WorldWideScience

Sample records for water surface elevations

  1. Water surface elevations recorded by submerged pressure transducers along the upper Willamette River, Oregon, Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy E.; Mangano, Joseph F.

    2017-01-01

    Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this effort.

  2. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  3. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  4. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  5. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas

    Directory of Open Access Journals (Sweden)

    Yen-Pin Lin

    2017-01-01

    Full Text Available In this work, a Global Navigation Satellite System (GNSS buoy that utilizes a Virtual Base Station (VBS combined with the Real-Time Kinematic (RTK positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan. Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

  6. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas.

    Science.gov (United States)

    Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen

    2017-01-18

    In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

  7. Full 2D observation of water surface elevation from SWOT under different flow conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  8. Teaching time-series analysis. II. Wave height and water surface elevation probability distributions

    Science.gov (United States)

    Whitford, Dennis J.; Waters, Jennifer K.; Vieira, Mario E. C.

    2001-04-01

    This paper describes the second of a two-part series of pedagogical exercises to introduce students to methods of time-series analysis. While these exercises are focused on the analysis of wind generated surface gravity waves, they are cross-disciplinary in nature and can be applied to other fields dealing with random signal analysis. Two computer laboratory exercises are presented which enable students to understand many of the facets of random signal analysis with less difficulty and more understanding than standard classroom instruction alone. The first pedagogical exercise, described in the previous article, uses mathematical software on which the students execute the manual arithmetic operations of a finite Fourier analysis on a complex wave record. The results are then compared to those obtained by a fast Fourier transform. This article, the second of this two-part pedagogical series, addresses analysis of a complex sea using observed and theoretical wave height and water surface elevation probability distributions and wave spectra. These results are compared to a fast Fourier transform analysis, thus providing a link back to the first exercise.

  9. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  10. Boat-based water-surface cross sectional elevation surveys along the upper Willamette River, Oregon, in Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy; Mangano, Joseph F.

    2016-01-01

    Water-surface elevation measurements were collected in Spring, 2015 along the upper Willamette River, Oregon, between Harrisburg and Corvallis. These surveys were collected over a small range of discharges, from 6,900 cubic feet per second to 8,300 cubic feet per second, using a real-time kinematic global positioning system (RTK-GPS) on a motorboat at various cross sections along the river. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple survey datasets that will be released for this effort.

  11. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    Science.gov (United States)

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the

  12. Water-surface elevation and discharge measurement data for the Red River of the North and its tributaries near Fargo, North Dakota, water years 2014–15

    Science.gov (United States)

    Damschen, William C.; Galloway, Joel M.

    2016-08-25

    The U.S. Geological Survey, in cooperation with the Fargo Diversion Board of Authority, collected water-surface elevations during a range of discharges needed for calibration of hydrologic and hydraulic models for specific reaches of interest in water years 2014–15. These water-surface elevation and discharge measurement data were collected for design planning of diversion structures on the Red River of the North and Wild Rice River and the aqueduct/diversion structures on the Sheyenne and Maple Rivers. The Red River of the North and Sheyenne River reaches were surveyed six times, and discharges ranged from 276 to 6,540 cubic feet per second and from 166 to 2,040 cubic feet per second, respectively. The Wild Rice River reach also was surveyed six times during 2014 and 2015, and discharges ranged from 13 to 1,550 cubic feet per second. The Maple River reach was surveyed four times, and discharges ranged from 16.4 to 633 cubic feet per second. Water-surface elevation differences from upstream to downstream in the reaches ranged from 0.33 feet in the Red River of the North reach to 9.4 feet in the Maple River reach.

  13. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    Science.gov (United States)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  14. Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

    Science.gov (United States)

    Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.

  15. Traveltime and dispersion data, including associated discharge and water-surface elevation data, Kanawha River West Virginia, 1991

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents results of a study by the U.S. Geological Survey, in cooperation with the Virginia Environmental Endowment, Marshall University Research Corporation, and the West Virginia Depart- ment of Environmental Protection, to evaluate traveltime of a soluble dye on the Kanawha River. The Kanawha River originates in south-central West Virginia and flows northwestward to the Ohio River. Knowledge of traveltime and dispersion of a soluble dye could help river managers mitigate effects of an accidental spill. Traveltime and dispersion data were collected from June 20 through July 4, 1991, when river discharges decreased from June 24 through July 3, 1991. Daily mean discharges decreased from 5,540 ft 3/s on June 24 to 2,790 ft3/s on July 2 at Kanawha Falls and from 5,680 ft3/s on June 24 to 3,000 ft3/s on July 2 at Charleston. Water-surface elevations in regulated pools indicated a loss of water storage during the period. A spill at Gauley Bridge under similar streamflow conditions of this study is estimated to take 15 days to move beyond Winfield Dam. Estimated time of passage (elapsed time at a particular location) at Marmet Dam and Winfield Dam is approximately 2.5 days and 5.5 days, respectively. The spill is estimated to spend 12 days in the Winfield pool.

  16. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  17. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  18. Vegetation Composition and Marsh Surface Elevation, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data table contains plant composition and marsh surface elevation data for 64 plots where Salicornia pacifica litter was buried at 7 sites in 2015. These data...

  19. In-Situ Measurements of Surface Elevations in Tail Water Channel for SSG Pilot Plant at Kvitsøy

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Margheritini, Lucia

    This report presents the measurements from the installation of a pressure transducer in the tail water channel at the second proposed position of the SSG pilot plant at the island of Kvitsøy near Stavanger, Norway. The measured data are compared to tide data from other source, and among...... the conclusions is that the obtained results from the performed measurements described in this report are very uncertain. However, from the experiences obtained throughout the study it is found that the channel considered tail water outflow is not suitable, due to the risk of too large tailwater fluctuations....

  20. Nutrient load can lead to enhanced CH4 fluxes through changes in vegetation, peat surface elevation and water table depth in ombrotrophic bog

    Science.gov (United States)

    Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim

    2016-04-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions

  1. WatER: The proposed Water Elevation Recovery satellite mission

    Science.gov (United States)

    Alsdorf, D.; Mognard, N.; Rodriguez, E.; Participants, W.

    2005-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water storage and discharge globally. The core mission objective is to describe and understand the continental water cycle and the hydrological processes (e.g., floodplain hydraulics) at work in a river basin. The key question that will be answered by WatER is: "Where is water stored on Earth's land surfaces, and how does this storage vary in space and time?" WatER will facilitate societal needs by (1) improving our understanding of flood hazards; (2) freely providing water volume information to countries who critically rely on rivers that cross political borders; and (3) mapping the variations in water bodies that contribute to disease vectors (e.g., malaria). Conventional altimeter profiles are, without question, incapable of supplying the measurements needed to address scientific and societal questions. WatER will repeatedly measure the spatially distributed water surface elevations (h) of wetlands, rivers, lakes, reservoirs, etc. Successive h measurements yield dh/dt, (t is time), hence a volumetric change in water stored or lost. Individual images of h yield dh/dx (x is distance), hence surface water slope, which is necessary for estimating streamflow. WatER's main instrument is a Ka-band radar interferometer (KaRIN) which is the only technology capable of supplying the required imaging capability of h. KaRIN has a rich heritage based on (1) the many highly successful ocean observing radar altimeters, (2) the Shuttle Radar Topography Mission (SRTM), and (3) the development effort of the Wide Swath Ocean Altimeter (WSOA). The interferometric altimeter is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the

  2. A Novel Technique for Free-Surface Elevation Mapping

    OpenAIRE

    Zhang, X.; Dabiri, D; Gharib, M.

    1994-01-01

    Recently, there has been an increased interest in the interaction of vortices and turbulence with free surfaces. A central issue in understanding the free surface turbulence is to relate the surface elevation to the near-surface flow field. In that respect, the lack of a global surface mapping technique which could reveal the temporal evolution of the surface elevation has prevented the progress of viable research. Therefore, in this abstract we present a new technique, i...

  3. The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh.

    Science.gov (United States)

    Reef, Ruth; Spencer, Tom; Mӧller, Iris; Lovelock, Catherine E; Christie, Elizabeth K; McIvor, Anna L; Evans, Ben R; Tempest, James A

    2017-02-01

    Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO2 concentrations and nutrient availability on surface elevation change in intact mixed-species blocks of UK salt marsh using six open-top chambers receiving CO2 -enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO2 . Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO2 -grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO2 concentrations rise and should be considered in future wetland models for the region. Elevated CO2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where

  4. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  5. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  6. Major Ion Geochemistry of Horseshoe Lake, Mammoth Lakes, California: Water Quality in a Region with Elevated CO2 from Sub-Surface Leakage

    Science.gov (United States)

    Santilena, R.; Szutu, D.; Ellis, A. S.; Khachikian, C. S.

    2010-12-01

    Tree-kill areas around Horseshoe Lake indicate how naturally high levels of carbon dioxide (CO2) emitted from a cooling magma chamber are affecting the ecosystem. CO2 leakage from geologically sequestered CO2 sites may have similar effects. Weathering processes and water quality changes are two other environmental impacts of high levels of CO2 leaking from subsurface CO2 reservoirs. This study’s focus was to conduct a geochemical study of Horseshoe Lake with emphasis on water chemistry to determine any quantifiable effects from the high release of volcanic CO2. We collected 22 water samples, including 5 samples from streams that drained into the lake. Two interior locations were sampled at the surface and at depths of 2-meter intervals. The interior lake samples showed increasing Mg and Ca concentrations from the surface to 12 m in depth, and increasing Sr and Si from the surface to 4 m in depth. Water samples were measured for temperature, conductivity, pH, alkalinity, and analyzed for major ions Ca2+, K+, Na+, Mg2+, Cl-, SO42-, and HCO3- (from alkalinity). Amounts of Al, Ca, K, Mg, Na, and high levels of Si from elemental data are consistent with waters in granitic environments. Temperature in the lakes and streams ranged from 3.5 to 16 °C, pH ranged from 5.9-7.2, conductivity ranged from 8.66 to 21.93 μS/cm, and alkalinity ranged from 0.137- 0.408 meq/L. A TSI Q-Trak™ measured soil and ambient CO2 concentrations in July and a Vernier LabQuest was used in August. A bottomless bottle was placed in the soil in a10cm deep hole with the probe inserted in the top. A probe about 1 m above ground measured the ambient CO2 concentrations. To determine the flux of soil CO2, concentrations were read over a 5-minute time period. CO2 gas concentrations in the tree kill area ranged from 600 to 1,700 ppm in ambient air, and over 99,000 ppm in the soil. Maximum readings were exceeded so actual values of CO2 in the soil are not known. The stream samples had a different

  7. How accurately can videokeratographic systems measure surface elevation?

    Science.gov (United States)

    Applegate, R A; Nuñez, R; Buettner, J; Howland, H C

    1995-11-01

    Surface topography, as opposed to dioptric topography, defines the corneal surface in simple terms without assumptions. Accordingly, it is important to know how well surface topography can be measured with current videokeratometric machines. The purpose of this paper is to quantify the accuracy with which the TMS-1 Corneal Modeling System can measure the surface topography of calibrated spherical, elliptical, and bicurve surfaces. The Computed Anatomy TMS-1 videokeratometer was used to measure three spherical, three elliptical, and two bicurve surfaces with known characteristics. Surface characteristics were either back-calculated from the dioptric files or directly obtained from the TMS-1 elevation file for each of 6400 points (256 points in each of 25 rings). The accuracy with which each method determined the true surface was quantified by calculating the root mean squared error (RMSE) of the 6400 measured surface elevations from the known surface elevation at each sampling point. (1) For spherical and elliptical surfaces, back-calculation of surface elevation from the dioptric file can be made with RMSE of 5 mu or less. (2) For spheres but not elliptical surfaces the TMS-1 elevation file defines the surface with RMSE 5 mu or less. (3) The surface area measured by placido-based videokeratometers varies with surface curvature. (4) RMSE in measured surface elevation increase as the distance from the videokeratometric axis increases. (5) For bicurves, the dioptric maps are smoothed by the TMS-1 over abrupt transitions and for large transitions never recover. Additionally, our back-calculation methods further smooth abrupt transitions, making the RMSE of the bicurve surface that is back-calculated from the dioptric file larger than the RMSE of the surface generated from the TMS-1 elevation file. Surface elevations can be back-calculated from dioptric files with RMSE of 5 microns or less for spheres and elliptical surfaces as long as there are no areas of abrupt

  8. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  9. Roosevelt Island Bedrock and Surface Elevations, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice...

  10. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  11. Measuring the role of seagrasses in regulating sediment surface elevation

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  12. Measuring the role of seagrasses in regulating sediment surface elevation.

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C; Krauss, Ken W; Kennedy, Hilary A; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M; Githaiga, Michael N; Diele, Karen; Huxham, Mark

    2017-09-20

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  13. Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

    Science.gov (United States)

    Nguyen, C. T.; Starek, M. J.; Gibeaut, J. C.; Lord, A.

    2015-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (marsh elevation response away from the measurement site. Terrestrial Laser Scanning (TLS) offers potential for high definition monitoring of marsh surface evolution. However, several challenges must be overcome in the application of the technology for geodetic imaging of marsh surfaces. These challenges include surface occlusion by dense vegetation, error propagation due to scan co-registration and referencing across time, impacts of scan angle, and filtering of non-ground points. Researchers at Texas A&M University-Corpus Christi conducted a field-survey of a marsh within the Grand Bay National Estuarine Research Reserve using TLS and RTK GPS for comparison. Grand Bay in Mississippi USA is one of the most biologically productive estuarine ecosystems in the Gulf of Mexico. The study region is covered by dense and tall saw-grass that makes it a challenging environment for bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed

  14. Seismic Behavior Evaluation of Concrete Elevated Water Tanks

    OpenAIRE

    saeed bozorgmehrnia; malek mohammad ranjbar; rahmat madandoust

    2013-01-01

    Elevated tanks are important structures in storing vital products, such as petroleum products for cities and industrial facilities, as well as water storage. These structures have various types and are constructed in a way that a greater portion of their weight is concentrated at an elevation much about the base. Damage to these structures during strong ground motions may lead to fire or other hazardous events.  In this  research,  a reinforced concrete elevated water tank, with 900 cubic met...

  15. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics

    Science.gov (United States)

    James C. Lynch,; Phillippe Hensel,; Cahoon, Donald R.

    2015-01-01

    The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland elevation change is a top priority in North Atlantic Coastal parks (Stevens et al, 2010). As a result, the NPS Northeast Coastal and Barrier Network (NCBN) in collaboration with colleagues from the U.S. Geological Survey (USGS) and The National Oceanic and Atmospheric Administration (NOAA) have developed a protocol for monitoring wetland elevation change and other processes important for determining the viability of wetland communities. Although focused on North Atlantic Coastal parks, this document is applicable to all coastal and inland wetland regions. Wetlands exist within a narrow range of elevation which is influenced by local hydrologic conditions. For coastal wetlands in particular, local hydrologic conditions may be changing as sea levels continue to rise. As sea level rises, coastal wetland systems may respond by building elevation to maintain favorable hydrologic conditions for their survival. This protocol provides the reader with instructions and guidelines on designing a monitoring plan or study to: A) Quantify elevation change in wetlands with the Surface Elevation Table (SET). B) Understand the processes that influence elevation change, including vertical accretion (SET and Marker Horizon methods). C) Survey the wetland surface and SET mark to a common reference datum to allow for comparing sample stations to each other and to local tidal datums. D) Survey the SET mark to monitor its relative stability. This document is divided into two parts; the main body that presents an overview of all aspects of monitoring wetland elevation dynamics, and a collection of Standard Operating Procedures (SOP) that describes in detail how to perform or execute each step of the methodology. Detailed instruction on the installation, data collection, data management and analysis are provided in this report

  16. Recreational runners with patellofemoral pain exhibit elevated patella water content.

    Science.gov (United States)

    Ho, Kai-Yu; Hu, Houchun H; Colletti, Patrick M; Powers, Christopher M

    2014-09-01

    Increased bone water content resulting from repetitive patellofemoral joint overloading has been suggested to be a possible mechanism underlying patellofemoral pain (PFP). To date, it remains unknown whether persons with PFP exhibit elevated bone water content. The purpose of this study was to determine whether recreational runners with PFP exhibit elevated patella water content when compared to pain-free controls. Ten female recreational runners with a diagnosis of PFP (22 to 39years of age) and 10 gender, age, weight, height, and activity matched controls underwent chemical-shift-encoded water-fat magnetic resonance imaging (MRI) to quantify patella water content (i.e., water-signal fraction). Differences in bone water content of the total patella, lateral aspect of the patella, and medial aspect of the patella were compared between groups using independent t tests. Compared with the control group, the PFP group demonstrated significantly greater total patella bone water content (15.4±3.5% vs. 10.3±2.1%; P=0.001), lateral patella water content (17.2±4.2% vs. 11.5±2.5%; P=0.002), and medial patella water content (13.2±2.7% vs. 8.4±2.3%; Prunners with PFP is suggestive of venous engorgement and elevated extracellular fluid. In turn, this may lead to an increase in intraosseous pressure and pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Characterizing AirSWOT water elevation accuracy on the Willamette River

    Science.gov (United States)

    Tuozzolo, S.; Durand, M. T.; Overstreet, B. T.; Mangano, J.; Minear, J. T.; Stringham, C.; Chen, C. W.; Pavelsky, T.; Frasson, R. P. M.; Fonstad, M. A.; Wei, R.

    2016-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission aims to map the world's freshwater resources using Ka-band interferometric radar. In anticipation of the SWOT mission, an airborne calibration/validation system, AirSWOT, has been developed to generate SWOT-like measurements of oceanic and surface waters. AirSWOT's payload includes the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) and an NIR camera for land-water delineation. Here, we show AirSWOT data from March 2015 on a 75km stretch of the Willamette River in Western Oregon. KaSPAR measurements of water surface elevation, coherence, and backscatter, as well as NIR imagery, are examined in conjunction with in-situ water surface elevation measurements collected using GPS drifters, pressure transducers, and a motorboat-mounted RTK-GPS. We characterize KaSPAR backscatter and coherence characteristics over land and water as a function of incidence angle, and compare AirSWOT and in-situ measurements of water surface elevation and reach-averaged slope to assess AirSWOT's accuracy over the study area.

  18. Digital map of test-hole, registered-water well, and surface-geophysical log sites used to estimate elevation of base of the upper layer of the phase-three Elkhorn-Loup Model, north-central Nebraska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2006, a cooperative study was established to compile reliable data describing groundwater and surface-water interactions in the Elkhorn and Loup River Basins. The...

  19. Delineation of areas having elevated electrical conductivity, orientation and characterization of bedrock fractures, and occurrence of groundwater discharge to surface water at the U.S. Environmental Protection Agency Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina

    Science.gov (United States)

    Chapman, Melinda J.; Huffman, Brad A.; McSwain, Kristen Bukowski

    2015-07-16

    During October 2012 through March 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (EPA) Region 4, Superfund Section, conducted borehole geophysical logging, surface geophysical surveys, and water-quality profiling in selected wells and areas to characterize or delineate the extent of elevated subsurface electrical conductivity at the EPA Barite Hill/Nevada Goldfields Superfund site near McCormick, South Carolina. Elevated electrical conductivity measured at the site may be related to native rock materials, waste rock disposal areas used in past operations, and (or) groundwater having elevated dissolved solids (primarily metals and major ions) related to waste migration. Five shallow screened wells and four open-borehole bedrock wells were logged by using a suite of borehole tools, and downhole water-quality profiles were recorded in two additional wells. Well depths ranged from about 26 to 300 feet below land surface. Surface geophysical surveys based on frequency-domain electromagnetic and distributed temperature sensing (DTS) techniques were used to identify areas of elevated electrical conductivity (Earth materials and groundwater) and potential high dissolved solids in groundwater and surface water on land and in areas along the northern unnamed tributary at the site.

  20. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  1. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  2. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  3. Seismic Behavior Evaluation of Concrete Elevated Water Tanks

    National Research Council Canada - National Science Library

    saeed bozorgmehrnia; malek mohammad ranjbar; rahmat madandoust

    2013-01-01

    ...,  a reinforced concrete elevated water tank, with 900 cubic meters capacity, exposed to three pairs of earthquake records was  analyzed  in time  history using  mechanical  and finite-element  modeling  techniques...

  4. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  5. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  6. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  7. Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Ice surface elevation and ice thickness data are available for a portion of the West Antarctic Ice Sheet. Ice surface elevations and ice thickness data are derived...

  8. Interpolating atmospheric water vapor delay by incorporating terrain elevation information

    Science.gov (United States)

    Xu, W. B.; Li, Z. W.; Ding, X. L.; Zhu, J. J.

    2011-09-01

    In radio signal-based observing systems, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), the water vapor in the atmosphere will cause delays during the signal transmission. Such delays vary significantly with terrain elevation. In the case when atmospheric delays are to be eliminated from the measured raw signals, spatial interpolators may be needed. By taking advantage of available terrain elevation information during spatial interpolation process, the accuracy of the atmospheric delay mapping can be considerably improved. This paper first reviews three elevation-dependent water vapor interpolation models, i.e., the Best Linear Unbiased Estimator in combination with the water vapor Height Scaling Model (BLUE + HSM), the Best Linear Unbiased Estimator coupled with the Elevation-dependent Covariance Model (BLUE + ECM), and the Simple Kriging with varying local means based on the Baby semi-empirical model (SKlm + Baby for short). A revision to the SKlm + Baby model is then presented, where the Onn water vapor delay model is adopted to substitute the inaccurate Baby semi-empirical model (SKlm + Onn for short). Experiments with the zenith wet delays obtained through the GPS observations from the Southern California Integrated GPS Network (SCIGN) demonstrate that the SKlm + Onn model outperforms the other three. The RMS of SKlm + Onn is only 0.55 cm, while those of BLUE + HSM, BLUE + ECM and SKlm + Baby amount to 1.11, 1.49 and 0.77 cm, respectively. The proposed SKlm + Onn model therefore represents an improvement of 29-63% over the other known models.

  9. Elevation Change, Ice Dynamics and Surface Roughness over Dome A, Antarctica using Satellite and AGAP Aerogeophysical data

    Science.gov (United States)

    Das, I.; Bell, R. E.; Wolovick, M.; Creyts, T. T.; Frearson, N.; Scambos, T. A.

    2011-12-01

    Recent studies using airborne radar have mapped the presence of subglacial water and accretion sites near Dome A, Antarctica. Some of these basal processes span spatial scales large enough to influence the surface of the ice sheet. This work involves studying the morphology of the ice surface over Dome A as it responds to these basal processes. Our approach included measuring surface elevation change using ICESat data from 2004-2009, small scale surface roughness using airborne lidar and modeling the surface velocity using surface elevation and radar derived ice thickness. Our results suggest that for most cases, the surface adjusts to the vertical velocity associated with accretion by modifying the ice dynamics. Surface velocities modeled using shallow ice approximation and ignoring sliding velocities at the bed show that the water and accretion sites are associated with increasing surface velocities. Majority of the subglacial water and accretion sites are located near these high surface velocity regimes which redistributes mass towards obtaining a new ice sheet balance. Further, persistent though moderate katabatic wind activity over this region modifies the accumulation and ablation pattern making it harder to constrain the rates of elevation change associated with subglacial accretion. Nevertheless, there are exceptions observed where surface uplift is associated with the presence of subglacial water. For instance, a significant surface uplift is observed in ICESat data over a large (~ 20 km) flat base underlying a drawdown. The drawdown indicative of basal melt is located in the vicinity of an active freeze-on. We attribute this surface uplift to an active process of melt water accumulating at the flat bed and possible influence of the active accretion nearby. Further studies are being conducted to confirm the rate of the uplift. Surface roughness derived from high resolution airborne lidar is used to detect small scale variability of the ice surface. Low

  10. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  11. Seismic Behavior Evaluation of Concrete Elevated Water Tanks

    Directory of Open Access Journals (Sweden)

    saeed bozorgmehrnia

    2013-12-01

    Full Text Available Elevated tanks are important structures in storing vital products, such as petroleum products for cities and industrial facilities, as well as water storage. These structures have various types and are constructed in a way that a greater portion of their weight is concentrated at an elevation much about the base. Damage to these structures during strong ground motions may lead to fire or other hazardous events.  In this  research,  a reinforced concrete elevated water tank, with 900 cubic meters capacity, exposed to three pairs of earthquake records was  analyzed  in time  history using  mechanical  and finite-element  modeling  techniques.  The liquid mass of the tank was modeled as lumped mass known as sloshing mass, or impulsive mass.  The corresponding stiffness constants associated with the lumped mass were determined depending upon the properties of the tank wall and liquid mass. Tank responses including base shear, overturning moment, tank displacement, and sloshing displacement were also calculated.  Obtained results revealed that the system responses are highly influenced by the structural parameters and the earthquake characteristics such as frequency content.

  12. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2011-01-01

    Here we report on the electrochemical removal of segregated silicon dioxide impurities from Yttria Stabilized Zirconia (YSZ) surfaces at elevated temperatures studied under Ultra High Vacuum (UHV) conditions. YSZ single crystals were heated in vacuum by an applied 18kHz a.c. voltage using the ionic...... electrochemically reduced by the a.c. voltage when no oxidation substances are present. The absence of silicon on the surfaces annealed in vacuum or at low oxygen or water vapor partial pressures was attributed to electrochemical reduction of silicon dioxide to volatile silicon monoxide on the YSZ surface....... This was demonstrated by silicon enrichment of a gold foil placed behind the YSZ crystal surface while annealed. The results suggest a fast way to clean YSZ for trace silicon dioxide impurities found in the bulk of the cleanest crystals commercially available....

  14. STUDY ON THE PROJECTION WITH ELEVATIONS OF HELICOID-TYPE SURFACES

    Directory of Open Access Journals (Sweden)

    CRISAN TUDOREANU Adrian

    2017-05-01

    Full Text Available This paper presents right helicoid surfaces in various systems of representation. Emphasis was put on the representation of helicoid surfaces in the projection with elevations, where both the right helicoid with a perpendicular axis on the elevated plan and the right helicoid with the axis inclined at a certain angle to the elevated plan.

  15. IceBridge ATM L4 Surface Elevation Rate of Change V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains surface elevation rate of change measurements derived from IceBridge and Pre-IceBridge Airborne Topographic Mapper (ATM) widescan elevation...

  16. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  17. IceBridge UAF Lidar Profiler L1B Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge UAF Lidar Profiler L1B Geolocated Surface Elevation Triplets data set contains surface profiles of Alaska Glaciers acquired using the airborne...

  18. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  19. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  20. Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations.

    Science.gov (United States)

    Bernáth, Balázs; Gál, József; Horváth, Gábor

    2004-02-01

    Using 180 degrees field-of-view imaging polarimetry, we measured the reflection-polarization patterns of two artificial surfaces (water-dummies) in the red, green and blue spectral ranges under clear and partly cloudy skies at different solar elevations. The dummies consisted of a horizontal glass pane with a matt black or matt light grey cloth underneath, imitating a dark or bright water body, respectively. Assuming that polarotactic water insects interpret a surface as representing water if the degree of linear polarization of reflected light is higher than a threshold and the deviation of the direction of polarization from the horizontal is lower than a threshold, we calculated the proportion, P, of the artificial surfaces detected polarotactically as water. We found that at sunrise and sunset P is maximal for both water-dummies and their reflection-polarizational characteristics are most similar. From this, we conclude that polarotactic water detection is easiest at low solar elevations, because the risk that a polarotactic insect will be unable to recognize the surface of a dark or bright water body is minimal. This partly explains why many aquatic insect species usually fly en masse at dusk. The daily change in the reflection-polarization pattern of water surfaces is an important visual ecological factor that may contribute to the preference of the twilight period for habitat searching by polarotactic water insects. Air temperature at sunrise is generally low, so dusk is the optimal period for polarotactic aquatic insects to seek new habitats.

  1. Effects of lake surface elevation on shoreline-spawning Lost River Suckers

    Science.gov (United States)

    Burdick, Summer M.; Hewitt, David A.; Rasmussen, J.E.; Hayes, Brian; Janney, Eric; Harris, Alta C.

    2015-01-01

    We analyzed remote detection data from PIT-tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter-spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006-2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3-1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.

  2. Near Surface Water on Europa?

    Science.gov (United States)

    Schmidt, B. E.; Gooch, B. T.; Patterson, G.; Blankenship, D. D.

    2016-12-01

    Europa's chaos terrains are generally agreed upon to have formed through disruption of the ice shell and interaction with water, but the exact details are debated. Thrace Macula, one of the largest chaos features, was initially considered to be an extrusive flow due its dark coloration and raised topography. Upon closer inspection, the volcanic interpretation was dismissed, in favor of suggestions that motion of brines through the ice, akin to brine drainage in sea ice, would explain the dark coloration. However no model has clearly explained how both the color and topography of the feature are produced, nor the large ice rafts at its center. In this presentation, we will show that disruption of the surface ice after emplacement of a subsurface water lense can reproduce all of the observations of Thrace Macula if the ice in the upper few kilometers is highly fractured or porous. We will demonstrate with simple hydrologic models that hydraulic gradients within the surrounding ice are sufficient to produce a shallow brine zone that migrates through the ice and creates a distributed network of brine-soaked and refrozen ice. These results suggest that liquid water was still present at Thrace Macula at the time of Galileo, and that future observations of this region may reveal significant changes. Such observations have important implications for crustal recycling, material transport and the long-term habitability of Europa's subsurface and ocean.

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  4. Water sorption, solubility and surface roughness of resin surface sealants

    OpenAIRE

    Biazuz,Jaqueline; Zardo,Patrícia; Rodrigues-Junior,Sinval Adalberto

    2015-01-01

    Surface sealants have been suggested as final glaze of the surface of composite restorations. However, little is known about bulk and surface properties of these materials aiming the long-term preservation of the surface integrity of these restorations. AIM: To evaluate the water sorption, solubility and surface roughness of commercial surface sealants for restorations. METHODS: Five disc-shaped specimens 15 mm diameter X 1 mm high were made from the surface sealants Natural Glaze DFL and Per...

  5. Rocky Mountain Arsenal surface water management plan : water year 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the 2001 Surface Water Management Plan is to quantify consumption rates of potable/nonpotable water projected for the 2001 water year (October 1, 2000...

  6. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  7. Surface contamination artificially elevates initial sweat mineral concentrations

    Science.gov (United States)

    During exercise in the heat, sweat is initially concentrated in minerals, but serial sweat samples appear more dilute. Possible causes include reduced dermal mineral concentrations or flushing of surface contamination. PURPOSE: To simultaneously sample mineral concentrations in transdermal fluid (T...

  8. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  9. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  10. Elevated cell-surface hyaluronate in substrate-attached cells

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, P.M.; Barnhart, B.J.

    1978-01-01

    CHO cells, an anchorage-independent Chinese hamster cell line, synthesize and deposit more hyaluronic acid into the cell-surface material when attached to substrate than when growing in suspension. The difference cannot be explained by differences in turnover, cellular localization, or secretion. Evidently the anchorage state per se stimulates hyaluronic acid synthesis.

  11. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  12. IceBridge WISE L2 Ice Thickness and Surface Elevation V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains depth sounder measurements of elevation, surface, bottom, and thickness for Alaska taken from the Warm Ice Sounding Explorer (WISE). The data...

  13. IceBridge LVIS L2 Geolocated Surface Elevation Product V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains surface elevation measurements from NASA's Land, Vegetation, and Ice Sensor (LVIS) over areas including Greenland and Antarctica. The data...

  14. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  15. Surface Water Treatment Rules State Implementation Guidance

    Science.gov (United States)

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  16. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  17. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  18. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of .... Sampling details of surface and subsurface water samples of SE part of Kashmir Valley. Sampling. Latitude ..... ination of water and waste water (APHA-AWWA-WEF. Washington). Bonaccio 2004 ...

  19. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    temperature was expected to be lower compared to surface water without any geothermal energy in the area. The level of protection of the ground water sampling sites 5 and 6 was very minimal and methodological constraints of ground water sampling might have resulted in a slight increase of temperature in ground water ...

  20. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D. [Washington State Univ., Intensive Forestry Program, Puyallup, WA (United States); Tognetti, R. [Universita del Molize, Dipartimento de Scienze Animali, Vegetali e dell' Ambiente, Compobasso (Italy); Pris, P. [Consiglio Nazionale delle Ricerche, Instituto per l' Agroselvicoltura, Porano (Italy)

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO{sub 2}] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO{sub 2} and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO{sub 2} and water stress in these two species, and to determine if elevated CO{sub 2} mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 {mu}mol mol{sup -1}) or elevated (700 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration ([CO{sub 2}]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO{sub 2}], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO{sub 2}] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO{sub 2}] and water stress reduced Rd in the trees growing in ambient [CO{sub 2}]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO{sub 2}] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO{sub 2}] and water stress, singly, suggest that these species respond like other tree species. The interaction Of [CO{sub 2}] and water stress suggests that elevated [CO{sub 2}] did mitigate the effects of water stress in willow, but not in poplar. (au)

  1. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    DEFF Research Database (Denmark)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter

    2011-01-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 x 1 m resolution over a 300 x 300 m area. Data were separated into l...

  2. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  3. Regional Assessment of Recharge Elevation of Tap Water Sources Using the Isoscape Approach

    Directory of Open Access Journals (Sweden)

    Tsutomu Yamanaka

    2017-05-01

    Full Text Available The importance of mountains as “natural water towers” has been quantified by comparing water budgets in upstream (mountain and downstream (lowland areas, but their importance for tap water supplies has not been assessed. Here, we propose an isoscape approach to estimate the mean recharge elevation of tap water sources (rivers, reservoirs, springs, and wells and apply it to a region in central Japan as a case study. Errors in the estimation of mean recharge elevation were estimated at 90–140 m. Results show that mean recharge elevations for about 90% of sources in the region are at 1000 m above sea level or higher. A little over half of the land area is above that elevation, while 98% of the population lives below it. These findings indicate that tap water disproportionally depends on recharge in mountains and is disproportionately supplied to lowland residents. Higher locations of spring water sources and longer (vertical distances of groundwater flow for well water sources make the recharge-to-population disproportionality more remarkable. Furthermore, our results suggest that larger cities require higher natural water towers to meet greater water demand, complemented by intermunicipal water suppliers. Some low-elevation municipalities depend heavily on water recharged in mountains well outside their territories. The method proposed here helps clarify how people depend on water supplies from mountains, providing essential knowledge for integrated management of mountains and water resources.

  4. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  5. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.

    Science.gov (United States)

    Zeppel, Melanie J B; Lewis, James D; Medlyn, Belinda; Barton, Craig V M; Duursma, Remko A; Eamus, Derek; Adams, Mark A; Phillips, Nathan; Ellsworth, David S; Forster, Michael A; Tissue, David T

    2011-09-01

    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO(2) (elevated [CO(2)]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO(2)] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J(s)) and leaf area (E(t)) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J(s) and E(t) were observed during the severe drought period in the dry treatment under elevated [CO(2)], but not during moderate- and post-drought periods. Elevated [CO(2)] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J(s,r)), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J(s,c)). Elevated [CO(2)] wet (EW) trees exhibited higher J(s,r) than ambient [CO(2)] wet trees (AW) indicating greater water flux in elevated [CO(2)] under well-watered conditions. However, under drought conditions, elevated [CO(2)] dry (ED) trees exhibited significantly lower J(s,r) than ambient [CO(2)] dry trees (AD), indicating less water flux during stem recharge under elevated [CO(2)]. J(s,c) did not differ between ambient and elevated [CO(2)]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J(s,r) and had its greatest impact on J(s,r) at high D in ambient [CO(2)]. Our results suggest that elevated [CO(2)] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO(2)] affected J(s,r), it did not affect day-time water

  6. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA

    Science.gov (United States)

    Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.

    2013-01-01

    Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.

  7. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA

    Science.gov (United States)

    Reeve, A. S.; Glaser, P. H.; Rosenberry, D. O.

    2013-12-01

    Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.

  8. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  9. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... surface water by rain and stormwater. On the other hand, run- off water increases pollutant concentrations, thereby decreases quality. To assess the water quality of the Buyuk Menderes. River under high-flow conditions, factor analysis was applied to data sets obtained from 21 monitoring stations between ...

  10. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  11. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Zaranyika

    2015-10-26

    Oct 26, 2015 ... The surface composition and surface properties of water hyacinth (Eichhornia crassipes) root biomass were studied before and after extraction with dilute nitric acid and toluene/ethanol (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, thermogravimetric analysis, x-ray.

  12. Typhoon and elevated radon level in a municipal water supply

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Cheng-Hsin [Nuclear Science and Development Center, National Tsing Hua Univ., Taiwan (China); Weng, Pao-Shan [Radiation Protection Association ROC, Taiwan (China)

    2000-05-01

    The Municipal Water Supply at Hsinchu City is a water treatment plant using poly- aluminum chloride (PAC) for coagulation and then followed by precipitation and filtration. Its capacity is 70,000 m{sup 3}/day. The raw water is drawn from the nearby river. Since the subject of interest is the radon level during typhoon season, the sampling period was from March to December 1999. Commercially available electret was used for water samples taken from the five ponds in the plant. This technique relies on the measurement of radon in air above a water sample enclosed in a sealed vessel. The concentration of airbone radon released from water was determined by means of the electret ion chamber. During the first sampling period there came two typhoons. One is called Magie during June 10-17, and the other called Sam during August 20-26. The first typhoon led to the radon level measured from the water samples as high as 705 Bq/m{sup 3}, while the second caused even higher radon level as high as 772 Bq/m{sup 3}. Similar results were obtained for the second sampling period after August till December 1999. For those measured without typhoon influence, the average radon was lower from the coagulation pond yet without coagulation process during March through August 1999. However, water samples taken from the pond after precipitation did not show similar results in radon level. (author)

  13. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    Science.gov (United States)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  14. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  15. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  16. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  17. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  18. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  19. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  20. ICESat Observations of Inland Surface Water Stage, Slope, and Extent: a New Method for Hydrologic Monitoring

    Science.gov (United States)

    Harding, David J.; Jasinski, Michael F.

    2004-01-01

    River discharge and changes in lake, reservoir and wetland water storage are critical terms in the global surface water balance, yet they are poorly observed globally and the prospects for adequate observations from in-situ networks are poor (Alsdorf et al., 2003). The NASA-sponsored Surface Water Working Group has established a framework for advancing satellite observations of river discharge and water storage changes which focuses on obtaining measurements of water surface height (stage), slope, and extent. Satellite laser altimetry, which can achieve centimeter-level elevation precision for single, small laser footprints, provides a method to obtain these inland water parameters and contribute to global water balance monitoring. Since its launch in January, 2003 the Ice, Cloud, and land Elevation Satellite (ICESat), a NASA Earth Observing System mission, has achieved over 540 million laser pulse observations of ice sheet, ocean surface, land topography, and inland water elevations and cloud and aerosol height distributions. By recording the laser backscatter from 80 m diameter footprints spaced 175 m along track, ICESat acquires globally-distributed elevation profiles, using a 1064 nm laser altimeter channel, and cloud and aerosol profiles, using a 532 nm atmospheric lidar channel. The ICESat mission has demonstrated the following laser altimeter capabilities relevant to observations of inland water: (1) elevation measurements with a precision of 2 to 3 cm for flat surfaces, suitable for detecting river surface slopes along long river reaches or between multiple crossings of a meandering river channel, (2) from the laser backscatter waveform, detection of water surface elevations beneath vegetation canopies, suitable for measuring water stage in flooded forests, (3) single pulse absolute elevation accuracy of about 50 cm (1 sigma) for 1 degree sloped surfaces, with calibration work in progress indicating that a final accuracy of about 12 cm (1 sigma) will be

  1. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  2. The Dynamic Surface Tension of Water

    Science.gov (United States)

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  3. [Biotechnology for purifying surface storm waters].

    Science.gov (United States)

    Dul'herov, O M; Kachur, T L; Nud'ha, A Iu

    2001-01-01

    A possibility of purification of the surface storm drains from petroleum has been shown. The developed extensive biotechnology is based on the use of the preparation "Desna"--an active destructor of hydrocarbons. The application of the biotechnology at the plants for treatment of the surface storm waters from the industrial zone Telychka of the city of Kyiv has allowed the content of petroleum in water dropped to the Dnieper to be constantly reduced 50-100 times.

  4. Sensitivity of limber pine (Pinus flexilis) seedling physiology to elevation, warming, and water availability across a timberline ecotone

    Science.gov (United States)

    Moyes, A. B.; Castanha, C.; Ferrenberg, S.; Germino, M. J.; Kueppers, L. M.

    2010-12-01

    Treelines occur where environmental gradients such as temperature become limiting to tree establishment, and are thus likely to respond to changes in climate. We collected gas exchange, water potential, and fluorescence measurements from limber pine (Pinus flexilis) seedlings planted into experimental plots at three elevations at Niwot Ridge, Colorado, ranging from within forest to alpine. At each site seeds from local high- and low-elevation populations were sewn into replicated and controlled watering and infrared heating treatment plots. Heating led to earlier snowmelt, germination, and soil moisture availability in spring; higher soil surface temperatures throughout the growing season; and drier soils in late summer. Assimilation rates in all plots were most strongly associated with soil moisture availability following germination, and decreased as soils dried over the growing season. Intrinsic water use efficiency was consistent for the two source populations, but there was evidence that individuals germinating from high-elevation seeds respired more per unit carbon assimilated under our experimental conditions. Chlorophyll fluorescence showed no evidence of photoinhibition in any elevation or treatment category. Earlier soil moisture depletion in heated plots was associated with lower midday stem water potentials and reduced stomatal conductance in August. Our watering treatments did not substantially reduce apparent midsummer water stress. Seedlings in ambient temperature plots had higher assimilation rates in August than those in heated plots, but also greater carbon loss via photorespiration. Moisture limitation in heated plots in summer interacted with variability in afternoon sun exposure within plots, and qualitative observations suggested that many seedlings were killed by desiccation and heat girdling at all elevations. While early snowmelt and moisture availability in heated plots provided a longer growing season, earlier reduction of soil moisture

  5. Surface water pesticide modelling for decision support in drinking water production

    Science.gov (United States)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  6. Mars water vapor, near-surface

    Science.gov (United States)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  7. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  8. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes. River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow ...

  9. surface water quality in addis ababa, ethiopia

    African Journals Online (AJOL)

    ABSTRACT: The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within.

  10. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    Science.gov (United States)

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  11. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Science.gov (United States)

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  12. Groundwater withdrawals 1976, 1990, and 2000--10 and land-surface-elevation changes 2000--10 in Harris, Galveston, Fort Bend, Montgomery, and Brazoria Counties, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.

    2013-01-01

    The study area comprising Harris County and parts of Galveston, Fort Bend, Montgomery, and Brazoria Counties in southeastern Texas forms part of one of the largest areas of land-surface-elevation change in the United States. Land-surface-elevation change in the study area primarily is caused by the withdrawal of groundwater. Groundwater withdrawn from the Chicot and Evangeline aquifers has been the primary source of water for municipal supply, industrial and commercial use, and irrigation in the study area. Groundwater withdrawals cause compaction of clay and silt layers abundant in the aquifers, which has in turn resulted in the widespread, substantial land-surface-elevation changes in the region with increased flooding. To estimate land-surface-elevation changes, the U.S. Geological Survey (USGS), in cooperation with the Harris-Galveston Subsidence District (HGSD), documented land-surface-elevation changes in the study area that occurred during 2000–10 and 2005–10 based on elevation data measured by 11 USGS borehole-extensometer sites, a National Geodetic Survey Continuously Operating Reference Station, and Global Positioning System Port-A-Measure (PAM) sites operated by the HGSD and the Fort Bend Subsidence District. Groundwater withdrawals in the study area also were documented for 1976, 1990, and 2000–10.

  13. Droplet coalescence on water repellant surfaces.

    Science.gov (United States)

    Nam, Youngsuk; Seo, Donghyun; Lee, Choongyeop; Shin, Seungwon

    2015-01-07

    We report our hydrodynamic and energy analyses of droplet coalescence on water repellent surfaces including hydrophobic, superhydrophobic and oil-infused superhydrophobic surfaces. The receding contact angle has significant effects on the contact line dynamics since the contact line dissipation was more significant during the receding mode than advancing. The contact line dynamics is modeled by the damped harmonic oscillation equation, which shows that the damping ratio and angular frequency of merged droplets decrease as the receding contact angle increases. The fast contact line relaxation and the resulting decrease in base area during coalescence were crucial to enhance the mobility of coalescing sessile droplets by releasing more surface energy with reducing dissipation loss. The superhydrophobic surface converts ∼42% of the released surface energy to the kinetic energy via coalescence before the merged droplet jumps away from the surface, while oil-infused superhydrophobic and hydrophobic surfaces convert ∼30% and ∼22%, respectively, for the corresponding time. This work clarifies the mechanisms of the contact line relaxation and energy conversion during the droplet coalescence on water repellent surfaces, and helps develop water repellent condensers.

  14. IceBridge Merged Photon Counting Lidar/Profiler L4 Surface Slope and Elevations V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains geolocated surface elevation measurements captured over Antarctica using the Sigma Space Mapping Photon Counting Lidar and Riegl Laser...

  15. Unusual surface morphology from digital elevation models of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ekholm, Simon; Keller, K.; Bamber, J.L.

    1998-01-01

    In this study of the North Greenland ice sheet, we have used digital elevation models to investigate the topographic signatures of a large ice flow feature discovered in 1993 and a unique surface anomaly which we believe has not been observed previously. The small scale topography of the flow...... feature is revealed in striking detail in a high-pass filtered elevation model. Furthermore, ice penetrating radar show that the sub-stream bed is rough with undulation amplitude increasing downstream. The new feature consists of two large depressions in the ice sheet connected by a long curving trench...

  16. Water surface locomotion in tropical canopy ants.

    Science.gov (United States)

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. © 2014. Published by The Company of Biologists Ltd.

  17. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    ... percentage of lignin on the adsorption of volatile polar organic solvents and non-polar n-alkane hydrocarbons is discussed. Key words: Water hyacinth, biomass, surface composition, Fourier Transform Infra-red (FT-IR) spectroscopy, scanning electron microscopy, x-ray diffraction spectroscopy, thermo gravimetric analysis ...

  18. Distribution of Elevated Nitrate Concentrations in Ground Water in Washington State

    Science.gov (United States)

    Frans, Lonna

    2008-01-01

    More than 60 percent of the population of Washington State uses ground water for their drinking and cooking needs. Nitrate concentrations in ground water are elevated in parts of the State as a result of various land-use practices, including fertilizer application, dairy operations and ranching, and septic-system use. Shallow wells generally are more vulnerable to nitrate contamination than deeper wells (Williamson and others, 1998; Ebbert and others, 2000). In order to protect public health, the Washington State Department of Health requires that public water systems regularly measure nitrate in their wells. Public water systems serving more than 25 people collect water samples at least annually; systems serving from 2 to 14 people collect water samples at least every 3 years. Private well owners serving one residence may be required to sample when the well is first drilled, but are unregulated after that. As a result, limited information is available to citizens and public health officials about potential exposure to elevated nitrate concentrations for people whose primary drinking-water sources are private wells. The U.S. Geological Survey and Washington State Department of Health collaborated to examine water-quality data from public water systems and develop models that calculate the probability of detecting elevated nitrate concentrations in ground water. Maps were then developed to estimate ground water vulnerability to nitrate in areas where limited data are available.

  19. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  20. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005......Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...

  1. Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime

    Science.gov (United States)

    Nasir, Wan Nur Ain Mat; Ahmad, Wan Juliana Wan; Musa, Nor Lailatul Wahidah

    2016-11-01

    Elevated atmospheric CO2 has significant effects on plant growth depending on the species and the interaction between treatments given. In other words, the impacts vary among species, depending on differences in photosynthetic pathways, intrinsic growth rates and other properties. In this research we studied the effects of increased carbon dioxide concentration and water regimes on a shrub species, Melastoma malabathricum in a shade house at ambient CO2 and open roof greenhouse at elevated CO2. The factor of water stress was also included, in which for each CO2 treatment, the amount of water was given once or twice daily. The treatment of elevated CO2 was at 800 ppm, when the plants were exposed daily from 0900h until 1100h. The plant growth was monitored through their biomass, height and leaf area that were recorded fortnightly for six months. The results showed that the height of M. malabathricum stem in elevated CO2 was significantly higher than those in ambient CO2. Similarly, leaf area in the elevated CO2 showed a big difference with a value of 46.24 cm2 for elevated CO2 with twice watering, but only 17.94 cm2 for ambient CO2 with twice watering. Even for once watering, we can see the values of leaf area were higher with 32.06 cm2 for elevated and 24.35 cm2 in ambient CO2. The above ground and below ground biomass differed significantly between ambient and elevated CO2. Above ground biomass in ambient CO2 was higher than that in elevated CO2 with a percentage of 25.7%. In contrast, the below ground biomass in elevated CO2 was higher than that in ambient CO2 with a percentage of 17.4%. The results suggested that the increment of CO2 concentrations and water regime in the natural environment may influence the growth and ultimately the abundance and distribution of this shrub species in urban forest.

  2. Coupled surface-water and ground-water model

    Science.gov (United States)

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  3. Evaporation from partially covered water surfaces

    Science.gov (United States)

    Assouline, S.; Narkis, K.; Or, D.

    2010-10-01

    Evaporative losses from large water bodies may exceed 20% of water used in irrigated agriculture, with losses from reservoirs estimated at 50% of storage capacity. Prominent among proposed methods to curtail these evaporative losses are various forms of partial covers placed over water surfaces. Studies show that evaporation through perforated covers and from partially covered water surfaces exhibit nonlinear behavior, where rates of water loss are not proportional to uncovered surface fraction and are significantly affected by opening size and relative spacing. We studied evaporation from small water bodies under various perforated covers, extending the so-called diameter law to opening sizes in the range of 10-5 to 10-1 m. Contradicting claims concerning effects of openings and their arrangement on performance of evaporation barriers are analyzed on per opening and on per area mass losses. Our results help reconcile some classical findings invoking detailed pore-scale diffusion and simple temperature-based energetic behaviors. For fixed relative spacing, area-averaged evaporative flux density remains nearly constant across several orders of magnitude variations in opening size. For the scale of the experimental setup, we predict relative evaporation reduction efficiency for various configurations of perforated evaporation barriers.

  4. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  5. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    The leaves of some natural plants show a micro structure that gives them the capacity of being cleaned from any undesired particles on them by rainfall. A thorough study of the physical laws that lay behind this phenomenon, known as the lotus effect was conducted in order to obtain a set of useful...... design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... technique using copper laminated epoxy is described as a second approach. Hydrophobization of some surfaces was attempted. Results of characterisation and drop deposition tests of obtained surfaces are discussed....

  6. Long-term surface elevation change in salt marshes : a prediction of marsh response to future sea-level rise

    NARCIS (Netherlands)

    van Wijnen, HJ; Bakker, JP

    Accretion rates and surface elevation changes were measured in three natural salt marshes in the Wadden Sea. Derived from these measurements, a simple predictive model was made which describes changes in surface elevation during more than 100 years of salt-marsh development at several sea-level rise

  7. Artificial recharge of surface water to aquifer

    OpenAIRE

    Čechová, Tereza

    2014-01-01

    Artificial recharge of surface water to aquifer Tereza Čechová, Geotechnologie Abstract: The bachelor thesis is devoted to groundwater recharge. The source of groundwater is infiltration of atmospheric precipitation. The study deals with the use of controlled artificial recharge in the Czech Republic and the other countries in the Word.

  8. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  9. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  10. Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada

    Science.gov (United States)

    Horton, T.W.; Sjostrom, D.J.; Abruzzese, M.J.; Poage, M.A.; Waldbauer, J.R.; Hren, M.; Wooden, J.; Chamberlain, C.P.

    2004-01-01

    The surface uplift of mountain belts caused by tectonism plays an important role in determining the long-term climate evolution of the Earth. However, the general lack of information on the paleotopography of mountain belts limits our ability to identify the links and feedbacks between topography, tectonics, and climate change on geologic time-scales. Here, we present a ??18O and ??D record of authigenic minerals for the northern Great Basin that captures the timing and magnitude of regional surface uplift and subsidence events in the western United States during the Cenozoic. Authigenic calcite, smectite, and chert ??18O values suggest the northern Great Basin region experienced ???2km of surface uplift between the middle Eocene and early Oligocene followed by ???1 to 2km of surface subsidence in the southern Great Basin and/or Sierra Nevada since the middle Miocene. These data when combined with previously published work show that the surface uplift history varied in both space and time. Surface uplift migrated from north to south with high elevations in southern British Columbia and northeastern Washington in the middle Eocene and development of surface uplift in north and central Nevada in the Oligocene. This pattern of north to south surface uplift is similar to the timing of magmatism in the western Cordillera, a result that supports tectonic models linking magamtism with removal of mantle lithosphere and/or a subducting slab.

  11. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  12. Luneburg modified lens for surface water waves

    Science.gov (United States)

    Pichard, Helene; Maurel, Agnes; Petitjeans, Phillipe; Martin, Paul; Pagneux, Vincent

    2015-11-01

    It is well known that when the waves pass across an elevated bathymetry, refraction often results in amplification of waves behind it. In this sense, focusing of liquid surface waves can be used to enhance the harvest efficiency of ocean power. An ocean wave focusing lens concentrates waves on a certain focal point by transforming straight crest lens of incident waves into circular ones just like an optical lens. These devices have attracted ocean engineers and are promising because they enable the effective utilization of wave energy, the remaining challenge being to increase the harvest efficiency of the lens. In this work, in order to improve well known focusing of surface liquid waves by lens, the propagation of liquid surface waves through a Luneburg modified lens is investigated. The traditional Luneburg lens is a rotationally symmetric lens with a spatially varying refractive-index profile that focuses an incident plane wave on the rim of the lens. The modified Luneburg lens allows to choose the position of the focal point, which can lie inside or outside the lens. This new degree of freedom leads to enhanced focusing and tunable focusing. The focusing of linear surface waves through this lens is investigated and is shown to be more efficient than classical profile lenses.

  13. Long Term 1 Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) builds on the requirements of the Surface Water Treatment Rule and specifies treatment requirements to address Cryptosporidium m and other microbial contaminants in public water systems.

  14. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  15. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora *

    Science.gov (United States)

    Zhao, Xing-Zheng; Wang, Gen-Xuan; Shen, Zhu-Xia; Zhang, Hao; Qiu, Mu-Qing

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply. PMID:16532530

  16. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    Science.gov (United States)

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra

  17. Excitation of surface electromagnetic waves on water.

    Science.gov (United States)

    Singh, A K; Goben, C A; Davarpanah, M; Boone, J L

    1978-11-01

    Excitation of surface electromagnetic waves (SEW) on water was studied using optical coupling techniques at microwave frequencies. Excitation of SEW was also achieved using direct horn antenna coupling. The transmitted SEW power was increased by adding acid and salt to water. The horn antenna gave the maximum excitation efficiency 70%. It was increased to 75% by collimating the electromagnetic beam in the vertical direction. Excitation efficiency for the prism (0 degrees pitch angle) and grating couplers were 15.2% and 10.5% respectively. By changing the prism coupler pitch angle to +36 degrees , its excitation efficiency was increased to 82%.

  18. Effects of elevated water temperature on physiological responses in adult freshwater mussels

    Science.gov (United States)

    Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Freshwater mussels (order Unionoida) face multiple environmental stressors, which pose serious conservation challenges to this diverse assemblage of aquatic invertebrates. Of these stressors, elevated water temperature from global climate change and other anthropogenic sources may be the most ubiquitous and could be placing many mussel populations dangerously close to their thermal maxima.

  19. Elevated CO2 compensates for water stress in northern red oak

    Science.gov (United States)

    Patricia T. Tomlinson; Paul D. Anderson

    1996-01-01

    Global climate change models predict decreased rainfall in association with elevated CO2 in the western Lakes States region. Currently, the western edge of northern red oak (Quercus rubra L.) distribution coincides with the most xeric conditions of its ecological range. Decreased rainfall and water availability could alter...

  20. Hydrolytic Stability of 3-Aminopropylsilane Coupling Agent on Silica and Silicate Surfaces at Elevated Temperatures

    DEFF Research Database (Denmark)

    Okhrimenko, Denis; Budi, Akin; Ceccato, Marcel

    2017-01-01

    3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction in coupl......3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction...... in coupling efficiency, thus decreasing the product quality and the mechanical strength of the polymer-inorganic material interface. Therefore, a better understanding of the chemical state and stability of APS on inorganic surfaces is needed. In this work, we investigated APS adhesion on silica wafers......- and laboratory-scale APS deposition methods and increasing adhesion and stability, thus increasing the quality and effectiveness of materials where APS is used as a coupling agent....

  1. Sources of Elevated Cl- Concentrations in the Lower Peninsula of Michigan: An Integrated Multiscale Water Quantity-Quality Analysis

    Science.gov (United States)

    Curtis, Z. K.; Liao, H.; Li, S. G.; Lusch, D.

    2016-12-01

    Groundwater salinity is elevated above natural conditions in near-surface environments of the Lower Peninsula of Michigan. Studies reporting saline (>1 g/L TDS) shallow groundwater attribute the localized contamination to upwelling of deep brines, but it is not clear if this mechanism is responsible for the elevated salinity levels seen elsewhere in the Peninsula. Across multiple scales (peninsula-wide, regionally, and locally), we characterized the long-term average static water level (SWL) distribution and the occurrence of elevated concentrations of dissolved-chloride (Cl-) from water wells. Data from massive statewide groundwater databases were extracted to map SWLs using non-stationary kriging and overlay wells with Cl- concentrations above chosen threshold values. Peninsula-wide discharge and recharge zones were delineated and a more detailed SWL distribution was created for one of the major regional discharge zones - the Michigan Lowlands - which, too, exhibited strong SWL variability with clear nested recharge and discharge zones. A local model was developed within the primary regional discharge zone and, again, showed significant SWL variability characterized by multiple subscale recharge and discharge areas. At each scale, the proportion of elevated wells in each zone (discharge and recharge) were calculated, visualized, and compared. The results show that the Cl- concentrations in the discharge areas, where groundwater flows primarily upwards, are consistently and significantly higher than those in the recharge areas. This strong consistent Cl- distribution patterns across multiple scales suggest that brine upwelling from the deep formations is a dominant source of chloride contamination observed in Michigan. To further test this interpretation as the source of elevated Cl- concentrations in the Michigan Lowlands, a synoptic sampling campaign was conducted at 467 locations across the region. Chloride concentrations generally increase with depth and are

  2. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    Directory of Open Access Journals (Sweden)

    Joost W van Dam

    Full Text Available Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m, while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v/F(m, interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v/F(m and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1. The mixture toxicity model of Independent Action (IA described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  3. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates on the mit......Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... viability and visualize the resulting landscape changes. For the Danish NEU landscape, a detailed plan of implementation options is presented, taking into account catchment morphology and hydrology, land use and drainage, access conditions, land ownership structure and land owner profiles. Different...

  4. The influence of changes in glacier extent and surface elevation on modeled mass balance

    Directory of Open Access Journals (Sweden)

    F. Paul

    2010-12-01

    Full Text Available Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modelling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for about 60 glaciers in the Swiss Alps. The results reveal that over this period about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. For larger glaciers, the effect of the areal change is partly reduced by a lowered surface elevation, which results in a slightly more negative balance despite a potential increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of long-term mass balance data is rather complex.

  5. Perfluorinated surfactants in surface and drinking waters.

    Science.gov (United States)

    Skutlarek, Dirk; Exner, Martin; Färber, Harald

    2006-09-01

    In this paper recent results are provided of an investigation on the discovery of 12 perfluorinated surfactants (PS) in different surface and drinking waters (Skutlarek et al. 2006 a, Skutlarek et al. 2006 b). In the last years, many studies have reported ubiquitous distribution of this group of perfluorinated chemicals, especially perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in the environment, particularly in wildlife animal and human samples (Giesy and Kannan 2001, Houde et al. 2006, Prevedouros et al. 2006). Perfluorinated surfactants (e.g. PFOS and PFOA) have shown different potentials for reproductory interference and carcinogenity in animal experiments as well as partly long half-lives in humans (Guruge et al. 2006, FSA UK 2006a, FSA UK 2006b, 3M 2005, OECD 2002, Yao and Zhong 2005). They possess compound-dependent extreme recalcitrance against microbiological and chemical degradation and, in addition, they show variable potentials for bioaccumulation in animals and humans (Houde et al. 2006). Surface and drinking water samples were collected from different sampling sites: Surface waters: samples taken from the rivers Rhine, Ruhr, Moehne and some of their tributaries. Further samples were taken from the Rhine-Herne-Canal and the Wesel-Datteln-Canal. Drinking waters: samples taken in public buildings of the Rhine-Ruhr area. After sample clean-up and concentration by solid-phase extraction, the perfluorinated surfactants were determined using HPLC-MS/MS. All measured concentrations (sum of seven mainly detected components) in the Rhine river and its main tributaries (mouths) were determined below 100 ng/L. The Ruhr river (tributary of the Rhine) showed the highest concentration (94 ng/L), but with a completely different pattern of components (PFOA as major component), as compared with the other tributaries and the Rhine river. Further investigations along the Ruhr river showed remarkably high concentrations of PS in the upper reaches of

  6. Water droplet bouncing--a definition for superhydrophobic surfaces.

    Science.gov (United States)

    Crick, Colin R; Parkin, Ivan P

    2011-11-28

    The ability of water to bounce on a surface provides an indication of many of the surface's properties. The technique described in this article uses water bouncing to determine the hydrophobicity of a surface, with a relationship established between water contact angle and number of bounces, which is dependent on the surfaces microstructure.

  7. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  8. Effect of renal venous pressure elevation on tubular sodium and water reabsorption in the dog kidney

    DEFF Research Database (Denmark)

    Abildgaard, U; Amtorp, O; Holstein-Rathlou, N H

    1988-01-01

    of [51Cr]EDTA was used as a measure of the rate of glomerular filtration (GFR). GFR, urinary excretion rates of sodium and water, and lithium clearance were used for assessing the absolute and fractional reabsorption rates of sodium and water in the proximal as well as in more distal segments......This study was performed in order to quantify the effects of renal venous pressure (RVP) elevation on absolute and fractional reabsorption rates of sodium and water in proximal and distal segments of the nephron in dog kidneys. Renal blood flow (RBF) was measured electromagnetically. Clearance...

  9. Surface drifters measuring sea water salinity

    Science.gov (United States)

    Reverdin, Gilles; Centurioni, Luca; Sena-Martins, Meike; Garcia-Ladona, Emilio; Ballabrera, Joaquim; Salvador, Joaquin; Sommer, Anna; Boutin, Jacqueline

    2017-04-01

    Surface drifters have been introduced in the early 1990s by P.P. Niiler to measure the salinity of the near-surface water as well as its temperature. First, they were deployed to document large scale advection of surface salinity fronts, such as during TOGA-COARE (1991). More recently, salinity drifter data were used for three purposes: 1 - provide in situ data coverage for validation of sea surface (SSS) products, such as provided by band-L microwave radiometry from satellite missions, Aquarius, SMOS, SMAP 2 - provide data for better understanding upper ocean response to air-sea interactions, such as during rainfall, or near-surface warming during low wind events 3 - provide estimates of surface advection of salinity features and their contribution to ocean freshwater budget We will review the drifters that have been deployed and where data were collected, the challenges encountered in correcting the data, ongoing plans and future developments. A comparison of salinity data of more than 60 SVP drifters to SMOS and Aquarius SSS fields in the North Atlantic subtropical gyre illustrates the potential for validating products from satellite missions over more than a year (SPURS-1 2012-2013 experiment). Data collocated during tropical rain events illustrate a short-term response of near-surface salinity and temperature that can be quantified, although we lack precise collocated wind data. It is rather consistent with independently-derived surface salinity response to rain based on SMOS salinity retrievals, and model estimations. An extreme case of close to 10 psu near-surface salinity drop due to rainfall is presented. Recent salinity drifter deployments in the rainy region of the eastern Pacific ITCZ (SPURS-2 2016 experiment) illustrate the small time and space scale variability associated with freshwater lenses in this region. Some data from a new tag (surpact) will be presented with simultaneous estimates of sea state, rain rate, temperature and salinity during rain

  10. Conjunctive Surface Water and Groundwater Management under Climate Change

    OpenAIRE

    Xiaodong eZhang

    2015-01-01

    Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnera...

  11. Conjunctive surface water and groundwater management under climate change

    OpenAIRE

    Zhang, Xiaodong

    2015-01-01

    Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnera...

  12. Improving surface stability of elevated spoil landforms using natural landform analogy and geological information

    Science.gov (United States)

    Emmerton, Bevan; Burgess, Jon; Esterle, Joan; Erskine, Peter; Baumgartl, Thomas

    2017-04-01

    Large-scale open cut mining in the Bowen Basin, Queensland, Australia has undergone an evolutionary process over the period of a few decades, transitioning from shallow mining depths, limited spoil elevation and pasture based rehabilitation to increased mining depths, escalating pre-stripping, elevated mesa-like landforms and native woody species rehabilitation. As a consequence of this development, the stabilisation of recent constructed landforms has to be assured through means other than the establishment of vegetative cover. Recent developments are the specific selection and partitioning of resilient fragmental spoil types for the construction of final landform surface. They can also be used as cladding resources for stabilizing steep erosive batters and this has been identified as a practical methodology that has the potential to significantly improve rehabilitation outcomes. Examples of improvements are an increase of the surface rock cover, roughness and infiltration and reducing inherent erodibility and runoff and velocity of surface flow. However, a thorough understanding of the properties and behavior of individual spoil materials disturbed during mining is required. Relevant information from published literature on the geological origins, lithology and weathering characteristics of individual strata within the Bowen Basin Coal Measures located in Queensland, Australia (and younger overlying weathered strata) has been studied, and related both to natural landforms and to the surface stability of major strata types when disturbed by mining. The resulting spoil classification developed from this study is based primarily on inherent geological characteristics and weathering behaviour of identifiable lithologic components, and as such describes the expected fragmental resilience likely within disturbed materials at Bowen Basin coal mines. The proposed classification system allows the allocation of spoil types to use categories which have application in pre

  13. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  14. Photogrammetric Digital Elevation Model (1979-1989) Associated With Eastern Denali Fault Surface Trace Map, Eastern Alaska and Adjacent Canada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set provides a photogrammetry-based digital elevation model (DEM) that covers ~90% of the surface trace of the Eastern Denali Fault between the...

  15. Faster water dissociation fluctuations on the surface of Cassiterite

    Science.gov (United States)

    Kumar, Nitin; Kent, Paul; Bandura, Andrei; Cole, David; Wesolowski, David; Kubicki, James; Sofo, Jorge

    2010-03-01

    We investigated water dissociation dynamics on rutile (110) surface (titanium dioxide) and cassiterite (110) surface (tin dioxide) using molecular dynamics simulation. We find that dissociation events occur around five times more frequently on cassiterite compared to rutile. The water on cassiterite surface is found to be closer to the surface due to stronger hydrogen bond formation between water and the surface. The increase in the strength of hydrogen bond is confirmed by a red shift of frequency OH vibrations at the surface. We will provide evidence that the origin of the stronger hydrogen bond on the surface of cassiterite resides in higher covalency between water and the bridging oxygen atoms at the surface.

  16. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  17. Elevated CO{sub 2} enhances plant growth in droughted N{sub 2}-fixing alfalfa without improving water status

    Energy Technology Data Exchange (ETDEWEB)

    Luis, I. De; Irigoyen, J.J.; Sanchez-Diaz, M. [Univ. de Navarra, Dept. de Fisiologia Vegetal, Pamplona (Spain)

    1999-07-01

    The long-term interaction between elevated CO{sub 2} and soil water deficit was analysed in N{sub 2}-fixing alfalfa plants in order to assess the possible drought tolerance effect of CO{sub 2}. Elevated CO{sub 2} could delay the onset of drought stress by decreasing transpiration rates, but this effect was avoided by subjecting plants to the same soil water content. Nodulated alfalfa plants subjected to ambient (400 {mu}mol mol{sup -1}) or elevated (700 {mu}mol mol{sup -1}) CO{sub 2} were either well watered or partially watered by restricting water to obtain 30% of the water content at field capacity (approximately 0.55 g water cm{sup -3}). The negative effects of soil water deficit on plant growth were counterbalanced by elevated CO{sub 2}. In droughted plants, elevated CO{sub 2} stimulated carbon fixation and, as a result, biomass production was even greater than in well-watered plants grown in ambient CO{sub 2}. Below-ground production was preferentially stimulated by elevated CO{sub 2} in droughted plants, increasing nodule biomass production and the availability of photosynthates to the nodules. As a result, total nitrogen content in droughted plants was higher than in well-watered plants grown in ambient CO{sub 2}. The beneficial effect of elevated CO{sub 2} was not correlated with a better plant water status. It is concluded that elevated CO{sub 2} enhances growth of droughted plants by stimulating carbon fixation, preferentially increasing the availability of photosynthates to below-ground production (roots and nodules) without improving water status. This means that elevated CO{sub 2} enhances the ability to produce more biomass in N{sub 2}-fixing alfalfa under given soil water stress, improving drought tolerance. (au)

  18. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Fair'. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in ...

  19. Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models

    Directory of Open Access Journals (Sweden)

    José María Bodoque

    2016-07-01

    Full Text Available The use of high resolution ground-based light detection and ranging (LiDAR datasets provides spatial density and vertical precision for obtaining highly accurate Digital Surface Models (DSMs. As a result, the reliability of flood damage analysis has improved significantly, owing to the increased accuracy of hydrodynamic models. In addition, considerable error reduction has been achieved in the estimation of first floor elevation, which is a critical parameter for determining structural and content damages in buildings. However, as with any discrete measurement technique, LiDAR data contain object space ambiguities, especially in urban areas where the presence of buildings and the floodplain gives rise to a highly complex landscape that is largely corrected by using ancillary information based on the addition of breaklines to a triangulated irregular network (TIN. The present study provides a methodological approach for assessing uncertainty regarding first floor elevation. This is based on: (i generation an urban TIN from LiDAR data with a density of 0.5 points·m−2, complemented with the river bathymetry obtained from a field survey with a density of 0.3 points·m−2. The TIN was subsequently improved by adding breaklines and was finally transformed to a raster with a spatial resolution of 2 m; (ii implementation of a two-dimensional (2D hydrodynamic model based on the 500-year flood return period. The high resolution DSM obtained in the previous step, facilitated addressing the modelling, since it represented suitable urban features influencing hydraulics (e.g., streets and buildings; and (iii determination of first floor elevation uncertainty within the 500-year flood zone by performing Monte Carlo simulations based on geostatistics and 1997 control elevation points in order to assess error. Deviations in first floor elevation (average: 0.56 m and standard deviation: 0.33 m show that this parameter has to be neatly characterized in order

  20. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  1. An assessment of The Effects of Elevation and Aspect on Deposition of Airborne Pollution and Water Quality in an Alpine Critical Zone: San Juan Mountains, Colorado, USA

    Science.gov (United States)

    Price, A.; Giardino, J. R.; Marcantonio, F.

    2015-12-01

    The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric

  2. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  3. Nitrate retention in riparian ground water at natural and elevated nitrate levels in north central Minnesota.

    Science.gov (United States)

    Duff, John H; Jackman, Alan P; Triska, Frank J; Sheibley, Richard W; Avanzino, Ronald J

    2007-01-01

    The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.

  4. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  5. Chapter 5: Surface water quality sampling in streams and canals

    Science.gov (United States)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  6. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  7. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  8. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ].

    Science.gov (United States)

    Collins, L; Bradstock, R A; Resco de Dios, V; Duursma, R A; Velasco, S; Boer, M M

    2018-01-07

    Rising atmospheric [CO2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, though rising [CO2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO2 ] (eCO2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August - March), with low VWC (changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. VT USGS Digital Line Graph Surface Waters - area polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The WaterHydro_DLGSW layer represents surface waters (hydrography) at a scale of RF 100000. WaterHydro_DLGSW was derived from RF100000 USGS...

  10. Treatability of South African surface waters by activated carbon

    African Journals Online (AJOL)

    The surface waters were also chosen to account for the main surface water types of South Africa (Oberholster, 2010). The different categories of waters are summarised in Table 1. The raw waters were collected at 5 different times to capture the seasonal variations in NOM composition (Sharp et al., 2006; Uyak et al.,. 2008).

  11. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  12. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  13. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser......In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...... and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed....

  14. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  15. Serological responses to Cryptosporidium antigens in inhabitants of Hungary using conventionally filtered surface water and riverbank filtered drinking water.

    Science.gov (United States)

    Farkas, K; Plutzer, J; Moltchanova, E; Török, A; Varró, M J; Domokos, K; Frost, F; Hunter, P R

    2015-10-01

    In this study the putative protective seroprevalence (PPS) of IgG antibodies to the 27-kDa and 15/17-kDa Cryptosporidium antigens in sera of healthy participants who were and were not exposed to Cryptosporidium oocysts via surface water-derived drinking water was compared. The participants completed a questionnaire regarding risk factors that have been shown to be associated with infection. The PPS was significantly greater (49-61%) in settlements where the drinking water originated from surface water, than in the control city where riverbank filtration was used (21% and 23%). Logistic regression analysis on the risk factors showed an association between bathing/swimming in outdoor pools and antibody responses to the 15/17-kDa antigen complex. Hence the elevated responses were most likely due to the use of contaminated water. Results indicate that waterborne Cryptosporidium infections occur more frequently than reported but may derive from multiple sources.

  16. Bubble bouncing at a clean water surface.

    Science.gov (United States)

    Zawala, Jan; Dorbolo, Stéphane; Vandewalle, Nicolas; Malysa, Kazimierz

    2013-10-28

    Experiments on the coalescence time of submillimeter bubbles colliding with a distilled water/air interface either being at rest (undisturbed) or vibrating vertically (with controlled amplitude and frequency) were carried out. It was found that the outcome of the bubble collision (coalescence or bounce) depends on impact velocity and size of the bubble, i.e. the parameters determining the bubble deformation degree. With the surface at rest, when the deformation of the bubble was sufficiently high, bubble bouncing was observed. It was caused by the fact that the radius of the intervening liquid film formed between the colliding bubble and water/air interface was large enough to prevent the liquid layer from reaching its thickness of rupture within the time of bubble-interface contact. Coalescence occurred in a consecutive collision if the bubble deformation was below a threshold value, as a result of dissipation of the kinetic energy associated with the bubble motion. The hypothesis about the crucial role of the bubble deformation and size of the liquid film formed in the bouncing mechanism was confirmed in a series of experiments where the bubble collided with a vibrating water/air interface. It was shown that when the kinetic energy was properly re-supplied from an external source (interface vibrations), the spectacular phenomenon of "immortal" bubbles, dancing indefinitely at the water/air interface, was achieved. It was shown that "immortal" bubble formation is a consequence of a similarly high degree of the bubble shape deformation and consequently a large enough radius of the liquid film formed.

  17. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pturbulence may have elevated the production of autochthonous CDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pturbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  19. New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    Proton exchange membrane (PEM) water electrolysis presents an attractive technology allowing to produce hydrogen for further use as a renewable energy source in the "Hydrogen cycle". Electrolysis of water steam at elevated temperatures has several advantages over the low temperature process....... However, at the same time it involves increased demands to dimensional and chemical stability of components against corrosion environment. Therefore, materials utilized in low temperature PEM electrolyzers cannot be used in systems operating above 100 °C and new candidates should be tested. The materials...... gives an introduction into the subject and Chapter 2 subsequently presents the theoretical background of the topic and describes techniques used to characterize catalysts and construction materials. Chapter 3 presents general principles and overview of materials used for PEM water electrolysis. Chapter...

  20. Elevated manganese concentrations in drinking water may be beneficial for fetal survival.

    Directory of Open Access Journals (Sweden)

    Syed Moshfiqur Rahman

    Full Text Available BACKGROUND: Elevated exposure to the essential element manganese (Mn can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. METHODS: In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women's drinking water. RESULTS: A total of 1,875 women were included in the analysis of spontaneous abortions (n=158 and 1,887 women in the perinatal mortality analysis (n=70. Water Mn ranged from 3.0-6,550 µg/L (median=217 µg/L. The adjusted odds ratio (OR for spontaneous abortion was 0.65 (95% CI 0.43-0.99 in the highest water Mn tertile (median=1,292 µg/L as compared to the lowest tertile (median=56 µg/L. The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28-1.71, which increased to 0.78 (95% CI 0.29-2.08 after adjustment for BMI and place of delivery (home/health facility; n=1,648. CONCLUSIONS: Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element's role in antioxidant defense.

  1. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  2. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker.

    Science.gov (United States)

    Oliveira, V F; Silva, E A; Zaidan, L B P; Carvalho, M A M

    2013-05-01

    Elevated [CO2 ] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2 ] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open-top chambers (OTC) under ambient (∼380 ppm), and high (∼760 ppm) [CO2 ]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re-watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2 ] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1-SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2 ] treatments, 1-FFT and 1-FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1-kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2 ] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River

    Science.gov (United States)

    Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, Jean-Damien; Boy, F.; Sottolichio, A.; Valle-Levinson, A.

    2017-01-01

    For at least 20 years, nadir altimetry satellite missions have been successfully used to first monitor the surface elevation of oceans and, shortly after, of large rivers and lakes. For the last 5-10 years, few studies have demonstrated the possibility to also observe smaller water bodies than previously thought feasible (river smaller than 500 m wide and lake below 10 km2). The present study aims at quantifying the nadir altimetry performance over a medium river (200 m or lower wide) with a pluvio-nival regime in a temperate climate (the Garonne River, France). Three altimetry missions have been considered: ENVISAT (from 2002 to 2010), Jason-2 (from 2008 to 2014) and SARAL (from 2013 to 2014). Compared to nearby in situ gages, ENVISAT and Jason-2 observations over the lower Garonne River mainstream (110 km upstream of the estuary) have the smallest errors, with water elevation anomalies root mean square errors (RMSE) around 50 cm and 20 cm, respectively. The few ENVISAT upstream measurements have RMSE ranging from 80 cm to 160 cm. Over the estuary, ENVISAT and SARAL water elevation anomalies RMSE are around 30 cm and 10 cm, respectively. The most recent altimetry mission, SARAL, does not provide river elevation measurements for most satellite overflights of the river mainstream. The altimeter remains "locked" on the top of surrounding hilly areas and does not observe the steep-sided river valley, which could be 50-100 m lower. This phenomenon is also observed, for fewer dates, on Jason-2 and ENVISAT measurements. In these cases, the measurement is not "erroneous", it just does not correspond to water elevation of the river that is covered by the satellite. ENVISAT is less prone to get 'locked' on the top of the topography due to some differences in the instrument measurement parameters, trading lower accuracy for more useful measurements. Such problems are specific to continental surfaces (or near the coasts), but are not observed over the open oceans, which are

  4. Industrialized watersheds have elevated risk and limited opportunities to mitigate risk through water trading

    Directory of Open Access Journals (Sweden)

    Sheila M.W. Reddy

    2015-09-01

    Full Text Available Businesses are increasingly concerned about water scarcity and its financial impacts, as well as competing needs of other stakeholders and ecosystems. Industrialized watersheds may be at more serious risk from water scarcity than previously understood because industrial and municipal users have inelastic demand and a high value for water. Previous water risk assessments have failed to sufficiently capture these economic aspects of water risk. We illustrate how hydro-economic modeling can be used to improve water risk assessments at a basin scale and we apply the methodology to the industrialized Brazos River Basin (85% municipal and industrial withdrawals and consider implications for The Dow Chemical Company׳s Freeport Operations in Texas, US. Brazos water right holders pay only operating and maintenance costs for water during normal periods; however, when shortages occur, leasing stored water or reducing production may be the only mitigation option in the short-run. Modeling of water shortages and the theoretical cost of leasing water under nine combined scenarios of demand growth and climate change suggests that water lease prices to industry could increase by 9–13X. At best, a more developed water rights and storage lease market could result in lower lease prices (2–3X; however, given that transactions would be limited it is more likely that prices would still increase by 4–13X. These results suggest that markets are unlikely to be a robust solution for the Brazos because, in contrast to other watersheds in the Western US, there is little reliable water to trade from low value users (agricultural to high value users (industry and municipalities. Looking at demand trends across the contiguous US as an indicator of water risk, 2% of watersheds have municipal and industrial demands that outstrip total surface and ground water supplies and in these watersheds industry has historically paid higher lease prices for water. This study

  5. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  6. Stohastic Model for Loads on Offshore Structures from Wave, Wind, Current and Water Elevation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M.J.

    2002-01-01

    For code-based LRFD and for reliability-based assessment of offshore structures such as steel platforms it is essential that consistent stochastic models for the main metocean parameters are available. The most important metocean parameters are the significant wave height, maximum individual wave...... height, maximum crest height, wind speed, current speed and water elevation. In this paper a consistent stochastic model for these parameters is formulated, where the relevant directional dependence is included. For code-based LRFD assessment it is shown how the stochastic models can be used to determine...... characteristic values, partial safety factors, directional factors and load combination factors relevant for Central North Sea conditions....

  7. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Science.gov (United States)

    2010-04-01

    ... receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive irrigation water? (a) We will not change our service ditch...

  8. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  9. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  10. Physico-chemical parameters of surface water and sediment of ...

    African Journals Online (AJOL)

    Principal Component Analysis of surface water and sediment characteristics indicated some stations as distinct on their own from other stations. Key Words: Water quality parameters, heavy metals, abattoir wastes, pollution, PCA analysis, Azuabie creek. Physico-chemical parameters of surface water and sediment of ...

  11. Hydrochemistry of surface water and groundwater from a fractured ...

    Indian Academy of Sciences (India)

    The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of ...

  12. assessment of heavy metals concentrations in the surface water of ...

    African Journals Online (AJOL)

    User

    This work aimed at assessing the concentrations of heavy metals in the surface water of Bompai-. Jakara drainage basin. The points of ... Keywords: Heavy metals, surface water, drainage basin, standard limit. INTRODUCTION. Water pollution in .... discrepancies in values obtained. Pb concentrations recorded in this study ...

  13. Effects of elevated atmospheric CO2on dissolution of geological fluorapatite in water and soil.

    Science.gov (United States)

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  14. Elevated bladder cancer in northern New England: The role of drinking water and arsenic

    Science.gov (United States)

    Baris, Dalsu; Wadell, Richard; Freeman, Laura; Schwenn, Molly; Colt, Joanne; Ayotte, Joseph; Ward, Mary; Nuckols, John; Schned, Alan; Jackson, Brian; Clerkin, Castine; Rothman, Nathanial; Moore, Lee; Taylor, Anne; Robinson, Gilpin; Hosain, Monawar G.; Armenti, Carla; McCoy, Richard; Samanic, Claudine; Hoover, Robert; Fraumeni, Joseph; Johnson, Alison; Karagas, Margaret; Silverman, Debra

    2016-01-01

    Background: Bladder cancer mortality rates have been elevated in northern New England for at least five decades. Incidence rates in Maine, New Hampshire, and Vermont are about 20% higher than the United States overall. We explored reasons for this excess, focusing on arsenic in drinking water from private wells, which are particularly prevalent in the region.Methods: In a population-based case-control study in these three states, 1213 bladder cancer case patients and 1418 control subjects provided information on suspected risk factors. Log transformed arsenic concentrations were estimated by linear regression based on measurements in water samples from current and past homes. All statistical tests were two-sided.Results: Bladder cancer risk increased with increasing water intake ( Ptrend = .003). This trend was statistically significant among participants with a history of private well use ( Ptrend = .01). Among private well users, this trend was apparent if well water was derived exclusively from shallow dug wells (which are vulnerable to contamination from manmade sources, Ptrend = .002) but not if well water was supplied only by deeper drilled wells ( Ptrend = .48). If dug wells were used pre-1960, when arsenical pesticides were widely used in the region, heavier water consumers (>2.2 L/day) had double the risk of light users (percentile), risk was twice that of the lowest-exposure quartile (odds ratio = 2.24, 95% confidence interval = 1.29 to 3.89).Conclusions: Our findings support an association between low-to-moderate levels of arsenic in drinking water and bladder cancer risk in New England. In addition, historical consumption of water from private wells, particularly dug wells in an era when arsenical pesticides were widely used, was associated with increased bladder cancer risk and may have contributed to the New England excess.

  15. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  16. Physicochemical properties of concentrated Martian surface waters

    Science.gov (United States)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  17. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  18. Memory-Enhancing Activity of Palmatine in Mice Using Elevated Plus Maze and Morris Water Maze

    Directory of Open Access Journals (Sweden)

    Dinesh Dhingra

    2012-01-01

    Full Text Available The present study was designed to evaluate the effect of palmatine on memory of Swiss young male albino mice. Palmatine (0.1, 0.5, 1 mg/kg, i.p. and physostigmine (0.1 mg/kg, i.p. per se were administered for 10 successive days to separate groups of mice. Effect of drugs on learning and memory of mice was evaluated using elevated plus maze and Morris water maze. Brain acetylcholinesterase activity was also estimated. Effect of palmatine on scopolamine- and diazepam-induced amnesia was also investigated. Palmatine (0.5 and 1 mg/kg and physostigmine significantly improved learning and memory of mice, as indicated by decrease in transfer latency using elevated plus maze, and decrease in escape latency during training and increase in time spent in target quadrant during retrieval using Morris water maze. The drugs did not show any significant effect on locomotor activity of the mice. Memory-enhancing activity of palmatine (1 mg/kg was comparable to physostigmine. Palmatine (1 mg/kg significantly reversed scopolamine- and diazepam-induced amnesia in mice. Palmatine and physostigmine also significantly reduced brain acetylcholinesterase activity of mice. Thus, palmatine showed memory-enhancing activity in mice probably by inhibiting brain acetylcholinesterase activity, through involvement of GABA-benzodiazepine pathway, and due to its antioxidant activity.

  19. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  20. The origin of elevated water levels in emplacement boreholes, Pahute Mesa, Nevada Test Site: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.G.; Brikowski, T.H.

    1993-12-01

    The origin of elevated water levels in emplacement boreholes at Pahute Mesa, Nevada Test Site, is uncertain. If the water is from naturally perched aquifers, then presumed ``above water table`` weapons tests may directly impact the groundwater quality. The purpose of this study is to determine the probable source of the elevated water in boreholes by comparing modeled seepage of infiltrated drilling fluids, and the seepage from a simulated naturally perched aquifer with the observed water level history. In the model, large volumes of water are infiltrated, yet return flow of fluids back into the hole stops within three days after the end of drilling and is insufficient to produce observed standing water. Return flow is limited for two reasons: (1) the volume of the saturated rock next to the borehole is small; (2) pressure head gradient direct unsaturated flow away from the borehole. Simulation of seepage from a naturally perched aquifer readily reproduces the observed water levels.

  1. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    Science.gov (United States)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  2. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  3. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  4. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  5. Sustainable agricultural use of natural water sources containing elevated radium activity.

    Science.gov (United States)

    Tripler, Effi; Haquin, Gustavo; Koch, Jean; Yehuda, Zehava; Shani, Uri

    2014-06-01

    Relatively elevated concentrations of naturally occurring radium isotopes ((226)Ra, (228)Ra and (224)Ra) are found in two main aquifers in the arid southern part of Israel, in activity concentrations frequently exceeding the limits set in the drinking water quality regulations. We aimed to explore the environmental implications of using water containing Ra for irrigation. Several crops (cucumbers, melons, radish, lettuce, alfalfa and wheat), grown in weighing lysimeters were irrigated at 3 levels of (226)Ra activity concentration: Low Radium Water (LRW)<0.04 Bq L(-1); High Radium Water (HRW) at 1.8 Bq L(-1) and (3) Radium Enriched Water (REW) at 50 times the concentration in HRW. The HYDRUS 1-D software package was used to simulate the long-term (226)Ra distribution in a soil irrigated with HRW for 15 years. Radium uptake by plants was found to be controlled by its activity in the irrigation water and in the soil solution, the physical properties of the soil and the potential evapotranspiration. The (226)Ra apeared to accumulate mainly in the leaves of crops following the evapotranspiration current, while its accumulation in the edible parts (fruits and roots) was minimal. The simulation of 15 years of crop irrigation by HYDERUS 1-D, showed a low Ra activity concentration in the soil solution of the root zone and a limited downward mobility. It was therefore concluded that the crops investigated in this study can be irrigated with the natural occurring activity concentration of (226)Ra of 0.6-1.6 Bq L(-1). This should be accompanied by a continuous monitoring of radium in the edible parts of the crops. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Preliminary results of the ice_sheet_CCI round robin activity on the estimation of surface elevation changes

    DEFF Research Database (Denmark)

    Ticconi, F.; Fredenslund Levinsen, Joanna; Khvorostovsky, K.

    2013-01-01

    This work presents the first results of a research activity aiming to compare estimates of Surface Elevation Changes (SEC) over the Jakobshavn Isbræ basin (Greenland) using different repeat altimetry techniques and different sensors (laser vs. radar altimetry). The goal of this comparison...

  7. Fluctuations of water near extended hydrophobic and hydrophilic surfaces.

    Science.gov (United States)

    Patel, Amish J; Varilly, Patrick; Chandler, David

    2010-02-04

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. Our results are obtained with a biased sampling of coarse-grained densities that is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in the bulk, and this enhanced probability is responsible for hydrophobic forces of assembly. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk.

  8. Modeling surface water storage from space altimetry, remote sensing and gravity

    Science.gov (United States)

    Boy, Jean-Paul; Loomis, Bryant; Luthcke, Scott

    2017-04-01

    Since its launch in 2002, the GRACE (Gravity Recovery And Climate Experiment) is recording Earth gravity field variations with unprecedented temporal and spatial resolutions, mainly due to global circulation of surface geophysical fluids. Continental water storage variations estimated with GRACE are classically compared to global hydrology models such as GLDAS (Global Land Data Assimilation System) or MERRA (Modern Era-Retrospective Analysis) hydrology models. However most of these models do not take into account both the groundwater and the surface water (lakes and rivers) components of the hydrological cycle. We derive surface water storage in several large river basins, characterized by various climates, using a simple routing scheme, forced by runoff outputs of GLDAS and MERRA-land hydrology models. We adjust the flow velocity, i.e. the only free parameter in our modeling by fitting the modeled equivalent water height to the observed water elevation from radar altimetry measurements. The conversion of the observed geometric heights into the modeled equivalent water heights requires the knowledge of the variations of the river widths, which can be derived from MODIS observations. We validate river models by comparing the estimated discharge to independent in-situ measurements. We finally add to the soil-moisture and snow components of the GLDAS and MERRA-land models our estimates of surface water variations and show that they are in better agreement with GRACE. We also compare these estimates to WGHM, which includes both groundwater and surface components.

  9. Surface Tension: The Ways of Water.

    Science.gov (United States)

    Donalson-Sams, Marilyn

    1988-01-01

    Describes activities which help students understand several basic scientific concepts regarding water. Outlines objectives, materials needed, procedures, and questions to ask about student observations. Investigations include working with the self-sealing property of water, talcum powder, paper clips, and making water wetter. (RT)

  10. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  11. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  12. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016

    Science.gov (United States)

    Kehrl, L. M.; Joughin, I.; Shean, D. E.; Floricioiu, D.; Krieger, L.

    2017-09-01

    The dynamic response of Greenland tidewater glaciers to oceanic and atmospheric change has varied both spatially and temporally. While some of this variability is likely related to regional climate signals, glacier geometry also appears to be important. In this study, we investigated the environmental and geometric controls on the seasonal and interannual evolution of Helheim and Kangerlussuaq Glaciers, Southeast Greenland, from 2008 to 2016, by combining year-round, satellite measurements of terminus position, glacier velocity, and surface elevation. While Helheim remained relatively stable with a lightly grounded terminus over this time period, Kangerlussuaq continued to lose mass as its grounding line retreated into deeper water. By summer 2011, Kangerlussuaq's grounding line had retreated into shallower water, and the glacier had an 5 km long floating ice tongue. We also observed seasonal variations in surface velocity and elevation at both glaciers. At Helheim, seasonal speedups and dynamic thinning occurred in the late summer when the terminus was most retreated. At Kangerlussuaq, we observed summer speedups due to surface-melt-induced basal lubrication and winter speedups due to ice-shelf retreat. We suggest that Helheim and Kangerlussuaq behaved differently on a seasonal timescale due to differences in the spatial extent of floating ice near their termini, which affected iceberg-calving behavior. Given that seasonal speedups and dynamic thinning can alter this spatial extent, these variations may be important for understanding the long-term evolution of these and other Greenland tidewater glaciers.

  13. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation

    Directory of Open Access Journals (Sweden)

    Nico Mölg

    2017-10-01

    Full Text Available The application of structure-from-motion (SfM to generate digital terrain models (DTMs derived from different image sources has strongly increased, the major reason for this being that processing is substantially easier with SfM than with conventional photogrammetry. To test the functionality in a demanding environment, we applied SfM and conventional photogrammetry to archival aerial images from Zmuttgletscher, a mountain glacier in Switzerland, for nine dates between 1946 and 2005 using the most popular software packages, and compared the results regarding bundle adjustment and final DTM quality. The results suggest that by using SfM it is possible to produce DTMs of similar quality as with conventional photogrammetry. Higher point cloud density and less noise allow a higher ground resolution of the final DTM, and the time effort from the user is 3–6 times smaller, while the controls of the commercial software packages Agisoft PhotoScan (Version 1.2; Agisoft, St. Petersburg, Russia and Pix4Dmapper (Version 3.0; Pix4D, Lausanne, Switzerland are limited in comparison to ERDAS photogrammetry. SfM performs less reliably when few images with little overlap are processed. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available. The resulting DTM time series revealed an average change in surface elevation at the glacier tongue of −67.0 ± 5.3 m. The spatial pattern of changes over time reflects the influence of flow dynamics and the melt of clean ice and that under debris cover. With continued technological advances, we expect to see an increasing use of SfM in glaciology for a variety of purposes, also in processing archival aerial imagery.

  14. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  15. Does elevated CO2 protect photosynthesis from damage by high temperature via modifying leaf water status in maize seedlings?

    Science.gov (United States)

    Because high temperatures under field conditions are associated with high water vapor pressure deficits, often causing leaf desiccation, we hypothesized that decreased stomatal conductance at elevated carbon dioxide may increase leaf water potential and protect photosynthesis in C4 species from dama...

  16. Effect of water vapour on the molecular structures of supported vanadium oxide catalysts at elevated temperatures

    NARCIS (Netherlands)

    Jehng, Jih-Mirn; Deo, G.; Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The effect of water vapor on the molecular structures of V2O3-supported catalysts (SiO2, Al2o3, TiO2, and CeO2) was investigated by in situ Raman spectroscopy as a function of temperature (from 500°C to 120°C). Under dry conditions only isolated surface VO4 species are present on the dehydrated SiO2

  17. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    Science.gov (United States)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  18. The elevation effect on water-soluble polysaccharides and DPPH free radical scavenging activity of Ganoderma lucidum K

    Science.gov (United States)

    Darsih, C.; Apriyana, W.; Nur Hayati, S.; Taufika Rosyida, V.; Hernawan; Dewi Poeloengasih, C.

    2017-02-01

    Water soluble polysaccharide is one of the important phytochemical in Ganoderma lucidum K. Phytochemicals in the plants, microorganisms, and plants were affected by internal and external factors. The objective of the research was to evaluate the effect of elevation on the water-soluble polysaccharides and its DPPH radical scavenging activity. We found that the water-polysaccharides in mushroom from Godean (elevation Ganoderma lucidum K from Godean (IC50 11.5 ± 0.29 mg/mL) higher than Kaliurang (IC50 14.4 ± 0.27%).

  19. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  20. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  1. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27 Section 258.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF units shall not: (a) Cause a discharge of...

  2. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  3. Evaluation of Surface Ducts in Shallow Water.

    Science.gov (United States)

    1982-03-29

    to determine optimum freouency domains for sound propagation at those sites. 1.2 Background Ten shallow water stations were occupied during the FASOR ...selected two of the FASOR shallow water stations for an optimum frequency study. Results for a downward refraction profile were compared to optimum...and Reverberation from the Shallow-Water FASOR Areas with Comparisons to Propagation Loss Models, J. A. Whitney, Naval Ocean Systems Center TR 400

  4. Biogeochemistry of DMS in Surface Waters

    Science.gov (United States)

    Dacey, J. W. H.

    1997-01-01

    Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further

  5. Observations of the properties of the water surface roughness structure under the action of wind and waves

    Science.gov (United States)

    Long, Steven R.; Huang, Norden E.

    1988-01-01

    The statistical properties of a water surface roughness structure subjected to wind and waves are analyzed in a laboratory wind wave channel. The surface slope is derived using elevation measurements and the pitot tube is employed to measure wind speed. The transient responses of the surface slope to a calm condition and low, medium, and high wind conditions are studied. Two methods for determining a critical wind speed range are described.

  6. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-06

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  7. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  8. Anomalous reflection of water surface during laser ablation

    Science.gov (United States)

    Nikiforov, S. M.; Alimpiev, S. S.; George, M. W.; Sartakov, B. G.; Simanovsky, Y. O.

    2000-08-01

    The temporal behaviour of KrF laser pulses reflected from a water surface was analysed over a broad range of laser fluences and absorption coefficients. We observed that the surface reflectivity strongly changes when the volume energy density exceeds a value of 1000 J/cm 3. The change in surface reflectivity, with increasing volume energy, depends on whether we have an air/water interface, where the reflectivity is increased, or a glass/water interface, where the reflectivity is decreased. We estimate the refraction index of water, which decreases from n=1.38 to ca. 1.1 for open water surface with the increase in volume energy. The mechanism of anomalous reflectivity is discussed and we suggest that this is due to heating of the absorbing solution above the water critical point, which is followed by a process of thermal expansion of the superheated layer.

  9. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Liu; Jiang, Qigang; Zhang, Xuesong; Zhao, Kaiguang

    2017-08-29

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidar to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely to

  10. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  11. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  12. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  13. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    Science.gov (United States)

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.

  14. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  15. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  16. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    The effect of the municipal solid waste landfill a Ring Road Ibadan on the quality of the underground water in the surrounding area and adjacent surface water was investigated. Samples of water from these sources were analyzed for the following physico-chemical parameters: Ph , conductivity, total solid, dissolved solid, ...

  17. Surface water quality assessment using factor analysis | Boyacioglu ...

    African Journals Online (AJOL)

    In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow conditions, water ...

  18. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    This study was conducted on the hydrochemistry of shallow groundwater and surface water in the Ndop plain, North West Cameroon. The objectives were to determine the physico-chemical characteristics of water, controls on water chemistry and suitability for drinking and irrigation. Forty-six shallow groundwater and 26 ...

  19. Indices of quality surface water bodies in the planning of water resources

    OpenAIRE

    Rodríguez-Miranda, Juan Pablo; Serna Mosquera, Jorge Antonio; Sánchez Céspedes, Juan Manuel

    2016-01-01

    This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was...

  20. Interaction of surface and subsurface waters in the system

    Science.gov (United States)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Bychinski, Valerii; Sandimirov, Sergey

    2010-05-01

    Purpose of the study - to assess the influence of the Khibiny massif on the formation of the chemical composition of surface and subsurface waters, generated within its boundaries using physical-chemical modeling ("Selector" software package). Objects of monitoring - rivers with sources in the upper reaches of the Khibiny massif (surface waters), and boreholes, located in these rivers' valleys (subsurface waters) have been chosen as objects of monitoring. Processes of formation of surface and subsurface waters, generated within the boundaries of the Khibiny massif, have been considered within the framework of a unified system "water-rock-atmosphere-carbon". The initial data of the model: chemical compositions of the Khibiny massif rocks and chemical analyses of atmospheric and surface waters. Besides, there have been considered Clarke concentrations S, Cl, F, C, their influence on the formation of chemical composition of water solutions; geochemical mobility of chemical elements. The previously developed model has been improved with the purpose of assessment of the influence of organic substance, either liquid or solid, on the formation of the chemical composition of water. The record of the base model of the multisystem includes 24 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e), 872 dependent components, including, in a water solution - 295, in a gas phase - 76, liquid hydrocarbons - 111, solid phases, organic and mineral substances - 390. The record of solid phases of multisystem is made with consideration of the mineral composition of the Khibiny massif. Using the created model, the physical-chemical modeling of surface and subsurface water generation has been carried out: 1. The system "water-rock-atmosphere" has been studied, depending on the interaction degree (ksi) of rock with water. A model like this allowed investigating the interactions of surface waters (rivers and lakes) with rocks that form the Khibiny massif. 2

  1. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    Science.gov (United States)

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  2. Observations of elevated Atlantic water heat fluxes at the boundary of the Arctic Basin.

    Science.gov (United States)

    Lincoln, Benjamin; Rippeth, Tom; Lenn, Yueng; Bacon, Sheldon

    2014-05-01

    The well documented decline in Arctic Sea Ice cover over the past 30 years has outpaced global models as warming in Polar Regions occurs faster than the global mean. The thermohaline circulation brings warm water from the Atlantic Ocean into the Arctic basin. This Atlantic water circulates at depth and contains sufficient heat to melt the sea ice cover several times over. Recent studies have shown that this Atlantic water has warmed and shoaled over recent decades (Polyakov et al, 2010). The stability of the upper Arctic Ocean has also changed, with stratification reduced in the Eurasian basin but increased in the Canada basin. Along with an increased availability of heat the reduction in sea ice cover allows greater potential for wind to input energy to the ocean to vertically mix heat to the surface and further melt sea ice. Direct measurements of vertical mixing rates across the Arctic are essential to understanding the changes in this supply of heat from below, but are scarce due to the challenges of making such measurements in the harsh Arctic environment. We present measurements of turbulent kinetic energy dissipation (ɛ) within the top 500 m of the water column using microstructure measurements made both in open water and under ice during 4 different years. Mean rates of dissipation in the Atlantic water thermocline are calculated and compared for data collected in the European, Siberian and Canadian Arctic, including measurements from 2007 and 2012 when record minimum sea ice extents were recorded. Diapycnal heat fluxes from the mean Atlantic water dissipation rates were calculated from these mean dissipation rates and show significant variation across the Arctic Basin. Profiles in the deep basin generally revealed very low rates of dissipation were low ɛJournal of Physical Oceanography (2010)

  3. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst ...

  4. Water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    conductivity, total hardness and all the species of nitrogen (nitrite, nitrate and ammonium) were higher in the inner city than the remaining water habitats except the outer ground water stations. Conductivity decreased along the presumptive pollution categories significantly, i.e. inner > middle > out skirt (P< 0.05) and showed ...

  5. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    Science.gov (United States)

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  6. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  7. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  8. Exploring the Elevated Water Vapor Signal Associated with Biomass Burning Aerosol over the Southeast Atlantic Ocean

    Science.gov (United States)

    Pistone, Kristina; Redemann, Jens; Wood, Rob; Zuidema, Paquita; Flynn, Connor; LeBlanc, Samuel; Noone, David; Podolske, James; Segal Rozenhaimer, Michal; Shinozuka, Yohei; hide

    2017-01-01

    The quantification of radiative forcing due to the cumulative effects of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. How the magnitude of these effects may be modified by meteorological conditions is an important aspect of this question. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning (BB) smoke plumes overlying a persistent stratocumulus cloud deck, offers a perfect natural observatory in which to study the complexities of aerosol-cloud interactions. The NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first ORACLES field deployment, which took place in September 2016 out of Walvis Bay, Namibia. Two NASA aircraft were flown with a suite of aerosol, cloud, radiation, and meteorological instruments for remote-sensing and in-situ observations. A strong correlation was observed between the aircraft-measured pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, at all altitudes. Atmospheric reanalysis indicates that convective dynamics over the continent, near likely contribute to this elevated signal. Understanding the mechanisms by which water vapor covaries with plume strength is important to quantifying the magnitude of the aerosol direct and semi-direct effects in the region.

  9. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public... requirement in the Long Term 2 Enhanced Surface Water Treatment Rule (LT2 rule). At this meeting, EPA will...

  10. Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada

    Science.gov (United States)

    Rice, Robert; Bales, Roger C.; Painter, Thomas H.; Dozier, Jeff

    2011-08-01

    We used daily remotely sensed fractional snow-covered area (SCA) at 500 m resolution to estimate snow water equivalent (SWE) across the Upper Merced and Tuolumne River basins of the Sierra Nevada of California for 2004 (dry and warm) and 2005 (wet and cool). From 1800 to 3900 m, each successively higher 300 m elevation band consistently melts out 2-3 weeks later than the one below it. We compared two methods of estimating SWE from SCA: (1) blending the fractional SCA with SWE interpolated from snow-pillow measurements; and (2) retrospectively estimating cumulative snowmelt based on a degree-day calculation after the snow disappeared. The interpolation approach estimates a lower snowmelt volume above 3000 m and a higher snowmelt contribution at elevations between 1500 and 2100 m. Snowmelt timing from the depletion approach matches observed streamflow timing much better than snowmelt estimated by the interpolation method. The snow-pillow sites used in the interpolation method do not cover the highest elevations and melted out several weeks before the basin itself was free of snow. Middle elevations (2100-3000 m) contributed 40%-60% of the annual snowmelt in both basins, the lower elevations (1500-2100 m) 10%-15%, and elevations above 3000 m the remaining 30%-40%. The presence of snow in the highest elevations highlights their critical buffering effect in accumulating snow every year. Variability in lower-elevation snow illustrates its susceptibility to climate variability and change.

  11. Elevated soil nitrogen pools after conversion of turfgrass to water-efficient residential landscapes

    Science.gov (United States)

    Heavenrich, Hannah; Hall, Sharon J.

    2016-08-01

    As a result of uncertain resource availability and growing populations, city managers are implementing conservation plans that aim to provide services for people while reducing household resource use. For example, in the US, municipalities are incentivizing homeowners to replace their water-intensive turfgrass lawns with water-efficient landscapes consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). While these strategies are likely to reduce water demand, the consequences for other ecosystem services are unclear. Previous studies in controlled, experimental landscapes have shown that conversion from turfgrass to shrubs may lead to high rates of nutrient leaching from soils. However, little is known about the long-term biogeochemical consequences of this increasingly common land cover change across diverse homeowner management practices. We explored the fate of soil nitrogen (N) across a chronosequence of land cover change from turfgrass to water-efficient landscapes in privately owned yards in metropolitan Phoenix, Arizona, in the arid US Southwest. Soil nitrate ({{{{NO}}}3}--N) pools were four times larger in water-efficient landscapes (25 ± 4 kg {{{{NO}}}3}--N/ha 0-45 cm depth) compared to turfgrass lawns (6 ± 7 kg {{{{NO}}}3}--N/ha). Soil {{{{NO}}}3}--N also varied significantly with time since landscape conversion; the largest pools occurred at 9-13 years after turfgrass removal and declined to levels comparable to turfgrass thereafter. Variation in soil {{{{NO}}}3}--N with landscape age was strongly influenced by management practices related to soil water availability, including shrub cover, sub-surface plastic sheeting, and irrigation frequency. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of {{{{NO}}}3}--N that may be lost from the plant rooting zone over time following irrigation or

  12. Quality of surface-water supplies in the Triangle Area of North Carolina, water years 2012–13

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-09-07

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2011 through September 2012 (water year 2012) and October 2012 through September 2013 (water year 2013). Major findings for this period include:Annual precipitation was approximately 2 percent above the long-term mean (average) annual precipitation in 2012 and approximately 3 percent below the long-term mean in 2013.In water year 2012, streamflow was generally below the long-term mean during most of the period for the 10 project streamflow gaging stations. Streamflow was near or above the long-term mean at the same streamflow gaging stations during the 2013 water year.More than 7,000 individual measurements of water quality were made at a total of 17 sites—6 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-three water-quality properties or constituents were measured; State water-quality standards exist for 23 of these.All observations met State water-quality standards for pH, temperature, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium.North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, turbidity, chlorophyll a, copper, iron, manganese, mercury, silver, and zinc. Exceedances occurred at all 17 sites.Stream samples collected during storm events contained elevated concentrations of 19 water-quality constituents relative to non-storm events.

  13. Ohio-drainage digital elevation model for use with Water Resources Investigations Report 03-4164

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage was derived from U.S. Geological Survey National Elevation Dataset (NED) Digital Elevation Models (DEMs) for all of Ohio and portions of Indiana,...

  14. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO{sub 2} and O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Riikonen, Johanna, E-mail: johanna.riikonen@uku.f [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Percy, Kevin E. [Air Quality Effects Consulting Ltd., 207-230 Wilson Drive, Fort McMurray, AB, Canada T9H 0A4 (Canada); Kivimaeenpaeae, Minna [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Kubiske, Mark E.; Nelson, Neil D. [Institute for Applied Ecosystem Studies, USDA Forest Service, 5985 Highway K, Rhinelander, WI 54501 (United States); Vapaavuori, Elina [Finnish Forest Research Institute, Suonenjoki Research Unit, FIN-77600 Suonenjoki (Finland); Karnosky, David F. [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-04-15

    Betula papyrifera trees were exposed to elevated concentrations of CO{sub 2} (1.4 x ambient), O{sub 3} (1.2 x ambient) or CO{sub 2} + O{sub 3} at the Aspen Free-air CO{sub 2} Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO{sub 2} and O{sub 3} increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO{sub 2}. Cuticular ridges and epicuticular wax crystallites were less evident under CO{sub 2} and CO{sub 2} + O{sub 3}. The increase in amorphous deposits, particularly under CO{sub 2} + O{sub 3,} was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO{sub 2} + O{sub 3}. The combination of elevated CO{sub 2} and O{sub 3} resulted in different responses than expected under exposure to CO{sub 2} or O{sub 3} alone. - The combined effects of CO{sub 2} and O{sub 3} on birch leaf surface characteristics cannot be predicted on the basis of studies examining each of these gases separately.

  15. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    Science.gov (United States)

    Elder, John F.; Collins, Jerilyn J.; Ware, George W.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  16. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    An economic evaluation for ultrafiltration of surface water is presented. The economic study was performed for a drinking water unit of 20 m3/h . It was found that the cost per m3 of treated water ($ 0.235/m3) obtained would not be excessively high for the states of the North African region. WaterSA Vol.27(2) 2001: 199-204 ...

  17. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...

    Science.gov (United States)

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  18. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis for their th......Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis...

  19. Use of In-Situ Dynamic Measurements to Calibrate Analytical Models of RC-Elevated Water Tanks

    Directory of Open Access Journals (Sweden)

    H.M. Lopes

    2012-01-01

    Full Text Available Before establishing the priority settings for the reduction of seismic risk of water supply infrastructures, it is necessary to understand the dynamic behavior of elevated water tanks, which are components of those infrastructures. Among other information, the main frequencies of vibration of these structures must be estimated and the analytical models used in their analysis and design should reproduce the frequency values obtained by in-situ dynamic tests. This work focuses exclusively on reinforced concrete (RC elevated water tanks (200–750 m^3 of water at heights of 30–40 m, which are very common structures in the water supply systems in Portugal since the mid XXth century. This type of structures can also be seen in many regions around the world. First, a nationwide survey was conducted to determine the most common typologies in the country in terms of structural layout. Second, an in-situ campaign using ambient vibration as input was performed for a group of selected structures to determine the main frequencies of vibration and to identify modal shapes and damping values. Third, a finite element model of several different typologies was developed using the water simply as a concentrated mass at the top; the elastic properties of the model of the structure including the foundation were calibrated, so that the frequencies of various mode shapes obtained by the analytical model would match the frequencies of the real structure. Finally, an expression was derived to estimate the fundamental frequency of a group of elevated water tank typologies based on the total mass at the top of the supporting structure, which include the water, the global lateral stiffness, and the height of the tank. This study, providing important information on the frequencies of vibration of RC-elevated water tanks, contributes in a definite way to the analysis and design of such water tanks.

  20. The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Cerny, Frantisek [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Drahokoupil, Jan [Department of Metals, Institute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); Sepitka, Josef [Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Tolde, Zdenek [Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic)

    2015-01-25

    Highlights: • The Ti6Al4V samples were implanted with 90 keV nitrogen ions. • The samples were annealed at 500 °C during the ion implantation process. • An elevated temperature increases the mobility of the atoms and the quantity of TiN. • The hardness showed a significant increase compared to room temperature implantation. - Abstract: The effect of an elevated temperature during nitrogen ion implantation on the microstructure and on the surface hardness of Ti6Al4V titanium alloy was examined. The implantation process was carried out at fluences of 1 ⋅ 10{sup 17}, 2.7 ⋅ 10{sup 17} and 6 ⋅ 10{sup 17} cm{sup −2} and at ion energy 90 keV. The implanted samples were annealed at 500 °C during the implantation process. X-ray diffraction analysis was performed to obtain a phase characterization and a phase quantification in the implanted sample surface. The surface hardness was investigated by nanoindentation testing, and the nitrogen depth distribution was measured by Rutherford Backscattering Spectroscopy. Elevated temperature led to increased formation of a TiN compound. It was found that a mixture of TiN and an α-Ti(+N) solid solution had a predominant amount of TiN for samples with fluence of 2.7 ⋅ 10{sup 17} cm{sup −2} or higher. Elevated temperature during ion implantation caused an increase in surface hardening more towards the depth of the substrate in comparison with room temperature implantation. The hardness showed a remarkably significant increase at a fluence of 1 ⋅ 10{sup 17} and 2.7 ⋅ 10{sup 17} cm{sup −2} compared to samples implanted at the same fluences and at room temperature. There is a discussion of such mechanisms that explain the observed hardening more towards the depth of the substrate, and the increase in hardness.

  1. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    Science.gov (United States)

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-08

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  2. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    Science.gov (United States)

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...

  3. Predicting forest road surface erosion and storm runoff from high-elevation sites

    Science.gov (United States)

    J. M. Grace III

    2017-01-01

    Forest roads are a concern in management because they represent areas of elevated risks associated with soil erosion and storm runoff connectivity to stream systems. Storm runoff emanating from forest roads and their connectivity to downslope resources can be influenced by a myriad of factors, including storm characteristics, management practices, and the interaction...

  4. The Massachusetts Water Isotope Mapping Project: An Integrated Precipitation, Surface Water, and Ground Water IsoScape for Improved Understanding of Hydrologic Processes

    Science.gov (United States)

    Boutt, D. F.; Cole, A.

    2016-12-01

    The development of CRDS has revolutionized our ability to collect large spatially and temporally distributed datasets of water isotopes allowing un-paralleled insight into the hydrologic functioning of catchments through the lens of isotopic tracing of the water molecule. We present the results of an ongoing study of high spatial and temporal dataset across the state of Massachusetts, Northeast United States. Our current database consists of 1500 precipitation measurements across 15 stations, 2500 surface water measurements across 150 sites, and 2000 groundwater from 200 wells screened in overburden and bedrock wells. Isotopic composition of the region varies significantly as a function of topography and season. Because of the coastal orientation of the region, there is a large variability in the mean 18O-H2O composition of precipitation due to locally dominant precipitation sources. Deuterium excess of precipitation in the range of 10 - 14 ‰ are typical. Five years of surface water samples across the region show a strong seasonal trend ranging from -10 to -3 ‰ δ18O-H2O. Surface waters depict seasonal evaporative enrichment in the heavy isotopes and demonstrate a similar magnitude of deuterium excess compared to the precipitation. During the winters of 2014 and 2015 typical seasonal trends are interrupted by distinctly depleted stream waters of the order of -12 to -11 ‰ δ18O-H2O. These excursions are consistent with a source of water vapor to the region from more northerly (colder) regions. Mean stream water δ18O- H2O isotopic compositions show a strong relationship to upgradient drainage area. Groundwater compositions range from -12 to -5 ‰ δ18O-H2O across all the sites. A correlation between groundwater well elevation and δ18O-H2O is observed with higher elevation sites depleted in heavy isotopes with variations of 2-3 ‰ δ18O-H2O at any given elevation. Groundwater isotopic composition is distinct between overburden aquifer types (till, glacial

  5. Water adsorption on the stoichiometric and defected Fe(110) surfaces

    Science.gov (United States)

    Ossowski, Tomasz; Da Silva, Juarez L. F.; Kiejna, Adam

    2018-02-01

    The adsorption of water molecules on defect-free (called here as stoichiometric) and defected Fe(110) surfaces has been investigated using density functional theory (DFT) calculations. It is found that on the stoichiometric surface H2O molecules do not dissociate spontaneously and adsorbs flat on top of the surface Fe atom. By studying different orientations of the flat lying molecule in different adsorption sites it is found that some of them are degenerated in energy thus suggesting a possibility of molecule rotation around direction normal to the surface. At the vacancy defected surface the water molecule favors undercoordinated adsorption sites at or next to the vacancy edge - not the ones in the stoichiometric region of the surface. Moreover, similarly to the stoichiometric surface, at defected one some different configurations are degenerated in energy, making possible molecules circling around the vacancy. The influence of the van der Waals interactions on the adsorption properties of the system is also considered and discussed.

  6. Postmortem Vitreous Humor Magnesium Does Not Elevate in Salt Water Drowning When the Immersion Time Is Less Than an Hour.

    Science.gov (United States)

    Tse, Rexson; Kuo, Ta-Chen; Kesha, Kilak; Garland, Jack; Garland, Sarah; Anne, Sravan; Elstub, Hannah; Cala, Allan

    2017-12-01

    Elevation in postmortem vitreous humor sodium and chloride (PMVSC) in salt water drowning (SWD) when the immersion time is less than 1 hour (SWD1) is hypothesized to result from electrolyte changes in blood from salt water inhalation/ingestion during drowning. After approximately 1 hour after death, electrolytes may diffuse into the vitreous humor via the eye coverings. Another abundant element in salt water is magnesium, which is approximately 50 times higher in concentration than the blood and vitreous humor magnesium levels. Magnesium is able to diffuse across the eye coverings but not as easily through the blood-ocular barrier. With these properties, we hypothesize that postmortem vitreous magnesium (PMVM) would not be elevated in SWD1 but become elevated in SWD with immersion times greater than 1 hour (SWD>1). The aim of this article was to investigate the differences in PMVM and PMVSC between nonimmersion deaths, SWD1, and SWD>1. This is a 1-year retrospective study comparing PMVM and PMVSC in nonimmersion deaths, SWD1, and SWD>1. Postmortem vitreous magnesium is significantly higher in SWD>1 than SWD1 and nonimmersion deaths, with no significant difference between SWD1 and nonimmersion deaths. Postmortem vitreous humor sodium chloride is statistically higher in SWD1 and SWD>1 than nonimmersion deaths. As a conclusion, PMVSC elevates and PMVM does not elevate in SWD1.

  7. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces....

  8. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  9. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  10. Multi-day near-surface stratification in tropical waters

    Science.gov (United States)

    Fischer, Tim; Kock, Annette; Dengler, Marcus; Brandt, Peter; Karstensen, Johannes; Arévalo-Martínez, Damian L.; Bange, Hermann W.

    2017-04-01

    The near-surface layer of the tropical oceans is known for the occurrence of temporal stratification in the upper few meters, which can lead to vertical gradients in water properties and prompts questions about correct estimation of air-sea exchange of gases but similarly of momentum, heat, water vapour, and other matter. Here we present observations in the near-surface layer of the Peruvian upwelling regime and of the tropical Atlantic Ocean below the Intertropical Convergence Zone, which show near-surface stratification events that frequently have a lifetime of several days. This aspect extends the predominant notion of a diurnal near-surface pycnocline that appears, migrates and disappears in a diurnal cycle, and is superposed on a background surface mixed layer. Near-surface stratification suppresses turbulent mixing and subsequently isolates or traps overlying water, which eventually generates vertical gradients of water properties. Multi-day near-surface stratification and associated multi-day trapping of a thin near-surface layer may enhance such vertical gradients in comparison to diurnal trapping. We explore the implications of multi-day trapping, particularly for estimates of air-sea gas exchange. For example, in the Peruvian upwelling regime in austral summer 2012/13, strong near-surface vertical gradients of nitrous oxide concentration were observed which most likely resulted from multi-day trapping. Here, applying standard routines for air-sea gas exchange leads to a systematic overestimation of regionwide nitrous oxide emission by 30%.

  11. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  12. Reassigning the most stable surface of hydroxyapatite to the water resistant hydroxyl terminated (010) surface

    Science.gov (United States)

    Zeglinski, Jacek; Nolan, Michael; Thompson, Damien; Tofail, Syed A. M.

    2014-05-01

    Understanding the surface stability and crystal growth morphology of hydroxyapatite is important to comprehend bone growth and repair processes and to engineer protein adsorption, cellular adhesion and biomineralization on calcium phosphate based bone grafts and implant coatings. It has generally been assumed from electronic structure calculations that the most stable hydroxyapatite surface is the (001) surface, terminated just above hydroxyl ions perpendicular to the {001} crystal plane. However, this is inconsistent with the known preferential growth direction of hydroxyapatite crystals and previous experimental work which indicates that, contrary to currently accepted theoretical predictions, it is actually the (010) surface that is preferentially exposed. The surface structure of the (010) face is still debated and needs reconciliation. In this work, we use a large set of density functional theory calculations to model the interaction of water with hydroxyapatite surfaces and probe the surface stability and resistance to hydrolytic remodeling of a range of surface faces including the (001) surface and the phosphate-exposed, calcium-exposed, and hydroxyl-exposed terminations of the (010) surface. For the (001) surface and the phosphate-exposed (010) surface, dissociative water adsorption is favorable. In contrast, the hydroxyl-terminated (010) surface will not split water and only molecular adsorption of water is possible. Our calculations show, overall, that the hydroxyl-terminated (010) surface is the most stable and thus should be the predominant form of the hydroxyapatite surface exposed in experiments. This finding reconciles discrepancies between the currently proposed surface terminations of hydroxyapatite and the experimentally observed crystal growth direction and surface stability, which may aid efforts to accelerate biomineralization and better control bone-repair processes on hydroxyapatite surfaces.

  13. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2014-07-29

    Callaghan, A. H., G. B. Deane and M. D. Stokes, "Two regimes of laboratory whitecap foam decay: Bubble -plume controlled and surfactant stabilized," J...interest are scattering from surface gravity waves and the effect of whitecaps and bubble clouds on underwater acoustic communications. Secondary long...term goals were to 1. exploit measurements of breaking wave noise and photographic images of whitecaps to infer bubble cloud populations at the sea

  14. A system for calibrating seepage meters used to measure flow between ground water and surface water

    Science.gov (United States)

    Rosenberry, Donald O.; Menheer, Michael A.

    2006-01-01

    A system has been developed for generating controlled rates of seepage across the sediment-water interface representing flow between ground water and surface water. The seepage- control system facilitates calibration and testing of seepage measurement devices commonly called seepage meters. Two slightly different seepage-control systems were evaluated. Both designs make use of a 1.5-m-diameter by 1.5-m-tall polyethylene flux tank partially filled with sand that overlies a pipe manifold and diffuser plate to provide a uniform flux of water through the sand. The flux tank is filled with water to maintain a water depth above the sand bed of about 0.6 m. Flow is generated by routing water through tubing that connects an adjustable-height reservoir to the base of the flux tank, through the diffuser plate and sand, and across the sediment-water interface. Seepage rate is controlled by maintaining a constant water depth in the reservoir while routing flow between the reservoir and the flux tank. The rate of flow is controlled by adjusting the height of the reservoir with a manually operated fork lift. Flow from ground water to surface water (inflow) occurs when the water surface of the reservoir is higher than the water surface of the flux tank. Flow from surface water to ground water (outflow) occurs when the water surface of the reservoir is lower than the water surface of the flux tank. Flow rates as large as ±55 centimeters per day were generated by adjusting the reservoir to the extremes of the operable range of the fork lift. The minimum seepage velocity that the flowmeter can reliably measure is about 7 centimeters per day.

  15. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  16. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  17. Effects of experimental warming and elevated CO2 on surface methane and CO­2 fluxes from a boreal black spruce peatland

    Science.gov (United States)

    Gill, A. L.; Finzi, A.; Hsieh, I. F.; Giasson, M. A.

    2016-12-01

    High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first season of whole ecosystem warming and elevated CO2 treatments. We find that peat methane fluxes are more sensitive to warming treatments than peat CO2 fluxes, particularly in hollow peat microforms. Surface CO2:CH4 flux ratios decreased across warming treatments, suggesting that the temperature sensitivity of methane production overshadows the effect of peat drying and surface aeration in the short term. δ13C of the emitted methane was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input. The measurement record demonstrates that belowground warming has measureable impacts on the nature of peat greenhouse gas emission within one year of treatment.

  18. Results of the measurement survey of elevation and environmental media in surface impoundments 3513 (B) and 3524 (A) at Oak Ridge National Laboratory, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Coe, R.H.C. III; Lawrence, J.D.; Winton, W.

    1998-07-01

    A measurement survey of the elevation and environmental media in impoundments 3513 (B) and 3524 (A) at the Oak Ridge National Laboratory (ORNL) was conducted during April 1998. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of Bechtel Jacobs Company. Measurement activities were conducted at selected locations in order to determine the depth and appearance of the sediment and describe the clay underlying the impoundments prior to remediation. The survey was a follow-up to a previous elevation survey. The survey included the following: collection of sediment/clay cores from selected locations in each impoundment; measurement and documentation of the elevation at the water surface, at the top of sediment, at the top of clay, and at the bottom of each core; visual inspection of each core by a soil scientist to confirm the presence of clay and not material such as fly ash and soda lime compacted over the last 50 years; measurement and documentation of the background beta-gamma radiation level at the time and location of collection of each core, the highest beta-gamma level along the sediment portion of each core, and the highest beta-gamma level along the clay portion of each core; measurement and documentation of the length of the clay and of the sediment portion of each core; photographic documentation of each core; and replacement of each core in the impoundment.

  19. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions.

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-10

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  20. Pressure caused by underwater discharge near the surface of water

    Science.gov (United States)

    Kusakabe, K.; Uchiyama, M.; Isuzugawa, Kohji

    2001-04-01

    Spark discharge in water generates a spherical shock wave and a bubble that contains water vapor, with each center at a gap between electrodes. The bubble repeats the movement of the expansion and contraction. An impulsive pressure wave also arises at each transition from the contraction to the expansion of the bubble. In case that a rigid wall exists near the bubble, the bubble moves toward it keeping the expansion and contraction and then a water jet is formed toward the wall. The jet exerts the impulsive pressure on the wall. In case that the bubble is near the surface of water, it moves as if a rigid wall existed just below it and then the downward water jet is also formed. We are interested in the relationship of the movement of the bubble to the effect of the pressure caused by the under-water discharge near the surface of water. We are also interested in whether there are some differences between the following two cases as to the effect of pressure; one case is that the bubble exists near the surface of water and its movement is affected by the surface, another case the movement of the bubble is not affected by the surface of water for the sake of enough large distance between the bubble and the surface. In this study, impulsive pressure waves caused by the under-water discharge in above two cases are observed by means of a transducer or their schlieren photographs are taken with an image converter camera, and observations are examined.

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  2. Landfill disposal of unused medicines reduces surface water releases.

    Science.gov (United States)

    Tischler, Lial; Buzby, Mary; Finan, Douglas S; Cunningham, Virginia L

    2013-01-01

    The pharmaceutical industry is conducting research to evaluate the pathways and fate of active pharmaceutical ingredients from the consumer to surface waters. One potential pathway identified by the researchers is the disposal of unused pharmaceutical products that are discarded by consumers in household trash and disposed of in municipal solid waste landfills. This study was designed to evaluate relative amounts of surface water exposures through the landfill disposal pathway compared to patient use and flushing of unused medicine pathways. The estimated releases to surface water of 24 example active pharmaceutical ingredients (APIs) in landfill leachate were calculated for 3 assumed disposal scenarios: 5%, 10%, and 15% of the total annual quantity of API sold is discarded and unused. The estimated releases from landfills to surface waters, after treatment of the leachate, were compared to the total amount of each example API that would be released to surface waters from publicly owned treatment works, generated by patient use and excretion. This study indicates that the disposal of unused medications in municipal solid waste landfills effectively eliminates the unused medicine contribution of APIs to surface waters; greater than 99.9% of APIs disposed of in a landfill are permanently retained. Copyright © 2012 SETAC.

  3. Work plan for ground water elevation data recorder/monitor well installation at the New Rifle Site, Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River.

  4. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis

    Directory of Open Access Journals (Sweden)

    Daisuke Nojima

    2017-05-01

    Full Text Available Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively were exposed to ethyl methane sulfonate (EMS or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG, and pale green mutants (PMs were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  5. Langmuir circulation inhibits near-surface water turbulence

    Science.gov (United States)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  6. chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    PROF EKWUEME

    are to assess, ascertain and evaluate the level, degree and type of pollution that characterize the surface water resources of Enugu area of southeastern Nigeria in terms of physico-chemical and bacterialogical constituents. Field measurements of ... suggest possible solutions to the problems of water supply. THE STUDY ...

  7. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... Trace metals concentrations in surface water, sediment and water lily (Nymphaea lotus) samples from the banks of Calabar River, ... Key words: Trace metals, coastal sediment, Nymphaea lotus, Calabar River Estuary. INTRODUCTION ..... The linear correlation coefficients calculated for heavy metal in the ...

  8. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  9. Identifying potential surface water sampling sites for emerging ...

    African Journals Online (AJOL)

    The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information ...

  10. Assessment of Heavy Metals Concentrations in the Surface Water of ...

    African Journals Online (AJOL)

    This work aimed at assessing the concentrations of heavy metals in the surface water of Bompai-Jakara drainage basin. The points of sampling were designated as A, B, C, D, E, and F. Acid-washed (1L) plastic bottles were used in collecting the water samples, which were then digested using nitric acid (HNO3).

  11. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  12. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  13. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    Science.gov (United States)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; hide

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  14. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  15. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  16. Experimental water droplet impingement data on modern aircraft surfaces

    Science.gov (United States)

    Papadakis, Michael; Breer, Marlin D.; Craig, Neil C.; Bidwell, Colin S.

    1991-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model.

  17. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    Algal blooms (increased abundance of phytoplankton) are an increasingly common phenomenon which has been causally linked to increased fluxes of nutrient (particularly nitrogenous) compounds to aquatic ecosystems. These blooms have implications for water quality and human health in addition...... flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...

  18. High surface water interaction in superhydrophobic nanostructured silicon surfaces: convergence between nanoscopic and macroscopic scale phenomena.

    Science.gov (United States)

    Muñoz-Noval, Álvaro; Hernando Pérez, Mercedes; Torres Costa, Vicente; Martín Palma, Raúl J; de Pablo, Pedro J; Manso Silván, Miguel

    2012-01-24

    In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material.

  19. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water–surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface–water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of

  20. Molecular and genotoxic effects in Mytilus galloprovincialis exposed to tritiated water at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dallas, L.; Jha, A. [School of Biological Sciences, Plymouth University (United Kingdom); Bean, T.; Lyons, B. [Cefas Weymouth Laboratory (United Kingdom); Turner, A. [School of Geography, Earth and Environmental Sciences, Plymouth University (United Kingdom)

    2014-07-01

    Radioactive contaminants do not occur in isolation; organisms are also exposed to fluctuations in biological, biotic and physico-chemical factors, such as competition, other contaminants, salinity and temperature. Thermal discharge from nuclear facilities is considered to be one of the most important environmental issues surrounding these establishments, second only to the release of radionuclides. Cooling water from nuclear institutions is one of the major sources of tritium ({sup 3}H) to the aquatic environment; temperature is therefore an abiotic factor of particular concern when it comes to assessing the potential detrimental impacts of {sup 3}H exposure in marine species. In this context, we used a molecular approach to elucidate the potential mechanisms behind the genotoxicity of tritiated water (HTO) to marine mussels, at 'normal' and elevated temperatures. Mussels were exposed to control seawater or 15 MBq L{sup -1} HTO at 15 and 25 deg. C for 7 days, with haemolymph and gill tissue sampling (for comet assay to detect DNA strand breaks and gene expression analysis, respectively) after 0, 1, 12, 72 and 168 h. In addition, a Cu concentration of 40 μg L{sup -1} (previously established as genotoxic under these exposure conditions) was used concurrently as a positive control (at 15 deg. C). Tissue-specific accumulation of {sup 3}H was also determined, allowing the calculation of dose rates using the ERICA tool. Comparison of DNA strand breakage (DSB) as a function of time suggested that significant levels of DSB were induced earlier in haemocytes of mussels exposed to HTO at 25 deg. C compared to 15 deg. C (72 h vs. 168 h). Alterations in transcriptional expression of key genes also suggest that the 72 h time point is critical, with gill showing reduced expression of hsp70, hsp90, mt20, p53 and rad51 during HTO exposure at the elevated temperature. In contrast, HTO exposure at 15 deg. C resulted in significant up-regulation of the same genes after 72

  1. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    Science.gov (United States)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  2. Effects of longterm elevated carbon dioxide concentration, nitrogen and water availability on the physiology of loblolly pine (Pinus taeda) branches

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, R.; Dougherty, P.M. (North Carolina State Univ., Raleigh, NC (United States))

    1994-06-01

    The objective of this study was to determine to what extent elevated CO[sub 2] alters carbon fixation of loblolly pine when water and nutrition are limiting. Three branches per tree were enclosed in polytene chambers and exposed to ambient, 1.5*ambient and 2*ambient levels of CO[sub 2] respectively for a 12 month period. A 2*2 factorial of nutrition and water was employed. Monthly instantaneous measures of maximum photosynthesis (amax), stomatal conductance and other physiological parameters were taken on needles. Branches exposed to 2* ambient CO[sub 2] in the fertilized and irrigated plots showed significantly higher amax values compared to the other treatment level combinations and showed no signs of acclimation. Results suggest that response to elevated CO[sub 2] levels depends greatly on whether nutrition and water are limiting.

  3. Coupled community cohesion and surface water hydrology determinants of groundwater use sustainability

    Science.gov (United States)

    Fernald, A.

    2013-12-01

    Water table elevations are dropping in irrigated locations of the western U.S. and the world where use exceeds recharge. Along the Rio Grande, community irrigation systems have been developed that are particularly suited to high interannual precipitation variability. These same systems that efficiently and equitable allocate surface irrigation water seem to also generate feedback loops that balance groundwater recharge with use. To identify drivers of groundwater sustainability, we studied the coupled human and natural system components of surface water - groundwater interactions at distinctive sites along the Rio Grande: vibrant community irrigation systems of northern New Mexico; separately controlled surface and groundwater irrigation systems of southern New Mexico; and groundwater irrigation systems that had entirely lost their historic community surface irrigation systems in northern Chihuahua, Mexico. At the northern New Mexico site we found both the hydrology and the community irrigation system generate positive feedback loops for sustainable groundwater and for return flow to the river that benefits downstream users. In southern New Mexico, positive feedbacks of reduced irrigation district surface deliveries lead to more groundwater pumping that in turn causes less efficient surface delivery, additional pumping and stressed groundwater systems. At the sites in Mexico, lack of community cohesion coupled with decades of groundwater pumping has led to negative feedbacks where additional pumping causes drops in groundwater levels that increase pumping costs and reduce the rate of groundwater declines. In ongoing work, we are using socio-cultural and hydrological data to inform a system dynamics model that will identify groundwater sustainability tipping points in terms of community cohesion and the balance between irrigation water use and groundwater recharge in surface water connected systems.

  4. Multi-Decadal Surface Water Dynamics in North American Tundra

    Science.gov (United States)

    Carroll, Mark L.; Loboda, Tatiana V.

    2017-01-01

    Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.

  5. Influence of surface structure and chemistry on water droplet splashing.

    Science.gov (United States)

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  6. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios.

    Science.gov (United States)

    Li, Juan; Zhou, Jian-Min; Duan, Zeng-Qiang

    2007-01-01

    Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops, and therefore results in an increase in crop yield. However, little is known about the combined effect of elevated CO2 and N species on plant growth and development. Two growth-chamber experiments were conducted to determine the effects of NH4+/NO3- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings. Tomato was grown for 45 d in containers with nutrient solutions varying in NH4+/NO3- ratios and CO2 concentrations in growth chambers. Results showed that plant height, stem thickness, total dry weight, dry weight of the leaves, stems and roots, G value (total plant dry weight/seedling days), chlorophyll content, photosynthetic rate, leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment. Plant biomass, plant height, stem thickness and photosynthetic rate were 67%, 22%, 24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration, depending on the values of NH4+/NO3- ratio. These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4(+)-N (in nutrient solution) on the tomato seedlings. At both CO2 levels, NH4+/NO3- ratios of nutrient solutions strongly influenced almost every measure of plant performance, and nitrate-fed plants attained a greater biomass production, as compared to ammonium-fed plants. These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.

  7. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    extensive research and funding, they are far less expensive and therefore more important than disaster restoration and remediation. Thus, our research question was “Can we retrieve hydraulic observations of inland surface water bodies, whenever and wherever it is required, with (i) high accuracy, (ii) high...... in monitoring surface water bodies, at a limited cost and with high flexibility. This PhD project investigates and demonstrates how UAVs can enrich the set of available hydraulic observations in inland water bodies, including: 1. Orthometric water level. 2. Water depth (bathymetry). 3. Surface water speed...... to satellites, UAVs have several advantages: high spatial resolution, repeatability of the flight missions and good tracking of the water bodies. Nevertheless, UAVs face several constraints: vibrations, limited size, weight, and electric power available for the sensors. In this thesis, we present the first...

  8. Surface signature of Mediterranean water eddies in a long-term high-resolution simulation

    Science.gov (United States)

    Ciani, D.; Carton, X.; Barbosa Aguiar, A. C.; Peliz, A.; Bashmachnikov, I.; Ienna, F.; Chapron, B.; Santoleri, R.

    2017-12-01

    We study the surface signatures of Mediterranean water eddies (Meddies) in the context of a regional, primitive equations model simulation (using the Regional Oceanic Modeling System, ROMS). This model simulation was previously performed to study the mean characteristics and pathways of Meddies during their evolution in the Atlantic Ocean. The advantage of our approach is to take into account different physical mechanisms acting on the evolution of Meddies and their surface signature, having full information on the 3D distribution of all physical variables of interest. The evolution of around 90 long-lived Meddies (whose lifetimes exceeded one year) was investigated. In particular, their surface signature was determined in sea-surface height, temperature and salinity. The Meddy-induced anomalies were studied as a function of the Meddy structure and of the oceanic background. We show that the Meddies can generate positive anomalies in the elevation of the oceanic free-surface and that these anomalies are principally related to the Meddies potential vorticity structure at depth (around 1000 m below the sea-surface). On the contrary, the Meddies thermohaline surface signatures proved to be mostly dominated by local surface conditions and little correlated to the Meddy structure at depth. This work essentially points out that satellite altimetry is the most suitable approach to track subsurface vortices from observations of the sea-surface.

  9. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    profilers (ADCPs). For these reasons, water speed observations have been traditionally challenging, especially in difficult-to-access environments. Conversely, UAV-borne observations open up the possibility of measuring water speed over extended regions at a low cost. The 2D water surface velocity field...

  10. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices

    Science.gov (United States)

    Yang, Xiucheng; Chen, Li

    2017-04-01

    Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.

  11. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  12. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  13. Properties of water surface discharge at different pulse repetition rates

    Science.gov (United States)

    Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

    2014-09-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  14. First-principles study of water on Cu (110) surface

    Science.gov (United States)

    Ren, Jun; Meng, Sheng

    2009-03-01

    The persistent demand for cheaper and high efficient catalysts in industrial chemical synthesis, such as ammonia, and in novel energy applications, hydrogen generation and purification in fuel cells motivated us to study the fundamental interaction involved in water-Cu system, with an intension to examine Cu as a possible competitive candidate for cheaper catalysts. Water structure and dissociation kinetics on a model open metal surface: Cu (110), have been investigated in detail based on first-principles electronic structure calculations. We revealed that in both monomer and overlayer forms, water adsorbs molecularly, with a high tendency for diffusion and/or desorption rather than dissociation on clean surfaces at low temperature. With the increase of the water coverage on the Cu (110) surface, the H-bond pattern lowers the dissociation barrier efficiently. More importantly, if the water molecule is dissociated, the hydrogen atoms can diffuse freely along the [110] direction, which is very useful in the hydrogen collection. In addition, we extended to study water on other noble metal (110) surfaces. The result confirms that Cu (110) is the borderline between intact and dissociative adsorption, differing in energy by only 0.08 eV. This may lead to promising applications in hydrogen generation and fuel cells.

  15. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.

    Science.gov (United States)

    Jung, Yong Chae; Bhushan, Bharat

    2008-06-17

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.

  16. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  17. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Directory of Open Access Journals (Sweden)

    Xu Ping

    2015-01-01

    Full Text Available Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS, protein (PN, and polysaccharide (PS in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  18. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  19. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  20. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  1. Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China.

    Science.gov (United States)

    Cao, Zhonghong; Wang, Yuqiu; Ma, Yongmin; Xu, Ze; Shi, Guoliang; Zhuang, Yuanyi; Zhu, Tan

    2005-06-30

    Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their persistence, bioaccumulation and toxic effects. In this work, 16 PAHs included in the US Environmental Protection Agency's (EPA) priority pollutant list were analyzed using solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) with a selected ion monitoring (SIM) mode. Reclaimed water and surface water sampling was undertaken in Tianjin, northern China. Total PAH concentrations varied from 1800 to 35,000 ng/L in surface waters (main rivers, tributaries, ditches, etc.) with mean value of 14,000 ng/L and from 227 to 600 ng/L in reclaimed water with mean value of 352 ng/L, respectively. The PAH profiles were dominated by low molecular weight PAHs (two- and three-ring components) in reclaimed water samples and surface water samples. These indicated that PAHs in reclaimed water and surface water might origin from oil or sewage contamination (petrogenic input). To elucidate sources, molecular indices based on indices among phenanthrene versus anthracene and fluoranthene versus pyrene were used to evaluate the possible source (pyrogenic and petrogenic sources, respectively) of PAH contamination in reclaimed water and surface water. The collected data showed that petrogenic input was predominant at almost all the stations investigated. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the surface water stations investigated and confirmed our analytical results. The analysis results of the ratios and PCA in this study showed that the ratios and PCA could be applied to the surface water investigation to some extent.

  2. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  3. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Science.gov (United States)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  4. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  5. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...

  6. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  7. Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores.

    Science.gov (United States)

    Fang, Chao; Qiao, Rui

    2017-08-09

    The imbibition of liquids into nanopores plays a critical role in numerous applications, and most prior studies focused on imbibition due to capillary flows. Here we report molecular simulations of the imbibition of water into single mica nanopores filled with pressurized gas. We show that, while capillary flow is suppressed by the high gas pressure, water is imbibed into the nanopore through surface hydration in the form of monolayer liquid films. As the imbibition front moves, the water film behind it gradually densifies. Interestingly, the propagation of the imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the pore walls. We clarify the mechanism for the rapid water imbibition observed here.

  8. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.

    Science.gov (United States)

    Manea, A; Leishman, M R

    2015-02-01

    The expansion of woody plants into grasslands has been observed worldwide and is likely to have widespread ecological consequences. One proposal is that woody plant expansion into grasslands is driven in part by the rise in atmospheric CO2 concentrations. We have examined the effect of CO2 concentration on the competitive interactions between established C4 grasses and woody plant seedlings in a model grassland system. Woody plant seedlings were grown in mesocosms together with established C4 grasses in three competition treatments (root competition, shoot competition and root + shoot competition) under ambient and elevated CO2 levels. We found that the growth of the woody plant seedlings was suppressed by competition from grasses, with root and shoot competition having similar competitive effects on growth. In contrast to expectations, woody plant seedling growth was reduced at elevated CO2 levels compared to that at the ambient CO2 level across all competition treatments, with the most plausible explanation being reduced light and soil water availability in the elevated CO2 mesocosms. Reduced light and soil water availability in the elevated CO2 mesocosms was associated with an increased leaf area index of the grasses which offset the reductions in stomatal conductance and increased rainfall interception. The woody plant seedlings also had reduced 'escapability' (stem biomass and stem height) under elevated compared to ambient CO2 levels. Our results suggest that the expansion of woody plants into grasslands in the future will likely be context-dependent, with the establishment success of woody plant seedlings being strongly coupled to the CO2 response of competing grasses and to soil water availability.

  9. Radar image sequence analysis of inhomogeneous water surfaces

    Science.gov (United States)

    Seemann, Joerg; Senet, Christian M.; Dankert, Heiko; Hatten, Helge; Ziemer, Friedwart

    1999-10-01

    The radar backscatter from the ocean surface, called sea clutter, is modulated by the surface wave field. A method was developed to estimate the near-surface current, the water depth and calibrated surface wave spectra from nautical radar image sequences. The algorithm is based on the three- dimensional Fast Fourier Transformation (FFT) of the spatio- temporal sea clutter pattern in the wavenumber-frequency domain. The dispersion relation is used to define a filter to separate the spectral signal of the imaged waves from the background noise component caused by speckle noise. The signal-to-noise ratio (SNR) contains information about the significant wave height. The method has been proved to be reliable for the analysis of homogeneous water surfaces in offshore installations. Radar images are inhomogeneous because of the dependency of the image transfer function (ITF) on the azimuth angle between the wave propagation and the antenna viewing direction. The inhomogeneity of radar imaging is analyzed using image sequences of a homogeneous deep-water surface sampled by a ship-borne radar. Changing water depths in shallow-water regions induce horizontal gradients of the tidal current. Wave refraction occurs due to the spatial variability of the current and water depth. These areas cannot be investigated with the standard method. A new method, based on local wavenumber estimation with the multiple-signal classification (MUSIC) algorithm, is outlined. The MUSIC algorithm provides superior wavenumber resolution on local spatial scales. First results, retrieved from a radar image sequence taken from an installation at a coastal site, are presented.

  10. The effect of surface water and wetting on gecko adhesion.

    Science.gov (United States)

    Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

    2012-09-01

    Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments.

  11. Corona Discharge from Water Droplet on Electrically Stressed Polymer Surface

    Science.gov (United States)

    Zhu, Yong; Otsubo, Masahisa; Honda, Chikahisa; Tanaka, Shou

    2006-01-01

    This paper describes the results of experiments and simulations made to examine the corona discharges from water droplets on a polymer surface exposed to electrical stress. In this study, water droplets with different conductivities and volumes were placed on the surface of plate-shaped high temperature vulcanized silicone rubber (HTV-SR) energized with ac voltage, and the corona discharge phenomena were observed by a high-speed camera with an image intensifier. The electric-field distributions were calculated by the finite element method (FEM). It is demonstrated that the electric field is intensified at the triple junction of the water droplet, air and the insulating material due to the difference in their permittivities, which can ionize the surrounding air and trigger a corona discharge. It can also be confirmed that the contact angle, volume, conductivity and number of water droplets are shown to have a marked effect on the mode of the corona discharge development.

  12. Difference betweem postconstruction and preconstruction land surface elevation tins on the Missouri River Downstream from Gavins Point Dam near River Mile 769.8.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set contains an interpolated 3-D surface or, triangulated-irregular network (TIN), of the change in elevation, in feet, of the substrate between...

  13. Difference betweem postconstruction and preconstruction land surface elevation tins on the Missouri River Downstream from Gavins Point Dam near River Mile 761.4.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set contains an interpolated 3-D surface or, triangulated-irregular network (TIN), of the change in elevation, in feet, of the substrate between...

  14. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    Science.gov (United States)

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  15. Microcystins in potable surface waters: toxic effects and removal strategies.

    Science.gov (United States)

    Roegner, Amber F; Brena, Beatriz; González-Sapienza, Gualberto; Puschner, Birgit

    2014-05-01

    In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  17. Surface water retention systems for cattail production as a biofuel.

    Science.gov (United States)

    Berry, Pamela; Yassin, Fuad; Grosshans, Richard; Lindenschmidt, Karl-Erich

    2017-12-01

    Surface water retention systems act to reduce nutrient pollution by collecting excess nutrients within a watershed via runoff. Harvesting aquatic biomass, such as the invasive cattail, from retention systems removes nutrients absorbed by the plant from the ecosystem permanently. Harvested biomass can be used as a renewable energy source in place of fossil fuels, offsetting carbon emissions. The purpose of this research was to simulate cattail harvest from surface water retention systems to determine their ability to provide suitable growing conditions with annual fluctuations in water availability. The economic and environmental benefits associated with nutrient removal and carbon offsets were also calculated and monetized. A proposed upstream and existing downstream water retention system in southern Manitoba were modelled using a system dynamics model with streamflow inputs provided by a physical hydrologic model, Modélisation Environmentale Communautaire - Surface and Hydrology (MESH). Harvesting cattail and other unconventional feedstocks, such as reeds, sedges, and grasses, from retention systems provided a viable revenue stream for landowners over a ten-year period. This practice generates income for landowners via biomass and carbon credit production on otherwise underutilized marginal cropland invaded with cattail. The economic benefits promote wetland habitat restoration while managing cattail growth to maintain biodiversity. Excess nitrogen and phosphorus are also removed from the ecosystem, reducing downstream nutrient loading. Utilizing surface water retention systems for cattail harvest is a best management strategy for nutrient retention on the landscape and improving agricultural resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    Science.gov (United States)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  19. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

    Science.gov (United States)

    Hensel, Jennifer K; Carpenter, Andrew P; Ciszewski, Regina K; Schabes, Brandon K; Kittredge, Clive T; Moore, Fred G; Richmond, Geraldine L

    2017-12-19

    Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

  20. Crawling beneath the free surface: Water snail locomotion

    OpenAIRE

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being g...

  1. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-04-01

    Full Text Available Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral index- and threshold-based approaches have also been widely used. Many water indices have been proposed to identify surface water bodies; however, the differences in performances of these water indices as well as different sensors on water body mapping are not well documented. In this study, we reviewed and compared existing open surface water body mapping approaches based on six widely-used water indices, including the tasseled cap wetness index (TCW, normalized difference water index (NDWI, modified normalized difference water index (mNDWI, sum of near infrared and two shortwave infrared bands (Sum457, automated water extraction index (AWEI, land surface water index (LSWI, as well as three medium resolution sensors (Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI. A case region in the Poyang Lake Basin, China, was selected to examine the accuracies of the open surface water body maps from the 27 combinations of different algorithms and sensors. The results showed that generally all the algorithms had reasonably high accuracies with Kappa Coefficients ranging from 0.77 to 0.92. The NDWI-based algorithms performed slightly better than the algorithms based on other water indices in the study area, which could be related to the pure water body dominance in the region, while the sensitivities of water indices could differ for various water body conditions. The resultant maps from Landsat 8 and Sentinel-2 data had higher overall accuracies than those from Landsat 7. Specifically, all three sensors had similar producer accuracies while Landsat 7 based results had a lower user accuracy. This study

  2. Water Quality and Hydrogeochemical Characteristics of Surface Water and Groundwaters in Aksu (Isparta Plain

    Directory of Open Access Journals (Sweden)

    Şehnaz Şener

    2015-12-01

    Full Text Available In this study, geological, hydrological, hydrogeological, hydrogeochemical characteristics of the Aksu (Isparta plain were investigated. In addition, determination of the water quality and availability in current status besides groundwater dynamics were aimed in the scope of work. The study area is located in the southwest Turkey, and lithological units belonging to Beydaglari autochthonous and Antalya nappes are observed. The most important surface water and groundwater reservoirs are Aksu river and alluvial-karst aquifers, respectively. Hydrogeochemical characteristics and quality of the water are important because water is used as drinking water and irrigation water in the plain. For this purpose, in situ measurements and chemical analyzes were carried out in the period of May-2013 on water resources. According to the obtained results, water resources is Mg-HCO3, Ca-HCO3, and Mg-Ca-HCO3 facies. According to the Water Pollution Control Regulation, all surface and groundwaters are determined in 4th water quality class in terms of sulfur owing to water-rock interaction. The assessment of the usage properties of the waters indicate that water sources is suitable for drinking and irrigation water usage in generally.

  3. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O.; Arvesen, J.; Dahl, L.

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  4. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...... spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  5. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  6. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  7. Simulation of tracer dispersion from elevated and surface releases in complex terrain

    Science.gov (United States)

    Hernández, J. F.; Cremades, L.; Baldasano, J. M.

    A new version of an advanced mesoscale dispersion modeling system for simulating passive air pollutant dispersion in the real atmospheric planetary boundary layer (PBL), is presented. The system comprises a diagnostic mass-consistent meteorological model and a Lagrangian particle dispersion model (LADISMO). The former version of LADISMO, developed according to Zannetti (Air pollution modelling, 1990), was based on the Monte Carlo technique and included calculation of higher-order moments of vertical random forcing for convective conditions. Its ability to simulate complex flow dispersion has been stated in a previous paper (Hernández et al. 1995, Atmospheric Environment, 29A, 1331-1341). The new version follows Thomson's scheme (1984, Q. Jl Roy. Met. Soc.110, 1107-1120). It is also based on Langevin equation and follows the ideas given by Brusasca et al. (1992, Atmospheric Environment26A, 707-723) and Anfossi et al. (1992, Nuovo Cemento 15c, 139-158). The model is used to simulate the dispersion and predict the ground level concentration (g.l.c.) of a tracer (SF 6) released from both an elevated source ( case a) and a ground level source ( case b) in a highly complex mountainous terrain during neutral and synoptically dominated conditions ( case a) and light and apparently stable conditions ( case b). The last case is considered as being a specially difficult task to simulate. In fact, few works have reported situations with valley drainage flows in complex terrains and real stable atmospheric conditions with weak winds. The model assumes that nearly calm situations associated to strong stability and air stagnation, make the lowest layers of PBL poorly diffusive (Brusasca et al., 1992, Atmospheric Environment26A, 707-723). Model results are verified against experimental data from Guardo-90 tracer experiments, an intensive field campaign conducted in the Carrion river valley (Northern Spain) to study atmospheric diffusion within a steep walled valley in mountainous

  8. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Persistent Urban Influence on Surface Water Quality via Impacted Groundwater.

    Science.gov (United States)

    Gabor, Rachel S; Hall, Steven J; Eiriksson, David P; Jameel, Yusuf; Millington, Mallory; Stout, Trinity; Barnes, Michelle L; Gelderloos, Andrew; Tennant, Hyrum; Bowen, Gabriel J; Neilson, Bethany T; Brooks, Paul D

    2017-09-05

    Growing urban environments stress hydrologic systems and impact downstream water quality. We examined a third-order catchment that transitions from an undisturbed mountain environment into urban Salt Lake City, Utah. We performed synoptic surveys during a range of seasonal baseflow conditions and utilized multiple lines of evidence to identify mechanisms by which urbanization impacts water quality. Surface water chemistry did not change appreciably until several kilometers into the urban environment, where concentrations of solutes such as chloride and nitrate increase quickly in a gaining reach. Groundwater springs discharging in this gaining system demonstrate the role of contaminated baseflow from an aquifer in driving stream chemistry. Hydrometric and hydrochemical observations were used to estimate that the aquifer contains approximately 18% water sourced from the urban area. The carbon and nitrogen dynamics indicated the urban aquifer also serves as a biogeochemical reactor. The evidence of surface water-groundwater exchange on a spatial scale of kilometers and time scale of months to years suggests a need to evolve the hydrologic model of anthropogenic impacts to urban water quality to include exchange with the subsurface. This has implications on the space and time scales of water quality mitigation efforts.

  10. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  11. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    Wetting is essential and ubiquitous in a variety of natural and technological processes. Silicon dioxides-water systems are abundant in nature and play fundamental roles in a vast variety of novel science and engineering activities such as silicon based devices, nanoscale lab on a chip systems...... and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  12. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    Wetting is essential and ubiquitous in a variety of natural and technological processes.1,2,3 Silicon dioxides-water systems are abundant in nature and play fundamental roles in a vast variety of novel science and engineering activities such as silicon based devices, nanoscale lab on a chip systems...... and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  13. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    2010-08-16

    Aug 16, 2010 ... Using an inorganic chemistry index (ICI) a more detailed analysis can be performed. The ICI shows that the surface water chemistry in South Africa is dominated by chemical weathering, chloride salinisa- tion and sulphate contamination. Based on the importance of these factors, primary catchment areas in ...

  14. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  15. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    Heavy Metals Pollution on Surface Water Sources in Kaduna Metropolis, Nigeria. JA Aliyu, Y Saleh, S Kabiru. Abstract. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes ...

  16. Shale gas development impacts on surface water quality in Pennsylvania.

    Science.gov (United States)

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  17. GIS Technique Applied To Surface Water Survey In South Western ...

    African Journals Online (AJOL)

    A GIS is used to study the surface water in Ibadan. Data which relates to the physical parameters of the study area, were used in this study. These included a SPOT-multispectral imagery, topographic and geological maps of Ibadan, which were analyzed and interpreted. The enhancement of the digital image (SPOT- ...

  18. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  19. Influence of discharged effluent on the quality of surface water ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... This article reports on the level of toxic trace metals (Cd, Pb, Mn, Zn, Cu and Ni) in surface water and sediment along the Blaauwbankspruit in the West Rand District of South Africa. This spruit serves as receiving channel of wastewaters from sewage treatment plant and a gold mine. Some physical and.

  20. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  1. Chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    The objectives of the study are to assess, ascertain and evaluate the level, degree and type of pollution that characterize the surface water resources of Enugu area of southeastern Nigeria in terms of physico-chemical and bacterialogical constituents. Field measurements of physical parameters were preceded by chemical ...

  2. heavy metals pollution on surface water sources in kaduna ...

    African Journals Online (AJOL)

    ABSTRACT. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted ...

  3. Community Participation in Surface Water Harvesting in Marigat ...

    African Journals Online (AJOL)

    Community Participation in Surface Water Harvesting in Marigat Division, Kenya. R Magut, EC Kipkorir, F Daudi. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ejesm.v7i2.5S · AJOL African Journals Online.

  4. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  5. Hierarchical clustering of RGB surface water images based on MIA ...

    African Journals Online (AJOL)

    This database, compiled from digital photographs of the various water levels and similar images of surface areas and vegetation, was transferred into an image matrix, and reorganised by means of principal component analysis (PCA) based on singular value decomposition (SVD). The high dimensionality of original images ...

  6. Recovery of condensate water quality in power generator's surface condenser

    Science.gov (United States)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  7. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include

  8. Influence of discharged effluent on the quality of surface water ...

    African Journals Online (AJOL)

    This article reports on the level of toxic trace metals (Cd, Pb, Mn, Zn, Cu and Ni) in surface water and sediment along the Blaauwbankspruit in the West Rand District of South Africa. This spruit serves as receiving channel of wastewaters from sewage treatment plant and a gold mine. Some physical and chemical influences ...

  9. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  10. Stable isotope systematics of surface water bodies in the Himalayan ...

    Indian Academy of Sciences (India)

    Stable hydrogen (D) and oxygen (18O) isotope ratios of the headwaters of the Indus and its tributaries, surface ice in glaciers, saline and fresh water lakes and thermal springs in the Himalayan and Trans- Himalayan (Kashmir) region are reported. The D-18O relationship for the river samples shows a slope of 9.12 ...

  11. Variation In Surface Water Vapour Density Over Four Nigerian Stations

    African Journals Online (AJOL)

    The surface water vapour density ρ has been studied using monthly averages of temperature and relative humidity at four selected weather stations in Nigeria for the years 1987 to 1991. It is found that during the dry season months of November to March, ρ is higher at night by an average of about 9.9% than during the day ...

  12. Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants.

    Science.gov (United States)

    Zhang, Wei-Wei; Wang, Miao; Wang, Ai-Ying; Yin, Xiao-Han; Feng, Zhao-Zhong; Hao, Guang-You

    2017-11-30

    Elevated tropospheric ozone (O3 ) concentration has been shown to affect many aspects of plant performance including detrimental effects on leaf photosynthesis and plant growth. However, it is not known whether such changes are accompanied by concomitant responses in plant hydraulic architecture and water relations, which would have great implications for plant growth and survival in face of unfavorable water conditions. A soybean (Glycine max (L.) Merr.) cultivar commonly used in Northeast China was exposed to non-filtered air (NF, averaged 24.0 nl l-1 ) and elevated O3 concentrations (eO3 , 40 nl l-1 supplied with NF air) in six open-top chambers for 50 days. The eO3 treatment resulted in a significant decrease in whole-plant hydraulic conductance that is mainly attributable to the reduced hydraulic conductance of the root system and the leaflets, while stem and leaf petiole hydraulic conductance showed no significant response to eO3 . Stomatal conductance of plants grown under eO3 was lower during mid-morning but significantly higher at midday, which resulted in substantially more negative daily minimum water potentials. Moreover, excised leaves from the eO3 treated plants showed significantly higher rates of water loss, suggesting a lower ability to withhold water when water supply is impeded. Our results indicate that, besides the direct detrimental effects of eO3 on photosynthetic carbon assimilation, its influences on hydraulic architecture and water relations may also negatively affect O3 -sensitive crops by deteriorating the detrimental effects of unfavorable water conditions. This article is protected by copyright. All rights reserved.

  13. Elevational gradients in fish diversity in the Himalaya: water discharge is the key driver of distribution patterns.

    Directory of Open Access Journals (Sweden)

    Jay P Bhatt

    Full Text Available BACKGROUND: Studying diversity and distribution patterns of species along elevational gradients and understanding drivers behind these patterns is central to macroecology and conservation biology. A number of studies on biogeographic gradients are available for terrestrial ecosystems, but freshwater ecosystems remain largely neglected. In particular, we know very little about the species richness gradients and their drivers in the Himalaya, a global biodiversity hotspot. METHODOLOGY/PRINCIPAL FINDINGS: We collated taxonomic and distribution data of fish species from 16 freshwater Himalayan rivers and carried out empirical studies on environmental drivers and fish diversity and distribution in the Teesta river (Eastern Himalaya. We examined patterns of fish species richness along the Himalayan elevational gradients (50-3800 m and sought to understand the drivers behind the emerging patterns. We used generalized linear models (GLM and generalized additive models (GAM to examine the richness patterns; GLM was used to investigate relationship between fish species richness and various environmental variables. Regression modelling involved stepwise procedures, including elimination of collinear variables, best model selection, based on the least Akaike's information criterion (AIC and the highest percentage of deviance explained (D(2. This maiden study on the Himalayan fishes revealed that total and non-endemic fish species richness monotonously decrease with increasing elevation, while endemics peaked around mid elevations (700-1500 m. The best explanatory model (synthetic model indicated that water discharge is the best predictor of fish species richness patterns in the Himalayan rivers. CONCLUSIONS/SIGNIFICANCE: This study, carried out along one of the longest bioclimatic elevation gradients of the world, lends support to Rapoport's elevational rule as opposed to mid domain effect hypothesis. We propose a species-discharge model and contradict

  14. Elevational gradients in fish diversity in the Himalaya: water discharge is the key driver of distribution patterns.

    Science.gov (United States)

    Bhatt, Jay P; Manish, Kumar; Pandit, Maharaj K

    2012-01-01

    Studying diversity and distribution patterns of species along elevational gradients and understanding drivers behind these patterns is central to macroecology and conservation biology. A number of studies on biogeographic gradients are available for terrestrial ecosystems, but freshwater ecosystems remain largely neglected. In particular, we know very little about the species richness gradients and their drivers in the Himalaya, a global biodiversity hotspot. We collated taxonomic and distribution data of fish species from 16 freshwater Himalayan rivers and carried out empirical studies on environmental drivers and fish diversity and distribution in the Teesta river (Eastern Himalaya). We examined patterns of fish species richness along the Himalayan elevational gradients (50-3800 m) and sought to understand the drivers behind the emerging patterns. We used generalized linear models (GLM) and generalized additive models (GAM) to examine the richness patterns; GLM was used to investigate relationship between fish species richness and various environmental variables. Regression modelling involved stepwise procedures, including elimination of collinear variables, best model selection, based on the least Akaike's information criterion (AIC) and the highest percentage of deviance explained (D(2)). This maiden study on the Himalayan fishes revealed that total and non-endemic fish species richness monotonously decrease with increasing elevation, while endemics peaked around mid elevations (700-1500 m). The best explanatory model (synthetic model) indicated that water discharge is the best predictor of fish species richness patterns in the Himalayan rivers. This study, carried out along one of the longest bioclimatic elevation gradients of the world, lends support to Rapoport's elevational rule as opposed to mid domain effect hypothesis. We propose a species-discharge model and contradict species-area model in predicting fish species richness. We suggest that drivers of

  15. Thin Water and Ice Films at Mineral Surfaces

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  16. Numerical simulation of free water surface in pump intake

    Science.gov (United States)

    Zhao, L. J.; Nohmi, M.

    2012-11-01

    The purpose of this paper is to verify the volume of fluid (VOF) method for simulating the free water surface flow in pump intake. With the increasing computer power, VOF method has been becoming a more flexible and accurate choice to replace the conventional fixed water surface method, because it does not require assumptions on the nature of air-water interface. Two examples are presented in this paper. The first example is presented for simulating the growth of air-entrained vortices. LES (Large Eddy Simulation) model, instead of RANS (Reynolds averaged Navier-Stokes) turbulence model, is used to capture the peak of circular velocity around the vortex core. Numerical result shows good agreement with the benchmark experiment carried by the Turbomachinery Society of Japan. The second example predicts the flow rate distribution in the pump intake consisting of one opened and two closed channels. VOF result is compared with the conventional fixed water surface method assuming free-slip boundary condition on the fluid interface. The difference of flow pattern in the opened channel indicates that numerical flow field is affected remarkably by the setup of boundary condition at air-water interface.

  17. Surface tension of water in the presence of perfluorocarbon vapors.

    Science.gov (United States)

    Chernyshev, Vasiliy S; Skliar, Mikhail

    2014-03-28

    Fluorocarbons are highly hydrophobic, biocompatible compounds with a variety of medical applications. Despite significant interest, the study of interfacial properties of fluorocarbons in aqueous systems has received limited attention. In this study, we investigate the influence of perfluoropentane and perfluorohexane vapors on the surface tension of water at room temperature. The results show a substantial decrease in the surface tension of water in the presence of perfluorocarbon vapors. In the investigated range of partial pressures up to the saturation value, a linear correlation between the surface tension and the partial pressure was found. This suggests that an adsorbed perfluorocarbon layer is formed on the surface of water. For comparison, the effect of the perfluorocarbon vapor on the surface tension of methanol was also investigated and a similar dependence was observed. Our results indicate that the stability and dynamic transitions of fluorocarbon colloids, which may be dispersed under physiological conditions as microdroplets, bubbles, or their combination, are likely affected by the composition of liquid and gas phases.

  18. Elevated soil CO2 efflux at the boundaries between impervious surfaces and urban greenspaces

    Science.gov (United States)

    Wu, XiaoGang; Hu, Dan; Ma, ShengLi; Zhang, Xia; Guo, Zhen; Gaston, Kevin J.

    2016-09-01

    Impervious surfaces and greenspaces have significant impacts on ecological processes and ecosystem services in urban areas. However, there have been no systematic studies of how the interaction between the two forms of land cover, and especially their edge effects, influence ecosystem properties. This has made it difficult to evaluate the effectiveness of urban greenspace design in meeting environmental goals. In this study, we investigated edge effects on soil carbon dioxide (CO2) fluxes in Beijing and found that soil CO2 flux rates were averagely 73% higher 10 cm inwards from the edge of greenspaces. Distance, soil temperature, moisture, and their interaction significantly influenced soil CO2 flux rates. The magnitude and distance of edge effects differed among impervious structure types. Current greening policy and design should be adjusted to avoid the carbon sequestration service of greenspaces being limited by their fragmentation.

  19. Influence of annealing on the shot-peened surface of duplex stainless steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qiang; Wu, Xueyan [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Jiang, Chuanhai, E-mail: chjiang2011@163.com [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Xu, Zhou; Zhan, Ke [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2013-02-15

    Highlights: ► The relaxations of residual stresses caused by thermal treatments were studied. ► Dislocation density of γ-phase is higher than that of α-phase in the surface after shot peening. ► A new phase appeared apparently at the annealing temperature of 700 °C. ► Activation enthalpy for stress relaxation of γ-phase is lowered than that of α-phase. ► Microhardness is influenced by dislocation density relief and composition of phases. -- Abstract: In order to investigate the residual stress relaxations of shot-peened surface, isothermal annealing treatments were carried out on duplex stainless steel (DSS) S32205 after shot peening (SP) with temperature ranging from 600 to 700 °C. A new phase with a tetragonal crystal structure (σ-phase) appears apparently at the annealing temperature of 700 °C for 64 min. The rates of residual stress relaxation in austenite (γ-phase) are higher than that in ferrite (α-phase) under the corresponding annealing temperature for 64 min. The residual-stress relaxation process during isothermal annealing could be described by Zener–Wert–Avrami function. The activation enthalpy for residual stress relaxation in γ-phase is lower than that in α-phase. At temperature of 700 °C, the microhardness increases gradually after reduction at the initial stage because the strengthening of the new σ-phase is dominating with the prolongation of annealing time, the content-increased γ-phase may also have a certain contribution.

  20. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA

    OpenAIRE

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2016-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history.?Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Re...

  1. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  2. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  3. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... in lowland catchments, mainly exploring and assessing Distributed Temperature Sensing (DTS) which by detecting variability in temperatures at the Sediment-Water Interface (SWI) can indirectly map variability in groundwater discharge at several spatial and temporal scales. On the small-scale (... streambeds which were shown to influence DTS data by sedimentation and scouring processes. A new methodology was therefore developed for the long-term monitoring of surface water-groundwater exchanges in soft-bedded streams....

  4. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  5. Water-mediated proton hopping on an iron oxide surface.

    Science.gov (United States)

    Merte, Lindsay R; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A; Grabow, Lars C; Kudernatsch, Wilhelmine; Wendt, Stefan; Lægsgaard, Erik; Mavrikakis, Manos; Besenbacher, Flemming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H(3)O(+)-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO(2)(110), where water dissociation is a key step in proton diffusion.

  6. Aichi virus in sewage and surface water, the Netherlands.

    Science.gov (United States)

    Lodder, Willemijn J; Rutjes, Saskia A; Takumi, Katsuhisa; de Roda Husman, Ana Maria

    2013-08-01

    Detection of Aichi virus in humans was initially reported in Japan in 1989. To establish a timeline for the prevalence of Aichi virus infection among humans in the Netherlands, we conducted molecular analysis of archival water samples from 1987-2000 and 2009-2012. Aichi virus RNA was detected in 100% (8/8) of sewage samples and 100% (7/7) of surface water samples collected during 1987-2000 and 100% (8/8) of sewage samples and 71% (5/7) of surface water samples collected during 2009-2012. Several genotype A and B Aichi virus lineages were observed over the 25-year period studied, but the time course of viral genetic diversity showed recent expansion of the genotype B population over genotype A. Our results show that Aichi virus has been circulating among the human population in the Netherlands since before its initial detection in humans was reported and that genotype B now predominates in this country.

  7. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  8. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  9. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  10. Micro-Satellite Constellation for Global Surface Water Data

    Science.gov (United States)

    Apperson, A. T.; Vanderbilt, V. C.

    2011-12-01

    Alsdorf et al. [1] have proposed a Ka band interferometric radar system for global monitoring of surface waters from space. We explore the feasibility of a constellation of micro-satellites with optical sensors measuring the sun's specular reflection by surface waters. Our approach, which is complementary to that of Alsdorf et al., would provide weekly global coverage with a 10m ground spatial resolution if a six micro-satellite constellation used a 0.7° ground swath width and the ADEOS 1 orbital parameters. Optical sensing has three main obstacles; smoke, clouds and canopy structures. The sun's specular reflection provides a signal strength that, from observations, penetrates aerosols with an optical depth approaching 1.0 and provides detection down to perhaps 1/32 of a pixel, which would potentially allow detection of surface waters under many plant canopies. Our system would provide data to help answer Alsdorf's question, "What is the spatial and temporal variability in terrestrial surface water storage, and how can we predict these variations more accurately?" [1] In addition, modifying the arrangement of the satellites in the constellation could potentially provide data on the canopy structure. Including an additional instrument could provide estimates on atmospheric column methane and other estimates of other atmospheric trace gases concentration. [2] [1] D. E. Alsdorf, E. Rodríguez, and D. P. Lettenmaier, "Measuring surface water from space," Rev. Geophys, vol. 45, no. 2, pp. 1-24, 2007. [2] North F. Larsen and Knut Stamnes, "Methane detection from space: use of sunglint", Opt. Eng. 45, 016202 (Feb 01, 2006); doi:10.1117/1.2150835

  11. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  12. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  13. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  14. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  15. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more...

  16. Perfluoroalkyl substances in the Maltese Environment - (I) Surface water and rain water

    NARCIS (Netherlands)

    Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P.

    2017-01-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main

  17. Development of aquatic biomonitoring models for surface waters used for drinking water supply

    NARCIS (Netherlands)

    Penders, E.J.M.

    2011-01-01

    Given the need for continued quality control of surface waters used for the production of drinking water by state-of-the-art bioassays and biological early warning systems, the objective of the present thesis was to validate and improve some of the bioassays and biological early warning systems used

  18. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  19. Mapping Land and Water Surface Topography with instantaneous Structure from Motion

    Science.gov (United States)

    Dietrich, J.; Fonstad, M. A.

    2012-12-01

    Structure from Motion (SfM) has given researchers an invaluable tool for low-cost, high-resolution 3D mapping of the environment. These SfM 3D surface models are commonly constructed from many digital photographs collected with one digital camera (either handheld or attached to aerial platform). This method works for stationary or very slow moving objects. However, objects in motion are impossible to capture with one-camera SfM. With multiple simultaneously triggered cameras, it becomes possible to capture multiple photographs at the same time which allows for the construction 3D surface models of moving objects and surfaces, an instantaneous SfM (ISfM) surface model. In river science, ISfM provides a low-cost solution for measuring a number of river variables that researchers normally estimate or are unable to collect over large areas. With ISfM and sufficient coverage of the banks and RTK-GPS control it is possible to create a digital surface model of land and water surface elevations across an entire channel and water surface slopes at any point within the surface model. By setting the cameras to collect time-lapse photography of a scene it is possible to create multiple surfaces that can be compared using traditional digital surface model differencing. These water surface models could be combined the high-resolution bathymetry to create fully 3D cross sections that could be useful in hydrologic modeling. Multiple temporal image sets could also be used in 2D or 3D particle image velocimetry to create 3D surface velocity maps of a channel. Other applications in earth science include anything where researchers could benefit from temporal surface modeling like mass movements, lava flows, dam removal monitoring. The camera system that was used for this research consisted of ten pocket digital cameras (Canon A3300) equipped with wireless triggers. The triggers were constructed with an Arduino-style microcontroller and off-the-shelf handheld radios with a maximum

  20. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  1. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A New Method to Estimate Changes in Glacier Surface Elevation Based on Polynomial Fitting of Sparse ICESat—GLAS Footprints

    Directory of Open Access Journals (Sweden)

    Tianjin Huang

    2017-08-01

    Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.

  3. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  4. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Claudia E., E-mail: claudia.mueller@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland); Gerecke, Andreas C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Alder, Alfredo C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlanstrasse 133, 8600 Duebendorf (Switzerland); Scheringer, Martin; Hungerbuehler, Konrad [Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland)

    2011-05-15

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: > Consumer products are the most important source of PFAAs in Swiss surface waters. > Acesulfame proofs to be a good population marker in surface waters. > PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  5. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    A. Fransson

    2009-11-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (CT, [CO32−] and the saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and CT (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and

  6. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data at two sampling stations, Quebrada Blasina in Carolina and the Rio Grande de Loiza, downstream from the town of Trujillo Alto, indicate that the sanitary quality of Quebrada Blasina is and has generally been poor for more than a decade. The sanitary quality of the Rio Grande de Loiza has generally been in compliance with the water-quality goal standard fecal coliform concentrations established in July 1990 by the Puerto Rico Environmental Quality Board. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Carolina into five hydrogeologic terranes. This integrated database was then used to evaluate the ground-water potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be locally important in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. Potentiometric-surface elevations recorded in piezometers installed in the coastal area during this study were used to define ground-water flow directions in the hydrogeologic terranes composed of coastal plain clastic and limestone units. The resultant potentiometric map indicates that the coastal plain aquifer and streams in the lowland parts of the municipio of Carolina are hydraulically connected. The potentiometric map also indicates that ground-water discharge to the Rio Grande de Loiza, downstream from highway PR-3, has been enhanced by dredging of the streambed for

  7. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  8. Surface tension of ab initio liquid water at the water-air interface.

    Science.gov (United States)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D

    2016-05-28

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  9. Dispersion Management of Propagating Waveguide Modes on the Water Surface.

    Science.gov (United States)

    Fu, Shenhe; Zhou, Jianying; Li, Yongyao; Shemer, Lev; Arie, Ady

    2017-04-07

    We report on the theoretical and experimental study of the generation of propagating waveguide modes on the water surface. These propagating modes are modulated in the transverse direction in a manner that satisfies boundary conditions on the walls of the water tank. It is shown that the propagating modes possess both anomalous and normal dispersion regimes, in contrast to the extensively studied zero mode that, in the case of deep water, only has normal dispersion with a fixed frequency independent dispersion coefficient. Importantly, by using a carrier frequency at which the group velocity dispersion crosses zero, a linear nonspreading and shape-preserving wave packet is observed. By increasing the wave steepness, nonlinear effects become pronounced, thereby enabling the first observation of linearly chirped parabolic water wave pulses in the anomalous dispersion regime. This parabolic wave maintains its linear frequency chirp and does not experience wave breaking during propagation.

  10. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  11. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  12. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  13. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    Science.gov (United States)

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.

  14. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  15. CCQM-K126: low polarity organic in water: carbamazepine in surface water

    Science.gov (United States)

    Wai-mei Sin, Della; Wong, Yiu-chung; Lehmann, Andreas; Schneider, Rudolf J.; Kakoulides, Elias; Tang Lin, Teo; Qinde, Liu; Cabillic, Julie; Lardy-fontan, Sophie; Nammoonnoy, Jintana; Prevoo-Franzsen, Désirée; López, Eduardo Emilio; Alberti, Cecilia; Su, Fuhai

    2017-01-01

    The key comparison CCQM-K126 low polarity organic in water: carbamazepine in surface water was coordinated by Government Laboratory Hong Kong under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Eight National Metrology institutes or Designated Institutes participated and participants were requested to report the mass fraction of carbamazepine in surface water study material. The surface water sample was collected in Hong Kong and was gravimetrically spiked with standard solution. This study provided the means for assessing measurement capabilities for determination of low molecular weight analytes (mass range 100-500) and low polarity (pKOWpeer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  17. Microcystin-LR in surface water of Ponjavica river

    Directory of Open Access Journals (Sweden)

    Natić Dejan

    2012-01-01

    Full Text Available Background/Aim. Cyanobacterial toxins befall a group of various compounds according to chemical structure and health effects on people and animals. The most significant in this large group of compounds are microcystins. Their presence in water used for human consumption causes serious health problems, liver beeing the target organ. Microcystins are spread all over the world. Waterblooms of cyanobacterias and their cyanotoxins are also common in the majority of surface waters in Serbia. The aim of this study was to propose HPLC method for determination of mikrocystin-LR, to validate the method and to use it for determination of microcystin-LR in the surface water of the river Ponjavica. The Ponjavica is very eutrophic water and has ideal conditions for the cyanobacterial growth. Methods. Sample of water form the Ponjavica river were collected during the summer 2008. Coupled columns (HLB, Sep-Pak, were used for sample preparation and HPLC/PDA method was used for quantification of microcystin- LR. Results. Parameters of validation show that the proposed method is simple, fast, sensitive (0.1 mg/L and selective with the yield of 89%-92%. The measuring uncertainty of

  18. Occurrence of pesticides from coffee crops in surface water

    Directory of Open Access Journals (Sweden)

    Márcio Ribeiro Vianna Neto

    2013-04-01

    Full Text Available The excessive amount of pesticides applied in agricultural areas may reach surface water, thereby contaminating it. Thus, the main purpose of this study was to investigate the presence of pesticides used in a sub-basin headwater with coffee crops, situated in the Dom Corrêa district, Manhuaçu, Minas Gerais. The region of study is a great producer of coffee. Crops occupy steep areas and are situated close to surface water bodies. In this study, four sample collection points were selected in streams as well as a point in the distribution network and two points in the water treatment station (raw and treated water a total of seven points. The samples were collected in rainy and dry seasons. Organochlorines, organophosphates, pyrethroids, carbamates and triazoles pesticides were identified by liquid and gas chromatography analysis with tandem mass spectrometry. The occurrence of pesticides was more evident in the rainy season. A total of 24 distinct pesticides were detected. At least one pesticide was identified in 67% of the samples collected during the rainy season and in 21% of the samples collected during drought. Many pesticides detected in water are not regulated in Brazilian legislation regarding potability.

  19. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  20. Dynamics of microdroplets over the surface of hot water

    Science.gov (United States)

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm ii) they levitate above the water surface by 10 ~ 100 μm iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

  1. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  2. Hydrology Science and Applications from the Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Cretaux, J. F.; Pavelsky, T.

    2016-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of 10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. In this introductory presentation, we will discuss SWOT's capabilities and the science questions that it will aim to address.

  3. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  4. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  5. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  6. Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana.

    Science.gov (United States)

    Gibson, Kristen E; Opryszko, Melissa C; Schissler, James T; Guo, Yayi; Schwab, Kellogg J

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses.

  7. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display.

    Science.gov (United States)

    Khatun, M Mahfuza; Liu, Chen-Guang; Zhao, Xin-Qing; Yuan, Wen-Jie; Bai, Feng-Wu

    2017-02-01

    Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.

  8. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  9. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  10. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    Science.gov (United States)

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  11. Storm water contamination and its effect on the quality of urban surface waters.

    Science.gov (United States)

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  12. Mathematical modelization of surface waters for drinking water; Modelizacion matematica de la potabilizacion de aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Llanes, L.A.; Alvarez Rosell, S.

    1995-06-01

    The application of the general strategy of deterministic modelling to the water treatment for human consumption process for surface waters is treated in this paper. Deterministic models that describe the behaviour of clarification processes: coagulation-flocculation an filtration with respect to the principal parameters that define the water principal parameters that define the water quality: turbidity, color, pH, organic matter an presence of iron, manganese and aluminium cations were obtained. The models have been checked in actual operation conditions of water treatment plant for human consumption located in Campo Florido, Havana, cuba, named Planta Norte Habana. This plant receives water from three dams. The obtained results were good. The models are valid to describe the process, to corroborate the main theories related to water clarification and to know more about this process. The complexity of the models permits their rapid and efficient solution even without the aid of a digital computer. (Author) 5 refs.

  13. Cavitation erosion of copper and aluminium in water at elevated-temperature

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available Cavitation erosion tests were carried out in tap water on aluminium and copper samples in a rotating disk cavitations test apparatus, to study the effect of water temperature on cavitation dynamics and cavitation erosion. A shift in the position...

  14. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    Science.gov (United States)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  15. Dynamics in surface water solute concentrations and consequences for water quality monitoring

    Science.gov (United States)

    Rozemeijer, J.; Van der Velde, Y.; Broers, H. P.; van Geer, F.

    2012-04-01

    For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. This results in large uncertainties in the estimates of loads and average concentrations, which complicates water quality assessments. The main causes of dynamics in groundwater and surface water quality are variations in human land management, biochemical processes, and meteorological conditions. In this study, we focused on the short-term variations in water quality that are normally not captured with common monthly measurement intervals. Our multi-scale experimental research setup in The Netherlands revealed that weather induced variations are the major cause of short-term variations in water quality. During rainfall events, the relative contribution of different flow routes (groundwater, tile drain, overland flow) to the total surface water discharge changes. These different flow routes have different residence times in the subsurface and therefore different chemical compositions. For example, our continuous nitrate concentration measurements repetitively showed a lowering in stream water nitrate concentrations in response to rainfall events. This lowering was caused by a temporal dilution of nitrate-rich tile drain effluent with nitrate-poor rainwater. On the other hand, the continuously measured phosphorus concentrations peaked during rainfall events due to the resuspension of phosphorus-rich sediments. We will also present the following options to deal with the highly dynamic behavior of solute concentrations in surface water quality monitoring practice: (1) use modern equipment for continuous concentration measurements, (2) measure average concentrations using passive samplers, and (3) use the explanatory strength of generally available high-frequency data (e.g. precipitation and discharge records) to

  16. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  17. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  18. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  19. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  20. Exogenous Application of Growth Enhancers Mitigate Water Stress in Wheat by Antioxidant Elevation

    Directory of Open Access Journals (Sweden)

    Hamid eNawaz

    2016-05-01

    Full Text Available TThe present study was conducted to investigate the response of two wheat cultivars (AARI-11 and Millat-11 to a foliar application of four growth enhancers which include: {H2O (water, MLE30 (moringa leaf extract, KCl (potassium chloride and BAP (benzyl-amino purine}, within the six irrigation water-regimes which are applied at the various critical growth stages such as crown root initiation (CRI, tillering (T, booting (B and heading (H. Irrigation water-regimes include: CRI+T+B, CRI+T, CRI+B, T+B, T+H and control (CRI+T+B+H. The growth enhancers i.e. H2O, MLE30 (1:30, KCl (2% and BAP (50 mg L-1 were applied @ 500 L ha-1 at tillering and heading stages. The results demonstrated some increased quantities of both enzymatic (superoxide dismutase, peroxidase, catalase and non-enzymatic (ascorbic acid, phenol antioxidants in leaves of AARI-11 when MLE30 was applied under T+B and T+H irrigation water-regimes. Similar results were also observed in the case of leaf chlorophyll a & b and K+ contents in both cultivars under control, T+B and CRI+T+B irrigation water regimes. AARI-11 produced the highest biological and grain yield, due to the application of MLE30 and BAP under control, CRI+T+B, T+B and T+H irrigation water-regimes. However, KCl lagged behind among the treatments set for both cultivars under all the irrigation water-regimes. Foliar spray of MLE30 remained prominent growth enhancer and stresses mitigating agent under water deficit conditions particularly under T+B and T+H irrigation water-regimes. Moreover, economic analysis indicated that the foliar application of MLE30 is a cost effective and environment friendly strategy for the maximum yield and income.

  1. Surface potential of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  2. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  3. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl J.; Mobley, Curtis D.; Overstreet, Brandon T.

    2017-09-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  4. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon

    2017-01-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  5. MIKE SHE: Software for integrated surface water/ground water modeling

    Science.gov (United States)

    Chunmiao Zheng,; Hughes, Joseph D.

    2008-01-01

    MIKE SHE: Software for Integrated Surface Water/Ground Water Modeling - Hughes - 2008 - Groundwater - Wiley Online Library // Modernizr.load('http://content.readcube.com.ezproxy.library.wisc.edu/wiley/epdf_linker.js'); // // // var gs_channels = 'default'; // var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; ( function () { var gads = document.createElement ( 'script' ) , node = document.getElementsByTagName ( 'script' ) [ 0 ] ; gads.async = true; gads.src = document.location.protocol + '//www.googletagservices.com/tag/js/gpt.js'; node.parentNode.insertBefore ( gads , node ); }) (); // Consideration of surface water and ground water interactions is becoming more important owing to complex water resource problems that require balancing water use and environmental concerns. Modeling of ground water is increasingly being done from an integrated hydrologic system perspective. MIKE SHE is a software tool developed specifically to simulate fully coupled surface water and ground water flow and transport processes. MIKE SHE includes a number of modules to simulate climatic processes, overland flow, channel flow, and saturated-unsaturated ground water flow. Development of Système Hydrologique Européen (SHE) began in 1977 as a collaborative research project by the Institute of Hydrology in the United Kingdom, SOGREAH in France, and the Danish Hydraulic Institute in Denmark (Graham and Butts 2006). The Danish Hydraulic Institute (now called DHI Water and Environment) is the developer of the commercial version of SHE (MIKE SHE); more information regarding the software can be found on the company’s Web site at http://www.dhigroup.com.

  6. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    Science.gov (United States)

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pimidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  7. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  8. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    Science.gov (United States)

    Prigent, Catherine; Lettenmaier, Dennis P.; Aires, Filipe; Papa, Fabrice

    2016-03-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25^circ × 0.25^circ) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

  9. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  10. Altered Water Extraction and Hydraulic Redistribution of Agricultural Crop Soybean at Daily Time Scales in Open-Air Elevation of CO2 under Drought

    Science.gov (United States)

    Schmitz, P. G.; Gray, S. B.; Bernacchi, C.; Leakey, A. D.; Kumar, P.; Long, S. P.

    2010-12-01

    Corn-soy land, at 70 Mha is arguably the largest single ecosystem type in the contiguous 48 states. It is anticipated that global climate change will lead to an increasing occurrence of hydrologic extremes such as droughts at the regional and local scale, significantly altering the availability of soil water to agricultural crops. By contrast rising CO2 through its suppression of stomatal conductance may counteract this. The response of this ecosystem to increase in atmospheric CO2, to the expected mid-century levels (550 μmol mol-1) has been shown at field scale using Free Air Concentration Enrichment (FACE) to decrease ET by 9-16%, for soybean (Glycine max), relative to controls. However, the feedback of soil-moisture to reduction in ecosystem ET has not been tested when increased drought and CO2 are combined in the open. While drought will lead to a reduction of volumetric water content (VWC) along the soil moisture profile, the distribution of this reduction will be innately driven by both patterns of water uptake and hydraulic redistribution by the rooting system. The ability of the crop to dynamically alter soil moisture through these strategies feed back on crop rooting strategy and the ability to extract moisture for transpiration. To examine the extent to which crops are capable of dynamically altering the distribution of soil moisture in response to both drought and elevated atmospheric CO2, soybean was grown in field conditions under ambient (approximately 385 μmol CO2 mol-1 air) and elevated [CO2] (approximately 550 μmol mol-1) using FACE. Four replicated blocks each contained a 20m diameter elevated CO2 plot and a similar control plot. Within each plot, were nested ambient precipitation and drought sub-plots (approximately 60% precipitation reduction, p textless 0.05). Drought was imposed by, the use of rain interception, canopies that were automatically deployed during night-time precipitation events and by the use of sub-surface soil

  11. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  12. Inference of effective river properties from remotely sensed observations of water surface

    Science.gov (United States)

    Garambois, Pierre-André; Monnier, Jérôme

    2015-05-01

    The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the

  13. Enhanced water repellency of surfaces coated with multiscale carbon structures

    Science.gov (United States)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  14. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA < 10°). These results indicate that the capillary-pressure balance model, described for wettability mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA < OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  15. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  16. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  17. Ecoregions: an approach to surface-water protection (journal version)

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.M.; Larsen, D.P.

    1988-01-01

    Many of the most-important scientific and management questions require some sort of regionalization. Problems are too widespread and numerous to be treated on a site-by-site basis and ecosystems are too variable to be treated the same way nationwide. This paper demonstrates the use of a regional framework for determining chemical and biological goals for surface waters. In four case studies, an eco-region map drawn from landscape characteristics was used to stratify the naturally occurring variance in water quality and biological communities. An ecoregion framework helps apply sound ecological theory to setting goals for entire states or regions of the country. Such a framework is an important bridge between site-specific and national approaches. When combined with appropriate statistical design, the ecoregional approach can provide precise expectations about large numbers of water bodies that would not be possible from traditional site-specific research or river-basin surveys.

  18. Urban areas impact on surface water quality during rainfall events

    Science.gov (United States)

    Ferreira, C. S. S.; Soares, D.; Ferreira, A. J. D.; Costa, M. L.; Steenhuis, T. S.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    Increasing population and welfare puts water management under stress, especially in what concerns water quality. Surface water properties are strongly linked with hydrological processes and are affected by stream flow variability. Changes in some chemical substances concentrations can be ascribed to different water sources. Runoff generated in urban areas is considered the main responsible for water quality degradation inside catchments. This poster presents the methodology and first results of a study that is being developed to assess the impact of urbanization on surface water quality, during rainfall events. It focuses on the Ribeira dos Covões catchment (620 ha) located in central Portugal. Due to its proximity to the Coimbra city in central region, the urban areas sprawled during the last decades. In 2008, urban areas represented 32% of the area. Recently a highway was constructed crossing the catchment and a technological industrial park is being build-up in the headwaters. Several water samples were collected at four different locations: the catchment outlet and in three sub-catchments with distinct urbanization patterns - Espírito Santo that represents a highly urbanized area (45%) located over sandstone, Porto do Bordalo with 30% of urbanized area located over limestone, and IParque, mainly forest and just downstream the disturbed technological industrial park construction area. The samples were collected at different times during rainfall events to monitor the variability along the hydrograph. Six monitoring campaigns were performed: two in April 2011, at the end of the winter period, and the others between October and November 2011, after the dry summer. The number of samples collected per monitoring campaign is variable according with rainfall pattern. Parameters such as pH, conductivity, turbidity and total suspended sediments were immediately analyzed. The samples were then preserved, after filtered (0.45µm), and later analyzed for dissolved

  19. Adsorption of water, sulfates and chloride on arsenopyrite surface

    Science.gov (United States)

    Silva, Juliana C. M.; dos Santos, Egon C.; de Oliveira, Aline; Heine, Thomas; De Abreu, Heitor A.; Duarte, Hélio A.

    2018-03-01

    Arsenopyrite is one of the sulfide minerals responsible for acid rock drainage (ARD) and is one of the most hazardous in regions affected by mining activities. This phenomenon involves complex reaction mechanism. Although it is intensely investigated, there is a lack of consensus concerning the reaction mechanisms and more information is still necessary. In this work, the adsorption of water, hydrochloric acid, and sulfuric acid on arsenopyrite (001) surface was investigated by means of Density Functional calculations and the results compared to other sulfides aiming to understand the mineral/water interface. The interaction of the chemical species with the (001) FeAsS surface is the first step to understand the intricate oxidation mechanism of arsenopyrite. Molecular water adsorption on (001) FeAsS is more favored than the adsorption of sulfate favoring the dissolution of sulfates and enhancing its oxidation. The estimated adsorption energies of water, sulfates and chloride on other sulfide minerals are compared with the estimated values for arsenopyrite and the chemical reactivity differences discussed in detail.

  20. Persistence of legacy soil P and elevated background water P concentrations in Water Conservation Area 2A, a northern Everglades wetland

    Science.gov (United States)

    Juston, John M.; Kadlec, Robert H.; DeBusk, William F.; Jerauld, Mike J.; DeBusk, Thomas A.

    2015-12-01

    Upstream source control and Stormwater Treatment Areas (STAs) have reduced phosphorus (P) loads to Water Conservation Area 2A (WCA-2A), a northern Everglades wetland, by three quarters since year 2000. Nevertheless, large storages of P remain in enriched peat soils and it is unclear how legacy stores will impact spatial and temporal scales of recovery. We remeasured soil P enrichment along a well-studied eutrophication gradient in WCA-2A and applied a profile modeling approach with uncertainty analysis to assess changes in longitudinal soil P gradients 13 years after load reductions. We then analyzed existing internal water P data, using a novel data screening approach, for evidence of lowest possible water P concentrations independent from inflows. We interpret such water P limits as evidence of the strength of internal loading at a location. Results indicate that soil P enrichment persists in the ˜7.5 km long "impacted" zone, with no significant evidence of net advancement or recession, while a large pool of labile P in the flocculent layer consolidated and diminished. There is indeed evidence, both spatial and temporal, that this extensive zone of enriched soil P continues to elevate lowest achievable water P concentrations. The corresponding gradient of elevated water P limits is both receding and diminishing since load reductions, thus providing further evidence toward recovery. However, results also suggest that these "transitory P limits" due to internal loading are likely to persist for decades above water quality targets. These results advance our understanding of recovery in impacted wetlands and are relevant to Everglades restoration.

  1. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water

    Directory of Open Access Journals (Sweden)

    Philip L. Munday

    2016-10-01

    Full Text Available Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2 in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation into the use of different test water in the experimental arena is warranted. Here, we used a fully factorial design to test the effect of rearing treatment water (control or high CO2 and experimental test water (control or high CO2 on antipredator responses of larval reef fishes. We tested antipredator behaviour in larval clownfish Amphiprion percula and ambon damselfish Pomacentrus amboinensis, two species that have been used in previous high CO2 experiments. Specifically, we tested if: (1 using control or high CO2 water in a two channel flume influenced the response of larval clownfish to predator odour; and (2 using control or high CO2 water in the test arena influenced the escape response of larval damselfish to a startle stimulus. Finally, (3 because the effects of high CO2 on fish behaviour appear to be caused by altered function of the GABA-A neurotransmitter we tested if antipredator behaviours were restored in clownfish treated with a GABA antagonist (gabazine in high CO2 water. Larval clownfish reared from hatching in control water (496 µatm strongly avoided predator cue whereas larval clownfish reared from hatching in high CO2 (1,022 µatm were attracted to the predator cue, as has been reported in previous studies. There was no effect on fish responses of using either control or high CO2 water in the flume. Larval damselfish reared for four days in high CO2 (1,051 µatm exhibited a slower response to a startle stimulus and slower escape speed compared with fish reared in control conditions (464 µatm. There was no effect of test water on escape responses. Treatment of high-CO2 reared

  2. Tracing aquifer-surface water and aquifer-aquifer interactions using a multi-tracer approach

    Science.gov (United States)

    Demuth, Myriam; Stumpp, Christine

    2013-04-01

    Conserving a good groundwater quality is a major challenge because of its importance as a reservoir for drinking water. Influxes from surface water, especially input of nitrate, can deteriorate groundwater quality. The objective of our project was to i) investigate aquifer-surface water interactions and ii) trace aquifer-aquifer interactions concerning the separation between three porous aquifers. The investigation area is located in Bavaria, Southern Germany and contains three aquifers A-C (quaternary sediment) that were described as three separated flow systems to date. Two rivers 1 -2 drain the investigation area. The sampling campaign (Apr-Oct 2012) included three sampling locations along the streams, six wells in aquifer A and three wells each in aquifers B and C. The water samples were analyzed for concentration of anions (Cl-, SO42-, NO3-), cations (Na+, K+, Mg2+, Ca2+), electrical conductivity, water temperature, pH, oxygen and stable isotopes of water (^18O, ^2H), which were used as environmental tracers. Our results showed that only one out of three groundwater wells close to river 1 indicated river water infiltration into the groundwater due to elevated concentration of sulfate and depleted concentration of calcium and magnesium compared to the rest of the aquifer. The water chemistry of all other groundwater wells at river 1 and all sites at river 2 did not show any similarity with river water. By that, we assume that no river water infiltrated into groundwater but we cannot exclude groundwater infiltration into the rivers. Contrary to prior knowledge assumptions, aquifer-aquifer interaction took place in all three monitored aquifers. The results of stable isotopes of water and ions indicated that aquifers B and C are constantly connected to aquifer A at certain sites. The monitoring of groundwater and river water sites in the investigation area points to a heterogeneous groundwater flow regime particularly in aquifer A. Regarding the conservation of a

  3. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  4. Elevated Bathing-Associated Disease Risks Despite Certified Water Quality: A Cohort Study

    Directory of Open Access Journals (Sweden)

    Christos Hadjichristodoulou

    2012-04-01

    Full Text Available Bacteriological water quality criteria have been recommended to ensure bathers’ health. However, this risk-assessment approach is based mainly on routine measurements of fecal pollution indicator bacteria in seawater, and may not be adequate to protect bathers effectively. The aim of this study was to assess the risks of symptoms related to infectious diseases among bathers after exposure to seawater which was of excellent quality according to EU guidelines. This study is a cohort study recruiting bathers and non-bathers. Water samples were collected for estimating bacterial indicators. Univariable and multivariable analysis was performed to compare the risks of developing symptoms/diseases between bathers and non-bathers. A total of 3805 bathers and 572 non-bathers were included in the study. Water analysis results demonstrated excellent quality of bathing water. Significantly increased risks of symptoms related to gastrointestinal infections (OR = 3.60, 95% CI 1.28–10.13, respiratory infections (OR = 1.92, 95% CI 1.00–3.67, eye infections (OR = 2.43, 95% CI 1.27–4.63 and ear infections (OR = 17.21, 95% CI 2.42–122.34 were observed among bathers compared with non-bathers. Increased rates of medical consultation and medication use were also observed among bathers. There was evidence that bathers experienced increased morbidity compared with non-bathers though the bathing waters met bacteriological water quality criteria. These results suggest that risk assessments of recreational seawaters should not only focus on bacteriological water quality criteria.

  5. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (Sweden)); Soederbaeck, Bjoern; Kalinowski, Birgitta (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-10-15

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  6. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  7. Reduction of water surface tension significantly impacts gecko adhesion underwater.

    Science.gov (United States)

    Stark, Alyssa Y; McClung, Brandon; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-12-01

    The gecko adhesive system is dependent on weak van der Waals interactions that are multiplied across thousands of fine hair-like structures (setae) on geckos' toe pads. Due to the requirements of van der Waals forces, we expect that any interruption between the setae and substrate, such as a water layer, will compromise adhesion. Our recent results suggest, however, that the air layer (plastron) surrounding the superhydrophobic toe pads aid in expelling water at the contact interface and create strong shear adhesion in water when in contact with hydrophobic surfaces. To test the function of the air plastron, we reduced the surface tension of water using two surfactants, a charged anionic surfactant and a neutral nonionic surfactant. We tested geckos on three substrates: hydrophilic glass and two hydrophobic surfaces, glass with a octadecyl trichlorosilane self-assembled monolayer (OTS-SAM) and polytetrafluoroethylene (PTFE). We found that the anionic surfactant inhibited the formation of the air plastron layer and significantly reduced shear adhesion to all three substrates. Interestingly, the air plastron was more stable in the nonionic surfactant treatments than the anionic surfactant treatments and we found that geckos adhered better in the nonionic surfactant than in the anionic surfactant on OTS-SAM and PTFE but not on glass. Our results have implications for the evolution of a superhydrophobic toe pad and highlight some of the challenges faced in designing synthetic adhesives that mimic geckos' toes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas.

    Science.gov (United States)

    Lari, Summaiya Z; Khan, Noor A; Gandhi, Kavita N; Meshram, Tejal S; Thacker, Neeta P

    2014-01-07

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH's, aldrin, dicofol, DDT and its derivatives, α,β endosulphan's and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates.As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water.Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides.

  9. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  10. Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

    Science.gov (United States)

    Carling, Gregory T; Richards, David C; Hoven, Heidi; Miller, Theron; Fernandez, Diego P; Rudd, Abigail; Pazmino, Eddy; Johnson, William P

    2013-01-15

    We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and

  11. Geology, Bedrock, Data contains 10 foot elevation contours (1 foot in some areas) showing the approximate bedrock surface elevation within McLain State Park, Houghton, County, Michigan. Contours were generated with the Surfer 12 software package using soil test borings and, Published in 2014, Not Applicable scale, Michigan Coastal Zone Management Program.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Bedrock dataset current as of 2014. Data contains 10 foot elevation contours (1 foot in some areas) showing the approximate bedrock surface elevation within...

  12. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how

  13. Element Content of Surface and Underground Water Sources around a Cement Factory Site in Calabar, Nigeria

    Directory of Open Access Journals (Sweden)

    Edmund Richard Egbe

    2017-01-01

    Full Text Available Background: Cement production is associated with heavy metal emissions and environmental pollution by cement dust. The degree of contamination of drinking water sources by major and trace elements present in cement dust generated by united cement factory (UNICEM is still uncertain. This study estimated the element content of ground and surface water samples (hand-dug wells, boreholes and streams around the factory site to determine the impact of cement dust exposure on the water levels of these elements. Methods: This study was conducted at UNICEM at Mfamosing, Akamkpa local government area, Cross River State, Nigeria. Drinking water samples (5 from each location were collected from the cement factory quarry site camp, 3 surrounding communities and Calabar metropolis (45 km away from factory serving as control. The lead (Pb, copper (Cu, manganes (Mn, iron (Fe, cadmium (Cd, selenium (Se, chromium (Cr, zinc (Zn and arsenic (As levels of samples were determined using Atomic Absorption Spectrometry (AAS. Data were analyzed using ANOVA and LSD post hoc at P = 0.05. Results: As and Pb content of samples from camp were above the WHO recommendations of 0.01mg/l and 0.01mg/l respectively. Chromium and cadmium content of all water samples were above and others below WHO recommendations. Water levels of Mn, Fe, Zn, As, Se, Cd, Ca and Si were significantly elevated (though below WHO recommendations in camp than other locations (P<0.05. Conclusion: Production of cement results in As, Pb, Cr and cd contamination of drinking water sources near the factory. Treatment of all drinking water sources is recommended before public use to avert deleterious health consequences.

  14. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  15. Experimental versus modelled water use in mature Norway spruce (Picea abies exposed to elevated CO2

    Directory of Open Access Journals (Sweden)

    Sebastian eLeuzinger

    2012-10-01

    Full Text Available Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behaviour is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of global dynamic vegetation models (DGVMs. Here, we provide first results from a free air CO2 enrichment (FACE experiment with naturally growing, mature (35 m Picea abies (L. (Norway spruce and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential and soil moisture in five 35-40 m tall CO2-treated (550 ppm trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9 and 18 % (at concentrations of 550-700ppm atmospheric CO2, the combined evidence from various methods characterising water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modelled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could mitigate the first-order stomatal response.

  16. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  17. A review of heterogeneous photocatalysis for water and surface disinfection.

    Science.gov (United States)

    Byrne, John Anthony; Dunlop, Patrick Stuart Morris; Hamilton, Jeremy William John; Fernández-Ibáñez, Pilar; Polo-López, Inmaculada; Sharma, Preetam Kumar; Vennard, Ashlene Sarah Margaret

    2015-03-30

    Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give "self-disinfecting" surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  18. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  19. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  20. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved

  1. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, Laura [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, Patti [; Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  2. Surface Water Elevation and Quality, Peace-Athabasca Delta, Canada, 2006-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Peace-Athabasca Delta (PAD) is a large boreal wetland located in northeastern Alberta, Canada at the confluence of the Peace and Athabasca Rivers with...

  3. Surface Water Elevation and Quality, Peace-Athabasca Delta, Canada, 2006-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — The Peace-Athabasca Delta (PAD) is a large boreal wetland located in northeastern Alberta, Canada at the confluence of the Peace and Athabasca Rivers with Lake...

  4. Seismic response of elevated rectangular water tanks considering soil structure interaction

    Science.gov (United States)

    Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.

    2017-11-01

    The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases

  5. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  6. Interactive Effects of Elevated [CO2] and Water Stress on Physiological Traits and Gene Expression during Vegetative Growth in Four Durum Wheat Genotypes.

    Science.gov (United States)

    Medina, Susan; Vicente, Rubén; Amador, Amaya; Araus, José Luis

    2016-01-01

    The interaction of elevated [CO2] and water stress will have an effect on the adaptation of durum wheat to future climate scenarios. For the Mediterranean basin these scenarios include the rising occurrence of water stress during the first part of the crop cycle. In this study, we evaluated the interactive effects of elevated [CO2] and moderate to severe water stress during the first part of the growth cycle on physiological traits and gene expression in four modern durum wheat genotypes. Physiological data showed that elevated [CO2] promoted plant growth but reduced N content. This was related to a down-regulation of Rubisco and N assimilation genes and up-regulation of genes that take part in C-N remobilization, which might suggest a higher N efficiency. Water restriction limited the stimulation of plant biomass under elevated [CO2], especially at severe water stress, while stomatal conductance and carbon isotope signature revealed a water saving strategy. Transcript profiles under water stress suggested an inhibition of primary C fixation and N assimilation. Nevertheless, the interactive effects of elevated [CO2] and water stress depended on the genotype and the severity of the water stress, especially for the expression of drought stress-responsive genes such as dehydrins, catalase, and superoxide dismutase. The network analysis of physiological traits and transcript levels showed coordinated shifts between both categories of parameters and between C and N metabolism at the transcript level, indicating potential genes and traits that could be used as markers for early vigor in durum wheat under future climate change scenarios. Overall the results showed that greater plant growth was linked to an increase in N content and expression of N metabolism-related genes and down-regulation of genes related to the antioxidant system. The combination of elevated [CO2] and severe water stress was highly dependent on the genotypic variability, suggesting specific genotypic

  7. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  8. Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Dixit, A. R.; Bora, B.; Zeleňák, Michal; Foldyna, Josef; Hloch, Sergej; Hlaváček, Petr; Ščučka, Jiří; Klich, Jiří; Sitek, Libor; Vilaca, P.

    2017-01-01

    Roč. 88, č. 5 (2017), s. 1687-1701 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : friction stir welding (FSW) * abrasive water jet (AWJ) * optical profilometer * topography * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-016-8776-0

  9. Dispersion of inorganic contaminants in surface water in the vicinity of Potchefstroom

    Science.gov (United States)

    Manyatshe, A.; Fosso-Kankeu, E.; van der Berg, D.; Lemmer, N.; Waanders, F.; Tutu, H.

    2017-08-01

    Potchefstroom and the neighbouring cities rely mostly on the Mooi River and Vaal River for their water needs. These rivers flow through the gold mining areas and farms, and are therefore likely to be contaminated with substantial amounts of inorganic pollutants. Water was collected along the rivers network, streams, canals and dams in Potchefstroom and the vicinity. The samples were characterized for geochemical parameters, metals and anions concentrations. The results showed high concentrations of potentially toxic elements such as As (4.53 mg/L - 5.74 mg/L), Cd (0.25 mg/L - 0.7 mg/L), Pb (1.14 mg/L - 5.13 mg/L) and U (0.04 mg/L - 0.11 mg/L) which were predominantly found around the mining areas. Elevated concentrations of anions such SO42- and CN- were detected around mining areas while NO3- was dominant near farms. The relatively high levels of anions and metals in the surface water made it unfit for domestic or agricultural use. The study showed that contaminants in mining and agricultural facilities were potentially mobilised, thus impacting the nearby water systems.

  10. Collective Behavior of Camphor Floats Migrating on the Water Surface

    Science.gov (United States)

    Nishimori, Hiraku; Suematsu, Nobuhiko J.; Nakata, Satoshi

    2017-10-01

    As simple and easily controllable objects among various self-propelled particles, camphor floats on the water surface have been widely recognized. In this paper, we introduce characteristic behaviors and discuss the background mechanism of camphor floats on water, both in isolated and non-isolated conditions. In particular, we focus on: (i) the transition of dynamical characters through bifurcations exhibited by systems with small number of camphor floats and (ii) the emergence of a rich variety of complex dynamics observed in systems with large number camphor floats, and attempt to elucidate these phenomena through mathematical modeling as well as experimental analysis. Finally, we discuss the connection of the dynamics of camphor floats to that of a wider class of complex and sophisticated dynamics exhibited by various types of self-propelled particles.

  11. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... by a vibratory feeder and exposed to an instantaneous effect of water mist generated from an ultrasound nebulizer. The processed and original powders were evaluated with respect to morphology (scanning electron microscopy, atomic force microscopy, and spatial filtering technique), flow, and solid state...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  12. Cocaine and metabolites in waste and surface water across Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Nuijs, Alexander L.N. van [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium)], E-mail: alexander.vannuijs@ua.ac.be; Pecceu, Bert [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne [Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege, (ULg), CHU Sart-Tilman, 4000 Liege (Belgium); Jorens, Philippe G. [Department of Clinical Pharmacology/Clinical Toxicology, University of Antwerp (Ukraine), University Hospital of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium); Bervoets, Lieven; Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Neels, Hugo [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory of Toxicology, ZNA Stuivenberg, Lange Beeldekensstraat 267, 2060 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-01-15

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water.

  13. Microbial monitoring of surface water in South Africa: an overview.

    Science.gov (United States)

    Luyt, Catherine D; Tandlich, Roman; Muller, Wilhelmine J; Wilhelmi, Brendan S

    2012-08-01

    Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H(2)S strip test might be used as a surrogate for the Colilert®18.

  14. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  15. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    Directory of Open Access Journals (Sweden)

    Mohamad Faiz Mohd Amin

    2014-01-01

    Full Text Available This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles’ classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.

  16. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT ha