for the numerical solution of the nonlinear problem in the case of bifurcation from the uniform flow. As F approaches 1, the nonlinear terms need to be taken account of. In this case the forced Korteweg-de Vries equation is found to be an appropriate model to describe bifurcations from an unforced solitary wave. In general, it is found that for given values of F<1 and {tau}>1/3, there exists both elevation and depression waves. In some cases, a limiting configuration in the form of a trapped bubble occurs in the depression wave solutions. (orig.)

  6. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  7. Long-life of a bubble on the surface of a water-alcohol mixture

    Science.gov (United States)

    Rage, Gibran; Hernandez-Sanchez, J. Federico; Wilhelmus, Monica M.; Zenit, Roberto

    2016-11-01

    The lifetime of superficial bubbles has been used traditionally to determine the alcohol content in destilled beverages and spirits. With the proper alcohol content, the bubbles, known as pearls, have a particularly long life which is much longer than that in either pure water or pure ethanol. To understand this peculiar behavior, we conducted controlled experiments in water-ethanol mixtures and in samples of mezcal, an artisanal agave spirit. We assess the effect of the changes in viscosity, surface tension and density of the liquids. Also, we analyzed the effects of surfactants and evaporation rate differences, which lead to Marangoni convection in the draining film.

  8. Measurement of the surface tension of Santowax 'R', para-, meta-, and ortho-terphenyl, diphenyl, diphenyl ether and dowtherm 'A'

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Kinneir, J.H.

    1961-09-01

    Values of surface tension were obtained over the temperature range from near the melting point to near the normal boiling point of each substance. A capillary rise method was used employing a closed glass U-tube apparatus. The accuracy was ± 3% near the melting point falling to ± 5% near the normal boiling point. Values of the parachor calculated from the experimental data were in excellent agreement with those calculated from the molecular structure using the method proposed by Sugden. The surface tension in each case decreased with ascending temperature from near 30 to 40 dynes/cm close to the melting point to 13 to 15 dynes/cm near the normal boiling point. (author)

  9. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  10. Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Directory of Open Access Journals (Sweden)

    A. Peters

    2009-09-01

    Full Text Available Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.

  11. Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube

    International Nuclear Information System (INIS)

    Moh, Jeong Hah; Cho, Y. I.

    2014-01-01

    This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady

  12. Density, viscosity, and surface tension of synthesis grade imidazolium,pyridinium, and pyrrolidinium based room temperature ionic liquids

    NARCIS (Netherlands)

    Galan Sanchez, L.M.; Espel, J.R.; Onink, S.A.F.; Meindersma, G.W.; Haan, de A.B.

    2009-01-01

    Density, viscosity, and surface tension data sets of 13 ionic liquids formed by imidazolium, pyridinium, or pyrrolidinium cations paired with dicyanamide (DCA), tetrafluoroborate (BF4¯), thiocyanate (SCN¯),methylsulfate (MeSO4¯), and trifluoroacetate (TFA) anions are reported. The properties were

  13. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    Directory of Open Access Journals (Sweden)

    Michelly C. dos Santos

    2010-01-01

    Full Text Available An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.

  14. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  15. Effect of temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol

    International Nuclear Information System (INIS)

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2014-01-01

    Highlights: • Effect of temperature and chain length on η and σ of DMF + 1-alkanol binary systems. • Viscosity and surface tension were obtained. • Δη, Δσ and G ∗E were calculated using the experimental data. • H σ and S σ were determined using the surface tension data. • Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity and surface tension of binary systems of N,N-dimethylformamide DMF with higher 1-alkanols (C 8 –C 10 ) were measured at atmospheric pressure and four different temperatures over the entire range of mole fraction. The experimental measurements were used to calculate the deviations in viscosity and surface tension. Furthermore, the excess Gibbs free energy of activation, surface enthalpy and surface entropy of the (DMF + 1-alkanols) binary mixtures were determined. In addition, the deviation and excess properties were fitted to the method of Redlich–Kister (R–K) polynomial. Viscosity data of the binary systems were correlated with three different expressions (Grunberg and Nissan, the three-body, and four-body McAllister). The effects of the chain length of the higher 1-alkanols and temperature were investigated

  16. Use of local and global limit load solutions for plates with surface cracks under tension

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y. [British Energy Generation Ltd, Barnett Way, Bamwood, Gloucester GL4 3RS (United Kingdom)], E-mail: yuebao.lei@british-energy.com

    2007-09-15

    Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one.

  17. Use of local and global limit load solutions for plates with surface cracks under tension

    International Nuclear Information System (INIS)

    Lei, Y.

    2007-01-01

    Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one

  18. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension

    Science.gov (United States)

    Durand, O.; Jaouen, S.; Soulard, L.; Heuzé, O.; Colombet, L.

    2017-10-01

    We compare, at similar scales, the processes of microjetting and ejecta production from shocked roughened metal surfaces by using atomistic and continuous approaches. The atomistic approach is based on very large scale molecular dynamics (MD) simulations with systems containing up to 700 × 106 atoms. The continuous approach is based on Eulerian hydrodynamics simulations with adaptive mesh refinement; the simulations take into account the effects of viscosity and surface tension, and the equation of state is calculated from the MD simulations. The microjetting is generated by shock-loading above its fusion point a three-dimensional tin crystal with an initial sinusoidal free surface perturbation, the crystal being set in contact with a vacuum. Several samples with homothetic wavelengths and amplitudes of defect are simulated in order to investigate the influence of viscosity and surface tension of the metal. The simulations show that the hydrodynamic code reproduces with very good agreement the profiles, calculated from the MD simulations, of the ejected mass and velocity along the jet. Both codes also exhibit a similar fragmentation phenomenology of the metallic liquid sheets ejected, although the fragmentation seed is different. We show in particular, that it depends on the mesh size in the continuous approach.

  19. BIOELECTRIC POTENTIALS IN HALICYSTIS : VII. THE EFFECTS OF LOW OXYGEN TENSION.

    Science.gov (United States)

    Blinks, L R; Darsie, M L; Skow, R K

    1938-11-20

    The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O(2) in N(2)). When bubbling of 2 per cent O(2) is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O(2) causes the P.D. to drop to 20 mv. or less; 1.1 per cent O(2) to about 50 mv. Restoration of 2 per cent or higher O(2) causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O(2) tension also inhibits the reversed, negative P.D. produced by adding NH(4)Cl to sea water, 0.2 per cent O(2) bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O(2) or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O(2) may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O(2). This indicates that the originally high relative mobility or concentration of K(+) ion has approached that of Na(+) in the external protoplasmic surface under reduced O(2) tension. Results obtained with sulfate sea water indicate that Na(+) mobility approaches that of SO(4) (-) in 0.2 per cent O(2). P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of

  20. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    Science.gov (United States)

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  1. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  2. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  3. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    Science.gov (United States)

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  4. Formation of water-in-diesel oil nano-emulsions using high energy method and studying some of their surface active properties

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available In this work, formations of water-in-diesel oil nano-emulsions using water/mixed nonionic surfactant/diesel oil system have been studied. The high energy emulsification method was used to form three emulsions using different water contents: 5%, 10% and 14% (v/v namely; E1, E2 and E3, respectively. These nano-emulsions were stabilized with emulsifiers having different Hydrophilic–Lipophilic Balance (HLB namely; span 80 (HLB = 4.3, emarol 85 (HLB = 11 and their mixture (SE with HLB = 10. The effect of water on the droplet size formation has been investigated. The interfacial tension and thermodynamic properties of the individual and emulsifiers blends have been studied. The interfacial tension (γ measurements at 30 °C were used to determine the critical micelle concentration (CMC and surface active properties of these emulsifiers. The water droplet sizes were measured by dynamic light scattering (DLS. From the obtained data, it was found that, mean sizes between 19.3 and 39 nm were obtained depending on the water content and concentration of blend emulsifiers (SE. Also, the results show that, the interfacial tension (γ gives minimum value (10.85 mN/m for SE comparing with individual emulsifier (17.13 and 12.77 mN/m for span 80 and emarol 85, respectively. The visual inspection by TEM showed that the obtained results support the data obtained by dynamic light scattering.

  5. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    Science.gov (United States)

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  6. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    Science.gov (United States)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of

  7. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  8. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  9. Control of water infiltration into near surface LLW disposal units: Task report, A discussion

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1988-03-01

    The principal pathway for water entry into LLW disposal units in the humid eastern United States is through their covers. Two types of sub-surface features that may be constructed to enhance run-off (surface or sub-surface run-off) and thus reduce percolation are the resistive layer barrier, and the conductive layer barrier. The resistive layer barrier is the compacted soil or compacted clay layer and depends on compaction of permeable porous material to obtain low flow rates. The conductive layer barrier is a special case of the capillary barrier. Use is made of the capillary barrier phenomenon not only to increase the moisture content above an interface but to divert water away from the waste. During such diversion the water is at all times at negative capillary potential or under tension in the flow layer. A very effective barrier system might be constructed by placing a resistive barrier over a conductive barrier. Such a system must fail if appreciable subsidence takes place. An alternate procedure called bioengineering management utilizes engineered features at the surface (as opposed to the subsurface) to ensure adequate run-off. The engineered features are combined with stressed vegetation, that is, vegetation in an overdraft condition, to control deep percolation. (59 refs., 10 figs.)

  10. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  11. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  12. The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack

    KAUST Repository

    Zemlyanova, A. Y.

    2013-03-08

    A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.

  13. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  14. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Science.gov (United States)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  15. Transitions of tethered chain molecules under tension.

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Binder, Kurt

    2014-09-21

    An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

  16. Surface Tension Driven Instability in the Regime of Stokes Flow

    Science.gov (United States)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  17. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Carmen M. [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: cmromeroi@unal.edu.co; Jimenez, Eulogio [Facultade de Ciencias, Universidade da Coruna (Spain); Suarez, Felipe [Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia)

    2009-04-15

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration.

  18. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Jimenez, Eulogio; Suarez, Felipe

    2009-01-01

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration

  19. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  20. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  1. Propelling a water drop with the vapor-mediated Marangoni effect

    Science.gov (United States)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  2. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  3. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  4. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  5. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  6. The tension of framed membranes from computer simulations

    DEFF Research Database (Denmark)

    Hamkens, Daniel; Jeppesen, Claus; Ipsen, John H.

    2018-01-01

    the membranes display power-law characteristics for the equation of state, while higher tension levels includes both an extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a transition from extended to buckled conformations takes place at negative frame......Abstract.: We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation techniques. The dependence of the canonical free energy and frame tension on the frame area...... is obtained for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer) state to a finite tension extended state. In a tension range above this threshold tension...

  7. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    International Nuclear Information System (INIS)

    Jacome, Paulo A.D.; Landim, Mariana C.; Garcia, Amauri; Furtado, Alexandre F.; Ferreira, Ivaldo L.

    2011-01-01

    Highlights: → Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. → Butler's scheme and ThermoCalc are used to compute the thermophysical properties. → Predictive cell/dendrite growth models depend on accurate thermophysical properties. → Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  8. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    Science.gov (United States)

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  9. Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data

    Directory of Open Access Journals (Sweden)

    E. O. Fors

    2010-06-01

    Full Text Available HUmic-LIke Substances (HULIS have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondônia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA at relative humidity (RH <100%, and a cloud condensation nucleus counter (CCNC at RH >100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m and 31% (50.3 mN/m for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m and 13% (63.3 mN/m.

  10. 33 CFR 147.809 - Mars Tension Leg Platform safety zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...

  11. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  12. Unexpected finite size effects in interfacial systems: Why bigger is not always better—Increase in uncertainty of surface tension with bulk phase width

    Science.gov (United States)

    Longford, Francis G. J.; Essex, Jonathan W.; Skylaris, Chris-Kriton; Frey, Jeremy G.

    2018-06-01

    We present an unexpected finite size effect affecting interfacial molecular simulations that is proportional to the width-to-surface-area ratio of the bulk phase Ll/A. This finite size effect has a significant impact on the variance of surface tension values calculated using the virial summation method. A theoretical derivation of the origin of the effect is proposed, giving a new insight into the importance of optimising system dimensions in interfacial simulations. We demonstrate the consequences of this finite size effect via a new way to estimate the surface energetic and entropic properties of simulated air-liquid interfaces. Our method is based on macroscopic thermodynamic theory and involves comparing the internal energies of systems with varying dimensions. We present the testing of these methods using simulations of the TIP4P/2005 water forcefield and a Lennard-Jones fluid model of argon. Finally, we provide suggestions of additional situations, in which this finite size effect is expected to be significant, as well as possible ways to avoid its impact.

  13. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  14. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  15. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  16. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  17. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  18. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jacome, Paulo A.D.; Landim, Mariana C. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Garcia, Amauri, E-mail: amaurig@fem.unicamp.br [Department of Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Furtado, Alexandre F.; Ferreira, Ivaldo L. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil)

    2011-08-20

    Highlights: {yields} Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. {yields} Butler's scheme and ThermoCalc are used to compute the thermophysical properties. {yields} Predictive cell/dendrite growth models depend on accurate thermophysical properties. {yields} Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  19. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  20. Tension perturbations of black brane spacetimes

    International Nuclear Information System (INIS)

    Traschen, Jennie; Fox, Daniel

    2004-01-01

    We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources

  1. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  2. Calculation of the interfacial tension of the methane-water system with the linear gradient theory

    DEFF Research Database (Denmark)

    Schmidt, Kurt A. G.; Folas, Georgios; Kvamme, Bjørn

    2007-01-01

    The linear gradient theory (LGT) combined with the Soave-Redlich-Kwong (SRK EoS) and the Peng-Robinson (PR EoS) equations of state has been used to correlate the interfacial tension data of the methane-water system. The pure component influence parameters and the binary interaction coefficient...... for the mixture influence parameter have been obtained for this system. The model was successfully applied to correlate the interfacial tension data set to within 2.3% for the linear gradient theory and the SRK EoS (LGT-SRK) and 2.5% for the linear gradient theory and PE EoS (LGT-PR). A posteriori comparison...... of data not used in the parameterisation were to within 3.2% for the LGT-SRK model and 2.7% for the LGT-PR model. An exhaustive literature review resulted in a large database for the investigation which covers a wide range of temperature and pressures. The results support the success of the linear...

  3. Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine + diethylene glycol

    International Nuclear Information System (INIS)

    Li, Lihua; Zhang, Jianbin; Li, Qiang; Guo, Bo; Zhao, Tianxiang; Sha, Feng

    2014-01-01

    Graphical abstract: Excess property of the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG). - Highlights: • Densities and viscosities of EDA + DEG at 298.15–318.150 K were listed. • Thermodynamics data of EDA + DEG at 298.15–318.15 K were calculated. • Surface tension of EDA + DEG at 298.15 K was measured. • Intermolecular interaction of EDA with DEG was discussed. - Abstract: This paper reports density and viscosity data at T = 298.15, 303.15, 308.15, 313.15, and 318.15 K and surface tension data at 298.15 K for the binary system 1,2-ethanediamine (EDA) + diethylene glycol (DEG) as a function of composition under atmospheric pressure. From the experimental density and viscosity data, the excess molar volume and viscosity deviation were calculated, and the results were fitted to a Redlich–Kister equation to obtain the coefficients and to estimate the standard deviations between the experimental and calculated quantities. Based on the kinematic viscosity data, enthalpy of activation for viscous flow, entropy of activation for the viscous flow, and Gibbs energies of activation of viscous flow were calculated. In addition, based on Fourier transform infrared spectra, UV–vis spectra, and electrical conductivity for the system EDA + DEG with various concentrations, intermolecular interaction of EDA with DEG was discussed

  4. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.

    Science.gov (United States)

    Ye, Qing; Wiera, Boguslaw; Steudle, Ernst

    2004-02-01

    Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic efficiency' of osmolytes was quite different. Their reflection coefficients ranged between 0.15 (acetone), 0.59 (EGMME), 0.78 (DEGMME), and 0.80 (TEGMEE). Bulk water permeability (Lp) and diffusive permeabilities (Ps) of heavy water (HDO), hydrogen peroxide (H2O2), acetone, and glycol ethers (EGMME, DEGMME, and TEGMEE) were measured using a cell pressure probe. Cells were treated with different concentrations of osmotic solutes of up to 800 mM ( approximately 2.0 MPa of osmotic pressure). Inhibition of aquaporin activity increased with both increasing concentration and size of solutes (reflection coefficients). As cell Lp decreased, Ps increased, indicating that water and solutes used different passages across the plasma membrane. Similar to earlier findings of an osmotic gating of ion channels, a cohesion/tension model of the gating of water channels in Chara internodes by high concentration is proposed. According to the model, tensions (negative pressures) within water channels affected the open/closed state by changing the free energy between states and favoured a distorted/collapsed rather than the open state. They should have differed depending on the concentration and size of solutes that are more or less excluded from aquaporins. The bigger the solute, the lower was the concentration required to induce a reversible closure of aquaporins, as predicted by the model.

  5. Diffusive intergranular cavity growth in creep in tension and torsion

    International Nuclear Information System (INIS)

    Stanzl, S.E.; Argon, A.S.; Tschegg, E.K.

    1983-01-01

    Creep experiments were performed at 500 C in tension and torsion on high conductivity copper tubes with a uniform initial coverage of implanted water vapor bubbles on all grain boundaries. No significant differences were found in the times to fracture over a wide stress range when the results were correlated according to the maximum principal tensile stress in the two fields. The results indicate that the cavities grow in a crack-like mode but at one tenth the rate predicted from the theoretical model of Pharr and Nix. This difference is attributed partly to load shedding from boundaries normal to the maximum principal tensile stress to slanted boundaries, and partly to a lack of knowledge about th surface diffusion constant. The results indicate further that the contribution to intergranular cavity growth by power-law creep in negligible in comparison to the contribution by diffusional flow. Complementary tension and torsion experiments performed in initially uncavitated samples results in shorter creep lives in torsion than in tension due to more effective cavity nucleation in the former. The times to fracture in both of these cases obey Monkman and Grant's law, indicating the presence of constraints on growth by the lagging deformations by power-law creep in the surroundings of the cavitating isolated grain facets

  6. 33 CFR 147.817 - Sir Douglas Morpeth Tension Leg Platform safety zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sir Douglas Morpeth Tension Leg... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.817 Sir Douglas Morpeth Tension Leg Platform safety zone. (a) Description. The Sir Douglas Morpeth Tension Leg Platform (Morpeth...

  7. Membrane tension regulates clathrin-coated pit dynamics

    Science.gov (United States)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  8. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  9. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  10. Corrosion characteristics of unprotected post-tensioning strands under stress : [summary].

    Science.gov (United States)

    2014-05-01

    Post tensioned concrete is used in many Florida : transportation structures, many of which are : exposed to fresh or salt water. The steel strands : that supply the tension are encased in a plastic : duct which is later filled with grout, so the stra...

  11. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  12. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  13. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  14. Modeling of a Curvilinear Planar Crack with a Curvature-Dependent Surface Tension

    KAUST Repository

    Zemlyanova, A. Y.; Walton, J. R.

    2012-01-01

    An approach to modeling fracture incorporating interfacial mechanics is applied to the example of a curvilinear plane strain crack. The classical Neumann boundary condition is augmented with curvature-dependent surface tension. It is shown that the considered model eliminates the integrable crack-tip stress and strain singularities of order 1/2 present in the classical linear fracture mechanics solutions, and also leads to the sharp crack opening that is consistent with empirical observations. Unlike for the case of a straight crack, for a general curvilinear crack some components of the stresses and the derivatives of the displacements may still possess weaker singularities of a logarithmic type. Generalizations of the present study that lead to complete removal of all crack-tip singularities, including logarithmic, are the subject of a future paper. © 2012 Society for Industrial and Applied Mathematics.

  15. Determination of the step dipole moment and the step line tension on Ag(0 0 1) electrodes

    International Nuclear Information System (INIS)

    Beltramo, G.L.; Ibach, H.; Linke, U.; Giesen, M.

    2008-01-01

    Using impedance spectroscopy, we determined the step dipole moment and the potential dependence of the step line tension of silver electrodes in contact with an electrolyte: (0 0 1) and vicinal surfaces (1 1 n) with n = 5, 7, 11 in 10 mM ClO 4 - -solutions were investigated. The step dipole moment is determined from the shift of the potential of zero charge (pzc) as a function of the surface step density. The dipole moment per step atom was found to be 3.5 ± 0.5 x 10 -3 e A. From the pzc and the potential dependence of the capacitance curves, the potential dependence of the surface tension of the vicinal surfaces is determined. The line tension of the steps is then calculated from the difference between the surface tensions of stepped (1 1 n) and the nominally step-free (0 0 1) surfaces. The results are compared to a previous study on Au(1 1 n) surfaces. For gold, the step line tension decreases roughly linear with potential, whereas a parabolic shape is observed for silver

  16. Surface tension and 0.1 MPa densities of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based tris(pentafluoroethyl)trifluorophosphate ionic liquids

    Czech Academy of Sciences Publication Activity Database

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2012-01-01

    Roč. 333, NOV 15 2012 (2012), s. 38-46 ISSN 0378-3812 R&D Projects: GA ČR GA101/09/0010 Institutional research plan: CEZ:AV0Z20760514 Keywords : ionic liquid * tris(pentafluoroethyl)trifluorophosphate * density * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 2.379, year: 2012 http://www.sciencedirect.com/science/article/pii/S037838121200310X

  17. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO{sub 3} with different polar surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023 (China); Zhang, Jun, E-mail: zhangjun@njtech.edu.cn [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-12-01

    Graphical abstract: - Highlights: • The non-polar and short vinyl groups can greatly reduce G′ of HDPE composites. • Long chains on BaTiO{sub 3} surface enhance the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups on BaTiO{sub 3} surface raise the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups can boost the dielectric constant of HDPE composites. • The potential use in electronic equipment of the KH550 composites is obtained. - Abstract: In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO{sub 3}) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO{sub 3} from 37.53 mJ/m{sup 2} to 7.51 mJ/m{sup 2}, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO{sub 3}, but make BaTiO{sub 3} have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO{sub 3} still with hydrophilic properties. It is found that SG-Si151 modified BaTiO{sub 3} has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO{sub 3} surface can improve the adhesion of BaTiO{sub 3} with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO{sub 3} can boost the dielectric properties of HDPE/BaTiO{sub 3} composites and decrease the volume resistivity of HDPE/BaTiO{sub 3} composites. The aim of this study is to investigate how functional groups

  18. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  19. Tension Headache

    Science.gov (United States)

    ... tight band around your head. A tension headache (tension-type headache) is the most common type of headache, and ... Headache after a head injury, especially if the headache gets worse ... tension or stress. But research suggests muscle contraction isn't the ...

  20. Contact angle of water droplet on apatite single crystals

    International Nuclear Information System (INIS)

    Suzuki, Takaomi; Hirose, Go; Oishi, Shuji

    2004-01-01

    Contact angles of water droplets on well-formed crystals of strontium and barium chlorapatites, Sr 5 Cl(PO 4 ) 3 and Ba 5 Cl(PO 4 ) 3 , were observed. The contact angles of water on (1 0 1-bar 0) and (1 0 1-bar 1) faces of Sr 5 Cl(PO 4 ) 3 were 74±8 deg. and 53±5 deg. and those on (1 0 1-bar 0) and (1 0 1-bar 1) faces of Ba 5 Cl(PO 4 ) 3 were 52±5 deg. and 33±1 deg., respectively. The surface tensions of the crystals were calculated using Neumann's equation. They were 39.2±50 and 52.0±3.0 mJ m -2 for (1 0 1-bar 0) and (1 0 1-bar 1) faces of Sr 5 Cl(PO 4 ) 3 , 52.5±2.9 and 63.0±0.5 mJ m -2 for (1 0 1-bar 0) and (1 0 1-bar 1) faces of Ba 5 Cl(PO 4 ) 3 , respectively. The (1 0 1-bar 1) face has larger surface tension than (1 0 1-bar 0) face for both crystals. The chlorapatite crystals have tendency to elongate in directions during the crystal growth process, indicating that (1 0 1-bar 0) face is more stable than (1 0 1-bar 1) face. This nature of crystal morphology is consistent with the surface tensions estimated from the water contact angles. The higher density of Ba 5 Cl(PO 4 ) 3 than Sr 5 Cl(PO 4 ) 3 is considered to cause the smaller contact angles of water droplet on Ba 5 Cl(PO 4 ) 3 crystal than that on Sr 5 Cl(PO 4 ) 3 crystal because the attractive force between the heavier atoms brings the larger surface tension of solid

  1. Group contribution and parachor analysis of experimental data on densities and surface tension for six ionic liquids with the [PF6] anion

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2015-01-01

    Roč. 385, January (2015), s. 62-71 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * density * surface tension * odd-even effect Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  2. Three-tier rough superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-01-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s"−"1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s"−"1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. (paper)

  3. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  4. Integrated and Adaptive Management of Water Resources: Tensions, Legacies, and the Next Best Thing

    Directory of Open Access Journals (Sweden)

    Nathan L. Engle

    2011-03-01

    Full Text Available Integrated water resources management (IWRM and adaptive management (AM are two institutional and management paradigms designed to address shortcomings within water systems governance; the limits of hierarchical water institutional arrangements in the case of IWRM and the challenge of making water management decisions under uncertainty in the case of AM. Recently, there has been a trend to merge these paradigms to address the growing complexity of stressors shaping water management such as globalization and climate change. However, because many of these joint approaches have received little empirical attention, questions remain about how they might work, or not, in practice. Here, we explore a few of these issues using empirical research carried out in Brazil. We focus on highlighting the potentially negative interactions, tensions, and trade-offs between different institutions/mechanisms perceived as desirable as research and practice attempt to make water systems management simultaneously integrated and adaptive. Our examples pertain mainly to the use of techno-scientific knowledge in water management and governance in Brazil's IWRM model and how it relates to participation, democracy, deliberation, diversity, and adaptability. We show that a legacy of technical and hierarchical management has shaped the integration of management, and subsequently, the degree to which management might also be adaptive. Although integrated systems may be more legitimate and accountable than top-down command and control ones, the mechanisms of IWRM may be at odds with the flexible, experimental, and self-organizing nature of AM.

  5. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    Science.gov (United States)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  6. Economic Floating Waste Detectionfor Surface Cleaning Robots

    Directory of Open Access Journals (Sweden)

    Sumroengrit Jakkrit

    2017-01-01

    Full Text Available Removing waste out of water surface is a routine task and can be operated by using autonomous surface cleaning robots. This paper presents amethodoflaser-based floating waste detection for surface robot guidance when waste positions are unknown beforehand. Basing on concept of refraction and reflection of laser ray, the proposed laser-based technique is proven to be applicable on floating waste detection. The economic waste detector is constructed and mounted on the robot. Five DOF equations of motion are formulated for calculation of waste position incorporating distance measured by the laser and also the robot motion caused by external wind force as well as water surface tension. Experiments were conducted on a pond with calm water and results show that the presented economic waste detection successfully identify and locate position of plastic bottles floating on water surface within the range of 5 meters.

  7. Measurement uncertainty evaluation of cellular spheroids surface tension in compressing tests using Young-Laplace equation

    Science.gov (United States)

    Beatrici, Anderson; Santos Baptista, Leandra; Mauro Granjeiro, José

    2018-03-01

    Regenerative Medicine comprises the Biotechnology, Tissue Engineering and Biometrology for stem cell therapy. Starting from stem cells extracted from the patient, autologous implant, these cells are cultured and differentiated into other tissues, for example, articular cartilage. These cells are reorganized into microspheres (cell spheroids). Such tissue units are recombined into functional tissues constructs that can be implanted in the injured region for regeneration. It is necessary the biomechanical characterization of these constructed to determine if their properties are similar to native tissue. In this study was carried out the modeling of the calculation of uncertainty of the surface tension of cellular spheroids with the use of the Young-Laplace equation. We obtained relative uncertainties about 10%.

  8. Surface and conductivity properties of imidazoles solutions

    International Nuclear Information System (INIS)

    Rogalski, Marek; Domanska, Urszula; Czyrny, Dagmara; Dyczko, Dagmara

    2002-01-01

    The surface tension, σ, of the solutions of benzimidazole, 2-phenylimidazole and 2,4,5-triphenylimidazole in water, or water + 10 mol% of acetonitrile, or in other solvents as well as the solubilities and conductivity of benzimidazole and 2-phenylimidazole in water in function of concentration at 298.15 K were measured. The enthalpy of fusion, or solid-solid phase transition and the melting temperatures were determined for the substances under study by the scanning calorimetry (DSC). These solutions exhibit, in a wide range of concentrations, the normal linear, or parabolic decreasing dependencies and the maximum of surface tension at very low concentrations and show the S-shaped dependencies, being in function of the initial sample, never reported before. The results were confirmed by the conductivity measurements. The results were interpreted in terms of the changing structure of the interface. It was concluded that the observed phenomena were caused by an induced nucleation of benzimidazole, 2-phenylimidazole and especially by 2,4,5-triphenylimidazole by columnar discotic structures due to the initial concentration. The surface properties of these solutions reflect the interactions of hydrophobic parts of the guest molecules adsorbed at the interface, as a result of the hydrogen bonded structure of the solution

  9. STRIDE II: A Water Strider-inspired Miniature Robot with Circular Footpads

    Directory of Open Access Journals (Sweden)

    Onur Ozcan

    2014-06-01

    Full Text Available Water strider insects have attracted the attention of many researchers due to their power-efficient and agile water surface locomotion. This study proposes a new water strider insect-inspired robot, called STRIDE II, which uses new circular footpads for high lift, stability and payload capability, and a new elliptical leg rotation mechanism for more efficient water surface propulsion. Using the advantage of scaling effects on surface tension versus buoyancy, similar to water strider insects, this robot uses the repulsive surface tension force on its footpads as the dominant lift principle instead of creating buoyancy by using very skinny (1 mm diameter circular footpads coated with a superhydrophobic material. The robot and the insect propel quickly and power efficiently on the water surface by the sculling motion of their two side-legs, which never break the water surface completely. This paper proposes models for the lift, drag and propulsion forces and the energy efficiency of the proposed legged robot, and experiments are conducted to verify these models. After optimizing the robot design using the lift models, a maximum lift capacity of 55 grams is achieved using 12 footpads with a 4.2 cm outer diameter, while the robot itself weighs 21.75 grams. For this robot, a propulsion efficiency of 22.3% was measured. The maximum forward and turning speeds of the robot were measured as 71.5 mm/sec and 0.21 rad/sec, respectively. These water strider robots could be used in water surface monitoring, cleaning and analysis in lakes, dams, rivers and the sea.

  10. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  11. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Science.gov (United States)

    Hrubý, Jan; Duška, Michal

    2014-03-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation) properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  12. Life and water

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-08-01

    Many living organisms on Earth are strongly dependent on water, the natural liquid of the planet. A possible reason for that could be the conjecture of Ryoji Takahashi that water microdrops release negenetropy through a phase transition to a phase with zero surface tension. Biological cells could make use of such a phase transition in their duty cycle. We comment on the relative merit of this conjecture, and present it in wider theoretical context. (author). 10 refs

  13. Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhao Hua; Luo, Yue [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering

    2013-09-15

    The compatibility of surfactants, a series of alkyl amino sulfonate containing various the length of alkyl chain (dodecyl, tetradecyl, hexadecyl and octadecyl, developed in our laboratory), with formation water matching the Xinjiang Oil Field reservoir water and the dynamic interfacial tensions (DIT) behaviors between the crude oil and the formation water for a number of alkaline flooding systems were measured. These surfactants are found to be well compatible with formation water up to 0.10g L{sup -1} surfactant concentration, especially Dodec-AS and Tetradec-AS show a good compatibility with formation water over the full range of surfactant concentration investigated (0.01-0.20g L{sup -1}). All surfactants exhibit the dynamic interfacial tension behavior, and can reach and maintain low interfacial tension at very low concentration. The time for reaching the equilibrium DIT (DIT{sub eq}) is longer for surfactant with stronger lipophilicity, e.g. octadecyl-AS. It is interestingly found that the ratio value between DIT{sub eq} and the tension at crude oil/reservoir water interface in the absence of surfactant is in the range of 10{sup -4}-10{sup -3} mN m{sup -1}, accordingly based on which and the previous results, four surfactants individually or with other additives together may become potent candidates for enhanced oil recovery. Fortunately, the alkyl amino sulfonate combinational systems without alkali designed by our group can reduce the interfacial tension even to 10{sup -4} mN m{sup -1} at very low surfactant concentration. These surfactants or their systems have characteristic of 'Green', in addition to the excellent salt-tolerance and the less expensive cost for enhanced oil recovery, and therefore they are good oil-displacing reagents for enhanced oil recovery. (orig.)

  14. Tensions between opening up and closing down moments in transdisciplinary water research

    Science.gov (United States)

    Krueger, Tobias; Maynard, Carly; Carr, Gemma; Bruns, Antje; Mueller, Eva; Lane, Stuart

    2016-04-01

    Research on water is carried out by many disciplines that do not really talk to each other much, despite critical interactions of multiple social and biophysical processes in shaping how much and what kind of water is where, at what time and for whom. What is more, water has meaning to more than those who are scientists. And scientists are not so removed from the things they study as one might commonly believe. All these observations call for a transdisciplinary research agenda that brings together different scientific disciplines with the knowledge that other groups in society hold and that tries to be aware of its own limitations. The transdisciplinary perspective is especially pertinent to the scientific decade 2013-2022 of the International Association of Hydrological Sciences (IAHS) on change in hydrology and society, 'Panta Rhei,' for a balanced conceptualization and study of human-water relations. Transdisciplinarity is inherently about opening up traditional modes of knowledge production; in terms of framing the research problem, the methodology and the knowledge that is considered permissible. This should open up the range of options for management intervention, too. While decisions on how to intervene will inevitably close down the issue periodically, the point here is to leave alternative routes of action open long enough, or reopen them again, so as to counter unsustainable and inequitable path-dependencies and lock-ins. However, opening up efforts are frequently in conflict with factors that work to close down knowledge production. Among those are framings, path-dependencies, vested interests, researchers' positionalities, power, and scale. In this presentation, based on Krueger et al. (2016), we will reflect on the tensions between opening up and closing down moments in transdisciplinary water research and draw important practical lessons. References Krueger, T., Maynard, C.M., Carr, G., Bruns, A., Mueller, E.N. and Lane, S.N. (forthcoming in 2016) A

  15. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  16. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  17. Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties

    DEFF Research Database (Denmark)

    Telecka, Agnieszka; Li, Tao; Ndoni, Sokol

    2018-01-01

    by oxygen plasma treatment. The different texture and surface chemistry configurations are characterized with respect to their wetting properties with water, alkanes and organic oils. While, both nano-pillar and nano-hole surfaces feature excellent superhydrophobic properties with water contact angles (WCAs......) exceeding 170 degrees and roll-off angles below 5 degrees, only the nano-pillar surfaces exhibit convincing superhydrophilicity with WCAs below 5 degrees. The repellency of low surface tension liquids known as amphiphobicity is demonstrated for the nano-hoodoo surfaces....

  18. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  19. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  20. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  1. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  2. Necessary Tension in Marine Risers Tension des colonnes montantes en mer

    Directory of Open Access Journals (Sweden)

    Lubinski A.

    2006-11-01

    Full Text Available The tension governing transverse static and dynamic deflections in a riser is not the actual tension but the so-called « effective tension » The concept of effective tension and effective compression is thoroughly explained, and means for calculating effective forces are given. Numerical examples are worked out for risers whose length is between 152 m (520 ft and 920 m (3020 ft. The reciprocal of maximum bending moment of the vicinity of the hall joint is plotted versus the effective tension of the ball joint. Bending moments used were obtained through use of static and dynamic computer programs applied ta a variety of conditions of wave loading, use or non-use of buoyant moterial sleeves, etc. The most important parameters affecting riser performance are the effective La tension régissant les déflections transversales statiques et dynamiques d'une colonne montante n'est pas la tension réelle mais ce qu'on appelle « la tension effective ». Le concept de tension ou de compression effective est expliqué en détail et la façon de calculer les forces effectives est indiquée dans cet article. Des exemples numériques sont développés pour des colonnes montantes de longueur comprise entre 152 m (520 ft et 920 m (3 020 ft. On a tracé la courbe de l'inverse du moment fléchissant en fonction de la tension effective à l'articulation. Les moments fléchissants utilisés ont été calculés par ordinateur en utilisant des programmes dynamiques et statiques pour des conditions variées d'action des vagues, la colonne montante étant ou non munie de manchettes de flottabilité, etc. Les deux paramètres les plus importants qui affectent le bon comportement d'une colonne montante sont la tension effective et la charge latérale.

  3. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  4. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  5. On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method

    International Nuclear Information System (INIS)

    Jamet, Didier; Torres, David; Brackbill, J.U.

    2002-01-01

    Errors in the computation of fluid flows with surface tension are examined. These errors cause large parasitic flows when the capillary number is large and have often been attributed to truncation error in underresolved interfacial regions. A study using the second-gradient method reveals that when truncation error is eliminated in the computation of energy exchanges between surface and kinetic energies so that energy is strictly conserved, the parasitic currents are reduced to round-off. The results are based on general thermodynamic arguments and can be used to guide improvements in other methods, such as the continuum-surface-force (CSF) method, which is commonly used with the volume-of-fluid (VOF) method

  6. On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method

    CERN Document Server

    Jamet, D; Brackbill, J U

    2002-01-01

    Errors in the computation of fluid flows with surface tension are examined. These errors cause large parasitic flows when the capillary number is large and have often been attributed to truncation error in underresolved interfacial regions. A study using the second-gradient method reveals that when truncation error is eliminated in the computation of energy exchanges between surface and kinetic energies so that energy is strictly conserved, the parasitic currents are reduced to round-off. The results are based on general thermodynamic arguments and can be used to guide improvements in other methods, such as the continuum-surface-force (CSF) method, which is commonly used with the volume-of-fluid (VOF) method.

  7. Temperature Dependence of the Surface Tension and Density at 0.1 MPa for 1-Ethyl- and 1-Butyl-3-methylimidazolium Dicyanamide

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2011-01-01

    Roč. 56, č. 8 (2011), s. 3454-3462 ISSN 0021-9568 R&D Projects: GA ČR GA101/09/0010; GA AV ČR IAA200760701 Institutional research plan: CEZ:AV0Z20760514 Keywords : surface tension * density * dicyanamide * experimental data Subject RIV: BJ - Thermodynamics Impact factor: 1.693, year: 2011 http://pubs.acs.org/doi/abs/10.1021/je200502j

  8. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  9. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  10. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    Science.gov (United States)

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  11. The validity of the potential model in predicting the structural, dynamical, thermodynamic properties of the unary and binary mixture of water-alcohol: Methanol-water case

    Science.gov (United States)

    Obeidat, Abdalla; Abu-Ghazleh, Hind

    2018-06-01

    Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.

  12. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6).

    Science.gov (United States)

    Tong, Jing; Yang, Hong-Xu; Liu, Ru-Jing; Li, Chi; Xia, Li-Xin; Yang, Jia-Zhen

    2014-11-13

    With the use of isothermogravimetrical analysis, the enthalpies of vaporization, Δ(g)lH(o)m(T(av)), at the average temperature, T(av) = 445.65 K, for the ionic liquids (ILs) 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6) were determined. Using Verevkin's method, the difference of heat capacities between the vapor phase and the liquid phase, Δ(g)lC(p)(o)m, for [C(n)mim][Pro](n = 2, 3, 4, 5, 6), were calculated based on the statistical thermodynamics. Therefore, with the use of Δ(g)lC(p)(o)m, the values of Δ(g)lH(o)m(T(av)) were transformed into Δ(g)lH(o)m(298), 126.8, 130.3, and 136.5 for [C(n)mim][Pro](n = 4, 5, 6), respectively. In terms of the new scale of polarity for ILs, the order of the polarity of [C(n)mim][Pro](n = 2, 3, 4, 5, 6) was predicted, that is, the polarity decreases with increasing methylene. A new model of the relationship between the surface tension and the enthalpy of vaporization for aprotic ILs was put forward and used to predict the surface tension for [C(n)mim][Pro](n = 2, 3, 4, 5, 6) and others. The predicted surface tension for the ILs is in good agreement with the experimental one.

  13. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  14. Dynamics of a camphoric acid boat at the air-water interface

    Science.gov (United States)

    Akella, V. S.; Singh, Dhiraj K.; Mandre, Shreyas; Bandi, M. M.

    2018-05-01

    We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air-water interfacial tension using Sodium Dodecyl Sulfate (SDS).

  15. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  16. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  17. Eletromiograma de superfície durante stress experimental como subsídio no diagnóstico da cefaléia tensional: resultados em 100 casos Surface scalp and neck electromyography with stress as diagnostic criterion in chronic tension headache: results in 100 cases

    Directory of Open Access Journals (Sweden)

    Ceme Ferreira Jordy

    1995-09-01

    Full Text Available Eletromiograma de superfície foi realizado no crânio e pescoço, durante stress provocado por frio, em 100 pacientes sofrendo cefaléia crônica isolada. Os resultados de diagnóstico obtidos com a eletromiografia revelaram erro de 24% a 32% na avaliação clínica da cefaléia tensional segundo os critérios anamnésicos referendados pelo Comitê de Classificação das Cefaléias, da Sociedade Internacional de Cefaléia (1988. A eletromiografia durante stress é proposta como novo critério de diagnóstico da Cefaléia tensional.We report the use of surface scalp and neck electromyography during experimental stress state in a series of 100 out-patients suffering from chronic tension headache. Results revealed a 24% to 32% of diagnostic errors in the diagnostic obtained by routine anamnestic procedures and following the criteria recommended by the Headache Classification Commitee of the International Headache Society (1988. The electromyography with stress is proposed as a new diagnostic criterion for tension headache.

  18. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  19. Tensiones residuales generadas en acero F-522 por distintos tipos de mecanizado

    Directory of Open Access Journals (Sweden)

    García-Navas, V.

    2005-08-01

    Full Text Available Machining operations induce plastic deformation and heat generation in the near surface area of the machined part, giving rise to residual stresses. Depending on their magnitude and sign, these stresses can be detrimental or beneficial to the service life of the part. The final stress state depends on the machining process applied, as well as on the machining parameters. Therefore, the establishment of adequate machining guidelines requires the measurement of the residual stresses generated both at the surface and inside the material. In this work, the residual stresses generated in F-522 steel by two hard turning (conventional and laser assisted and two grinding (production and finishing processes were measured by X-ray diffraction. Additionally, depth profiles of the volume fraction of retained austenite, microstructure and nanohardness were obtained in order to correlate those results with the residual stress state obtained for each machining process. It has been observed that turning generates tensile stresses in the surface while grinding causes compressive stresses. Below the surface grinding generates weak tensile or nearly null stresses whereas turning generates strong compressive stresses. These results show that the optimum machining process (disregarding economical considerations implies the combination of turning plus elimination of a small thickness by final grinding.

    Las operaciones de mecanizado generan deformación plástica y calor en la zona próxima a la superficie de la pieza mecanizada, dando lugar a tensiones residuales. Dependiendo de su magnitud y signo, estas tensiones pueden ser perjudiciales o beneficiosas para la vida en servicio de la pieza. El estado final de tensiones depende del proceso de mecanizado aplicado, así como de los parámetros del mismo. Por tanto, el establecimiento de unas pautas de mecanizado adecuadas requiere una medida precisa de las tensiones residuales generadas, tanto en la superficie

  20. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  1. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  2. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2014-03-01

    Full Text Available We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  3. Surface tension and density for members of four ionic liquid homologous series containing a pyridinium based-cation and the bis(trifluoromethylsulfonyl)imide anion

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2017-01-01

    Roč. 431, January (2017), s. 24-33 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * pyridinium-based cation * bis(trifluoromethylsulfonyl)imide anion * density-temperature relation * surface tension-temperature relation * recommended property values Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.473, year: 2016

  4. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  5. A Computational Study of Internal Flows in a Heated Water-Oil Emulsion Droplet

    KAUST Repository

    Sim, Jaeheon

    2015-01-05

    The vaporization characteristics of water-oil emulsion droplets are investigated by high fidelity computational simulations. One of the key objectives is to identify the physical mechanism for the experimentally observed behavior that the component in the dispersed micro-droplets always vaporizes first, for both oil-in-water and water-in-oil emulsion droplets. The mechanism of this phenomenon has not been clearly understood. In this study, an Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a dynamic adaptive mesh refinement in order to effectively capture the thermo-capillary effect of a micro-droplet in an emulsion droplet efficiently. It is found that the temperature difference in an emulsion droplet creates a surface tension gradient along the micro-droplet surface, inducing surface movement. Subsequently, the outer shear flow and internal flow circulation inside the droplet, referred to as the Marangoni convection, are created. The present study confirms that the Marangoni effect can be sufficiently large to drive the micro-droplets to the emulsion droplet surface at higher temperature, for both water-in-oil and oil-and-water emulsion droplets. A further parametric study with different micro-droplet sizes and temperature gradients demonstrates that larger micro-droplets move faster with larger temperature gradient. The oil micro-droplet in oil-in-water emulsion droplets moves faster due to large temperature gradients by smaller thermal conductivity.

  6. Study of Water-Oil Emulsion Breaking by Stabilized Solution Consisting of Anionic Surface Acting Agent - Soda Ash - Polymer (ASP)

    Science.gov (United States)

    Kulichkov, S. V.; Avtomonov, E. G.; Andreeva, L. V.; Solomennik, S. F.; Nikitina, A. V.

    2018-01-01

    The paper provides a laboratory research of breaking natural water-oil emulsions: - by non-stabilized ASP; by stabilized ASP; by mixture of stabilized and non-stabilized ASP in different proportions and production of refinery water of the required quality with the use of IronGuard 2495 as flocculant. Oil-in-water emulsion is stable. Classic methods are not suitable for residual water treatment: sediment gravity flow; filtration; centrifuge test. Microemulsion formed after ASP application has low boundary tension and high pH. It contributes to transfer of oil phase into a water one, forming oil-in-water emulsion. Alkaline condition has adverse effect on demulsifying ability of agents, flocculation and boundary tension. For breaking of water-oil emulsion at EBU before the interchanger water or water-oil emulsion from the wells that were not APS-treated in ratio of 1:9 shall be delivered. Residual water after EBU must be prepared in water tanks by dilution in great volume.

  7. A novel approach to pipeline tensioner modeling

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady, Robert; Ilie, Daniel; Lane, Michael [MCS Software Division, Galway (Ireland)

    2009-07-01

    As subsea pipeline developments continue to move into deep and ultra-deep water locations, there is an increasing need for the accurate prediction of expected pipeline fatigue life. A significant factor that must be considered as part of this process is the fatigue damage sustained by the pipeline during installation. The magnitude of this installation-related damage is governed by a number of different agents, one of which is the dynamic behavior of the tensioner systems during pipe-laying operations. There are a variety of traditional finite element methods for representing dynamic tensioner behavior. These existing methods, while basic in nature, have been proven to provide adequate forecasts in terms of the dynamic variation in typical installation parameters such as top tension and sagbend/overbend strain. However due to the simplicity of these current approaches, some of them tend to over-estimate the frequency of tensioner pay out/in under dynamic loading. This excessive level of pay out/in motion results in the prediction of additional stress cycles at certain roller beds, which in turn leads to the prediction of unrealistic fatigue damage to the pipeline. This unwarranted fatigue damage then equates to an over-conservative value for the accumulated damage experienced by a pipeline weld during installation, and so leads to a reduction in the estimated fatigue life for the pipeline. This paper describes a novel approach to tensioner modeling which allows for greater control over the velocity of dynamic tensioner pay out/in and so provides a more accurate estimation of fatigue damage experienced by the pipeline during installation. The paper reports on a case study, as outlined in the proceeding section, in which a comparison is made between results from this new tensioner model and from a more conventional approach. The comparison considers typical installation parameters as well as an in-depth look at the predicted fatigue damage for the two methods

  8. Computationally fast estimation of muscle tension for realtime bio-feedback.

    Science.gov (United States)

    Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko

    2009-01-01

    In this paper, we propose a method for realtime estimation of whole-body muscle tensions. The main problem of muscle tension estimation is that there are infinite number of solutions to realize a particular joint torque due to the actuation redundancy. Numerical optimization techniques, e.g. quadratic programming, are often employed to obtain a unique solution, but they are usually computationally expensive. For example, our implementation of quadratic programming takes about 0.17 sec per frame on the musculoskeletal model with 274 elements, which is far from realtime computation. Here, we propose to reduce the computational cost by using EMG data and by reducing the number of unknowns in the optimization. First, we compute the tensions of muscles with surface EMG data based on a biological muscle data, which is a very efficient process. We also assume that their synergists have the same activity levels and compute their tensions with the same model. Tensions of the remaining muscles are then computed using quadratic programming, but the number of unknowns is significantly reduced by assuming that the muscles in the same heteronymous group have the same activity level. The proposed method realizes realtime estimation and visualization of the whole-body muscle tensions that can be applied to sports training and rehabilitation.

  9. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  10. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  11. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  12. J-integral and limit load analysis of semi-elliptical surface cracks in plates under tension

    International Nuclear Information System (INIS)

    Lei, Y.

    2004-01-01

    Systematic detailed non-linear finite element (FE) analyses are described for semi-elliptical surface cracks in plates under tension. Limit load solutions are obtained from the FE J results through the reference stress method. The results show that the type of the relationship between J and the limit load mainly depends on the ratio a/t, where a is the crack depth and t the thickness of the plate. For a/t≤0.5, J for any position along the crack front can be predicted by the reference stress method using a single limit load value, except for the points very close to the plate surface. For a/t=0.8, J can only be approximately estimated because no single limit load value can be found to satisfy all the FE J solutions along the crack front. However, for all cases considered, the maximum J value along the crack front can still be predicted by using the global limit load in the reference stress method. The limit load data obtained from this work can be well predicted by a global limit load equation developed by Goodall and Webster

  13. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  14. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  15. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  16. An assessment of potential hydro-political tensions in transboundary river basins using environmental, political, and economic indicators

    Science.gov (United States)

    De Stefano, Lucia; Petersen-Perlman, Jacob; Sproles, Eric; Eynard, James; Wolf, Aaron T.

    2015-04-01

    Globally 286 river basins extend across international borders, covering over 61.9 million km2 of the earth's surface and hosting a total of approximately 2.7 billion people. In these basins, transboundary water resources support an interdependent web of environmental, political, and economic systems that can enhance or destabilize a region. We present an integrated global-scale assessment of transboundary watersheds to identify regions more likely to experience hydro-political tensions over the next decade and beyond based upon environmental, political, and economic indicators. We combine NASA's Gravity Recovery and Climate Experiment (GRACE) measurements of changes in terrestrial water storage with metrics of projected climate change impacts on water variability, the institutional capacity of countries to manage shared water resources, the development of new water infrastructure, per capita gross national income, domestic and international armed conflicts, and recent history of disputes over transboundary waters. The construction of new water-related infrastructure is on-going or planned in many basins worldwide. New water infrastructure is foreseen also in areas where instruments of international cooperation are still absent or limited in scope, e.g. in Southeast Asia, South Asia, Central America, the northern part of the South American continent, and the southern Balkans as well as in different parts of Africa. Moreover, in Central and Eastern Africa, the Middle East, and Central, South and South-East Asia there is a concomitance of several political, environmental and socioeconomic factors that could exacerbate hydropolitical tensions. Our analysis integrates political, economic and environmental metrics and is part of the United Nation's Transboundary Waters Assessment Programme to provide the first global-scale assessment of its type.

  17. Dynamic analysis on cavitation and embolization in vascular plants under tension

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  18. The Assessment Methods of Laryngeal Muscle Activity in Muscle Tension Dysphonia: A Review

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Nakhostin Ansari, Noureddin; Izadi, Farzad; Talebian Moghadam, Saeed

    2013-01-01

    The purpose of this paper is to review the methods used for the assessment of muscular tension dysphonia (MTD). The MTD is a functional voice disorder associated with abnormal laryngeal muscle activity. Various assessment methods are available in the literature to evaluate the laryngeal hyperfunction. The case history, laryngoscopy, and palpation are clinical methods for the assessment of patients with MTD. Radiography and surface electromyography (EMG) are objective methods to provide physiological information about MTD. Recent studies show that surface EMG can be an effective tool for assessing muscular tension in MTD. PMID:24319372

  19. Structure and Interfacial Tension of a Hard-Rod Fluid in Planar Confinement.

    Science.gov (United States)

    Brumby, Paul E; Wensink, Henricus H; Haslam, Andrew J; Jackson, George

    2017-10-24

    The structural properties and interfacial tension of a fluid of rodlike hard-spherocylinder particles in contact with hard structureless flat walls are studied by means of Monte Carlo simulation. The calculated surface tension between the rod fluid and the substrate is characterized by a nonmonotonic trend as a function of the bulk concentration (density) over the range of isotropic bulk concentrations. As suggested by earlier theoretical studies, a surface-ordering scenario is confirmed by our simulations: the local orientational order close to the wall changes from uniaxial to biaxial nematic when the bulk concentration reaches about 85% of the value at the onset of the isotropic-nematic phase transition. The surface ordering coincides with a wetting transition whereby the hard wall is wetted by a nematic film. Accurate values of the fluid-solid surface tension, the adsorption, and the average particle-wall contact distance are reported (over a broad range of densities into the dense nematic region for the first time), which can serve as a useful benchmark for future theoretical and experimental studies on confined rod fluids. The simulation data are supplemented with predictions from second-virial density functional theory, which are in good qualitative agreement with the simulation results.

  20. Hydrogeological, hydrochemical and isotope-hydrological investigations of surface and crevice waters in the Grimsel area (Switzerland)

    International Nuclear Information System (INIS)

    Keppler, A.

    1995-12-01

    The Grimsel rock laboratory (Hasli valley, Berner Oberland, Switzerland) has been used since 1984 by NAGRA (Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle, Wettingen, Switzerland). It is about 450 metres deep under the Juchli ridge in the crystalline rock basement of the Aar massif. Within the framework of an international cooperation, a great many research topics in connection with the underground storage of radioactive waste are being studied at this location. Their focus is, inter alia, on the following: hydrogeological investigations of crevice water movement, investigations of geophysical structures and rock tension measurements, migration of radionuclides in an individual crevice. So far, hydrogeological and hydrogeochemical conditions have only been studied as far as they related to the needs of individual investigations, and systematic information on global waterways in the Juchli basement was scarce. By contrast, this work aimed at the chemical characterization of surface and spring waters in the catchment area of the rock laboratory as well as the crevice waters in the day-drift system, the description of the chemical development of the waters during their passage through the crevice system, and the assessment of the mean underground retention time of crevice waters by means of different stable and radioactive isotopes. In addition, hydrogeological mapping of the system of waters above ground and crevice water accesses underground was carried out. (orig./SR) [de

  1. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  2. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    Science.gov (United States)

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity. © 2012 Acoustical Society of America.

  3. Adsorption Of Surfactants At the Water-Oil Interface By Short-Time Diffusion

    Science.gov (United States)

    Cortes-Estrada, Aldo; Ibarra-Bracamontes, Laura; Aguilar-Corona, Alicia; Viramontes-Gamboa, Gonzalo

    2017-11-01

    Surface tension is an important parameter for different industrial processes. The addition of surfactants can modify the interfacial tension between two fluids. As the surfactant molecules reach and are adsorbed at a fluid interface, the surface tension or interfacial tension is reduced until the interface is saturated. Dynamic Interfacial tension measurements were carried out using an optical tensiometer by the Pendant Drop technique at a room temperature of 25 °C for a period of 250 sec. A drop of surfactant solution was deposited and allowed to diffuse into a water-oil interface, and then the adsorption rate at the interface was calculated. Sodium Dodecyl Sulfate (SDS) was used as the surfactant, hexane and dodecane were tested as the oil phase. A linear decay in the interfacial tension was observed for the lower initial concentrations of the order of 0.0001 to 0.01 mM, and an exponential decay was observed for initial concentrations of the order of 0.1 to 1 mM. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  4. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  5. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  6. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  7. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    Science.gov (United States)

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  8. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  9. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    Science.gov (United States)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  10. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods.

    Science.gov (United States)

    Pishkar, Leila; Taheri, Saba; Makarem, Somayeh; Alizadeh Zeinabad, Hojjat; Rahimi, Arash; Saboury, Ali Akbar; Falahati, Mojtaba

    2017-02-01

    In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in T m value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.

  11. Tensions and displacements calculation produced by a welding process in a nuclear power plant steam generator entrance by the finite element method

    International Nuclear Information System (INIS)

    Sanzi, H.C.

    1987-01-01

    This paper presents the results obtained from the tensions state and the displacements field of thermal origin, generated by a caloric source during the welding process. All the surfaces in contact with heavy water in a PHWR plant (Reactor of Pressurized Heavy Water) must be of austenitic stainless steel according to standard DIN 1.4550 or must be internally covered with this material. In the case of the primary loop components, -as the steam generator-, the walls of ferritic steel are covered with an austenitic stainless steel cladding. This cladding is applied by the welding process of immersed arc. Special attention is given during calculation, on the deformation produced in the holes of the bolts that link the entrance with the external lead. The distribution of nodal temperatures, as a function of time, is determined by a two-dimensional finite elements model during the welding process and the tension state and the displacement, by means of computational programs, were afterwards calculated. (Author)

  12. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  13. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    Science.gov (United States)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  14. Contact angle control of sessile drops on a tensioned web

    Science.gov (United States)

    Park, Janghoon; Kim, Dongguk; Lee, Changwoo

    2018-04-01

    In this study, the influence of the change of tension applied to flexible and thin web substrate on the contact angle of sessile drop in roll-to-roll system was investigated. Graphene oxide and deionized water solutions were used in the experiments. Tension was changed to 29, 49, and 69 N, and the casting distance of the micropipette and the material was set to 10, 20, and 40 mm, and the droplet volume was set to 10, 20, and 30 μL, respectively. Statistical analysis of three variables and analysis of the variance methodology showed that the casting distance was most significant for the contact angle change, and the most interesting tension variable was also affected. The change in tension caused the maximum contact angle to change by 5.5°. The tension was not uniform in the width direction. When the droplet was applied in the same direction in the width direction, it was confirmed that the tension unevenness had great influence on the contact angle up to 11°. Finally, the casting distance, which has a large effect on the contact angle, was calibrated in the width direction to reduce the width direction contact angle deviation to 1%. This study can be applied to fine patterning research using continuous inkjet printing and aerosol jet printing, which are roll-to-roll processes based on droplet handling.

  15. Surface tension of decane binary and ternary mixtures with eicosane, docosane, and tetracosane

    DEFF Research Database (Denmark)

    Queimada, Antonio; Cao, A.I.; Marrucho, I.M.

    2005-01-01

    -C24H50 and the ternary n-C10H22 + n-C20H42 + n-C24H50 were measured from 293.15 K (or above the solution melting temperature) up to 343.15 K. An average absolute deviation of 1.3% was obtained in comparison with pure component literature data. No mixture information for the reported systems was found......A tensiometer operating on the Wilhelmy plate method was employed to measure liquid-vapor interfacial tensions of three binary mixtures and one ternary mixture of decane with eicosane, docosane, and tetracosane. Tensions of binary mixtures n-C10H22 + n-C20H42, n-C10H22 + n-C22H46, and n-C10H22 + n...

  16. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  17. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  18. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  19. Cosurfactants lower surface tension of the diglyceride/water interface : A molecular dynamics study

    NARCIS (Netherlands)

    vanBuuren, AR; Tieleman, DP; deVlieg, J; Berendsen, HJC

    1996-01-01

    We performed molecular dynamics (MD) simulations of bulk 1,2-dilauroyl-sn-glycerol (DLG) systems in contact with a water layer. In the DLG oil phase cosurfactants were placed with increasing concentration: 1-monolauroyl-sn-glycerol (1MG), 2-monolauroylglycerol (2MG), and dodecanoic acid (FA, fatty

  20. Analysis of the Effect of Explosion on Altering the Tensions and Strains in Buried Water Pipes

    Directory of Open Access Journals (Sweden)

    Ebrahim Alamatian

    2015-09-01

    Full Text Available Pipelines that are buried in ground are used for transference of water and energy sources. These lines are considered infrastructures and have a high importance. In this paper behavior of soil and pipes are simulated using the finite-element based software ABAQUS, and effect of blast wave on the amount of tension and displacement of a pipe is investigated. The simulations are run for the pipe’s substance, burial depth, dimension, and also the intensity and situation of the explosion. AUTODYN software is used for evaluation of blast wave’s power. Simulation results show the positive effect of increasing the pipe’s dimension and burial depth on reducing the destruction caused by explosion.

  1. Navigating the Tensions of Innovative Assessment and Pedagogy in Higher Education

    Directory of Open Access Journals (Sweden)

    Jennifer Lock

    2018-04-01

    Full Text Available Innovative practice in a classroom adds challenges and tensions to programs and institutional structures in higher education. With the recent emphasis on curricula reform, there is a great focus on assessment and pedagogical practices to support student learning. To illustrate the tensions arising from these efforts, we present four pedagogical and assessment innovation approaches using both Shulman’s (2005 Signature Pedagogies and Tatar’s (2007 Design Tensions frameworks. The four approaches include problem-based learning, game-based learning, case-based learning, and technology-enhanced learning. A narrative for each approach examines and addresses tensions using Shulman’s (2005 surface, deep and implicit structures. We argue that there is an interconnected complexity and conflicting visions among the micro- (e.g., classroom or practicum, meso- (e.g., program, and macro- (e.g., institution levels. We acknowledge that dynamic tensions continually exist and needs to be thoughtfully navigated in support of innovative assessment and pedagogies in higher education. Dans l’enseignement supérieur, les pratiques innovatrices en salle de classe ajoutent des défis et des tensions aux programmes et aux structures institutionnelles. Suite à l’importance accrue récemment attachée à la réforme des programmes d’études, l’accent est mis sur l’évaluation et les pratiques pédagogiques pour soutenir l’apprentissage des étudiants. Afin d’illustrer les tensions qui découlent de ces efforts, nous présentons quatre approches de pédagogie et d’évaluation innovatrices qui font appel à la fois aux cadres de Shulman, Signature Pedagogies (2005, et à ceux de Tatar, Design Tensions (2007. Les quatre approches comprennent l’apprentissage par problèmes, l’apprentissage fondé sur le jeu, l’apprentissage basé sur des cas et l’apprentissage amélioré par les technologies. Chaque approche est examinée et traite des tensions

  2. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  3. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  4. Wetting Transition and Line Tension of Oil on Water

    Science.gov (United States)

    Matsubara, H.; Aratono, M.

    Wetting has attracted wide attention in the field of applied chemistry because of its crucial importance in industrial operations such as coating, painting, and lubrication. Here, we summarize our fundamental understandings of surfactant-assisted wetting transitions which we have found and studied for the last ten years. The difference between the surfactant-assisted wetting transitions and existing ones is discussed. Moreover, the relation between wetting transitions and the stability of the three-phase contact line is examined in terms of the line tension of oil lenses.

  5. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  6. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  7. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  8. Constraining brane tension using rotation curves of galaxies

    Science.gov (United States)

    García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.

    2018-04-01

    We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.

  9. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    Science.gov (United States)

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  10. On Energy Inequality for the Problem on the Evolution of Two Fluids of Different Types Without Surface Tension

    Science.gov (United States)

    Denisova, Irina Vlad.

    2015-03-01

    The paper deals with the motion of two immiscible viscous fluids in a container, one of the fluids being compressible while another one being incompressible. The interface between the fluids is an unknown closed surface where surface tension is neglected. We assume the compressible fluid to be barotropic, the pressure being given by an arbitrary smooth increasing function. This problem is considered in anisotropic Sobolev-Slobodetskiǐ spaces. We show that the L 2-norms of the velocity and deviation of compressible fluid density from the mean value decay exponentially with respect to time. The proof is based on a local existence theorem (Denisova, Interfaces Free Bound 2:283-312, 2000) and on the idea of constructing a function of generalized energy, proposed by Padula (J Math Fluid Mech 1:62-77, 1999). In addition, we eliminate the restrictions for the viscosities which appeared in Denisova (Interfaces Free Bound 2:283-312, 2000).

  11. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  12. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  13. Simulation of Two-Fluid Flows by the Least-Squares Finite Element Method Using a Continuum Surface Tension Model

    Science.gov (United States)

    Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan

    1996-01-01

    In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.

  14. Reactor vessel stud tensioner

    International Nuclear Information System (INIS)

    Malandra, L.J.; Beer, R.W.; Salton, R.B.; Spiegelman, S.R.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner, for facilitating the loosening or tightening of a stud nut on a reactor vessel stud, has gripper jaws which when the tensioner is lowered into engagement with the upper end of the stud are moved inwards to grip the upper end and which when the tensioner is lifted move outward to release the upper end. (author)

  15. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  16. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  17. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  18. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  19. The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Khazaei

    2014-07-01

    Full Text Available In this work, artificial neural network (ANN has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD% of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.

  20. Comportamento da cultura do tomateiro sob diferentes tensões de água no solo em ambiente protegido Behavior of tomato crop under different soil water tensions in a greenhouse

    Directory of Open Access Journals (Sweden)

    Nelson S. A. de Sá

    2005-09-01

    Full Text Available A cultura do tomateiro corresponde a uma atividade expressiva no Brasil, bastante exigente em água e, sob cultivo protegido, a irrigação deve ser usada para o suprimento hídrico total. O manejo adequado da irrigação é importante não apenas por suprir as necessidades hídricas das plantas mas, também, por minimizar problemas com doenças e lixiviação de nutrientes, além de gastos desnecessários com água e energia. Visando definir critérios para o manejo da irrigação, avaliou-se, através deste trabalho, o efeito de diferentes tensões de água no solo sobre o comportamento produtivo do tomateiro de crescimento indeterminado, híbrido Raísa N, em ambiente protegido, na região de Lavras, MG. O experimento foi instalado em casa de vegetação com delineamento em blocos casualizados, tendo quatro repetições. Os tratamentos foram constituídos de seis níveis de tensões de água no solo como indicativos do momento de irrigar. As tensões preestabelecidas foram 15, 30, 50, 70, 120 e 170 kPa e os resultados permitiram concluir-se que, para a obtenção de maiores produtividades de frutos totais, frutos comerciais e menor incidência de frutos com podridão apical, as irrigações devem ser realizadas quando as tensões de água no solo a 0,10 m de profundidade estiverem em torno de 80 kPa. Também foi possível observar que a eficiência no uso da água apresentou resposta linear crescente com o aumento da tensão de água no solo.The tomato crop corresponds to an expressive activity in Brazil, being a quite demanding crop in water and under greenhouse conditions the irrigation should be used for the total water supply. The appropriate irrigation management is not only an important factor to supply plant's water needs, but also to minimize problems with diseases, nutrient leaching as well as unnecessary expenses with water and energy. The purpose of this work was to evaluate the effect of different soil water tensions on the

  1. Phosphatidylcholine-fatty Alcohols Equilibria in Monolayers at the Air/Water Interface.

    Science.gov (United States)

    Serafin, Agnieszka; Figaszewski, Zbigniew Artur; Petelska, Aneta Dorota

    2015-08-01

    Monolayers of phosphatidylcholine (PC), tetradecanol (TD), hexadecanol (HD), octadecanol (OD) and eicosanol (E) and their binary mixtures were investigated at the air/water interface. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms. The surface tension measurements were carried out at 22 °C using a Teflon trough and a Nima 9000 tensiometer. The interactions between phosphatidylcholine and fatty alcohols (tetradecanol, hexadecanol, octadecanol, eicosanol) result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants, Gibbs free energy values and areas occupied by one molecules of PC-TD, PC-HD, PC-OD and PC-E complexes. We considered the equilibrium between the individual components and the complex and established that phosphatidylcholine and fatty alcohols formed highly stable 1:1 complexes.

  2. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  3. Observation of a sequence of wetting transitions in the binary water+ethylene glycol monobutyl ether mixture

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-08-01

    A homemade pendant drop/bubble tensiometer was assembled and applied to perform the surface-interfacial tension measurements for the binary water+ethylene glycol monobutyl ether (C4E1) mixture over the temperature range from 50to128°C at 10bar. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH2i+1(OCH2CH2)jOH. The wetting behavior of the C4E1-rich phase at the interface separating the gas and the aqueous phases was systematically examined according to the wetting coefficient calculated from the experimental results of surface/interfacial tensions. It was found that the C4E1-rich phase exhibits a sequence of wetting transitions, nonwetting→partial wetting→complete wetting, at the gas-water interface in the water+C4E1 system along with increasing the temperature, consistent with the conjecture of Kahlweit and Busse [J. Chem. Phys. 91, 1339 (1989)]. In addition, the relationship of the mutual solubility and the interfacial tension of the interface separating the C4E1-rich phase and the aqueous phase is discussed.

  4. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  5. Variant of a volume-of-fluid method for surface tension-dominant two ...

    Indian Academy of Sciences (India)

    2013-12-27

    Dec 27, 2013 ... face tension-dominant two-phase flows are explained. ... for one particular fluid inside a cell as its material volume divided by the total ... the reconstructed interface and the velocity field, and the final part ..... Welch S W J and Wilson J 2000 A volume of fluid based method for fluid flows with phase change. J.

  6. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Azim Shukri

    2015-07-01

    Full Text Available Tension stiffening is a characteristic behavior of reinforced concrete (RC beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  7. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams.

    Science.gov (United States)

    Shukri, Ahmad Azim; Darain, Kh Mahfuz Ud; Jumaat, Mohd Zamin

    2015-07-08

    Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  8. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  10. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    International Nuclear Information System (INIS)

    Aguilera, Jesus; Wright, John D; Bean, Vern E

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 10 6 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 10 6 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 10 6 or larger due to surface tension, contact angle and temperature effects

  11. Filling or Draining a Water Bottle with Two Holes

    Science.gov (United States)

    Cross, Rod

    2016-01-01

    Three simple experiments are described using a small water bottle with two holes in the side of the bottle. The main challenge is to predict and then explain the observations, but the arrangements can also be used for quantitative measurements concerning hydrostatic pressure, Bernoulli's equation, surface tension and bubble formation.

  12. Topographic design and application of hierarchical polymer surfaces replicated by microinjection compression molding

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin

    2013-10-01

    In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.

  13. Indentation of a floating elastic sheet: geometry versus applied tension.

    Science.gov (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A

    2017-10-01

    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  14. Spectral fatigue analysis of a tensioned riser compliant tower

    NARCIS (Netherlands)

    Karadeniz, H.; Vrouwenvelder, A.C.W.M.; Shi, C.

    1998-01-01

    In this paper, the conceptual Tensioned Riser Compliant Tower (TRCT) structure of the Shell Oil, which is developed for a region of approximately 600 meter water depth of the West of Shetlands in the North Sea, is analyzed by using the SAPOS program of the Delft University of Technology. The fatigue

  15. A Framework to Evaluate the Impact of Armourstones on the Chemical Quality of Surface Water.

    Directory of Open Access Journals (Sweden)

    Lars Duester

    Full Text Available Today, basic requirements for construction works include the protection of human health and of the environment. In the tension area between economic demands, circular flow economy and environmental safety, a link between the results from standardized leaching tests and the respective environmental quality standards must be created. To derive maximum release limits of metals and metalloids for armourstones in hydraulic engineering, this link is accomplished via a simple model approach. By treating natural materials and industrial by-products the same way, the article delivers an overview on the recent regulative situation in Europe as well as describes and discusses an innovative approach to derive maximum release limits for monolithic construction products in hydraulic engineering on a conceptual level. On a practical level, a list of test parameters is derived by connecting an extensive dataset (seven armourstone materials with five repetitions and 31 elements tested with the worldwide applied dynamic surface leaching test with surface water quality standards and predicted no effect concentrations. Finally, the leaching tests results are compared with the envisaged maximum release limits, offering a direct comparison between natural materials and industrial by-products.

  16. A Framework to Evaluate the Impact of Armourstones on the Chemical Quality of Surface Water.

    Science.gov (United States)

    Duester, Lars; Wahrendorf, Dierk-Steffen; Brinkmann, Corinna; Fabricius, Anne-Lena; Meermann, Björn; Pelzer, Juergen; Ecker, Dennis; Renner, Monika; Schmid, Harald; Ternes, Thomas A; Heininger, Peter

    2017-01-01

    Today, basic requirements for construction works include the protection of human health and of the environment. In the tension area between economic demands, circular flow economy and environmental safety, a link between the results from standardized leaching tests and the respective environmental quality standards must be created. To derive maximum release limits of metals and metalloids for armourstones in hydraulic engineering, this link is accomplished via a simple model approach. By treating natural materials and industrial by-products the same way, the article delivers an overview on the recent regulative situation in Europe as well as describes and discusses an innovative approach to derive maximum release limits for monolithic construction products in hydraulic engineering on a conceptual level. On a practical level, a list of test parameters is derived by connecting an extensive dataset (seven armourstone materials with five repetitions and 31 elements tested with the worldwide applied dynamic surface leaching test) with surface water quality standards and predicted no effect concentrations. Finally, the leaching tests results are compared with the envisaged maximum release limits, offering a direct comparison between natural materials and industrial by-products.

  17. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  18. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  19. Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City

    Science.gov (United States)

    Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios

    2010-05-01

    We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.

  20. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage

  1. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.

    2018-01-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic

  2. Wetlands inform how climate extremes influence surface water expansion and contraction

    Directory of Open Access Journals (Sweden)

    M. K. Vanderhoof

    2018-03-01

    Full Text Available Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1 quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR and adjacent Northern Prairie (NP in the United States, and (2 explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015. The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density. To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less

  3. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  4. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  5. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  6. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  7. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  8. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  9. General definition of gravitational tension

    International Nuclear Information System (INIS)

    Harmark, T.; Obers, N.A.

    2004-01-01

    In this note we give a general definition of the gravitational tension in a given asymptotically translationally-invariant spatial direction of a space-time. The tension is defined via the extrinsic curvature in analogy with the Hawking-Horowitz definition of energy. We show the consistency with the ADM tension formulas for asymptotically-flat space-times, in particular for Kaluza-Klein black hole solutions. Moreover, we apply the general tension formula to near-extremal branes, constituting a check for non-asymptotically flat space-times. (author)

  10. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  11. Tension type headache

    Directory of Open Access Journals (Sweden)

    Debashish Chowdhury

    2012-01-01

    Full Text Available Tension type headaches are common in clinical practice. Earlier known by various names, the diagnosis has had psychological connotations. Recent evidence has helped clarify the neurobiological basis and the disorder is increasingly considered more in the preview of neurologists. The classification, clinical features, differential diagnosis and treatment of tension type headache are discussed in this paper.

  12. Effect of soil-water tension on herbaceous cotton yield Efeito de tensões de água no solo sobre o rendimento do algodoeiro herbáceo

    Directory of Open Access Journals (Sweden)

    Francisco Assis de Oliveira

    1999-10-01

    Full Text Available A field experiment was conducted during two years, 1990/91, in an alluvial soil, in the State of Paraíba, Brazil, to study the effect of the levels of soil-water tension, 50, 100, 200, 300, 400 and 600 kPa, at 20 cm depth, on upland cotton (Gossypium hirsutum L.r. latifolium Hutch, cv. CNPA-6H yield. The experimental design was a complete randomized block with six treatments and four repetitions. There was an effect of the treatments on plant height, leaf area index and cotton yield, but the precocity index was not modified. Water should be applied when the soil-water tension, measured at 20 cm depth, reaches values around 200 kPa. There was a quadratic (R² = 0.893** response of cotton yields to soil water tension, with the maximum when water was applied at 52% of soil water depletion.Durante dois anos, 1990/91, em solo aluvial, no município de Sousa, PB, estudou-se, em condições de irrigação por sulco, o efeito das tensões de água no solo a 50, 100, 200, 300, 400 e 600 kPa, na profundidade de 20 cm, sobre o rendimento do algodoeiro herbáceo (Gossypium hirsutum L.r. latifolium Hutch, cv. CNPA-6H. Adotou-se o delineamento experimental de blocos ao acaso com quatro repetições. Os resultados mostraram que houve efeito significativo dos tratamentos sobre a altura da planta, índice de área foliar e rendimento de algodão em rama, mas não houve efeito sobre os dados de precocidade. A tensão de 200 kPa mostrou-se como o melhor nível de água no solo para se efetuar as irrigações, uma vez que para as tensões superiores o rendimento foi significativamente reduzido.O efeito sobre o rendimento foi de natureza quadrática (R² = 0,893**, o que indica que o rendimento máximo seria atingido irrigando-se a cultura com 52% de esgotamento da água disponível no solo.

  13. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  14. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  15. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  16. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  17. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  18. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  19. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  20. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  1. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure

    Science.gov (United States)

    Yoshida, Mitsunobu; Onishi, Katsuki; Tanimoto, Kazuhiro; Nishikawa, Shigeo

    2017-10-01

    We have developed a tension sensor with a coaxial structure using a narrow slit ribbon made of a uniaxially stretched poly(l-lactic acid) (PLLA) film for application to a wearable device. The tension sensor is produced as follows. We used tinsel wire as the center conductor of the sensor. The tinsel wire consists of a yarn of synthetic fibers arranged at the center, with a spirally wound rolled copper foil ribbon on the side surface. Next, slit ribbons obtained from a uniaxially oriented film of PLLA are wound helically on the side surface of the center conductor in the direction of a left-handed screw, at an angle of 45° to the central axis. The rolled copper foil is used as an outer conductor and covers the yarn without a gap. The prototype of the fabricated tension sensor has good flexibility, since the sensor is in the form of a filament and consists of a highly flexible material. For the 1 mm tension sensor, it was found that for a tension of 1 N, a charge of 14 pC was output. It was also found that the sensor maintained its room-temperature sensitivity up to 60 °C. Compared with an existing coaxial line sensor using poly(vinylidene fluoride) (PVDF), the sensor using PLLA does not exhibit pyroelectricity, meaning that no undesirable voltage is generated when in contact with body heat, which is a significant advantage as wearable sensors. The result has demonstrated the potential application of the PLLA film to wearable devices for detecting heartbeat and respiration.

  2. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...

  3. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  4. Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence of surface tension on temperature

    Science.gov (United States)

    Sarma, Rajkumar; Mondal, Pranab Kumar

    2018-04-01

    We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k ˜(Bi) 1 /2 , where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi ) , Galileo number (Ga ) , and inverse capillary number (Σ ) . Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.

  5. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  6. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  7. Glass transition and intermixing of amorphous water and methanol

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2004-01-01

    The diffusion of molecules in amorphous water and methanol films has been investigated on the basis of time-of-flight secondary ion mass spectrometry as a function of temperature. The glass-liquid transition of the amorphous water film occurs at 130-145 K as confirmed from the surface segregation of embedded methanol molecules. The morphology of the pure amorphous water film changes drastically at 160 K as a consequence of dewetting induced by the surface tension and the strongly decreased viscosity of the film. The morphology of the amorphous methanol film changes at 115 K following the self-diffusion onset at 80 K. The binary films of water and heavy methanol are intermixed completely at 136 K as evidenced by the occurrence of the H/D exchange

  8. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  9. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  10. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  11. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  12. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  13. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  14. Tension Tests of Copper Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Jo; Kim, Chung Youb [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-08-15

    Tension tests for copper thin films with thickness of 12 μm were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

  15. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  16. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  17. Water-resistant sunscreens for skin protection: an in vivo approach to the two sources of sunscreen failure to maintain UV protection on consumer skin.

    Science.gov (United States)

    Puccetti, G

    2015-12-01

    The water resistance of sunscreen products has taken more importance for the UV protection of consumers involved in water activities and sports. The present work introduces a new in vivo approach to measure the water resistance of sunscreens on the actual skin of subjects, which can be easily applied to salt, chlorine and tap waters. The stress sources of sunscreen films on skin originate from two phenomena: high surface tension stress as the skin transits through the air/water interface and water diffusion into the film immersed in bulk water. The water resistance of sunscreen products is measured on the forearms of subjects by means of a new layered water bath approach that physically separates both stresses. Tape strips are subsequently taken and analysed for UV-A and UV-B optical densities via (1) imaging for remaining filters and (2) in vitro SPF absorption spectra. Water-resistant sunscreens generally perform well when immersed in bulk water even subjected to agitation, but they show a wide range of performances when considering their behaviour at the air/water interface. The differences are more pronounced in salt water than tap water. The results confirm 2 stress origins in sunscreen exposure to water: interfacial surface tension and bulk water diffusion. Polymers bring improvements to the resistance of sunscreens to bulk water but show wide latitude in performances when subject to the water surface tension stress. Globally, a higher loss of filters is observed in the UV-A than in the UV-B, which is attributed to more UV-A filter loss or degradation and thus resulting in a decreased protection in the UV-A. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  19. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  20. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  1. Surface energy and crystallization phenomena of ammonium dinitramide

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  2. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  3. Geometrical properties of tension-induced fractures in granite

    International Nuclear Information System (INIS)

    Sato, Hisashi; Sawada, Atsushi; Yasuhara, Hideaki

    2011-03-01

    Considering a safe, long-term sequestration of energy byproducts such as high level radioactive wastes, it is of significant importance to well-constrain the hydraulic and transport behavior of targeted permeants within fractured rocks. Specifically, fluid flow within low-permeability crystalline rock masses (e.g., granite) is often dominated by transport in through-cutting fractures, and thus careful considerations are needed on the behavior. There are three planes along that granites fail most easily under tension, and those may be identified as the rift, grain, and hardway planes. This anisotropic fabric may be attributed to preferentially oriented microcrack sets contained within intact rock. In this research, geometrical properties of tension-induced fractures are evaluated as listed below; (1) Creation of tension-induced fractures considering the anisotropy clarified by elastic wave measurements. (2) Evaluation of geometrical properties in those fractures characterized by the anisotropy. In the item (1), the three planes of rift, grain and hardway were identified by measuring elastic wave. In the item (2), JRC, variogram, fractal dimension and distributions of elevations in the fracture surfaces were evaluated using digitized data of the fracture surfaces measured via a laser profilometry. Results show that rift planes are less rougher than the other planes of grain and hardway, and grain planes are generically rougher than the other planes of rift and hardway. It was also confirmed that the fracture shape anisotropy was correlated with the direction of the slit which constructed during tensile tests. On the other hand, the tendency peculiar to the direction of slit and granites fail about the estimated aperture distribution from fracture shape was not seen. (author)

  4. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  5. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    International Nuclear Information System (INIS)

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-01-01

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site

  6. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  7. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  8. Improved Oil Recovery in Chalk. Spontaneous Imbibition affected by Wettability, Rock Framework and Interfacial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Milter, J.

    1996-12-31

    The author of this doctoral thesis aims to improve the oil recovery from fractured chalk reservoirs, i.e., maximize the area of swept zones and their displacement efficiencies. In order to identify an improved oil recovery method in chalk, it is necessary to study wettability of calcium carbonate and spontaneous imbibition potential. The thesis contains an investigation of thin films and wettability of single calcite surfaces. The results of thin film experiments are used to evaluate spontaneous imbibition experiments in different chalk types. The chalk types were described detailed enough to permit considering the influence of texture, pore size and pore throat size distributions, pore geometry, and surface roughness on wettability and spontaneous imbibition. Finally, impacts of interfacial tension by adding anionic and cationic surfactants to the imbibing water phase are studied at different wettabilities of a well known chalk material. 232 refs., 97 figs., 13 tabs.

  9. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  10. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  11. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  12. Surface tension and 0.1 MPa density for members of homologous series of ionic liquids composed of imidazolium-, pyridinium-, and pyrrolidinium-based cations and of cyano-groups containing anions

    Czech Academy of Sciences Publication Activity Database

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2015-01-01

    Roč. 406, November (2015), s. 181-193 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * surface tension-temperature relation * density -temperature relation * cyano-funcionalized anion Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  13. In-situ bending under tension shear fracture analysis and microstructure “earthquake” of DP780 dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yixi, E-mail: yxzhao@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, Sheng [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Dan, Wenjiao; Zhang, Weigang [Innovation Center for Advanced Ship and Deep-Sea Exploration, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Shuhui [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-05-17

    Dual phase (DP) steels consist of hard brittle martensite phase and soft ductile ferrite phase. With a novel bending under tension test system, in-situ symmetrical bending under tension experiments were carried out and photomicrographs of bending surface were recorded. The microstructure “earthquake” of DP780 dual phase steels was observed in the bending under tension process. By analyzing the in-situ images serious, the initiation, coalescence of cavities and propagation of micro-cracks until final fracture were analyzed. The micro-cracks form only in the outside surface of bending radius, and mainly appear near the phase boundary of ferrite and martensite. Micro-cracks coalesce and propagate in the direction perpendicular to the stretching direction approximately, and at the phase boundary of martensite and ferrite. Furthermore, digital image correlation technology was used in this study to analysis the strain distribution between ferrite and martensite during the bending under tension deformation and fracture.

  14. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  15. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    Science.gov (United States)

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  16. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  17. Molecular interactions in a surfactant-water-polyacrylamide system, according to densimetry, viscometry, conductometry, and spectroscopy data

    Science.gov (United States)

    Harutyunyan, R. S.

    2013-08-01

    Molecular interactions in a surfactant-polyacrylamide-water system are investigated. It is established that the interactions affect such physicochemical parameters of the system as viscosity, density, surface tension, conductivity, and critical micelle concentration. It is shown that in a polyacrylamide-water system, raising the polyacrylamide concentration to 0.02% causes conformational changes in its macromolecule.

  18. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  19. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  20. Effects of Lignosulfonate Structure on the Surface Activity and Wettability to a Hydrophobic Powder

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ge

    2014-10-01

    Full Text Available The wettability of a solid material is very important in many applications, such as food, agrochemical formulations, and cosmetics. Wettability can be improved by adding surface active agents, especially biocompatible surfactants derived from biomass. In this work, the surface activity (ability to lower the surface tension of an aqueous solution and wettability toward a hydrophobic powder by a series of sodium lignosulfonates (NaLS synthesized with different degree of sulfonation (QS and weight-average molecular weights (Mw were investigated by measuring the surface tension and contact angle. The results demonstrated NaLS with a larger Mw or lower QS had higher surface activity. Conversely, the wettability of the NaLS aqueous solution toward difenoconazole powder showed a reverse trend, i.e., NaLS with a smaller Mw or higher Qs improved the wettability to difenoconazole. The surface activity and wettability was controlled by the varying densities of the NaLS molecules at the water to air interface or the solid/liquid interface, which was dependent on the molecular structure of NaLS.