WorldWideScience

Sample records for water supply reservoir

  1. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Kuria, Faith W; Vogel, Richard M

    2014-01-01

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  2. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  3. Getting "boater" all the time: managing fishing by boat on New York city water supply reservoirs

    Science.gov (United States)

    Jennifer A. Cairo

    2007-01-01

    In 2003 the New York City Department of Environmental Protection Bureau of Water Supply undertook a five-year initiative to improve fishing by boat on its Water Supply reservoirs and controlled lakes in upstate New York. The project includes cleanup of administrative procedures and boat fishing areas on reservoir shores; improving two-way communication with anglers;...

  4. Fishing for improvements: managing fishing by boat on New York City water supply reservoirs and lakes

    Science.gov (United States)

    Nicole L. Green; Jennifer A. Cairo

    2008-01-01

    In 2003, the New York City Department of Environmental Protection Bureau of Water Supply undertook a 5-year initiative to improve fishing by boat on its water supply reservoirs and controlled lakes in upstate New York. The project includes: revising administrative procedures; cleaning up boat fishing areas on reservoir shores; improving two-way communication with...

  5. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply.

    Science.gov (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A

    2017-03-01

    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (treatment applied. The potential effects of the presence of these compounds at the ppt levels in drinking water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  6. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  7. Managing hydroclimatological risk to water supply with option contracts and reservoir index insurance

    Science.gov (United States)

    Brown, Casey; Carriquiry, Miguel

    2007-11-01

    This paper explores the performance of a system of economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on stakeholders of shared water supply. The system is composed of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows. The insurance is designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Insurance provides the irregularly needed funds for exercising the water options. The combined option contract - reservoir index insurance system creates risk sharing between sectors that is currently lacking in many shared water situations. Contracts are designed for a shared agriculture - urban water system in Metro Manila, Philippines, using optimization and Monte Carlo analysis. Observed reservoir inflows are used to simulate contract performance. Results indicate the option - insurance design effectively smooths water supply costs of hydrologic variability for both agriculture and urban water.

  8. Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China.

    Science.gov (United States)

    Zhang, Kai; Niu, Zhi-Guang; Lv, Zhiwei; Zhang, Ying

    2017-11-01

    Jingjinji area occupies important position in developing of the Chinese economy, while there exists a sharp conflict between economic growth and limited water resources in this area. To ensure the safety of water consumption of cities in Jingjinji area, we investigated the abundance of three classes of antibiotic resistance genes (ARGs) in water and sediment of six water supply reservoirs in this area. The results showed that the detection frequency of sul1, tetM and ermB were 100%. However, the content ranges of these genes were different (10 -5 to 10 -2 /16S gene copies for sul1, 10 -5 to 10 -3 /16S gene copies for ermB, and 10 -5 to 10 -3 /16S gene copies for tetM). The content of ribosome protection proteins (RPP) genes were the highest in all selected tet genes. The highest abundance of ARGs in water and sediment samples was sampled from Panjiakou reservoir and Guanting reservoir, respectively. Except COD, chla and tetM, there are no significant correlation between water quality parameters and ARGs. Overall, this study provides integrated profiles of the three types of ARGs in water supply reservoirs of Jingjinji area and thus helps to re-evaluate the effects of human activities to water supply reservoirs.

  9. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  10. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  11. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  12. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    Science.gov (United States)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  13. Neurotoxins in a water supply reservoir: An alert to environmental and human health.

    Science.gov (United States)

    Calado, Sabrina Loise de Morais; Wojciechowski, Juliana; Santos, Gustavo Souza; Magalhães, Valéria Freitas de; Padial, André Andrian; Cestari, Marta Margarete; Silva de Assis, Helena Cristina da

    2017-02-01

    Reservoirs are important source of power generation, recreation, and water supply. Nevertheless, human activities have favored the bloom of toxic cyanobacteria in many reservoirs, which has resulted in environmental, social, and economic problems. This study aims to evaluate the water quality of a reservoir in South Brazil through the analysis of cyanobacteria and cyanotoxins PSTs (Paralytic Shellfish Toxins) and biomarkers of environmental contamination in fish. For this purpose, water samples and fish (Geophagus brasiliensis) (Perciformes: Cichlidae) were collected from September 2013 to May 2014. The fish G. brasiliensis were separated in two groups. The first one "site group" was euthanized after the sampling and their weight and length were measured. The blood, brain, muscle and liver were collected for chemical, biochemical and genetics biomarkers analysis. The second group "depuration group" was submitted to depuration experiment for 40 days in clean water. After that, the same procedures as for the first group were carried out. Cylindrospermopsis raciborskii was the dominant cyanobacteria found in the reservoir, and it showed a density above the recommended limit by Brazilian legislation of 20,000 cells/mL. Results showed that the fish accumulate PSTs in the Reservoir and these were not eliminated after 40 days. The biochemical and genotoxic biomarkers showed a significant difference between "site groups" and "depuration groups", which suggests a recovery of the antioxidant system and a reduction of cellular damage after 40 days in clean water. In conjunction with results reported earlier by others, Alagados Reservoir, in South Brazil, appears to have a persistent contamination of cyanotoxins. Moreover, the mixture of contaminants which may be present in the water body can explain the seasonal differences in fish at the sampled points. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Maqalika Reservoir: utilisation and sustainability of Maqalika Reservoir as a source of potable water supply for Maseru in Lesotho

    CSIR Research Space (South Africa)

    Letsie, M

    2008-07-01

    Full Text Available The storage of water in the Maqalika reservoir is gradually decreasing as sediment, carried by the natural catchment run-off, accumulates in the reservoir. Moreover, water pumped into the reservoir from the Caledon River (which is heavily sedimented...

  15. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    Science.gov (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  16. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    Science.gov (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  17. Game theory competition analysis of reservoir water supply and hydropower generation

    Science.gov (United States)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  18. Integrating desalination to reservoir operation to increase redundancy for more secure water supply

    Science.gov (United States)

    Bhushan, Rashi; Ng, Tze Ling

    2016-08-01

    We investigate the potential of integrating desalination to existing reservoir systems to mitigate supply uncertainty. Desalinated seawater and wastewater are relatively reliable but expensive. Water from natural resources like reservoirs is generally cheaper but climate sensitive. We propose combining the operation of a reservoir and seawater and wastewater desalination plants for an overall system that is less vulnerable to scarcity and uncertainty, while constraining total cost. The joint system is modeled as a multiobjective optimization problem with the double objectives of minimizing risk and vulnerability, subject to a minimum limit on resilience. The joint model is applied to two cases, one based on the climate and demands of a location in India and the other of a location in California. The results for the Indian case indicate that it is possible for the joint system to reduce risk and vulnerability to zero given a budget increase of 20-120% under current climate conditions and 30-150% under projected future conditions. For the Californian case, this would require budget increases of 20-80% and 30-140% under current and future conditions, respectively. Further, our analysis shows a two-way interaction between the reservoir and desalination plants where the optimal operation of the former is just as much affected by the latter as the latter by the former. This highlights the importance of an integrated management approach. This study contributes to a greater quantitative understanding of desalination as a redundancy measure for adapting water supply infrastructures for a future of greater scarcity and uncertainty.

  19. Analysis on the spatiotemporal characteristics of water quality and trophic states in Tiegang Reservoir: A public drinking water supply reservoir in South China

    Science.gov (United States)

    Song, Yun-long; Zhu, Jia; Li, Wang; Tao, Yi; Zhang, Jin-song

    2017-08-01

    Shenzhen is the most densely populated city in China and with a severe shortage of water. The per capita water resource is less than 200 m3, which is approximately 1/12 of the national average level. In 2016, nearly 90% of Shenzhen’s drinking water needed to be imported from the Pearl River. After arrived at Shenzhen, overseas water was firstly stockpiled in local reservoirs and then was supplied to nearby water works. Tiegang Reservoir is the largest drinking water supply reservoir and its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Tiegang Reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. One-way ANOVA showed that significant difference was found in water quality factors on month (p latter rainy period > high temperature and rain free period > temperature jump period > winter drought period, while SD showed the contrary. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession. Tiegang reservoir was seriously polluted by TN, as a result WQI were at IV∼V level. If TN was not taken into account, WQI were atI∼III level. TLI (Σ) were about 35∼60, suggesting Tiegang reservoir was in mesotrophic and light-eutrophic trophic states. The WQI and TLI (Σ) in sampling sites 9 and 10 were poorer than that of other sites. The 14 water quality factors were divided into 5 groups by factor analysis (FA). The total interpretation rate was 73.54%. F1 represents the climatic change represented by water temperature. F2 and F4 represent the concentration of nutrients. F3 and F5 represent the sensory indexes of water body, such as turbidity, transparency. The FA results indicated that water quality potential risk factors was total nitrogen (TN), and potential risk factors also include chlorophyll-a and

  20. Identification of dissolved organic matter in raw water supply from reservoirs and canals as precursors to trihalomethanes formation.

    Science.gov (United States)

    Musikavong, Charongpun; Wattanachira, Suraphong

    2013-01-01

    The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.

  1. Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm.

    Science.gov (United States)

    Sipaúba-Tavares, L H; Dias, S G

    2014-05-01

    Plankton communities and macrofauna associated to aquatic macrophyte stands in a shallow water-supply reservoir (21°14'09″S; 48°18'38″W) on an aquaculture farm were compared to evaluate the relationship between organism densities and some abiotic features of the reservoir. Water and communities associated were sampled at two sites, one in an area with the predominance of Eichhornia azurea (Sw.) Kunth and the other with the predominance of Salvinia auriculata Aublet. Communities associated with macrophytes were sampled with floating quadrants (0.5 m2); the macrophytes were washed and plankton and macrofauna were fixated with 4% formalin and 1% lugol iodine; the specimens were then identified and counted. Plankton and macrofauna communities associated with S. auriculata and E. azurea had a similar diversity of species but different (pmacrophytes presence in the shallow reservoir is a strong predictor of favourable conditions to maintain great diversity plankton community and macrofauna associated with plants. The role of macrophytes is important for not only stabilising the clear-water state and maintaining high diversity of organisms associated, but also it seems to be a good alternative to maintaining desirable water-supply quality for aquaculture farms.

  2. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  3. Occurrence and distribution of taste and odor compounds in subtropical water supply reservoirs and their fates in water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Wang, Chaoyi; Zong, Dongliang; Li, Haipu; Yang, Zhaoguang

    2017-01-01

    Taste and odor (T&O) problems in surface water supplies attract growing environmental and ecological concerns. In this study, 10 T&O compounds, 2-methylisoborneol (2-MIB), geosmin, β-ionone, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2,4,6-trichloroanisole (2,4,6-TCA), 2,3,6-trichloroanisole (2,3,6-TCA), 2,3,4-trichloroanisole (2,3,4-TCA), 2,4,6-tribromoanisole (2,4,6-TBA), and trans-2,cis-6-nonadienal (NDE) were investigated in 13 water supply reservoirs and 2 water treatment plants (WTPs) in S City of China. 2-MIB, geosmin, and β-ionone were detected in most of the reservoirs and WTPs. The highest concentrations in reservoirs reached 196.0 ng L -1 for 2-MIB, 11.4 ng L -1 for geosmin, and 39.7 ng L -1 for β-ionone. Canonical correspondence analysis (CCA) was used to examine the relationship between the 3 T&O compounds and environmental parameters of the reservoirs. The results showed that TP was strongly positively correlated with 2-MIB in wet season and negatively correlated in dry season. It was suggested that controlling nutrient (TP, TN/TP, and NH 3 -N) inputs was required for better management of drinking water reservoirs. Furthermore, the maximum concentrations in raw water of WTPs was kept at 82.1 ng L -1 for 2-MIB, 5.6 ng L -1 for geosmin, and 66.1 ng L -1 for β-ionone. β-Ionone could not be detected in the post-filtration and finished water of two WTPs, and both 2-MIB and geosmin significantly decreased in the water of XWTP. It was indicated that T&O compounds could be removed partly or completely by the filtration of conventional treatment processes.

  4. Modeling the Influence of Variable Tributary Inflow on Circulation and Contaminant Transport in a Water Supply Reservoir

    Science.gov (United States)

    Nguyen, L. H.; Wildman, R.

    2012-12-01

    This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with

  5. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    Science.gov (United States)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  6. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    Science.gov (United States)

    Toth, Elena

    2013-04-01

    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation

  7. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  8. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    OpenAIRE

    Hogeboom, Hendrik Jan; Knook, Luuk; Hoekstra, Arjen Y.

    2018-01-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, resid...

  9. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    Science.gov (United States)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by

  10. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China.

    Science.gov (United States)

    Lei, Lamei; Peng, Liang; Huang, Xianghui; Han, Bo-Ping

    2014-05-01

    The tropical cyanobacterium Cylindrospermopsis raciborskii is of particular concern for its invasive characteristics and production of the toxin cylindrospermopsin (CYN). The present study represents the first attempt to determine the distribution of C. raciborskii and CYN in tropical China. The presence of C. raciborskii and CYN, as well as the composition of phytoplankton, was determined from a total of 86 samples from 25 urban reservoirs for drinking water supply in Dongguan City of South China. The presence of C. raciborskii was observed in 21 of the 25 reservoirs and confirmed that this species has been widely distributed in the investigated reservoirs. C. raciborskii accounted for between 0.1 and 90.3 % of the total phytoplankton biomass and contributed to the majority of the phytoplankton in some reservoirs such as Tangkengbian and Xiagongyan. Its biomass was negatively correlated with NO3 (-)-N concentration and Secchi depth. Dissolved CYN was detected in more than one-half of the reservoirs with concentrations up to 8.25 μg L(-1), and it positively correlated with C. raciborskii biomass. Dissolved microcystins (MCs) were detected in 12 of the 25 reservoirs with a maximum concentration 1.99 μg L(-1). Our data strongly suggest that C. raciborskii and CYN could be important health hazards in urban reservoirs of South China and that more data are needed for further assessment.

  11. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    Science.gov (United States)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more essential) purposes residential and industrial water supply, irrigation and flood control in scarcer areas. The quantitative explication of how the burden of water consumption from reservoirs is

  12. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  13. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  14. Aquatic macroinvertebrates of Batalha river reservoir for water captation and supply of the city of Bauru, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Diana Calcidoni Moreira

    2009-08-01

    Full Text Available In this study the composition and diversity of aquatic macroinvertebrates were evaluated in the reservoir of water captation of Batalha river for treatment and supplying of the city of Bauru. The samples were collected in dry (from June to August, 2005 and rainy (from December, 2005 to February, 2006 seasons. We analyzed and identified 840 organisms belonging to 8 taxa in dry season and 4 taxa in rainy season. The system presented low abundance and diversity of macroinvertebrates probably due to the water quality and its physical and chemical variations associated with rain events.

  15. Analysis of an accident of local zone control system of 'pressure loss in the compartment water supply reservoir'

    International Nuclear Information System (INIS)

    Catana, A.

    2001-01-01

    This work presents the aftermath of a failure in the Zonal Control System caused by an accident of 'pressure loss in the compartment water supply reservoir' leading to an operational function fault of the liquid zonal control system. Causes for pressure drop may be several, as for instance: simultaneous mechanical fault of the three pumps, class IV total loss of power, a crack of reservoir, etc. Should this accident happens the reactor is shut down automatically by the digital control computer, on the 'ZONE CONTROL SYSTEM FAILURE' setback condition. The analyses were done hypothesizing that the covering gas system is functioning at design parameters and that the only possible accident is the one of pressure loss in supply reservoir. By making use of the software system developed at INR Pitesti, we could make the analysis of the phenomena which take place and thus we could obtain the evolution of the main parameters, namely, neutron and thermohydraulic parameters, as well as the actuating mode of the control and safety systems. Thus, by assuming a pressure drop under 8. 27 bar the 'SETBACK' system is triggered with a final value of the neutron power of 2% FP which can be reached with a power variation rate of 0.00086 decade/sec (- 0.1%/sec). In conclusion, the main parameters evolve as follows: 1. the water level in compartments is 'frozen' at a level at which the pressure in the supply reservoir is 7.3 bar; 2. the mechanical rods are gradually inserted, one bank first and a second one if necessary; 3. the shim rods are fully inserted; 4. the systems of SDS1 and SDS2 scram systems remain unactuated; 5. after 10 minutes from the 'SETBACK' triggering, the neutron power is reduced under 4%; 6. the thermohydraulic parameters of the primary circuit are maintained at normal values; 7. the thermohydraulic parameters of the secondary circuit are maintained at normal values

  16. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  17. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  18. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  19. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    Science.gov (United States)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    Water resource managers attempt to minimize conflicts among users, preserve the environment as much as possible, and satisfy user necessities at a minimum cost. Several European directives indirectly address mine restoration policies, with a goal of minimizing negative impacts and adding social and environmental value where possible. Water management must consider water sources, ecological flows, flood control, and variability in the demands for urban, industrial, and agricultural uses. In the context of the present study, the city of A Coruña is located in Galicia (NW Spain). The water supply system for this city and surrounding municipalities (~400.000 inhabitants) is based on the Abegondo-Cecebre reservoir. In cases when precipitation is scarce (e.g. no rain for more than seven consecutive months) and there is a seasonal increase in demand significantly stress the supply system so that, as occurred in 2010, shortages and water supply restrictions need to be considered. This is a clear indication of that, at present, the Abegondo-Cecebre reservoir has not enough capacity to cope with a scenario of increasing water demand (due to the vegetative and seasonal increase of population) and hydric stress likely connected with the widely acknowledged climate change. In the present context of monetary resources scarcity and society concern with respect large new public work projects, the construction of a new dam is challenging. However the opportunity provided by the recent flooding of the Meirama open pit (a large mine void that has been forced-flooded for its reclamation and it is located in the headwaters of one of the rivers draining towards the Abegondo-Cecebre reservoir) proves to be a significant new asset that will help to improve the future water management scenarios under the acknowledged uncertain conditions. In this study we have studied in detail the hydrochemistry of the affected systems (lake, river and reservoir) in order to make clear whether or not the

  20. Monitoring programme of water reservoir Grliste

    International Nuclear Information System (INIS)

    Vuckovic, M; Milenkovic, P.; Lukic, D.

    2002-01-01

    The quality of surface waters is a very important problem incorporated in the environment protection, especially in water resources. The Timok border-land hasn't got sufficient underground and surface waters. This is certificated by the International Association for Water Resource. That was reason for building the water reservoir 'Grliste'. Drinking water from water reservoir 'Grliste' supplies Zajecar and the surroundings. (author)

  1. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  2. Analysis of Drinking Water Supply System Encompassing The Catchment, The Reservoir and The Treatment Facility (A Case Study of Osman Sagar Drinking Water Supply System, Hyderabad, India)

    OpenAIRE

    Balijepalli, Valli Priya

    2009-01-01

    Unregulated urban growth and unscientific approach towards source protection led to the degradation and loss of fresh water lakes in Hyderabad. Osman Sagar is one of the few lakes that still retains its fresh water status. In recent times it witnessed drastic fluctuations in its inflows resulting in reduced drinking water supply. The study emphasizes the need to improve the overall water management based on the integration of scientific assessment and appropriate management strategies.

  3. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  4. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants.

    Science.gov (United States)

    Bai, Xiuzhi; Zhang, Ting; Qu, Zhipeng; Li, Haipu; Yang, Zhaoguang

    2017-09-01

    In this study, the distribution of 2,4,6-trichloroanisole (2,4,6-TCA) in two water supply reservoirs and four associated drinking water treatment plants (DWTPs) were investigated. The 2,4,6-TCA concentrations were in the range of 1.53-2.36 ng L -1 in water supply reservoirs and 0.76-6.58 ng L -1 at DWTPs. To determine the contribution of filamentous fungi to 2,4,6-TCA in a full-scale treatment process, the concentrations of 2,4,6-TCA in raw water, settled water, post-filtration water, and finished water were measured. The results showed that 2,4,6-TCA levels continuously increased until chlorination, suggesting that 2,4,6-TCA could form without a chlorination reaction and fungi might be the major contributor to the 2,4,6-TCA formation. Meanwhile, twenty-nine fungal strains were isolated and identified by morphological and molecular biological methods. Of the seventeen isolated fungal species, eleven showed the capability to convert 2,4,6-trichlorophenol (2,4,6-TCP) to 2,4,6-TCA. The highest level of 2,4,6-TCA formation was carried out by Aspergillus versicolor voucher BJ1-3: 40.5% of the original 2,4,6-TCP was converted to 2,4,6-TCA. There was a significant variation in the capability of different species to generate 2,4,6-TCA. The results from the proportions of cell-free, cell-attached, and cell-bound 2,4,6-TCA suggested that 2,4,6-TCA generated by fungi was mainly distributed in their extracellular environment. In addition to 2,4,6-TCA, five putative volatile by-products were also identified by gas chromatography and mass spectrometry. These findings increase our understanding on the mechanisms involved in the formation of 2,4,6-TCA and provide insights into managing and controlling 2,4,6-TCA-related problems in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 25 CFR 137.1 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  6. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    NARCIS (Netherlands)

    Hogeboom, Hendrik Jan; Knook, Luuk; Hoekstra, Arjen Y.

    2018-01-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they

  7. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  8. Retrofitting the potable water supply in Vira Gambarogno, Switzerland - Feasibility study of a small hydro power plant in the Muntin water reservoir; Risanamento dell'acquedotto Monti di Vira. Studio di fattibilita di recupero energetico al serbatoio Muntin

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, M.

    2008-07-01

    This final report for the Swiss Federal Office of Energy describes the retrofitting project for the potable water supply in the municipality of Vira Gambarogno, Southern Switzerland. The current status of the scheme and three possible variants are presented, including the technical and financial aspects. In a second part of the report a feasibility study is reported on for the energetic use of the potable water falling down from the springs, located at 1040 m over sea level, and the Muntin water reservoir, located at 460 m about sea level. A small hydroelectric plant can be created at the entry of the reservoir, with an electric power of about 20 kW, depending on the variant considered. Estimated energy yield and cost figures are given.

  9. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  10. Risk Analysis of Reservoir Operations Considering Short-Term Flood Control and Long-Term Water Supply: A Case Study for the Da-Han Creek Basin in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Ming Cheng

    2017-06-01

    Full Text Available This study applies an integrated methodology to assess short-term over-levee risk and long-term water shortage risk in the Da-Han Creek basin, which is the most important flood control and water storage system in northern Taiwan. An optimization model for reservoir flood control and water supply is adopted, to determine reservoir releases based on synthetic inflow hydrographs during typhoons, which are generated by Monte Carlo simulations. The release is then used to calculate the water level at a downstream control point using a novel developed back-propagation neural network-based model, to reduce computational complexity and achieve automatic-efficient risk evaluation. The calculated downstream water levels and final reservoir water levels after a typhoon event are used to evaluate the mapped over-levee risk and water shortage risk, respectively. The results showed that the different upper limit settings for the reservoir have a significant influence on the variation of 1.19 × 10−5% to 75.6% of the water shortage risk. This occurs because of the insufficient inflow and narrow storage capacity of the Shih-Men Reservoir during drought periods. However, the upper limit settings have a minor influence (with a variation of only 0.149% to 0.157% on the over-levee risk in typhoon periods, because of the high protection standards for the downstream embankment.

  11. Impact of water supply, domiciliary water reservoirs and sewage on faeco-orally transmitted parasitic diseases in children residing in poor areas in Juiz de Fora, Brazil.

    Science.gov (United States)

    Teixeira, J C; Heller, L

    2006-08-01

    The objectives of this study were to characterize faeco-orally transmitted parasitic diseases and to identify the factors associated with these diseases, with emphasis on environmental factors, in children ranging from 1 up to 5 years old residing in substandard settlement areas. A population-based cross-sectional epidemiological design was used in a non-random selection of 29 out of the 78 substandard settlement areas in the municipality of Juiz de Fora, Brazil. A sample of 753 children were assessed from the target population consisting of all children of the appropriate age range residing in the selected areas. Data were collected by means of domiciliary interviews with their mothers or with the person responsible for them. The Hoffmann-Pons-Janer method was used in the parasitological examination of faeces. Binary logistic regression models were used to identify the factors associated with the diseases. A total of 319 sample children presented faeco-orally transmitted parasitic diseases. The factors associated with these parasitic diseases included the children's age, family income, number of dwellers in the domicile, consumption of water from shallow wells, consumption of water from natural sources, absence of covered domiciliary water reservoirs, and the presence of sewage flowing in the street.

  12. Determination of dilution factors for discharge of aluminum-containing wastes by public water-supply treatment facilities into lakes and reservoirs in Massachusetts

    Science.gov (United States)

    Colman, John A.; Massey, Andrew J.; Brandt, Sara L.

    2011-09-16

    Dilution of aluminum discharged to reservoirs in filter-backwash effluents at water-treatment facilities in Massachusetts was investigated by a field study and computer simulation. Determination of dilution is needed so that permits for discharge ensure compliance with water-quality standards for aquatic life. The U.S. Environmental Protection Agency chronic standard for aluminum, 87 micrograms per liter (μg/L), rather than the acute standard, 750 μg/L, was used in this investigation because the time scales of chronic exposure (days) more nearly match rates of change in reservoir concentrations than do the time scales of acute exposure (hours).Whereas dilution factors are routinely computed for effluents discharged to streams solely on the basis of flow of the effluent and flow of the receiving stream, dilution determination for effluents discharged to reservoirs is more complex because (1), compared to streams, additional water is available for dilution in reservoirs during low flows as a result of reservoir flushing and storage during higher flows, and (2) aluminum removal in reservoirs occurs by aluminum sedimentation during the residence time of water in the reservoir. Possible resuspension of settled aluminum was not considered in this investigation. An additional concern for setting discharge standards is the substantial concentration of aluminum that can be naturally present in ambient surface waters, usually in association with dissolved organic carbon (DOC), which can bind aluminum and keep it in solution.A method for dilution determination was developed using a mass-balance equation for aluminum and considering sources of aluminum from groundwater, surface water, and filter-backwash effluents and losses caused by sedimentation, water withdrawal, and spill discharge from the reservoir. The method was applied to 13 reservoirs. Data on aluminum and DOC concentrations in reservoirs and influent water were collected during the fall of 2009. Complete

  13. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  14. Realisation of a small hydro power plant in the new water reservoir of the water supply of the San Abbondio municipality; Realizzazione di una microcentrale nel nuovo serbatoio dell'acquedotto del comune di S. Abbondio. Progetto definitivo nuovo serbatoio. Progetto di massima e studio varianti microcentrale

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M.

    2008-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the construction project of a new water reservoir including a micro-scale hydro power plant in the drinking-water supply of the municipality of San Abbondio, Switzerland. Following the development of residential areas a new water reservoir located at higher elevation is needed. A former preliminary study had demonstrated the feasibility of a micro-scale hydro power plant in the water supply. The adaptation of the plant design to the new situation is described. Investment cost is estimated and several variants are compared. Recommendations are given to the authorities.

  15. WATER SUPPLY ANALYSIS

    International Nuclear Information System (INIS)

    Clark, R.D.

    1996-01-01

    This analysis defines and evaluates the surface water supply system from the existing J-13 well to the North Portal. This system includes the pipe running from J-13 to a proposed Booster Pump Station at the intersection of H Road and the North Portal access road. Contained herein is an analysis of the proposed Booster Pump Station with a brief description of the system that could be installed to the South Portal and the optional shaft. The tanks that supply the water to the North Portal are sized, and the supply system to the North Portal facilities and up to Topopah Spring North Ramp is defined

  16. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    NARCIS (Netherlands)

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, Pieter R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  18. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  19. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.; Danser, Philip Alexander; Amy, Gary L.; Pankratz, Tom M.

    2014-01-01

    decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling

  20. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  1. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.

    2014-07-01

    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  2. Improved water management with the development of Snake Lake Reservoir

    International Nuclear Information System (INIS)

    Kemp, P.; Miller, D.; Webber, J.

    1998-01-01

    The $10.3 million Snake Lake Reservoir which is located south of the TransCanada Highway between Bassano and Brooks, in Alberta, was completed in 1997. It provides 19.1 million cubic meters of storage to improve the water supply for the irrigation of 29,000 hectares of agricultural land in the Eastern Irrigation District. One of challenges that engineers faced during the construction of the reservoir was the extremely soft dam foundation conditions. The resolution of this and other challenges are discussed. In addition to water storage, the reservoir also provides wildlife, recreation and aquaculture opportunities. 8 refs., 5 figs

  3. Food and water supply

    Science.gov (United States)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  4. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomics analysis

    Science.gov (United States)

    Otten, Timothy; Graham, Jennifer L.; Harris, Theodore D.; Dreher, Theo

    2016-01-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp.,Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems.

  5. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis.

    Science.gov (United States)

    Otten, Timothy G; Graham, Jennifer L; Harris, Theodore D; Dreher, Theo W

    2016-09-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific

  6. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    Science.gov (United States)

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  7. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  8. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2018-01-01

    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  9. Frameworks for amending reservoir water management

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  10. Security management of water supply

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2017-03-01

    Full Text Available The main aim of this work is to present operational problems concerning the safety of the water supply and the procedures for risk management systems functioning public water supply (CWSS and including methods of hazard identification and risk assessment. Developed a problem analysis and risk assessment, including procedures called. WSP, which is recommended by the World Health Organization (WHO as a tool for comprehensive security management of water supply from source to consumer. Water safety plan is a key element of the strategy for prevention of adverse events in CWSS.

  11. The Conway Water Supply: Results of Archeological Survey and Testing and a Historical Survey of a Proposed Reservoir Area in Conway County, Arkansas.

    Science.gov (United States)

    1980-11-01

    walnuts, butternuts, chestnuts, acorns, and pecans became available and provided a new supply of protein over much of the East. Shellfish now flourished in... Italy were readily available to the miner (Toulouse 1970:59). While the written resources would describe a life of hardship, the archeologist

  12. Potable water supply

    Science.gov (United States)

    Sauer, R. L.; Calley, D. J.

    1975-01-01

    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  13. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    OpenAIRE

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, P.R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts of small reservoirs are subject to climate change. Using a case-study on North-East Brazil, this paper shows that climate change impacts on water availability may be severe, and impacts on distrib...

  14. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  15. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  16. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  17. Mozambique - Rural Water Supply

    Data.gov (United States)

    Millennium Challenge Corporation — This report provides the results from (1) an impact evaluation of the MCA's Rural Water Point Implementation Program ('RWPIP') in Nampula and (2) an evaluation of...

  18. Tanzania - Water Supply & Expansion

    Data.gov (United States)

    Millennium Challenge Corporation — Social Impact (SI) has been contracted by MCC to carry out an impact evaluation (IE) of the Tanzania Water Sector Project. This IE examines the effect of the WSP...

  19. Water supply studies. [management and planning of water supplies in California

    Science.gov (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  20. Parallel Numerical Simulations of Water Reservoirs

    Science.gov (United States)

    Torres, Pedro; Mangiavacchi, Norberto

    2010-11-01

    The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.

  1. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The multipurpose water use of hydropower reservoir: the SHARE concept

    International Nuclear Information System (INIS)

    Branche, E.

    2017-01-01

    Multipurpose hydropower reservoirs are designed and/or operated to provide services beyond electricity generation, such as water supply, flood and drought management, irrigation, navigation, fisheries, environmental services and recreational activities, etc. While these objectives (renewable and power services, water quantity management, ecosystem services, economic growth and local livelihoods) can conflict at times, they are also often complementary. Although there are no universal solutions, there are principles that can be shared and adapted to local contexts. Indeed the development and/or operation of such multipurpose hydropower reservoirs to reach sustainable water management should rely on the following principles: shared vision, shared resource, shared responsibilities, shared rights and risks, shared costs and benefits. These principles and acknowledgement of joint sharing among all the stakeholders are essential to successful development and management of multipurpose hydropower reservoirs, and should frame all phases from early stage to operation. The SHARE concept also gives guidance. Based on 12 worldwide case studies of multipurpose hydropower reservoirs, the SHARE concept was developed and proposed as a solution to address this issue. A special focus will be presented on the Durance-Verdon Rivers in France. (author)

  3. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.

    1985-01-01

    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  4. Radionuclide migration in water reservoirs

    International Nuclear Information System (INIS)

    Rodionova, L.F.

    1983-01-01

    Toxicity degree and radiation effect of different radionuclides depend on multiple factors, whose interaction can strengthen or weaken the effects through the mechanism of nuclide accumulation by hydrobiontes. Stage of development of an aquatic organism, its age, mass and sex as well as lifetime and residence time of the organism in the given medium are of importance. The radionuclide build up depends on illumination, locale of the bioobject residence, on the residence nature. The concentration of radionuclides in aquatic organisms and bionts survival depend on a season, temperature of the residence medium, as well as salinity and mineral composition of water influence

  5. 46 CFR 108.467 - Water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  6. STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  7. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  8. Sediment accumulation and water volume in Loch Raven Reservoir, Baltimore County, Maryland

    Science.gov (United States)

    Banks, William S.L.; LaMotte, Andrew E.

    1999-01-01

    Baltimore City and its metropolitan area are supplied with water from three reservoirs, Liberty Reservoir, Prettyboy Reservoir, and Loch Raven Reservoir. Prettyboy and Loch Raven Reservoirs are located on the Gunpowder Falls (figure 1). The many uses of the reservoir system necessitate coordination and communication among resource managers. The 1996 Amendment to the Safe Drinking Water Act require States to complete source-water assessments for public drinking-water supplies. As part of an ongoing effort to provide safe drinking water and as a direct result of these laws, the City of Baltimore and the Maryland Department of the Environment (MDE), in cooperation with other State and local agencies, are studying the Gunpowder Falls Basin and its role as a source of water supply to the Baltimore area. As a part of this study, the U.S. Geological Survey (USGS), in cooperation with the Maryland Geological Survey (MGS), with funding provided by the City of Baltimore and MDE, is examining sediment accumulation in Loch Raven Reservoir. The Baltimore City Department of Public Works periodically determines the amount of water that can be stored in its reservoirs. To make this determination, field crews measure the water depth along predetermined transects or ranges. These transects provide consistent locations where water depth, or bathymetric, measurements can be made. Range surveys are repeated to provide a record of the change in storage capacity due to sediment accumulation over time. Previous bathymetric surveys of Loch Raven Reservoir were performed in 1943, 1961, 1972, and 1985. Errors in data-collection and analysis methods have been assessed and documented (Baltimore City Department of Public Works, 1989). Few comparisons can be made among survey results because of changing data-collection techniques and analysis methods.

  9. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China

    Directory of Open Access Journals (Sweden)

    Zi-zhen Zhou

    2015-10-01

    Full Text Available The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the stable stratification period, the maximum concentrations of total nitrogen, total phosphorus, ammonia nitrogen, total organic carbon, iron ion, and manganese ion in the water at the reservoir bottom on September 6 reached 2.5 mg/L, 0.12 mg/L, 0.58 mg/L, 3.2 mg/L, 0.97 mg/L, and 0.32 mg/L, respectively. Only heavy storm runoff can affect the main reservoir and cause the water quality to seriously deteriorate. During heavy storms, the stratification of the reservoir was destroyed, and the reservoir water quality consequently deteriorated due to the high-turbidity particulate phosphorus and organic matter in runoff. The turbidity and concentrations of total phosphorus and total organic carbon in the main reservoir increased to 265 NTU, 0.224 mg/L, and 3.9 mg/L, respectively. Potential methods of dealing with the water problems in the Jinpen Reservoir are proposed. Both in stratification and in storm periods, the use of measures such as adjusting intake height, storing clean water, and releasing turbid flow can be helpful to safeguarding the quality of water supplied to the water treatment plants.

  10. 18 CFR 801.6 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs, the...

  11. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. WATER SUPPLY OF TRANSPORT OBJECTS

    OpenAIRE

    Badyuk, N. S.

    2009-01-01

    Badyuk N. S. WATER SUPPLY OF TRANSPORT OBJECTS. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 3 (17), 2009 г. P. 96-104 DOI http://dx.doi.org/10.5281/zenodo.1020024 http://dspace.nbuv.gov.ua/bitstream/handle/123456789/23091/13-Badyuk.pdf?sequence=1 WATER SUPPLY OF TRANSPORT OBJECTS Badyuk N. S. Ukrainian Research Institute for Medicine of Transport, Odessa, Ukraine Summary In the work presented they discuss several peculiarities of wa...

  13. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    Science.gov (United States)

    Lotspeich, Russell

    2012-01-01

    Breckenridge Reservoir is located within the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because it serves as the principal water supply for the U.S. Marine Corps Base in Quantico, an assessment of the water-quality of Breckenridge Reservoir was initiated. Water samples were collected and physical properties were measured by the U.S. Geological Survey at three sites in Breckenridge Reservoir, and physical properties were measured at six additional reservoir sites from September 2008 through August 2009. Water samples were also collected and physical properties were measured in each of the three major tributaries to Breckenridge Reservoir: North Branch Chopawamsic Creek, Middle Branch Chopawamsic Creek, and South Branch Chopawamsic Creek. One site on each tributary was sampled at least five times during the study. Monthly profiles were conducted for water temperature, dissolved-oxygen concentrations, specific conductance, pH, and turbidity measured at 2-foot intervals throughout the water column of the reservoir. These profiles were conducted at nine sites in the reservoir, and data values were measured at these sites from the water surface to the bottom of the reservoir. These profiles were conducted along three cross sections and were used to define the characteristics of the entire water column of the reservoir. The analytical results of reservoir and tributary samples collected and physical properties measured during this study were compared to ambient water-quality standards of the Virginia Department of Environmental Quality and Virginia State Water Control Board. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and turbidity measured in Breckenridge Reservoir generally indicated a lack of stratification in the water column of the reservoir throughout the study period. This is unlike most other reservoirs in the region and may be influenced by

  14. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  15. 9 CFR 354.224 - Water supply.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  16. 24 CFR 3285.603 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  17. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  18. Water supply and management concepts

    Science.gov (United States)

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  19. Preliminary study for a micro-scale hydro power plant on the main drinking-water supply line connecting the municipal reservoir to the springs in Caviano, southern Switzerland; Realizzazione di una microcentrale idroelettrica sulla condotta di adduzione tra le captazioni delle sorgenti e il serbatoio di Caviano. Studio preliminare

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, M.

    2008-01-15

    This report presents the comparative evaluation of two variants for the replacement/refurbishment work of the main drinking-water supply line from the location of the water collection to the water reservoirs of the community of Caviano, southern Switzerland. The question arising is whether this retrofitting work could be financed by the benefit from the sale of electricity that could be produced by a new micro-scale power plant foreseen on the supply line, to take advantage of the elevation difference of 445 m between water collection and water reservoir. From the technical point of view the project is feasible. The available water flow rate is nearly constant: about 5 l/s. The corresponding power of the electric generator would be 15 kW and the yearly power production 130,000 kWh. However, in the second variant, the power would be 9 kW and the production 80,000 kWh, as only 265 m elevation difference would be used for power generation. In this case, the upper part of the water supply line, which connects the water collection to an intermediate water reservoir supplying the upper hamlet of the community, would neither be used for power generation nor be retrofitted. According to Swiss regulations the generated electricity could be sold at CHF 0.30/kWh and CHF 0.34/kWh, respectively. In the first variant it is concluded that 76% of the total annual capital and maintenance cost for retrofitting work and power plant, CHF 52,000/y for 50 years, could be covered by electricity sales. The community would still have to finance CHF 13,000/y, compared to CHF 30,000/y if the power plant is not built. In the second variant the corresponding figures are 49% of the total of CHF 33,700/y, and CHF 6,400/y to additionally finance compared to CHF 15,400/y if the power plant is not built. However, in the second variant the community would anyway have to finance later on the retrofitting of the upper part of the water supply line.

  20. 20 CFR 654.405 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  1. Public-supply water use in Kansas, 1990-2012

    Science.gov (United States)

    Kenny, Joan F.

    2014-01-01

    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  2. A methodology for the design of photovoltaic water supply systems

    International Nuclear Information System (INIS)

    Vilela, O.C.; Fraidenraich, N.

    2001-01-01

    Photovoltaic pumping systems are used nowadays as a valuable alternative to supply water to communities living in remote rural areas. Owing to the seasonal variation and the stochastic behavior of solar radiation, at certain times the supply of water may not be able to meet demand. A study has been made of the relationship between water pumping capacity, reservoir size and water demand, for a given water deficit. As a result, curves of equal water deficit (iso-deficit lines) can be obtained for various combinations of PV pumping capacity and reservoir size. A methodology to generate those curves is described, using as its main tool the characteristic curve of the system, that is, the relationship between water flow and collected solar radiation. The characteristic curve represents the combined behavior of the water pumping system and the well. The influence of the minimum collected solar radiation level, necessary to start the system's operation (the critical radiation level I C ). is also analyzed. Results show that PV pumping systems with different characteristic curves, but with the same critical levels, yield the same set of iso-deficit lines. This drastically reduces the number of necessary solutions to those corresponding to a few values of I C . Iso-deficit lines, calculated for the locality of Recife (PE), Brazil, are used to illustrate the sizing procedure PV water supply systems. (author)

  3. Biofouling on Reservoir in Sea Water

    Science.gov (United States)

    Yoon, H.; Eom, C.; Kong, M.; Park, Y.; Chung, K.; Kim, B.

    2011-12-01

    The organisms which take part in marine biofouling are primarily the attached or sessile forms occurring naturally in the shallower water along the coast [1]. This is mainly because only those organisms with the ability to adapt to the new situations created by man can adhere firmly enough to avoid being washed off. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm communities formed on the reservoir polymer surfaces were tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. To confirm microbial and formation of biofilm on adsorbents was done CLSM (Multi-photon Confocal Laser Scanning Microscope system) analysis. Microbial identified using 16S rRNA. Experiment results, five species which are Vibrio sp., Pseudoalteromonas, Marinomonas, Sulfitobacter, and Alteromonas discovered to reservoir formed biofouling. There are some microorganism cause fouling and there are the others control fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim. Prog. Org. Coat. 50, (2004) p.75-104.

  4. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  5. Assessing water reservoirs management and development in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    A. Castelletti

    2012-01-01

    Full Text Available In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this paper we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam, and to evaluate the potential improvement by the adoption of a more sophisticated information system. To reach this goal we analyze the historical operation of the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River, explore re-operation options corresponding to different tradeoffs among the three main objectives (hydropower production, flood control and water supply, using multi-objective optimization techniques, namely Multi-Objective Genetic Algorithm. Finally, we assess the structural system potential and the need for capacity expansion by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  6. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  7. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  8. Influence of Extreme Strength in Water Quality of the Jucazinho Reservoir, Northeastern Brazil, PE

    Directory of Open Access Journals (Sweden)

    Rafael Roney Camara de Melo

    2017-12-01

    Full Text Available The Jucazinho reservoir was built in the State of Pernambuco, Northeastern Brazil, to water supply in a great part of the population that live in the semi-arid of Pernambuco. This reservoir controls the high part of Capibaribe river basin, area affected several actions that can compromise the reservoir water quality such as disposal of domestic sewage, industrial wastewater and agriculture with use of fertilizers. This study aimed to identify the factors that lead to water quality of the Jucazinho reservoir using a database containing information of nine years of reservoir water quality monitoring in line with a multivariate statistical technique known as Principal Component Analysis (PCA. To use this technique, it was selected two components which determine the quality of the reservoir water. The first principal component, ranging from an annual basis, explained the relationship between the development of cyanobacteria, the concentration of dissolved solids and electrical conductivity, comparing it with the variation in the dam volume, total phosphorus levels and turbidity. The second principal component, ranging from a mensal basis, explained the photosynthetic activity performed by cyanobacteria confronting with the variation in the dam volume. It observed the relationship between water quality parameters with rainfall, featuring an annual and seasonal pattern that can be used as reference to behaviour studies of this reservoir.

  9. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  10. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  11. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Directory of Open Access Journals (Sweden)

    Krolová M.

    2013-05-01

    Full Text Available Lakes and reservoirs that are used for water supply and/or flow regulations have usually poorly developed littoral macrophyte communities, which impairs ecological potential in terms of the EU Water Framework Directive. The aim of our study was to reveal controlling factors for the growth of littoral macrophytes in a storage reservoir with fluctuating water level (Lipno Reservoir, Czech Republic. Macrophytes occurred in this reservoir only in the eulittoral zone i.e., the shoreline region between the highest and the lowest seasonal water levels. Three eulittoral sub-zones could be distinguished: the upper eulittoral with a stable community of perennial species with high cover, the middle eulittoral with relatively high richness of emergent and amphibious species present at low cover values, and the lower eulittoral devoid of permanent vegetation. Cover and species composition in particular sub-zones were primarily influenced by the duration and timing of flooding, followed by nutrient limitation and strongly reducing conditions in the flooded organic sediment. Our results stress the ecological importance of eulittoral zone in reservoirs with fluctuating water levels where macrophyte growth can be supported by targeted management of water level, thus helping reservoir managers in improving the ecological potential of this type of water bodies.

  12. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  13. Uranium removal from the water supply

    International Nuclear Information System (INIS)

    Miranzadeh, Mohammad Bagher.

    1996-01-01

    Uranium can be naturally occurring radionuclides that contaminate some potable water supplies. Uranium is found both in surface water and ground water supplies. The United States Environmental Protection Agency recently proposed a maximum contaminant of 20 micro gram/liter for uranium because of concerns about its association with kidney disease and cancer. uranium can be removed from the supply by strong base anion-resin. Exhausted resin is regenerated by sodium chloride solution. (Author)

  14. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass...... in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply...... both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...

  15. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  16. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  17. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  18. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  19. Adding a hydroelectric power station to the public water supply of St-Jean; Projet de construction d'une centrale hydraulique sur le reservoir principal de la commune de St-Jean. Etude d'avant projet

    Energy Technology Data Exchange (ETDEWEB)

    Perruchoud, A. [Sierre Energie SA, Sierre (Switzerland); Denis, V. [MHyLab, Montcherand (Switzerland)

    2005-07-01

    Drinking water for the community of St-Jean, southwestern Switzerland is collected at three different locations with altitudes of 2004, 1998 and 1958 m respectively, and is fed into a common chamber at 1933 m. The project foresees the construction of an intermediate reservoir at the elevation of 1460 m, the total hydraulic head of 473 m being used to drive a Pelton turbine of 110 kW nominal power. The useful net height difference after deduction of the pressure drop in the piping is 373 meters at a typical water flow rate of 0.034 m{sup 3}/s. At this flow rate the turbine efficiency is estimated to 0.89. The asynchronous generator rotates at 1500 rpm and has a nominal electric power output of 125 kW. The estimated annual production amounts to 450,000 kWh and the investment costs to 449,000 Swiss francs. Depending on the time of amortization assumed (20 to 40 years), the production cost is estimated to 0.0615 to 0.0845 Swiss francs/kWh, a value considered favorable for the realization of the project.

  20. PHOSPHORUS CONTAMINATION AS A BARRIER TO WATER QUALITY OF SMALL RETENTION RESERVOIRS IN PODLASIE REGION

    Directory of Open Access Journals (Sweden)

    Joanna Ewa Szczykowska

    2016-06-01

    Full Text Available Dam retention reservoirs created on the rivers play a special role as an environmentally friendly forms of stopping and slowing of water runoff. The aim of this study was to evaluate the quality of water flowing into small retention reservoirs in terms of the concentration of total phosphorus and phosphates. The study involved three small retention reservoirs located in the municipalities of: Bransk, Dubicze Cerkiewne and Kleszczele in Podlasie region. Selection of the research facilities was made due to the similarity in the soil management type within catchment of the flowing watercourse, retained water utilization ways, and a small surface of reservoirs. Watercourse reaching the reservoir provides biogens along with water, which directly affect the water quality resulting in high concentrations in water, either indirectly by initiating or accelerating the process of degradation of the reservoir and the loss of its usability. Given the concentration of total phosphorus, it can be said that only in the case of 20.8% of water samples from Nurzec river feeding the Otapy-Kiersnówek reservoir, about 25% of water samples of Orlanka river feeding Bachmaty reservoir, and 17% of samples taken from the watercourse supplying Repczyce reservoir, corresponded to values specified for the second class in the current Regulation of the Minister of the Environment [Regulation 2014]. It can be assumed that this situation is caused by a long-term fertilization using manure, which in consequence led to the oversaturation of soils and phosphorus compounds penetration into the river waters in areas used for agricultural purposes. Especially in the early spring periods, rising temperature together with rainfall caused soil thawing resulting in increasing concentrations of contaminants carried along with the washed soil particles during the surface and subsurface runoff. Values of TSI(TP calculated for Otapy-Kiersnówek reservoir amounted to 112.4 in hydrological

  1. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    Science.gov (United States)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi-reservoir

  2. Water supply at Los Alamos during 1996. Progress report

    International Nuclear Information System (INIS)

    McLin, S.G.; Purtymun, W.D.; Maes, M.N.; Longmire, P.A.

    1997-12-01

    Production of potable municipal water supplies during 1996 totaled about 1,368.1 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from either the spring gallery in Water Canyon or from Guaje Reservoir during 1996. About 2.6 million gallons of water from Los Alamos Reservoir was used for lawn irrigation. The total water usage in 1996 was about 1,370.7 million gallons, or about 131 gallons per day per person living in Los Alamos County. Groundwater pumpage was up about 12.0 million gallons in 1996 compared with the pumpage in 1995. This report fulfills requirements specified in US Department of Energy (DOE) Order 5400.1 (Groundwater Protection Management Program), which requires the Los Alamos National Laboratory (LANL) to monitor and document groundwater conditions below Pajarito Plateau and to protect the regional aquifer from contamination associated with Laboratory operations. Furthermore, this report also fulfills special conditions by providing information on hydrologic characteristics of the regional aquifer, including operating conditions of the municipal water supply system

  3. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    Ringer, W.; Simader, M.; Bernreiter, M.; Aspek, W.; Kaineder, H.

    2006-01-01

    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  4. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  5. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  6. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  7. Water supply at Los Alamos during 1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1978-08-01

    The Los Alamos water supply for 1977 consisted of 1474 x 10 6 gal from wells in three fields and 57 x 10 6 gal from the gallery in Water Canyon. The production from the well fields was at its lowest volume since 1970. Water-level trends were as anticipated under current production practices. Well rehabilitation should be continued to ensure an adequate and reliable supply from wells that are 10 to over 25 yr old

  8. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  9. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  10. Genotoxicity assessment of water sampled from R-11 reservoir by means of allium test

    Energy Technology Data Exchange (ETDEWEB)

    Bukatich, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Geraskin, S. [Russian Institute of Agricultural Radiology and Agroecology (Russian Federation)

    2014-07-01

    The Mayak PA was the first enterprise for the production of weapon-grade plutonium in Russia and it incorporates uranium-graphite reactors for plutonium production and radiochemical facilities for its separation. Radiochemical processing resulted in huge volumes of liquid radioactive wastes of different specific activities. To reduce the radionuclides release into the environment, a system of bypasses and ponds (the Techa Cascade Reservoirs system) to store low-activity liquid wastes has been constructed in the upper reaches of the Techa River. Currently, industrial reservoirs of Mayak PA contain over 350 million m{sup 3} of low-level radioactive liquid wastes with total activity over 7.4 x 10{sup 15} Bq. Reservoir R-11 is the final reservoir in the Techa Cascade Reservoirs system. The average specific activity of main radionuclides in the water of R-11 are: {sup 90}Sr - 1.4x10{sup 3} Bq/l; {sup 137}Cs - 3 Bq/l; {sup 3}H - 7x10{sup 2} Bq/l; α-emitting radionuclides - 2.6 x 10{sup -1} Bq/l. In our study the Allium-test was employed to estimate reservoir R-11 water genotoxic effects. In 2012, 3 water samples were collected in different parts of reservoir R-11. Water samples from the Shershnevskoye reservoir (artificial reservoir on the Miass River designed for Chelyabinsk city water supply) were used as natural control. Samples of distilled and bottled water were used as an additional laboratory control. The common onion, Allium cepa L. (Stuttgarter Riesen) was used. Healthy equal-sized bulbs were soaked for 24 hours at +4±2 deg. C to synchronize cell division. The bulbs were maintained in distilled water at +23 deg. C until roots have grown up to 2±1 mm length and then plunged into water samples. Control samples remained in distilled and bottled water as well as in water samples from the Shershnevskoye reservoir (natural control). Roots of the 18±3 mm length were randomly sampled and fixed in an alcohol/acetic acid mixture. For microscopic analysis, squashed

  11. Water levels shape fishing participation in flood-control reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  12. POTABLE WATER SUPPLY IN OWERRI METROPOLIS: A ...

    African Journals Online (AJOL)

    address the problems of water supply and management. These include: ..... total replacement of under-laid water pipes has not been done, and there is no modern way .... If the present trend continues, the vast majority of these people will be living ... maintenance and management of water facilities and other logistics.

  13. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Science.gov (United States)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  14. Institutional and socioeconomic aspects of water supply

    Science.gov (United States)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  15. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  16. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  17. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  18. Radiation monitoring on shores of Kayrakum water reservoirs

    International Nuclear Information System (INIS)

    Boboev, B.D.; Khakimov, N.; Nazarov, Kh.M.; Abdulloev, Sh.; Barotov, A.M.

    2012-01-01

    Complex investigation results of radiological situation of Kayrakum water reservoir's fauna and flora are provided in this article. The field radiometric and dosimetric measurements, sampling for analysis by sampler from bottom sedimentation and water are carried out. It is determined that total hardness of water in Kayrakum water reservoir in the course of season (from April till December) fluctuated from 5.78 till 9.6 mg-eq/l. The maximum indicators were during the spring period. Ion sums in average per year was 791.2 mg-eq/l.

  19. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  20. Burned forests impact water supplies

    Science.gov (United States)

    Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steven P. Norman; Erika C. Cohen; Yongqiang Liu; Kevin D. Bladon; Steven G. McNulty

    2018-01-01

    Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize longterm records of wildland fire, climate, and river flow for 168 locations across the United States. We show...

  1. Using Water Transfers to Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  2. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  3. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    Science.gov (United States)

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  4. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  5. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  6. Evaluation of Major Dike-Impounded Ground-Water Reservoirs, Island of Oahu

    Science.gov (United States)

    Takasaki, Kiyoshi J.; Mink, John Francis

    1985-01-01

    it is an important supply because of the great need for augmenting water supplies there. Total leakage from storage in the Waianae Range has not been estimated because underflow is difficult to determine. Much of the surface leakage, about 4 Mgal/d in the upper parts of Waianae, Makaha, and Lualualei Valleys, has been diverted by tunnels. Hence, supplies available, other than surface leakage, cannot be estimated from the discharge end of the hydrologic cycle. Infiltration in the Waianae Range to dike-intruded reservoirs in the upper part of the valleys on the west (leeward) side has been estimated at about 20 Mgal/d, and on the east (windward) side, at about 10 Mgal/d. The available supply has been estimated at about 15 Mgal/d from the infiltration on the leeward side, of which about 4 Mgal/d is now being developed. No estimate has been made for the available supply on the windward side. Dike-intruded reservoirs at shallow depths west (lee side) of the crest are in upper Makaha, Waianae, and Lualualei Valleys. They are at moderate depths in upper Haleanu and in lower Kaukonahua Gulches on the east (windward) side. Flow hydraulics in dike tunnels is also discussed.

  7. Reservoir water level forecasting using group method of data handling

    Science.gov (United States)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  8. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  9. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  10. WATER LOSS OF KOKA RESERVOIR, ETHIOPIA: COMMENTS ON

    African Journals Online (AJOL)

    to be used for Awash River simulation model. Key words/phrases: Ethiopia, Koka Reservoir water loss, leakage rate, subsurface inflow, water balance. INTRODUCTION. Koka Dam was built on Awash River, Ethiopia, in 1960 for hydropower and irrigation purposes. It is located at 8°24'N latitude and 39°05'E longitude (Fig.

  11. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  12. The Canadian heavy water supply program

    International Nuclear Information System (INIS)

    Dahlinger, A.; McNally, P.J.

    1976-06-01

    The performance to date of individual Canadian heavy water plants is described in detail as are the current plant construction plans. These data, when related to the long-term electricity demand indicate that heavy water supply and demand are in reasonable balance and that the CANDU program will not be inhibited because of shortages of the commodity. (author)

  13. PCBs in Rain Water, Streams and a Reservoir in a Small Catchment of NW Spain

    Science.gov (United States)

    Delgado-Martín, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Juncosa-Rivera, Ricardo; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea

    2016-04-01

    Polychlorinated biphenyls (PCBs) constitute a significant environmental concern due to its persistence, tendency to bio-accumulate, acknowledged toxicity and ubiquity. In the present study, a small water catchment (~100 km2) inclusive of a two-tailed water supply reservoir (Abegondo-Cecebre) has been monitored between 2009 and 2014. Sampling stations include: a) one precipitation gauge used to collect monthly-integrated bulk precipitation (25 samples); b) seven streams (95 samples); c) five surface and one bottom points within the reservoir (104 samples); d) five points for sediment sampling in two surveys (spring and summer; 10 samples). All the water samples as well as the leachates of sediment washing have been analyzed for their concentration in 6 marker PCB (congeners 28, 52, 101, 138, 153 and 180) and 12 dioxin-like PCB (congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) compounds. The average concentration of PCBtot in the bulk precipitation during the sampling period is ~406 pg/L although a very significant decrease has occurred since the end of 2011 (~800 pg/L) to the end of 2014 (~60 pg/L). Likewise, the mean concentration of PCBtot in the stream water samples is 174 pg/L and a similar reduction in the concentration of PCBtot is also acknowledged for the same period of time (~250 pg/L before the end of 2011 and ~30 pg/L after then). Reservoir surface water has a PCBtot concentration of ~234 pg/L which, according to its sampling time (2010-2011) is consistent with the measured stream waters. However, deep reservoir water reveals an average concentration which is higher than the corresponding top water (~330 pg/L) but significantly smaller than the water-leached sediments (~860 pg/L). The available data suggest that up to a 30% of PCBs associated with precipitation becomes sequestered by the soil/sediment system while no significant change takes place during the transfer of water from the stream to the reservoir system, at least in

  14. Chemical composition and water quality of Tashlyk Water-cooling reservoir of South-Ukraine NPP

    International Nuclear Information System (INIS)

    Kosheleva, S.I.; Gajdar, E.M.

    1995-01-01

    Information about water quality in Tashlyk water reservoir (cooler of South-Ukrainian NPP) during 9 years (1980-1992) is presented. Comparative data about Water Quality of South Bug (its source of water nutrition) and this reservoir point on the periodical pollution by surface waters and industrial wastes with a great contain of sulphates and chlorides. The class of water has been changed from hydrocarbonat calcium to sulfur-chlorine-magnesium or chlorine-natrium. The contain of biogenic and organic components in reservoir's water has been corresponded to the main class of waters satisfactory cleanliness

  15. Proposed water-supply investigations in Sidamo Province, Ethiopia

    Science.gov (United States)

    Phoenix, David A.

    1966-01-01

    The present report describes the results of an air and ground hydrologic reconnaissance of some 32,000 square kilometers in Sidamo Province of southern Ethiopia. Existing (1966) water resources developments, chiefly for livestock and village supplies, include surface reservoirs, a few drilled wells, several clusters of dug wells in the Mega area, several scattered springs, and the perennial Dawa Parma River. Surface-water reservoirs range from hand-dug ponds of a few hundred cubic meters capacity to large machine-constructed excavations built to hold 62,000 cubic meters of water. All the existing drilled wells tap saturated alluvium at depths of less than 120 meters. The dug wells tap water-bearing zones in tuffaceous lacustrine deposits or stream-channel alluvium generally at depths of less than 30 meters. The springs mostly rise from fractured Precambrian quartzite and individual discharges are all less than 75 liters per minute. The report also outlines the terms of reference for a longer term water-resources investigation of the region including staffing, housing and equipment requirements and other logistic support.

  16. Public-supply water use and self-supplied industrial water use in Tennessee, 2010

    Science.gov (United States)

    Robinson, John A.

    2018-04-26

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Water Resources, prepared this report and displayed and analyzed water use by self-supplied industrial and public-supply water systems in Tennessee for 2010. Public-supply water systems in Tennessee provide water for domestic, industrial, and commercial uses and for municipal services. In 2010, 474 public-supply water systems distributed 917 million gallons per day (Mgal/d) of surface water (67 percent, 617 Mgal/d) and groundwater (33 percent, 300 Mgal/d) to a population of 5.7 million in Tennessee. Gross per capita water use in Tennessee during 2010 was 162 gallons per day.Since 1950, water withdrawals by public-supply water systems in Tennessee have increased from 160 Mgal/d to 917 Mgal/d in 2010. Each of the 95 counties in Tennessee was served by at least 1 public-supply water system in 2010. Tennessee public-supply water systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. Since 2005, surface-water withdrawals have increased by 26 Mgal/d, and groundwater withdrawals have decreased by 29 Mgal/d, which is the first decrease in groundwater withdrawals since 1950; however, 29 systems reported increased groundwater withdrawals during 2010, and 12 of these 29 systems reported increases of 1 Mgal/d or more. Davidson County had the largest surface-water withdrawal rate (136 Mgal/d) in 2010. The largest groundwater withdrawal rate (151 Mgal/d) by a single public-supply water system was reported by Memphis Light, Gas and Water, which served more than 669,000 people in Shelby County in 2010.Self-supplied industrial water use includes water for such purposes as fabrication, processing, washing, diluting, cooling, or transporting a product; incorporating water into a product; or for sanitation needs in facilities that manufacture various products. Water withdrawals for self-supplied

  17. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  18. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  19. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses......), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6. billion. CNY/year. Compliance to water quality grade III causes a relatively...

  20. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  1. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  2. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  3. Identification of serotypes of Microcystis aeruginosa with different toxicity in a water supply reservoir; Identification de serotipos de Microcystis aeruginosa con distinto grado de toxicidad en un embalse de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Martin Montano, A.; Carrillo, E.; Costas, E.; Basanta, A.

    2000-07-01

    In the reservoirs characterized by a high eutrofia level, it is usually frequent the appearance of toxic cyanobacteria, which represents potential public health problem. Microcystis aeruginosa is one of the main toxic species with a wide distribution area and able to produce hepatotoxins. The blooms shows a spatial and temporal patterns of high-and low-toxicity. The studied blooms were polyclonal and showed not relations hip between total abundance of M. aeruginosa and total toxicity. These was directly related to the presence of toxic serotypes. (Author) 6 refs.

  4. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  5. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  6. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  7. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  8. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  9. Determining water reservoir characteristics with global elevation data

    NARCIS (Netherlands)

    van Bemmelen, C. W T; Mann, M.; de Ridder, M.P.; Rutten, M.M.; van de Giesen, N.C.

    2016-01-01

    Quantification of human impact on water, sediment, and nutrient fluxes at the global scale demands characterization of reservoirs with an accuracy that is presently unavailable. This letter presents a new method, based on virtual dam placement, to make accurate estimations of area-volume

  10. Aerial view of the water reservoirs for Lab II

    CERN Multimedia

    1974-01-01

    Two large reservoirs (5000 m3 each) were built on the Swiss part of the site (Lab I is on the left). The water was drawn from the pumping station at Le Vengeron on Lac Léman, through a 10 km long pipe to be distributed over all Lab II.

  11. Climate-water quality relationships in Texas reservoirs

    Science.gov (United States)

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  12. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  13. Strontium 90 in silts of the Dnieper cascade water reservoirs

    International Nuclear Information System (INIS)

    Romanenko, V.D.; Kuz'menko, M.I.; Matvienko, L.P.; Klenus, V.G.; Nasvit, O.I.

    1989-01-01

    The change of strontium-90 content in water and silts of the Dnieper cascade water reservoirs was analyzed. It was shown, that decrease of strontium-90 content in water in time connected basically with ion exchange adsorption of strontium-90 by residues. A high sorption ability of residues made it possible for radioisotopes to reduce sharply their concentration along depth of soils. The highest concentration of radioisotopes was in the upper layers, enriched by silt. It was ascertained, that strontium-90 migration along depth of residues took place rapidly in the Kiev's water reservoir. Down the cascade strontium-90 content reduced in lower layers of residues as well as in upper layers. 4 tabs

  14. Evaluation of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    DEFF Research Database (Denmark)

    Samal, Nihar; Stæhr, Peter A.; Pierson, Donald C.

    events using vertical profiles of temperature, dissolved oxygen, turbidity and chlorophyll automatically collected at 6 hour intervals in West basin of Ashokan Reservoir, which is a part of the New York City drinking water supply. Using data from before, during and after storm events, we examine how...

  15. The role of reservoir storage in large-scale surface water availability analysis for Europe

    Science.gov (United States)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  16. On site power generation protects water supply for Ajax, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Mohamed

    2011-01-15

    The Ajax water supply plant treats and distribute water for the town of Ajax and the nearby City of Pickering and the operations staff manages two other treatment plants supplying the City of Oshawa and the Town of Whitby, and a dozen pumping stations, reservoirs and elevated tanks. The plant requires around 2 MW of continuous power to supply its 150,000 customers. Although local utility power is reliable, standby generators are mandated by the Ontario Ministry of the Environment. When power goes out problems can result in the plant and system. To avoid these, the Ajax plant staff selected Cummins Power Generation who delivered one 350 kW and two 1500 kW generator sets with automatic transfer switches and paralleling switchgear. These digital systems parallel and synchronize the generator sets with each other and with the utility, which allows the plant to provide continuous service. The plant is designed for twice its current capacity and is ready to handle future requirements.

  17. Impact of Land Use Change and Land Management on Irrigation Water Supply in Northern Java Coast

    Directory of Open Access Journals (Sweden)

    Suria DarmaTarigan

    2013-05-01

    Full Text Available In Indonesia, paddy irrigation covers an area of 7,230,183 ha. Ten percent (10% of those area or 797,971 ha were supplied by reservoirs. As many as 237,790 ha (30% of those area supplied by reservoirs are situated downstream of Citarum Watershed called Northern Java Coast Irrigation Area or Pantura. Therefore, Citarum watershed is one of the most important watershed in Indonesia. Citarum is also categorized as one of most degraded watershed in Java. The study aimed to evaluate influence of land use change on irrigation water supply in Citarum watershed and land management strategies to reduce the impact. Tremendous land use change occurred in the past ten years in Citarum watershed. Settlement areas increases more than a double during 2000 to 2009 (81,686 ha to 176,442 ha and forest area decreased from 71,750 ha to 9,899 ha in the same time period. Land use change influences irrigation water supply through 2 factors: a decreasing storage capacity of watershed (hydrologic functions for dry season, and b decreasing storage capacity of reservoirs due to the sedimentation. Change of Citarum watershed hydrologic function was analyzed using 24 years’ time series discharge data (1984-2008 in combination with rainfall data from 2000 to 2008. Due to the land use change in this time period, discharge tend to decrease despite of increasing trend of rainfall. As a result irrigation area decreased 9,355 ha during wet season and 10,170 ha during dry season in the last ten years. Another threat for sustainability of water irrigation supply is reservoir sedimentation. Sedimentation rate in the past 10 years has reduced upper Citarum reservoir (Saguling half-life period (½ capacity sedimented from 294 to 28 years. If proper land management strategies be carried out, the half-life period of Saguling reservoir can be extended up to 86,4 years

  18. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  19. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    Science.gov (United States)

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.

    2007-01-01

    Elevated phosphorus concentrations commonly promote excessive growth of algae in waters nationwide. When such waters are used for public supply, the algae can plug filters during treatment and impart tastes and odors to the finished water. This increases treatment costs and results in finished water that may not be of the quality desired for public supply. Consequently, copper sulfate is routinely applied to many reservoirs to control algal growth but only is a 'temporary fix' and must be reapplied at intervals that can range from more than 30 days in the winter to less than 7 days in the summer. Because copper has a maximum allowable concentration in public drinking water and can be toxic to aquatic life, water suppliers commonly seek to develop alternative, long-term strategies for managing reservoirs. Because these are nationwide issues and part of the mission of the U.S. Geological Survey (USGS) is to define and protect the quality of the Nation's water resources and better understand the physical, chemical, and biological processes in wetlands, lakes, reservoirs, and estuaries, investigations into these issues are important to the fulfillment of the mission of the USGS. The City of Newport News, Virginia, provides 50 million gallons per day of treated water for public supply from Lee Hall and Harwoods Mill Reservoirs (terminal reservoirs) to communities on the lower York-James Peninsula. About 3,500 pounds of copper sulfate are applied to each reservoir at 3- to 99-day intervals to control algal growth. Consequently, the USGS, in cooperation with the City of Newport News, investigated the effects of management practices and natural processes on phosphorus (the apparent growth-limiting nutrient), copper, and algal concentrations in the terminal reservoirs to provide information that can be used to develop alternative management strategies for the terminal reservoirs. Initial parts of the research evaluated circulation and stratification in the reservoirs

  20. Effects of reservoirs water level variations on fish recruitment

    Directory of Open Access Journals (Sweden)

    Fabíula T. de Lima

    2017-10-01

    Full Text Available ABSTRACT The construction of hydroelectric power plants has many social and environmental impacts. Among them, the impacts on fish communities, which habitats are drastically modified by dams, with consequences across the ecosystem. This study aimed to assess the influence of water level (WL variations in the reservoirs of the Itá and Machadinho hydroelectric plants on the recruitment of fish species from the upper Uruguay River in southern Brazil. The data analyzed resulted from the WL variation produced exclusively by the hydroelectric plants generation and were collected between the years 2001 and 2012. The results showed significant correlations between the abundance of juvenile fish and the hydrological parameters only for some reproductive guilds. The species that spawn in nests showed, in general, a clear preference for the stability in the WL of the reservoirs, while the species that spawn in macrophytes or that release demersal eggs showed no significant correlation between the abundance of juvenile fish and hydrological parameters. A divergence of results between the two reservoirs was observed between the species that release semi-dense eggs; a positive correlation with a more stable WL was only observed in the Machadinho reservoir. This result can be driven by a wider range of WL variation in Machadinho reservoir.

  1. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    decisions, the operation of the upstream reservoir (Como Lake) is optimised with respect to the real irrigation demand of the crops. Then, the farmers can re-adapt their decisions according with the new optimal operating strategy, thus activating a loop between the two systems that exchange expected supply and irrigation demand. Results show that the proposed interaction between farmers and water managers is able to enhance the efficiency of water management practices, foster crop production and mitigate climate change impacts.

  2. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    Science.gov (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  3. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  4. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  5. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.

    Science.gov (United States)

    Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping

    2018-08-15

    This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue

  6. Wildland Fire Research: Water Supply and Ecosystem Protection

    Science.gov (United States)

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  7. 30 CFR 874.14 - Water supply restoration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are those...

  8. Characterization of water quality in Bushy Park Reservoir, South Carolina, 2013–15

    Science.gov (United States)

    Conrads, Paul A.; Journey, Celeste A.; Petkewich, Matthew D.; Lanier, Timothy H.; Clark, Jimmy M.

    2018-04-25

    The Bushy Park Reservoir is the principal water supply for 400,000 people in the greater Charleston, South Carolina, area, which includes homes as well as businesses and industries in the Bushy Park Industrial Complex. Charleston Water System and the U.S. Geological Survey conducted a cooperative study during 2013–15 to assess the circulation of Bushy Park Reservoir and its effects on water-quality conditions, specifically, recurring taste-and-odor episodes. This report describes the water-quality data collected for the study that included a combination of discrete water-column sampling at seven locations in the reservoir and longitudinal water-quality profiling surveys of the reservoir and tributaries to characterize the temporal and spatial water-quality dynamics of Bushy Park Reservoir. Water-quality profiling surveys were conducted with an autonomous underwater vehicle equipped with a multiparameter water-quality-sonde bulkhead. Data collected by the autonomous underwater vehicle included water temperature, dissolved oxygen, pH, specific conductance, turbidity, total chlorophyll as fluorescence (estimate of algal biomass), and phycocyanin as fluorescence (estimate of cyanobacteria biomass) data.Characterization of the water-quality conditions in the reservoir included comparison to established State nutrient guidelines, identification of any spatial and seasonal variation in water-quality conditions and phytoplankton community structures, and assessment of the degree of influence of water-quality conditions related to Foster Creek and Durham Canal inflows, especially during periods of elevated taste-and-odor concentrations. Depth-profile and autonomous underwater vehicle survey data were used to identify areas within the reservoir where greater phytoplankton and cyanobacteria densities were most likely occurring.Water-quality survey results indicated that Bushy Park Reservoir tended to stratify thermally at a depth of about 20 feet from June to early October

  9. Reduction of radon from household water supplies

    International Nuclear Information System (INIS)

    Shapiro, P.S.; Sorg, T.J.

    1988-01-01

    Groundwater can be a major source of indoor radon in homes that use individual wells or are served by very small community water supply systems. In the United States, several wells have been found to contain more than 37,000,000 Bq.m -3 of radon dissolved in the water. This radon can be released in the indoor air in the course of using water for normal household activities. A measurement of the radon in the drinking water can be made when an indoor radon problem is suspected. While ventilation may reduce indoor radon levels that result from household water usage, the most common control technique presently applied is removing the radon from the water using a granular activated carbon (GAC) treatment system. Aeration methods are also effective and have been proven to be economical for small community water supplies. Some of the issues faced in using GAC are sizing and maintaining the unit and shielding and disposing of the GAC to prevent exposure from gamma radiation. (author)

  10. Biological effects of water reservoir radioactive contamination

    International Nuclear Information System (INIS)

    Mashneva, N.I.

    1983-01-01

    Radiation damage to fresh water fishes at early stages of ontogenesis is revealed only during the spawn incubation in a solution with 10 -5 to 10 -3 Cu/l radioactivity and at relatively high dosages exceeding 500-1000 rad. Damaging effect of a fission product mixture of 9, 30 and 100 day age as well as of several separate radionuclides on embryogenesis of freshwater fishes depends mainly on fish species, concentration, toxicity, chemical form of radionuclides in the residence medium, on peculiarities of metabolism between the aqueous medium and an organism, stage of the embryo development by the moment of radiation effect and duration of this effect

  11. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    Science.gov (United States)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  12. On the water saturation calculation in hydrocarbon sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stalheim, Stein Ottar

    2002-07-01

    The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A

  13. Alternative Intake Station in Saguling Reservoir for The Needs of Raw Water in Bandung Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Marselina Mariana

    2018-01-01

    Full Text Available Bandung Metropolitan Area (BMA region is the upper watershed of Citarum with an area of ± 2338 km2. The status carried by BMA as a National Strategic Area from the perspective of economic encourage the increasing migration flows to BMA. These circumstances lead to an imbalance between supply and demand, in which on the one hand, demand for clean water is increasing. The potency of Saguling Reservoir as an alternative of raw water of BMA region in terms of quantity in this research was determined based on the determination of mainstay discharge. In this study, the intake site selection 11 monitoring posts will be carried out by reviewing the concentration of all parameters in Government Regulation No. 82 Year 2001 on any division of discharge grade using 5-grade Makov Discrete method (very dry, dry, normal, wet and very wet. In addition, the calculation of the value of Water Quality Index (WQI was done at each monitoring station for each division of discharge grade that has been done. The series of data flow and concentration parameters used in this study start from the year 1999 to 2014. The allocation of raw water discharge calculation for Saguling Reservoir in order to fulfill the needs of raw water in Bandung Metropolitan Area is 46,92m3/second (R5 dry for irrigation raw water supply and 29,53 92 m3/second (R10 dry for drinking water supply. Based on the assessment of the concentration of measured parameters and determination of Water Quality Index, it can be found that around Muara Ciminyak location is the most qualified location to be used as drinking raw water intake for Bandung Metropolitan Area. Based on this study, it also notes that the determination of the concentration of pollutant parameters needs to be done on the each division of discharge grade occurred.

  14. Transport structures and water reservoir for the Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Farkas, J.; Klacansky, T.

    1986-01-01

    The projects are described which were implemented by Doprastav Bratislava within the preparation of the site for the Mochovce nuclear power plant. This includes a railway siding in a length of 11.2 kilometres which includes a railway bridge, two other bridges and the reconstruction of the Kalna nad Vahom railway terminal. Also reconstructed or newly built were road communications in a total length of 23.3 km. The said project included the construction of a road flyover over the railway track and the construction of five other smaller bridges. In order to provide the utility water supply to the Mochovce nuclear power plant, a large reservoir is being built at Velke Kozmalovce. The reservoir will have a total capacity of 2.6 mill. m 3 of water, of this the effective capacity will be 2.1 mill. m 3 on a flooded area of some 90 ha. Part of the reservoir will be a small hydro-power plant, the reservoir will also be used for irrigation on the fields of the neighbouring farms. (Z.M.)

  15. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    Science.gov (United States)

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  16. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  17. Assessment of water management tools for the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Altmannsberger, Charlotte

    2016-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a Water Management Plan was deployed. The "Auckland Regional Water Board" today "Auckland Regional Council" established guidelines to enable a sustainable management [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. The minimum water level was observed beginning of the 1980s with -1.25 m and the maximum recently with 1.6 m. The higher the production rates from the field, the lower the water level in the observation well. Highest abstraction rates reached almost 1,500 m3/day and lowest were just above 500 m3/day. Several models of varying complexity where used from purely data driven statistical to fully coupled process simulation models. In all cases the available data were used for calibration and the models were then applied for predictive purposes. We used the Nash-Sutcliffe efficiency index to quantify their predictive ability. The recommendation for the full implementation of the water management plan is the regular revision of an existing multivariate regression model which is based on the Theis well equation. Further, we suggest improving the underlying geological model of the process simulations to

  18. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    Science.gov (United States)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    Reservoirs located in highly populated and industrialized regions receive discharges of nutrients and pollutants from the watershed that have great potential to impair water quality and threaten aquatic life. The Euiam reservoir is a multiple-purpose water body used for tourism, fishery, and water supply and has been reported as eutrophic since 1990s. The external nutrients loading is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms often continue even after external nutrients loading has been controlled, being benthic nutrient loading the main source of nutrients in the water column. Attempts to quantify benthic nutrients fluxes and their role as a source of nutrients to the water column have produced ambiguous results. Benthic flux is dependent on the upward flow of pore water caused by hydrostatic pressure, molecular diffusion, and mixing of sediment and water. In addition, it is controlled by dissolved oxygen (DO) levels, pH values and temperature in the overlying water. Therefore, linking a benthic flux to a water quality model should give us more insight on the effects of benthic fluxes to better quantify nutrient concentration within an entire reservoir system where physical, chemical, biological properties are variable. To represent temporal and spatial variations in the nutrient concentrations of the reservoir, a three-dimensional time variable model, Generalized Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) was selected. The GLLVHT model is imbedded within the Generalized Environmental Modeling System for Surface waters (GEMSS). The computational grid of the three-dimensional model was developed using the GIS. The horizontal grid is composed of 580 active cells at the surface layer with spacing varies from 54.2 m to 69.8 m. There are 15 vertical layers with uniform thickness of 1.9 m resolution. To calibrate the model, model prediction for

  19. 2-D Water Quality Modelling of a Drinking Water Reservoir

    Czech Academy of Sciences Publication Activity Database

    Růžička, Martin; Hejzlar, J.; Mikešová, P.; Cole, T. M.

    2002-01-01

    Roč. 50, č. 3 (2002), s. 258-272 ISSN 0042-790X R&D Projects: GA ČR GA103/98/0281; GA AV ČR IAA3042903 Grant - others:USARGD-UK(USA) N68171-99-M-6754 Keywords : CE-QUAL-W2 * Dimictic stratified reservoir * Sensitivity analysis Subject RIV: DA - Hydrology ; Limnology

  20. More efficient optimization of long-term water supply portfolios

    Science.gov (United States)

    Kirsch, Brian R.; Characklis, Gregory W.; Dillard, Karen E. M.; Kelley, C. T.

    2009-03-01

    The use of temporary transfers, such as options and leases, has grown as utilities attempt to meet increases in demand while reducing dependence on the expansion of costly infrastructure capacity (e.g., reservoirs). Earlier work has been done to construct optimal portfolios comprising firm capacity and transfers, using decision rules that determine the timing and volume of transfers. However, such work has only focused on the short-term (e.g., 1-year scenarios), which limits the utility of these planning efforts. Developing multiyear portfolios can lead to the exploration of a wider range of alternatives but also increases the computational burden. This work utilizes a coupled hydrologic-economic model to simulate the long-term performance of a city's water supply portfolio. This stochastic model is linked with an optimization search algorithm that is designed to handle the high-frequency, low-amplitude noise inherent in many simulations, particularly those involving expected values. This noise is detrimental to the accuracy and precision of the optimized solution and has traditionally been controlled by investing greater computational effort in the simulation. However, the increased computational effort can be substantial. This work describes the integration of a variance reduction technique (control variate method) within the simulation/optimization as a means of more efficiently identifying minimum cost portfolios. Random variation in model output (i.e., noise) is moderated using knowledge of random variations in stochastic input variables (e.g., reservoir inflows, demand), thereby reducing the computing time by 50% or more. Using these efficiency gains, water supply portfolios are evaluated over a 10-year period in order to assess their ability to reduce costs and adapt to demand growth, while still meeting reliability goals. As a part of the evaluation, several multiyear option contract structures are explored and compared.

  1. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  2. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  3. Multipurpose Water Reservoir Management: An Evolutionary Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Luís A. Scola

    2014-01-01

    Full Text Available The reservoirs that feed large hydropower plants should be managed in order to provide other uses for the water resources. Those uses include, for instance, flood control and avoidance, irrigation, navigability in the rivers, and other ones. This work presents an evolutionary multiobjective optimization approach for the study of multiple water usages in multiple interlinked reservoirs, including both power generation objectives and other objectives not related to energy generation. The classical evolutionary algorithm NSGA-II is employed as the basic multiobjective optimization machinery, being modified in order to cope with specific problem features. The case studies, which include the analysis of a problem which involves an objective of navigability on the river, are tailored in order to illustrate the usefulness of the data generated by the proposed methodology for decision-making on the problem of operation planning of multiple reservoirs with multiple usages. It is shown that it is even possible to use the generated data in order to determine the cost of any new usage of the water, in terms of the opportunity cost that can be measured on the revenues related to electric energy sales.

  4. Origin of late pleistocene formation water in Mexican oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    2004-07-01

    Brine water invasion into petroleum reservoirs, especially in sedimentary basins, are known from a variety of global oil field, such as the Western Canada sedimentary basin and, the central Mississippi Salt Dome basin (Kharaka et al., 1987). The majority of oil wells, especially in the more mature North American fields, produce more water than they do oil (Peachey et al., 1998). In the case of Mexican oil fields, increasing volumes of invading water into the petroleum wells were detected during the past few years. Major oil reserves in the SE-part of the Gulf of Mexico are economically affected due to decreases in production rate, pipeline corrosion and well closure. The origin of deep formation water in many sedimentary basins is still controversial: Former hypothesis mainly in the 60's, explained the formation of formation water by entrapment of seawater during sediment deposition. Subsequent water-rock interaction processes explain the chemical evolution of hydrostatic connate water. More recent hydrodynamic models, mainly based on isotopic data, suggest the partial migration of connate fluids, whereas the subsequent invasion of surface water causes mixing processes (Carpenter 1978). As part of the presented study, a total of 90 oil production wells were sampled from 1998 to 2004 to obtain chemical (Major and trace elements) and isotopic composition ({sup 2}H, {sup 13}C, {sup 14}C, {sup 18}O {sup 36}Cl, {sup 37}Cl, {sup 87}Sr, {sup 129}I, tritium) of deep formation water at the Mexican Gulf coast. Samples were extracted from carbonate-type reservoirs of the oil fields Luna, Samaria-Sitio Grande, Jujo-Tecominoac (on-shore), and Pol-Chuc (off-shore, including Abkatun, Batab, Caan, and Taratunich) at a depth between 2,900 m b.s.l. and 6,100 m b.s.l. During the field work, the influence of atmospheric contamination e.g. by CO{sub 2}-atmospheric input was avoided by using an interval sampler to get in-situ samples from the extraction zone of selected bore holes

  5. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  6. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    Science.gov (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    Science.gov (United States)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  8. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    computational requests and the capability of exploiting real-time hydro-meteorological information, which are crucial for an effective operation of these fast-varying hydrological systems. The framework is here demonstrated on the operation of Marina Reservoir (Singapore), whose recent construction in late 2008 increased the effective catchment area to about 50% of the total available. Its operation, which accounts for drinking water supply, flash floods control and water quality standards, is here designed by combining the MPC scheme with the process-based hydrological model SOBEK. Extensive simulation experiments show the validity of the proposed framework.

  9. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  10. How to control water supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Hornby, D M

    1965-05-17

    Exploring for water can be as expensive as exploring for oil, a factor which is likely to become increasingly clear. Basic essentials of any water-supply study require an understanding and knowledge of the limiting conditions of quality, quantity, cost, and reliability. A logical 10-step program is outlined. The initial steps are as follows: (1) analyze the acutal water demand for flood requirements; (2) select the logical and apparent sources of supply; (3) collect and assess all availabe pertinent information; and (4) formulate a plan of analysis and attack for the study. The intermediate steps are as follows: (5) use this plan in making field and office investigations: (6) having determined the alternatives and preliminary costs, prepare a written assessment; and (7) using the brain-storming technique within the company or unit, utilize the assessment to devise a master action plan and budget for anticipated expenditures. The final steps are as follows: (8) complete other required investigations based upon the master plan and budget; (9) prepare detailed design, specifications and estimates; and (10) call tenders or negotiate the most favorable arrangements with respect to construction time and price.

  11. Evaluation of the bottom water reservoir VAPEX process

    Energy Technology Data Exchange (ETDEWEB)

    Frauenfeld, T.W.J.; Jossy, C.; Kissel, G.A. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    The mobilization of viscous heavy oil requires the dissolution of solvent vapour into the oil as well as the diffusion of the dissolved solvent into the virgin oil. Vapour extraction (VAPEX) is an enhanced oil recovery (EOR) process which involves injecting a solvent into the reservoir to reduce the viscosity of hydrocarbons. This paper describes the contribution of the Alberta Research Council to solvent-assisted oil recovery technology. The bottom water process was also modelled to determine its feasibility for a field-scale oil recovery scheme. Several experiments were conducted in an acrylic visual model in which Pujol and Boberg scaling were used to produce a lab model scaling a field process. The model simulated a slice of a 30 metre thick reservoir, with a 10 metre thick bottom water zone, containing two horizontal wells (25 metres apart) at the oil water interface. The experimental rates were found to be negatively affected by continuous low permeability layers and by oil with an initial gas content. In order to achieve commercial oil recovery rates, the bottom water process must be used to increase the surface area exposed to solvents. A large oil water interface between the wells provides contact for solvent when injecting gas at the interface. High production rates are therefore possible with appropriate well spacing. 11 refs., 4 tabs., 16 figs.

  12. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  13. Peculiarities of plant contamination in the right-bank area of the Kyiv water reservoir

    International Nuclear Information System (INIS)

    Shirokaya, Z.O.; Klenus, V.G.; Kaglyan, A.E.; Gudkov, D.I.; Yurchuk, L.P.

    2008-01-01

    Paper contains the results of study the peculiarities of radionuclide accumulation by higher aquatic plants of the Kyiv water reservoir from 1991 to 2008. Content of the Cs 137 radionuclide in higher aquatic plants of the right-bank area of Kyiv water reservoir were analyzed. The modern state of vegetation coverage of Kyiv reservoir are estimated. (authors)

  14. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  15. Sustainability of Drinking Water Supply Projects in Rural of North ...

    African Journals Online (AJOL)

    Background: Safe water supply coverage in the rural areas of Ethiopia is very marginal. The coverage still remains very low because of limited progress in water supply activities in these areas. Factors affecting the continued use of the outcome of water supply projects in the background of limited resources are not well ...

  16. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  17. 40 CFR 230.50 - Municipal and private water supplies.

    Science.gov (United States)

    2010-07-01

    ... a municipal or private water supply system. (b) Possible loss of values: Discharges can affect the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal...

  18. The impact of forest thinning on the reliability of water supply in central Arizona.

    Directory of Open Access Journals (Sweden)

    Silvio Simonit

    Full Text Available Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation.

  19. The Impact of Forest Thinning on the Reliability of Water Supply in Central Arizona

    Science.gov (United States)

    Simonit, Silvio; Connors, John P.; Yoo, James; Kinzig, Ann; Perrings, Charles

    2015-01-01

    Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation. PMID:25835003

  20. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy

  1. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  2. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  3. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  4. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  5. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  6. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  7. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  8. Water Quality and Trophic Status Study in Sembrong Reservoir during Monsoon Season

    Science.gov (United States)

    Hashim, S. I. N. S.; Talib, S. H. A.; Abustan, M. S.; Tajuddin, S. A. M.

    2018-04-01

    Sembrong is one of the reservoirs in Johor that supplies raw water to consumer for daily activities usage. Cleanliness and quality of water must be maintained to ensure that contamination is not applicable. This study is to determine the effects of sedimentation on water quality due to the deposition of sediment in the reservoir and to identify the rate of ammonia based on the location of the study area. There are several parameters required to obtain the data and reading for this study namely the temperature, dissolved oxygen, pH value, ammonia nitrogen and trophic status parameter that are consisting of Chlorophyll, total phosphorus and secchi depth. Seventeen (17) locations along Sembrong reservoir had been identified for sampling activities. From the result obtained, the reading of temperature and pH value has less significant differences between the locations involved. However, for dissolved oxygen, the highest readings were taken at location 6 and 7 which are 9.12 mg/L and 9.05 mg/L respectively compared to other location with the average reading of 8 mg/L. For ammonia nitrogen, the highest reading was at location 1 which is 2.24 mg/L, while the lowest reading at location 13 and 14 with 0.29 mg/L. Chlorophyll readings showed the highest reading of 92.33 μg/L at location 2 which is near to the inlet area while the lowest reading were taken at location 14 with 55.97 μg/L. For total phosphorus, location 1 has the highest reading of 19.50 μg/L compared to location 15 with 9.15 μg/L. The overall result indicates that the reading is high near the inlet and decreasing at the next location. So roughly, the river that connects to the Sembrong reservoir was carrying contaminants.

  9. Many-Objective Reservoir Policy Identification and Refinement to Reduce Institutional Myopia in Water Management

    Science.gov (United States)

    Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.

    2013-12-01

    Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing

  10. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  11. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    Science.gov (United States)

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  12. Analytical Bibliography for Water Supply and Conservation Techniques.

    Science.gov (United States)

    1982-01-01

    American Water Works Association 67:331-35. This article describes the activities of the COMASP (water authority for Sao Paulo , Brazil ) during a...the Water Supply Act of 1958, as amiended. Flood Control Act of 1944. The Secretary of the Army was authorized to sell surplus impounded water in...each category. The issues discussed are: climate and water supply, floods and droughts, groundwater, water conservation in irrigation, water quality

  13. Sustainable Water Supplies in Uppsala, Sweden?

    Science.gov (United States)

    Eriksson, Bert

    2014-05-01

    This is a description of a transdisciplinary three-day project with upper secondary school students around ecosystem services and sustainability. Uppsala (200 000 inhabitants) gets its municipal water from wells in the esker that dominates the landscape in and around the town. This esker was formed by glacial melt water around 11 000 BP, at the end of the latest glaciation and was lifted above sea level by post-glacial land rise from 6000 BP. To keep up the water table in the esker, water from river Fyris is pumped up and infiltrated in the esker. The river is also the recipient of wastewater downstream of the town, and the river runs out into Lake Mälaren that in its turn spills out into the Baltic Sea through Stockholm. The esker and river can thus be a central topic to work around, in Biology and Geography in upper secondary school, concerning recent and future water supplies, quaternary geology, limnology and landscape history. The fieldwork is carried out during three days in a period of three subsequent weeks. 1. One day is used to examine the water quality in the river above the town, organisms, pH, levels of nitrogen and phosphorous, conductivity and turbidity. Then the direction of the water is followed, first up to the infiltration dams on the esker, and then along the esker to the wells in the town. The formation of the esker and other traces in the landscape from the latest glaciation is also studied, as well as the historical use of the esker as a road and as a source of gravel and sand. The tap water that comes from the wells is finally tested in school in the same way as in the river. 2. The second day is used to follow the wastewater from households to the sewage plant, where the staff presents the plant. The water quality is tested in the same way as above in the outlet from the plant to the river. 3. The third day consists of a limnological excursion on the lake outside the mouth of the river where plankton and other organisms are studied, as

  14. Assessment of Reservoir Water Quality Using Multivariate Statistical Techniques: A Case Study of Qiandao Lake, China

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2016-03-01

    Full Text Available Qiandao Lake (Xin’an Jiang reservoir plays a significant role in drinking water supply for eastern China, and it is an attractive tourist destination. Three multivariate statistical methods were comprehensively applied to assess the spatial and temporal variations in water quality as well as potential pollution sources in Qiandao Lake. Data sets of nine parameters from 12 monitoring sites during 2010–2013 were obtained for analysis. Cluster analysis (CA was applied to classify the 12 sampling sites into three groups (Groups A, B and C and the 12 monitoring months into two clusters (April-July, and the remaining months. Discriminant analysis (DA identified Secchi disc depth, dissolved oxygen, permanganate index and total phosphorus as the significant variables for distinguishing variations of different years, with 79.9% correct assignments. Dissolved oxygen, pH and chlorophyll-a were determined to discriminate between the two sampling periods classified by CA, with 87.8% correct assignments. For spatial variation, DA identified Secchi disc depth and ammonia nitrogen as the significant discriminating parameters, with 81.6% correct assignments. Principal component analysis (PCA identified organic pollution, nutrient pollution, domestic sewage, and agricultural and surface runoff as the primary pollution sources, explaining 84.58%, 81.61% and 78.68% of the total variance in Groups A, B and C, respectively. These results demonstrate the effectiveness of integrated use of CA, DA and PCA for reservoir water quality evaluation and could assist managers in improving water resources management.

  15. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  16. Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey

    Science.gov (United States)

    Chang, Ming; Tasker, Gary D.; Nieswand, Steven

    2001-01-01

    Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.

  17. Urban community perception towards intermittent water supply system.

    Science.gov (United States)

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  18. Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece.

    Science.gov (United States)

    Samiotis, Georgios; Trikoilidou, Eleni; Tsikritzis, Lazaros; Amanatidou, Elisavet

    2018-03-20

    In this work, a comparative study on the water quality characteristics of two in-line water reservoirs (artificial lakes) in Aliakmon River (Western Macedonia, Greece) is performed. Polyfytos Reservoir and Ilarion Reservoir were created in 1975 and 2012 respectively, in order to serve the homonymous hydroelectric stations. In young artificial lakes, severe deterioration of water quality may occur; thus, the monitoring and assessment of their water quality characteristics and their statistical interpretation are of great importance. In order to evaluate any temporal or spatial variations and to characterize water quality of these two in-line water reservoirs, water quality data from measurements conducted from 2012 to 2015 were statistically processed and interpreted by using a modified National Sanitation Foundation water quality index (WQI). The water physicochemical characteristics of the two reservoirs were found to be generally within the legislation limits, with relatively small temporal and spatial variations. Although Polyfytos Reservoir showed no significant deviations of its water quality, Ilarion Reservoir exhibited deviations in total Kjeldahl nitrogen, nitrite nitrogen, total suspended solids, and turbidity due to the inundated vegetation decomposition. The conducted measurements and the use of the modified NSFWQI revealed that during the inundation period of Ilarion Reservoir, its water quality was "moderate" and that the deviations were softened through time, leading to "good" water quality during its maturation period. Three years since the creation of Ilarion Reservoir, water quality does not match that of Aliakmon River (feeding water) or that of the stabilized reservoir (Polyfytos Reservoir), whose quality is characterized as "high." The use of a WQI, such as the proposed modified NSFWQI, for evaluating water quality of each sampling site and of an entire water system proved to be a rapid and relatively accurate assessment tool.

  19. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    Krzyworzeka, M.; Piasek, Z.

    1997-01-01

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  20. Radioecological investigations of phytocommunities higher water plant in upper Kiev water reservoir

    International Nuclear Information System (INIS)

    Pan'kov, I.V.; Volkova, E.N.; Shirokaya, Z.O.; Karapish, V.A.; Dremlyuga, S.V.

    1997-01-01

    The dose loads of the highest water plants it determined and ecological role of phytocommunities in radionuclides distribution and migration in water reservoir is shown. The ' critical zones ' for characteristic types of phytocommunities are determined. It is marked that radionuclides accumulation by macrophits depends on species and ecological group

  1. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  2. Water Supply and Sanitation Facility Accessibility in Off-Campus ...

    African Journals Online (AJOL)

    Water Supply and Sanitation Facility Accessibility in Off-Campus Houses ... on drinking water source, rate of illness, type and usage of sanitation facilities. ... wells, unprotected dug wells; while others during the wet season harvest rain water.

  3. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  4. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  5. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  6. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  7. Prague’s Water Supply Station in Podolí — a Solution for the Problems of Clean Water in the 1930s

    Directory of Open Access Journals (Sweden)

    K. Drnek

    2011-01-01

    Full Text Available In the 1920s Prague was seeking a solution to the problem of supplying its inhabitants with drinkable water. The water plant in Káraný was not able to provide enough water, and the bold plan to bring water from a reservoir and to provide a dual system of potable and non-potable water faced an uncertain future. In order to stave off the crisis and make time to complete its plans, the city council decided to construct a new water supply plant inside the city next to the Vltava river in the city district of Podolí.

  8. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis

    Science.gov (United States)

    Aldea, Alexandru; Aldea, Mihaela

    2016-08-01

    The growth and concentration of population, housing and industry in urban and suburban areas in the continuous evolution of a city over time causes complex social, economic, and physical challenges. The population and its relationship with the use and development of the land and water is a critical issue of urban growth, and since ancient times land, water and man were directly involved in the human populations' survival. Nevertheless the current potential of study over this relationship between urban growth, water supply, drainage and water resources conditions becomes more and more attractive due to the possibility to make use of the broader variety of information sources and technologies readily available in recent years, with emphasis on the open data and on the big data as primary sources. In this regard we present some new possibilities of analyses over the demographics, land use/land cover and water supply and conservation based on a study over a Romanian region of development (Bucharest-Ilfov). As urban development usually outgrows the existing water supply systems, the resolution consists in drilling new and deeper wells, building new water distribution pipelines, building longer aqueducts and larger reservoirs, or finding new sources and constructing completely new water supply systems, water supplies may evolve this way from a result into a cause and driver of urban growth. The evolution trends of the studied area was estimated based on the open satellite time-series imagery and remote sensing techniques by land use/land cover extraction and the identification of the changes in urbanization. The survey is mainly focused on the expansion of the water network in terms of areal, total length and number of connections correlated with the amount of water produced, consumed and lost within a supply zone. Some urban human activities including the industrial ones alter water resource by pollution, over pumping of groundwater, construction of dams and reservoirs

  9. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    Science.gov (United States)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  10. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  11. How war, drought, and management impact water supply in the Tigris/Euphrates

    Science.gov (United States)

    Hasan, M.; Moody, A.; Benninger, L. K.

    2017-12-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region, particularly on structures such as Mosul and Haditha dams, and the Ramadi and Falluja Barrages, all of which have experienced threats or changes in sovereignty. Water supply is also under pressure from upstream dam management and drought. In this research, we use the normalized difference water index (NDWI) applied to Landsat imagery in order to monitor changes in the extent of various water bodies (1985-present). We looked to see if significant anomalies from expected surface area were best explained by conflict, drought, or dam management. Conflict (though not every conflict) produced the greatest sudden changes in water supply; drought produced the greatest absolute changes, but at a gentle pace. Drought impacts are strongest in the furthest downstream reservoirs. Conflict-driven changes were tied to very specific human manipulations in water supply in order to either advance military objectives, "punish" civilians on the wrong side of the fight, or to prevent humanitarian catastrophe. Satellite images allow for an objective analysis of how strong these manipulations were. The information may not be as exact as on-the-ground information, but when the flow of information is disrupted by war, satellite data can be an alternative source of insights into water supply changes.

  12. A hydrologic-economic modeling approach for analysis of urban water supply dynamics in Chennai, India

    Science.gov (United States)

    Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence

    2010-07-01

    In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.

  13. Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Bojan Đurin

    2014-05-01

    Full Text Available Because of the importance of water supply for the sustainability of urban areas, and due to the significant consumption of energy with prices increasing every day, an alternative solution for sustainable energy supply should be sought in the field of Renewable Energy Sources (RES. An innovative solution as presented in this paper has until now not been comprehensively analyzed. This work presents the solution with the application of a (Photovoltaic PV generator. The main technological features, in addition to the designing methodology and case study are presented in this paper. The critical period approach has been used for the first time for system sizing. The application of this sizing method provides a high reliability of the proposed system. The obtained results confirm the assumption that the PV generator is a promising energy sustainable solution for urban water supply systems. The service reservoir, which acts as water and energy storage for the proposed system, provides the basis for a sustainable solution of water and energy supply. In accordance with the proposed, the reliability of such system is high. This concept of energy supply operation does not generate any atmospheric emission of greenhouse gases, which contributes significantly to the reduction of the impacts of climate changes. The proposed solution and designing methodology are widely applicable and in accordance with the characteristics of the water supply system and climate.

  14. Effects of Water Level Increase on Phytoplankton Assemblages in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Yangdong Pan

    2018-03-01

    Full Text Available Excessive water level fluctuation may affect physico-chemical characteristics, and consequently ecosystem function, in lakes and reservoirs. In this study, we assessed the changes of phytoplankton assemblages in response to water level increase in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia. The water level increased from a low of 137 m to 161 m in 2014 as a part of the South–North Water Diversion Project. Phytoplankton assemblages were sampled four times per year before, during and after the water level increase, at 10 sites. Environmental variables such as total nitrogen as well as phytoplankton biomass decreased after the water level increase. Non-metric multi-dimensional scaling analysis indicated that before the water level increase, phytoplankton assemblages showed distinct seasonal variation with diatom dominance in both early and late seasons while such seasonal variation was much less evident after the water level increase. Month and year (before and after explained 13% and 6% of variance in phytoplankton assemblages (PERMANOVA, p < 0.001 respectively, and phytoplankton assemblages were significantly different before and after the water level increase. Both chlorophytes and cyanobacteria became more abundant in 2015. Phytoplankton compositional change may largely reflect the environmental changes, such as hydrodynamics mediated by the water level increase.

  15. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    Science.gov (United States)

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  16. Specific features of auxiliary water supply at underground NPPs

    International Nuclear Information System (INIS)

    Pergamenshchik, B.K.; Pavlov, A.S.

    1991-01-01

    Specific features of auxiliary water supply systems for underground NPPs related to peculiarities of NPP basis equipment arrangement, are considered. Circulation water supply scheme, in which water cooling storage basin (cooling towers) with operational area corresponding to NPP power is on the surface and has traditional design, is proposed. Sufficiently high efficiency of the arrangement proposed is proved

  17. POLLUTION OF SMALL RESERVOIRS OF WATER IN BIALYSTOK AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2016-05-01

    Full Text Available The aim of the study work was to evaluate the impact of the emissions of heavy metals of roads and streets in the surface water in reservoirs located near the main roads of the Bialystok City. The analysis was conducted for a period of six weeks from March to April 2014. During the study five reservoirs were selected. Two of them, the first and the forth of them are located in Parks. One of them – the third one is a public bathing beach. The second is located near the crossroads in the center of the city and last one – the fifth object is situated within buildings and parking of trucks. Study includes an analysis of indicators such as total suspended solids, BOD5, CODCr, selected heavy metal such as, lead, nickel, copper, cobalt and chromium. All determinations were made in accordance to given methodology, and the evaluation was performed by comparing achieved results to a limit values presented in the Decree of Environment Ministry.

  18. The Characteristics of Spanish Reservoirs

    National Research Council Canada - National Science Library

    Armengol, J; Merce, R

    2003-01-01

    Sau Reservoir was first filled in 1963 in a middle stretch of the Ter River, as part of a multi-use scheme, including hydroelectric power, agricultural irrigation, domestic and industrial water supply...

  19. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.

    1990-01-01

    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  20. Characterizing the Water Balance of the Sooke Reservoir, British Columbia over the Last Century

    Directory of Open Access Journals (Sweden)

    Arelia T. Werner

    2015-03-01

    Full Text Available Infrastructure such as dams and reservoirs are critical water-supply features in several regions of the world. However, ongoing population growth, increased demand and climate variability/change necessitate the better understanding of these systems, particularly in terms of their long-term trends. The Sooke Reservoir (SR of British Columbia, Canada is one such reservoir that currently supplies water to ~300,000 people, and is subject to considerable inter and intra-annual climatic variations. The main objectives of this study are to better understand the characteristics of the SR through an in-depth assessment of the contemporary water balance when the basin was intensively monitored (1996–2005, to use standardized runoff to select the best timescale to compute the Standard Precipitation (SPI and Standard Precipitation Evaporation Indices (SPEI to estimate trends in water availability over 1919 to 2005. Estimates of runoff and evaporation were validated by comparing simulated change in storage, computed by adding inputs and subtracting outputs from the known water levels by month, to observed change in storage. Water balance closure was within ±11% of the monthly change in storage on average when excluding months with spill pre-2002. The highest evaporation, dry season (1998 and lowest precipitation, wet season (2000/2001 from the intensively monitored period were used to construct a worst-case scenario to determine the resilience of the SR to drought. Under such conditions, the SR could support Greater Victoria until the start of the third wet season. The SPEI and SPI computed on a three-month timescale had the highest correlation with the standardized runoff, R2 equaled 0.93 and 0.90, respectively. A trend toward drier conditions was shown by SPEI over 1919 to 2005, while moistening over the same period was shown by SPI, although trends were small in magnitude. This study contributes a validated application of SPI and SPEI, giving more

  1. Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor

    Science.gov (United States)

    Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad

    2018-03-01

    A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).

  2. Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor

    Directory of Open Access Journals (Sweden)

    Hashim Syarifah Intan Najla Syed

    2018-01-01

    Full Text Available A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17 sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO, water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50.

  3. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    Science.gov (United States)

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.

  4. Radon in private water supplies in SW England

    International Nuclear Information System (INIS)

    Bowring, C.S.; Banks, D.

    1995-01-01

    It has been known since at least the early 1960s that high levels of radon gas can be found dissolved in some water supplies in South West England and, as a result of this, degassing plant was installed in some mains water supplies at this time in order to remove the radon from the water. More recently the result of a survey of just over 500 drinking water supplies throughout the UK has been published. This concluded that the radon level in UK water supplies in general do not constitute a health hazard. In this note we present results from 22 private water supplies in South West England and conclude that for certain individuals levels of radon in water may well present a radiological hazard which is not negligible and that this problem needs to be investigated more fully. (author)

  5. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  6. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is

  7. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  8. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    Science.gov (United States)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.

  9. Water stress, water salience, and the implications for water supply planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  10. Analysis of the influence of reservoirs utilization to water quality profiles in Indonesia (Saguling - Jatiluhur) and Malaysia (Temengor - Chenderoh) with special references to cascade reservoirs

    Science.gov (United States)

    Subehi, Luki; Norasikin Ismail, Siti; Ridwansyah, Iwan; Hamid, Muzzalifah Abd; Mansor, Mashhor

    2018-02-01

    Tropical reservoir is the one ecosystem which is functioning in both ecological and economical services. As the settling of water volume, it harbors many species of fish. The objective of this study is to analyze the utilization and management of reservoirs related to their water quality conditions, represent by tropical reservoirs from Indonesia and Malaysia. Survey at Jatiluhur and Saguling (Indonesia) was conducted in March 2014 and September 2015, respectively while in Temengor and Chenderoh (Malaysia), the survey was done in January 2014 and April 2017, respectively. Based on elevation, Saguling and Temengor are upstream reservoirs. On the contrary, Jatiluhur and Chenderoh are downstream reservoirs. The results of the surveys in Jatiluhur and Saguling reservoirs showed that the average depths are 32.9m and 17.9m, respectively. On the other hand, Temengor and Chenderoh reservoirs are 100m and 16.2m, respectively. All of them play multi-functional roles including as a source of power plant, fisheries and tourism, as well as water sources for irrigation. In addition, Saguling and Temengor reservoirs are relatively dendritic in shape. In Indonesia, there are three consecutive reservoirs along Citarum River, whereas in Malaysia there are four consecutive reservoirs along Perak River. The results showed the potential impact of fish cages as pollutant, especially at Indonesian reservoirs. In addition, these tropical reservoirs have become famous tourism getaway. The capabilities of economic values of these reservoirs and ecosystem should be balanced. Basic ecological information is necessary for the next study.

  11. Occupational radon expositions during cleaning processes of water reservoirs

    International Nuclear Information System (INIS)

    Hingmann, H.; Ehret, V.; Hegenbart, L.; Krieg, K.

    2002-01-01

    According to the new German ''Strahlenschutzverordnung'' (Radiation Protection Directive) the annual dose due to the exposition to radon has to be estimated for employees of water works. This includes employees of service companies. While the job of employees of water works usually covers a broad spectrum of different activities, employees of service companies may spend a considerable amount of time of their total working hours cleaning water reservoirs. This investigation is concerned with this type of employees. The radon exposition of one or more cleaning processes were determined by passive dosimeters. The mean radon concentration was calculated for the duration of the cleaning process. In some cases, members of the project team accompanied cleaning processes and performed stationary radon measurements on site. Sometimes, parallel to the passive dosimeters, electronic dosimeters were used to measure personal exposure. The results - and results from additional laboratory reference measurements - are compared. All results until January 2002 are considered. The project still goes on and will end in summer of 2002. Experiences made during this investigation are described in the end of this report. (orig.)

  12. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  13. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  14. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.

    1975-01-01

    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  15. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  16. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  17. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  18. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  19. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.

    1974-01-01

    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  20. Perceived Impact of Private Sector Involvement In Water Supply on ...

    African Journals Online (AJOL)

    Perceived Impact of Private Sector Involvement In Water Supply on the Urban Poor in Dar es Salaam. ... Tanzania Journal of Development Studies ... Dar es Salaam is not perceived to be a panacea to the water problems facing the urban poor.

  1. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    Science.gov (United States)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  2. Groundwater potential for water supply during droughts in Korea

    Science.gov (United States)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  3. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance

  4. Possibility of predicting the water drive mechanism of oil bearing reservoirs before its exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Cubric, S

    1971-10-01

    The study deals with the application of Van Everdingen and Hurst's method to prediction of water influx from aquifer into an oil-bearing part of a reservoir. The examples show an influence of the factors affecting the water influx (time, permeability, ratio of radii of the aquifer, and oil-bearing part of reservoir.)

  5. Water quality and trend analysis of Colorado--Big Thompson system reservoirs and related conveyances, 1969 through 2000

    Science.gov (United States)

    Stevens, Michael R.

    2003-01-01

    The U.S. Geological Survey, in an ongoing cooperative monitoring program with the Northern Colorado Water Conservancy District, Bureau of Reclamation, and City of Fort Collins, has collected water-quality data in north-central Colorado since 1969 in reservoirs and conveyances, such as canals and tunnels, related to the Colorado?Big Thompson Project, a water-storage, collection, and distribution system. Ongoing changes in water use among agricultural and municipal users on the eastern slope of the Rocky Mountains in Colorado, changing land use in reservoir watersheds, and other water-quality issues among Northern Colorado Water Conservancy District customers necessitated a reexamination of water-quality trends in the Colorado?Big Thompson system reservoirs and related conveyances. The sampling sites are on reservoirs, canals, and tunnels in the headwaters of the Colorado River (on the western side of the transcontinental diversion operations) and the headwaters of the Big Thompson River (on the eastern side of the transcontinental diversion operations). Carter Lake Reservoir and Horsetooth Reservoir are off-channel water-storage facilities, located in the foothills of the northern Colorado Front Range, for water supplied from the Colorado?Big Thompson Project. The length of water-quality record ranges from approximately 3 to 30 years depending on the site and the type of measurement or constituent. Changes in sampling frequency, analytical methods, and minimum reporting limits have occurred repeatedly over the period of record. The objective of this report was to complete a retrospective water-quality and trend analysis of reservoir profiles, nutrients, major ions, selected trace elements, chlorophyll-a, and hypolimnetic oxygen data from 1969 through 2000 in Lake Granby, Shadow Mountain Lake, and the Granby Pump Canal in Grand County, Colorado, and Horsetooth Reservoir, Carter Lake, Lake Estes, Alva B. Adams Tunnel, and Olympus Tunnel in Larimer County, Colorado

  6. STATE OF WATER SUPPLY INFRASTRUCTURE IN THE SUBCARPATHIAN CITIES

    Directory of Open Access Journals (Sweden)

    Katarzyna PIETRUCHA-URBANIK

    Full Text Available The characteristics of equipping the Subcarpathian province cities with water supply infrastructure was made on the basis of data collected from the Provincial Office, Statistical Office, reports submitted by water companies regarding the functioning of water supply infrastructure and literature data. The indicators characterizing water supply infrastructure were determined for the years 1995-2014. In the paper the indicators of equipping cities with water supply systems were presented. Also water consumption and changes in the length of the water supply network in the cities of the Subcarpathian Province were examined. The analysis shows that the water consumption for the years 1995-2014 decreased by almost 6 m3∙year-1 per capita. The reason for such situation was the increasing price of water and the ecological awareness of the inhabitants of the Subcarpathian region. In the last year of the analysis the water supply system in urban areas of the Subcarpathian province was used by 95% of the population and, for comparison, in rural areas by 77% of the population. In the paper also changes in prices for water in the Subcarpathian region were shown, on the basis of data from the water tariffs in individual water companies. The important element of urban development is the technical infrastructure which reduces the investment costs. The determined indicators of equipping cities with water supply systems show an upward trend in the development of technical infrastructure. Based on the operational data from the water companies the failure rates in selected water supply networks were determined.

  7. Bacterial indicators of faecal pollution of water supplies and public ...

    African Journals Online (AJOL)

    Bacterial indicators of faecal pollution of water supplies and their significance to public health are reviewed in this paper, to highlight their levels of general acceptability and suitability as safeguards against health hazards associated with water supplies. Regular bacteriological analysis with the sole aim of detecting faecal ...

  8. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  9. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  10. Community-based management of water supply services

    CSIR Research Space (South Africa)

    Mogane-Ramahotswa, B

    1992-01-01

    Full Text Available One of the most important aspects of suitability of water supply is the ability of the community to manage its own scheme. Unlike in urban settlement institutional arrangements for rural water supply are rudimentary. Over the past decade...

  11. Development of datamining software for the city water supply company

    Science.gov (United States)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  12. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil.

    Science.gov (United States)

    Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C

    2011-05-01

    This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.

  13. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    AN Moura

    Full Text Available This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy, are dominant in the photic and aphotic strata.

  14. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    Science.gov (United States)

    Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph

    2018-01-01

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

  15. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  16. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for

  17. Nitrogen and phosphorus in cascade multi-system tropical reservoirs: water and sediment

    Directory of Open Access Journals (Sweden)

    Pompêo Marcelo

    2017-09-01

    Full Text Available The aim of this research was to analyze the horizontal spatial heterogeneity of both water and superficial sediment quality among and within the reservoirs of the Cantareira System (CS, focusing on concentrations of N and P, attributed to the dumping of raw domestic sewage into water bodies, which is the main cause of water pollution in São Paulo State (Brazil. The CS is a multi-system complex composed of five interconnected reservoirs, with water transported by gravity through 48 km of tunnels and channels. From the last reservoir of the CS, with an output of 33 m3 s−1, the water is conducted to a water treatment plant, producing half of the water consumed by 19 million people inhabiting São Paulo city. The upstream reservoirs are more eutrophic than the downstream ones. Data also suggest that the low phytoplankton biomass (ranging from 0.9 to 14.4 μg dm−3 is regulated by the low nutrient availability, mainly of phosphorus (TP ranging from below the detection limit, <9.0 μg dm−3, to 47.3 μg dm−3. For water, the DIN/TP ratios values range from 19 to 380. The upstream reservoirs function as nutrient accumulators and the sediment is the main compartment in which P and N are stored. Although the reservoirs are located in different river basins and are not in sequence along the same river, the results suggest a marked gradient between the reservoirs, with features similar to those of cascade reservoirs. The large volumes flowing through the canals and tunnels could explain the observed pattern. The CS reservoirs can therefore be considered multi-system reservoirs in cascade, constituting a particular case of multi-system reservoirs.

  18. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  19. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  20. Sharing the burden of water supply protection

    Science.gov (United States)

    Carolyn A. Dehring; Craig A. Depken

    2010-01-01

    A sufficient supply of freshwater is critical to human survivability and biodiversity. Much of the recent decline in freshwater biodiversity and overall freshwater ecosystem health is attributable to land use change.

  1. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  2. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  3. Water geochemistry to estimate reservoir temperature of Stabio springs, Switzerland

    Science.gov (United States)

    Pera, Sebastian; Soma, Linda

    2017-04-01

    The Mendrisiotto region located in Southern Switzerland and close to the Italian border, is characterized by the presence of a thick sequence of Mesozoic limestones and dolostones above a volcanic rocks from Permian (Bernoulli, 1964). Within the carbonates, fractures and dissolution processes increased limestone permeability and favored the widespread presence of springs. The presence of few localized H2S and CH4 bearing springs is known from historical times in Stabio. Its localization is related to the faulting affecting the area (Balderer et Al., 2007). These waters were classified by Greber et Al. (1997) as Na-(Ca)-(Mg)-HCO3-Cl-(SO4) type with having a total dissolved solid content in the range of 0.8 and 1.2 gl-1. According with Balderer et Al. (2007) the stable isotopic composition deviates from the global meteoric water line (IAEA, 1984) being the values of δ18O and δ2H respectively 0.8 ‰ and 5‰ lower than the normal shallow groundwater of the area. The values of δ13C of TDIC (-1.54‰ 1.44 ) indicate exchange with CO2 of thermo - metamorphic or even Mantle origin. While 14C in TDIC (7.95, 26.0 pMC) and 3H (1.1 ±0.7, 3.1±0.7 TU) indicates uprising of deep water along faults with some mixing. To estimate reservoir temperature, a new sampling was conducted in 2015 for chemical and isotopic analysis. The sampling was carried out from the only source that allows getting water directly from the dolostone in order to avoid mixing. Although some differences are noticed respect to previous studies, the results show a substantial agreement for stable isotopic composition of water, δ13C and 14C of TDIC. Reservoir temperature was calculated by using several geothermometers. The results show a great variability ranging from 60 ˚ C using Silica to more than 500 ˚ C using cationic ( Na - Ca) geothermometers; indicating that besides mixing, exchange processes and chemical reactions along flow path affect results. This study was partially funded by Azienda

  4. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  5. Water Quality and Quantity in Intermittent and Continuous Piped Water Supplies in Hubli-Dharwad, India

    OpenAIRE

    Kumpel, Emily Katherine

    2013-01-01

    In at least 45 low- and middle-income countries, piped water systems deliver water for limited durations. Few data are available of the impact of intermittent water supply (IWS) on the water quality and quantity delivered to households. This thesis examines the impact of intermittently supplied piped water on the quality and quantity of water delivered to residential taps in Hubli-Dharwad, India, when compared to continuous piped water supply. A framework for understanding the pathways throug...

  6. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  7. Aeromonas presence in drinking water from collective reservoirs and wells in peri-urban area in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Tereza Pepe Razzolini

    2010-10-01

    Full Text Available Aeromonas genus is considered an emerging pathogen and its presence in drinking water supplies is a reason to public health concern. This study investigated the occurrence of Aeromonas in samples from collective reservoirs and wells used as drinking water sources in a peri-urban area. A total of 35 water samples were collected from collective reservoirs and 32 from wells bimonthly, from September 2007 to September 2008. Aeromonas spp determination was carried out using a Multiple-Tube Technique. Samples were inoculated into alkaline peptone water and the superficial film formed was transferred to blood agar plates amended with ampicillin. Typical Aeromonas colonies were submitted to a biochemical screening and then to biochemical tests for species differentiation. Aeromonas was detected in 13 (19% of the 69 samples examined (6 from collective reservoirs and 7 from wells. Concentrations of Aeromonas in collective reservoirs ranged from <0.3 to 1.2 x10²MPN/100mL and, in wells, from <0.3 to 2.4 x10²MPN/100mL. The most frequent specie in the collective reservoir samples was Aeromonas spp (68%, followed by A. encheleia (14% and A. allosaccharophila (8% and A. hydrophila (8%. Aeromonas spp (87% was the most frequent specie isolated from well samples, followed by A. allosacchariphila (8%, A. encheleia (2% and A. jandaei (5%. These data show the presence and diversity of Aeromonas genus in the samples analyzed and highlight that its presence in drinking water poses a significant public health concern.

  8. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  9. Modeling Alpine hydropower reservoirs management to study the water-energy nexus under change.

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Fumagalli, E.; Weber, E.

    2014-12-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) were already observed over the last few years and produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system, Italy. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series.. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e.g. expansion of the electric vehicle sector, load

  10. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  11. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  12. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  13. Assessment of domestic water supply situation in rural communities ...

    African Journals Online (AJOL)

    Water is needed by man for the sustenance of life and it is the second most important natural resource used by man after the air were breathe. Man survives longer without food than without water. The socio-economic development of man is determined partly by the availability of water. The supply of safe pipe-borne water in ...

  14. Assessment of Water Supply Quality in Awka, Anambra State, Nigeria

    African Journals Online (AJOL)

    The patronage of water of questionable qualities in the study area due to the failure of the Anambra State Water Corporation to provide potable water supply in Awka and environs prompted this research work. Various water sources patronized in the study area were collected and subjected to physical, chemical and ...

  15. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  16. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio

    2012-01-01

    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  17. Oxidative stress induced on Cyprinus carpio by contaminants present in the water and sediment of Madin Reservoir.

    Science.gov (United States)

    Galar-Martinez, Marcela; Gomez-Olivan, Leobardo Manuel; Amaya-Chavez, Araceli; Razo-Estrada, Celene; Garcia-Medina, Sandra

    2010-01-01

    Madin Reservoir (MR), located in the State of Mexico, is fed mainly by the Rio Tlalnepantla. MR supplies potable water to the municipalities of Naucalpan and Atizapan, and various recreational activities take place in its vicinity, such as sailing and the fishing of diverse species including the common carp Cyprinus carpio. The purpose of this study was to determine the toxic effects of contaminants present in MR water and sediment on C. carpio. Five sampling stations were selected (those considered to have the most problems due to discharges). Water and sediment samples were taken and toxicity studies were performed, including acute toxicity (lethality) and subacute toxicity assays. The biomarkers used in the subacute assays were lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in the liver and brain of test organisms. These biomarkers were also evaluated in local carp, i.e. carp with chronic exposure in situ to reservoir contaminants. Results show that contaminants in the water and sediment of the different sampling stations induce oxidative stress, this toxicity being more evident in samples from stations near the entry point of the Rio Tlalnepantla tributary and in local carp. This may be due to high contaminant levels as well as the fact that the physicochemical characteristics of the matrices might favor their bioavailability. Thus, both the water and sediment of this reservoir are contaminated with xenobiotics hazardous to C. carpio, a species consumed by the local human population.

  18. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  19. Water quality problems associated with intermittent water supply.

    Science.gov (United States)

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  20. Prediction of radionuclide accumulation in main ecosystem components of NPP cooling water reservoirs and assessment of acceptable radionuclide disposal into water reservoir

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Kazakov, S.V.

    1987-01-01

    The problems of prediction of radionuclide accumulation in ecosystem main components of NPP cooling water-reservoirs (CWR) and assessment of radionuclide acceptable disposal into water reservoir are considered. Two models are nessecary for the calculation technique: model of radionuclide migration and accumulation in CWR ecosystem components and calculation model of population dose commitment due to water consumption (at the public health approach to the normalization of the NPP radioactive effect on CWC) or calculation model of dose commitment on hydrocenosis components (at the ecological approach to the normalization). Analytical calculations and numerical calculation results in the model CWC, located in the USSR middle region, are presented

  1. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  2. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network.

    Science.gov (United States)

    Samios, Stelios A; Golfinopoulos, Spyros K; Andrzejewski, Przemyslaw; Świetlik, Joanna

    2017-08-24

    Samples from the two main watersheds that provide Athens Water Supply and Sewerage Company (AWSSC) with raw water were examined for Dissolved Organic Carbon (DOC) and for their molecular weight distribution (MWD). In addition, water samples from water treatment plants (WTPs) and from the water supply network were examined for trihalomethane (THMs) levels. The main purpose of this study was to reveal the molecular composition of natural organic matter (NOM) and identify the individual differences between NOM from the two main Athens watersheds. High-performance size exclusion chromatography (HPSEC), a relatively simple technique, was applied to determine different NOM fractions' composition according to molecular weight. Various THM levels in the supply network of Athens are illustrated as a result of the different reservoirs' water qualities, and a suggestion for a limited application of chlorine dioxide is made in order to minimize THM formation.

  3. Radon in private water supplies: the unknown risk

    International Nuclear Information System (INIS)

    Clapham, D.; Horan, N.J.

    1996-01-01

    Radon gas, which is the main contributor to human radiation exposure, is easily dissolved in, and dissipated from, water. Problems with radon occur because, in addition to being ingested, it (a) becomes attached to particles which lodge in the lungs and (b) emits alpha radiation. Concentration has been found to increase inversely with the size of a water supply. Although of little problem in mains water, private water supplies in the UK have been found to contain more than ten times the recommended US levels. Despite this, very little monitoring is carried out for radon in private supplies. Local authorities, situated in areas where the geological conditions are such that high levels of radon would be expected, should carry out a suitable sampling and monitoring programme of their private water supplies. (Author)

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  5. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  6. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Schöne, Tim

    2017-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for

  7. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  8. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  9. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  10. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir

    OpenAIRE

    Rzymski, Piotr; Niedzielski, Przemysław; Klimaszyk, Piotr; Poniedziałek, Barbara

    2014-01-01

    Urbanization can considerably affect water reservoirs by, inter alia, input, and accumulation of contaminants including metals. Located in the course of River Cybina, Maltański Reservoir (Western Poland) is an artificial shallow water body built for recreation and sport purposes which undergoes restoration treatment (drainage) every 4 years. In the present study, we demonstrate an accumulation of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in water, sediment, three bivalve species (Anodo...

  11. Integrating Geographical Information Systems, Fuzzy Logic and Analytical Hierarchy Process in Modelling Optimum Sites for Locating Water Reservoirs. A Case Study of the Debub District in Eritrea

    Directory of Open Access Journals (Sweden)

    Rodney G. Tsiko

    2011-03-01

    Full Text Available The aim of this study was to model water reservoir site selection for a real world application in the administrative district of Debub, Eritrea. This is a region were scarcity of water is a fundamental problem. Erratic rainfall, drought and unfavourable hydro-geological characteristics exacerbates the region’s water supply. Consequently, the population of Debub is facing severe water shortages and building reservoirs has been promoted as a possible solution to meet the future demand of water supply. This was the most powerful motivation to identify candidate sites for locating water reservoirs. A number of conflicting qualitative and quantitative criteria exist for evaluating alternative sites. Decisions regarding criteria are often accompanied by ambiguities and vagueness. This makes fuzzy logic a more natural approach to this kind of Multi-criteria Decision Analysis (MCDA problems. This paper proposes a combined two-stage MCDA methodology. The first stage involved utilizing the most simplistic type of data aggregation techniques known as Boolean Intersection or logical AND to identify areas restricted by environmental and hydrological constraints and therefore excluded from further study. The second stage involved integrating fuzzy logic with the Analytic Hierarchy Process (AHP to identify optimum and back-up candidate water reservoir sites in the area designated for further study.

  12. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  13. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  14. Modeling Integrated Water-User Decisions with Intermittent Supplies

    Science.gov (United States)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  15. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  16. Risk management in oil reservoir water-flooding under economic uncertainty

    NARCIS (Netherlands)

    Siraj, Muhammad; Van den Hof, Paul; Jansen, Jan Dirk

    2015-01-01

    Model-based economic optimization of the water-flooding process in oil reservoirs suffers from high levels of uncertainty. The achievable economic objective is highly uncertain due to the varying economic conditions and the limited knowledge of the reservoir model parameters. For improving

  17. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  18. Impacts of hydropower operation on water supply from lower Colorado River in Texas

    International Nuclear Information System (INIS)

    Martin, Q.W.

    1993-01-01

    The Lower Colorado River Authority (LCRA) of Texas is both a water and energy supplier to a large area of Central Texas. LCRA generates approximately 10 percent of its power from hydroelectric power plants on the six dams in the Highland Lakes system of reservoirs. To improve power production, LCRA has investigated alternative operating procedures to increase the winter scheduling of hydroelectric power generation in the upper reservoirs of the Highland Lakes system without adversely impacting available water supplies. A methodology using both optimization and simulation techniques was developed to evaluate the ability of the hydroelectric facilities to meet weather-related winter peaking requirements. A linear programming procedure determined the hourly power generation schedule, over a 24 hour period, that maximized the total amount of power generated over the six hours of peak power demand. The full installed capacity was found to be available during the peak hours without violating system operating constraints including water storage limits at the individual lakes. Based on statistical simulation of daily winter inflows and releases using a LOTUS 1-2-3 spreadsheet, it was found that the full generating capacity could be supplied to meet the weather-related peak winter power demand with no significant impact on water availability

  19. Management of Water Quantity and Quality Based on Copula for a Tributary to Miyun Reservoir, Beijing

    Science.gov (United States)

    Zang, N.; Wang, X.; Liang, P.

    2017-12-01

    Due to the complex mutual influence between water quantity and water quality of river, it is difficult to reflect the actual characters of the tributaries to reservoir. In this study, the acceptable marginal probability distributions for water quantity and quality of reservoir inflow were calculated. A bivariate Archimedean copula was further applied to establish the joint distribution function of them. Then multiple combination scenarios of water quantity and water quality were designed to analyze their coexistence relationship and reservoir management strategies. Taking Bai river, an important tributary into the Miyun Reservoir, as a study case. The results showed that it is feasible to apply Frank copula function to describe the jointed distribution function of water quality and water quantity for Bai river. Furthermore, the monitoring of TP concentration needs to be strengthen in Bai river. This methodology can be extended to larger dimensions and is transferable to other reservoirs via establishment of models with relevant data for a particular area. Our findings help better analyzing the coexistence relationship and influence degree of the water quantity and quality of the tributary to reservoir for the purpose of water resources protection.

  20. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  1. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    Science.gov (United States)

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  2. Analysis of change of retention capacity of a small water reservoir

    Science.gov (United States)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  3. Long term assurance of supply of heavy water

    International Nuclear Information System (INIS)

    1978-01-01

    The answer of Switzerland and Great Britain to a number of questions concerning the long-term assurance of the supply of heavy water are presented. The original problems are seen in the wider context of raw materials supply and its assurance in general. Non-proliferation aspects are touched

  4. Natural radioactivity in private water supplies in Devon

    International Nuclear Information System (INIS)

    Talbot, D.; Davis, J.; Rainey, M.

    2000-01-01

    This report details a study of the occurrence of natural radioactivity in private water Supplies in West Devon. Supplies sourced from wells, springs boreholes and a small number surface supplies were sampled. The findings of a laboratory simulation of the radon content in drinks such as tea, coffee and squash are also presented. Of supplies sampled in phase one of the work approximately 8% of tap water and 9% of samples directly from the supply contained radon at concentrations exceeding the draft European Union Commission Recommendation action level of 1000 Bq/I for individual and public water supplies. In a small number of supplies 238 U is present at levels exceeding 2 μg/I, the World Health Organisation (WHO) provisional guideline value for uranium in drinking water. The final aspect of the study looked at seasonal variation in the radon content of selected supplies. This showed considerable variability in radon concentration over the course of a week and between studies carried out several months apart. (author)

  5. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  6. Importance of water Influx and waterflooding in Gas condensate reservoir

    OpenAIRE

    Ali, Faizan

    2014-01-01

    The possibility of losing valuable liquid and lower gas well deliverability have made gas condensate reservoirs very important and extra emphasizes are made to optimize hydrocarbon recovery from a gas condensate reservoir. Methods like methanol treatments, wettability alteration and hydraulic fracturing are done to restore the well deliverability by removing or by passing the condensate blockage region. The above mentioned methods are applied in the near wellbore region and only improve the w...

  7. The Geographical Distribution of Water Supply in Ekiti

    African Journals Online (AJOL)

    FIRST LADY

    Indexed African Journals Online: www.ajol.info. An International ... time spent for water collection, the rating of water supply, and problems associated ... The people were asked to indicate how long it would take them to get good quality water ...

  8. Application for Planning and Improvement of Public Water Supply in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The study applied the tool of GIS in the planning and improvement of water ... proffer an acceptable solution to the problems of water supply in the study area. Primary data generated ..... Tropical Hydrology and Water. Resources. Iloeje, N.P. ...

  9. Potable water supply in owerri metropolis: a challenge to mdgs ...

    African Journals Online (AJOL)

    The results of the analysis were related directly to the affected MDG targets to reveal that the Otamiri Water Scheme that supplies water to Owerri urban is not functioning effectively. Also, the water distribution facilities are inadequate, overused and worn-out. They generally wear a poor state as evidenced from blockages, ...

  10. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  11. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  12. Remediation System Evaluation, Savage Municipal Water Supply Superfund Site (PDF)

    Science.gov (United States)

    The Savage Municipal Water Supply Superfund Site, located on the western edge of Milford, New Hampshire, consists of a source area and an extended plume that is approximately 6,000 feet long and 2,500 feet wide.

  13. Establishing an environmental profile of water supply in South Africa

    CSIR Research Space (South Africa)

    Brent, AC

    2006-11-01

    Full Text Available -losses in the supply system must receive attention, especially in the municipal-controlled part. Water quality impacts are also important, although through supporting processes, and specifically electricity generation. The boosting requirements attribute most...

  14. Considerations of the Skilled Manpower Needs for Water Supply Systems.

    Science.gov (United States)

    Watters, Gregor

    1981-01-01

    General methods for determining skilled labor needs for water supply and wastewater treatment plant operation as applied in Turkey are outlined along with a model program for training personnel to meet these needs. (DC)

  15. Intrusion problematic during water supply systems’ operation

    OpenAIRE

    Jesus Mora-Rodriguez, P. Amparo López-Jimenez, Helena M. Ramos

    2011-01-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuse...

  16. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  17. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  18. Energy-Cost Optimisation in Water-Supply System

    OpenAIRE

    Farrukh Mahmood; Haider Ali

    2013-01-01

    Households as well as community water-supply systems for utilisation of underground aquifers are massive consumers of energy. Prevailing energy crisis and focus of the government on demand-side energy policies (i.e., energy conservation) in Pakistan raises need of using energy efficient techniques in almost every aspect of life. This paper analyses performance of community relative to household water-supply system in connection with efficient energy utilisation. Results suggest that total ope...

  19. Margins of the law pertaining to water supplies and waterways

    International Nuclear Information System (INIS)

    Bickel, C.

    1981-01-01

    The author examines legal questions coming from points of contact of the law pertaining to water supplies and waterways on the one hand with the Waste Management Law, the Atomic Energy Law and Criminal Law on the other hand. He tries to find ways for solving the practical problems which arise with the execution of the law pertaining to water supplies and waterways. (HSCH) [de

  20. Numerical simulation of three-dimensional fields of Chernobyl's radionuclides in the Kiev water reservoir

    International Nuclear Information System (INIS)

    Zheleznyak, M.I.; Margvelashvili, N.Yu.

    1997-01-01

    On the base of the three-dimensional numerical model of water circulation and radionuclide transport, the high flood water influence on the radionuclide dispersion in the Kiev water reservoir is studied. The model was verified on the base of data of the measurements of moderate flood phenomena in April-May 1987. Redistribution of the bottom sediment contamination is demonstrated. It is shown that even an extremely high flood water discharge does not change drastically the 137 Cs concentration in the water body of the Kiev water reservoir

  1. Restructuring the Water Supply at CERN

    CERN Document Server

    Nonis, M

    1999-01-01

    The CERN water network is the result of continuous extensions made to meet the different needs of the experiments and accelerators. Several studies concerning the current water consumption and the foreseen needs for the running of the new accelerators show a need to optimize the network and, where possible, reduce the consumption. Site construction works will begin in February 1999 and will continue until 2003; important modification works on the water network will only be possible during the shutdown for the dismantling of LEP. This paper will present the technical outlines and will report the status of the project. ST Division is involved in reorganizing the demineralized and primary cooling water circuits for the accelerators while Services Industriels de Genève (SIG) will be responsible for the works on pumping stations and on water networks.

  2. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  3. Dealing with uncertainty in modeling intermittent water supply

    Science.gov (United States)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  4. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  5. Humic Substances in waters for supply

    International Nuclear Information System (INIS)

    Camargo Valero, Miller; Cruz Torres, Luis Eduardo

    1999-01-01

    The humic substances make part of the degradation products of the organic matter of the soil and they are incorporate to the superficial waters for the action of laundry that they carry out by the superficial waters. These substances have been recognized as precursors in the formation of the disinfections sub-products, with free chlorine in treatment of drinkable water plants. The disinfections sub-product and the compound organic halogens, they have been classified potentially in human as cancerigenic substances, and therefore the interest in knowing more about the precursors substances, mechanisms of formation of disinfections sub-products, national situation and methods to diminish their formation

  6. Legal study on water environmental protection of Three Gorges Reservoir Area

    Institute of Scientific and Technical Information of China (English)

    DENG He

    2007-01-01

    Water environment security of the Three Gorges Reservoir Area has become a more extensive concern since the impoundment of the reservoir. This paper describes the existing water environmental hazards and defects in current legal system for water environmental protection in this area, and also discusses their possible causes and potential problems in the future based on first hand materials and other literature. According to the theories of integrated river basin management and environmental equity principle, legal proposals are put forward, which include building an unitary legal system dedicated to the Reservoir Area, setting up a basin authority of the Yangtze River to preside over the resources protection and development, using interests' compensation system to solve interest conflicts among different reaches, and making concrete regulations to direct public participation in water environmental security protection of the Three Gorges Reservoir Area.

  7. Effect of type of water supply on water quality in a developing community in South Africa

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1997-01-01

    Full Text Available Efforts to provide water to developing communities in South Africa have resulted in various types of water supplies being used. This study examined the relationship between the type of water supply and the quality of water used. Source (communal...

  8. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    Science.gov (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  9. Modeling and Optimization for Management of Intermittent Water Supply

    Science.gov (United States)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  10. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  11. Diversity patterns and freshwater molluscs similarities in small water reservoirs

    Directory of Open Access Journals (Sweden)

    Tomáš Čejka

    2011-02-01

    Full Text Available The survey presents the molluscan fauna from six impoundment systems of two sides (NW and SE of the Small Carpathians. Altogether 25 species (15 gastropod and 10 bivalve species were identified in reservoirs and their subsystems (inflows and outlets. The number of species per site ranged from 2 to 12, the mean number of species per site was 7. The mean number of individuals per site ranged from 15 to 905 (mean 174 ind/m2. Radix auricularia, R. ovata, Gyraulus albus, Gyraulus parvus/laevis, Hippeutis complanatus and Pisidium casertanum were present in more than 50% of reservoirs. The most abundant and frequent species in the entire area and all subsystems were Pisidium casertanum, Pisidium subtruncatum and Gyraulus parvus/laevis. Faunistic similarity indices indicate moderate degree of beta diversity i.e., differentiation among the sites; good separation of sites by cluster analysis indicates a different composition among inflows/outlets and littoral molluscan faunas of reservoirs.

  12. 76 FR 49787 - Rural Water Supply Program Approved Appraisal Reports; Availability

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Rural Water Supply Program Approved Appraisal...: Reclamation provides assistance for appraisal investigations and feasibility studies for rural water supply... the findings and conclusions of the appraisal investigations that identified the water supply problems...

  13. Sustainability Analysis of the Water Resources and Supply of the Vieux Fort Region of Saint Lucia

    Science.gov (United States)

    Coles, D.; Johnson, B.; Morgan, F.

    2005-05-01

    In the Vieux Fort region of the Caribbean island of St. Lucia, water needs are becoming acute. The water supply shortfalls during the dry season will continue to grow as population and development increase, unless action is taken. Actions to address the problem should include measures to optimize the present water delivery system and the development of a new supply, through new intakes, groundwater, or reservoir construction. An investigation into the potential for groundwater resources using electrical resistivity soundings indicated a likely pervasive, shallow aquitard of clay materials below the water table; the shallowness of this aquitard virtually precludes the existence of productive perched aquifers. Consequently, a model of Grande Riviere du Vieux Fort (Big Vieux Fort River) seasonal surface-water flow was developed, based on a digital elevation model and rainfall data, allowing us to analyze the possible productivity of any new intakes placed along the river. A specific site downstream of the present intake was recommended for potential development. Recommendations were given for short, medium and long-term development of the resources and supply of the Vieux Fort region of southern St. Lucia.

  14. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan

    OpenAIRE

    Rosenberg, David E.; Talozi, Samer; Lund, Jay

    2008-01-01

    Intermittent access to improved urban water supplies is a large and expanding global problem. This paper describes 16 supply enhancement and 23 demand management actions available to urban residential water users in Jordan to cope with intermittent supplies. We characterize actions by implementation, costs, and water quantities and qualities acquired or conserved. This effort systematically identifies potential options prior to detailed study and shows that water users have significant capaci...

  15. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are usually...

  16. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  17. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  18. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  19. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    Science.gov (United States)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  20. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  1. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  2. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    Science.gov (United States)

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly

  3. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  4. Managed groundwater development for water-supply security in Sub ...

    African Journals Online (AJOL)

    What is the scope for promoting much increased groundwater use for irrigated agriculture, and how might the investment risks be reduced and sustainable outcomes ensured? • How can the demand to expand urban groundwater use, for both further supplementing municipal water-supply systems and for direct in situ water ...

  5. Localizing the strategy for achieving rural water supply and ...

    African Journals Online (AJOL)

    Water is essential for sustenance of life and determines the overall socio- economic development of any nation. In Nigeria, so many programmes to improve water supply and sanitation situation had been put in place by different administrations. Despite this, the hope of meeting the UN Millennium Development Goals ...

  6. The Geographical Distribution of Water Supply in Ekiti State ...

    African Journals Online (AJOL)

    The provision of potable water to every nock and crannies of the state must be pursed vigorously. To achieve this task in Ekiti State, the problems militating against the supply of clean water need to be tackled effectively. For this reason, the rehabilitation of existing dams provision of funds, completion of the 132 KVA ...

  7. Fragmented landscapes of water supply in suburban Hanoi

    NARCIS (Netherlands)

    Wright-Contreras, Lucia; March, Hug; Schramm, S.

    2017-01-01

    Facing the challenges of city planning in the frame of rapid urbanization in the Global South, this study addresses the relationship between the urban development of Hanoi, Vietnam, and water supply including users’ perception of water accessibility and satisfaction of coverage, quality, and cost.

  8. Public Perception of Potable Water Supply in Abeokuta South west ...

    African Journals Online (AJOL)

    Well-structured interviewer administered questionnaire were distributed across the city through the stratified random sampling method using the network distribution map obtained from the Ogun State Water Corporation as guide. Sixty – eight per cent of the respondents attested that the quality of the water supplied was ...

  9. The Effects of Extended Water Supply Disruptions on the Operations ...

    African Journals Online (AJOL)

    kirstam

    or extended water supply disruptions on the operations of small and medium enterprises ... negatively affected. The results of this study give a better perspective ... water scarcity, which has a detrimental impact on livelihoods and business. 2The incidence of ...... to make contingency plans for their production. Planning for ...

  10. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  11. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2013-01-01

    for critical temperature, pressure and acentric factor.This work presents new phase equilibrium data for binary MEG/reservoir fluid and ternary MEG/water/reservoir fluid systems, where two reservoir fluids from Statoil operated fields are used. The solubility data are reported over a range of temperatures......The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  12. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  13. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  14. Water quality in four reservoirs of the metropolitan region of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Denise Amazonas Pires

    2015-12-01

    Full Text Available Abstract Aim: This paper describes some limnological variables of four reservoirs with different trophic status (Billings, Guarapiranga, Jundiaí and Paiva Castro of the Metropolitan Region of São Paulo, Brazil, aiming to characterize the water quality in these reservoirs. Methods Water sampling occurred between October 2011 and September 2012, on subsurface, at the pelagic compartment. Physical and chemical characteristics of water were evaluated, and the Trophic State Index (TSI was calculated. Multivariate Principal Components Analysis (PCA was used to ordinate sampling sites and periods in relation to environmental data. Results Two reservoirs were classified as eutrophic (Billings and Guarapiranga, one as mesotrophic (Jundiaí and one as oligotrophic (Paiva Castro. The highest concentrations of total phosphorus, nitrogen and chlorophyll a were recorded in the eutrophic reservoirs. The lowest values of dissolved oxygen concentration were registered at Guarapiranga reservoir. Residence time in Paiva Castro reservoir was very low (one day; on the other hand, the highest value was recorded in Billings reservoir: 428 days.

  15. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  17. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  18. UV disinfection in drinking water supplies.

    Science.gov (United States)

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  19. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  20. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  1. Gaming Change: A Many-objective Analysis of Water Supply Portfolios under Uncertainty

    Science.gov (United States)

    Reed, P. M.; Kasprzyk, J.; Characklis, G.; Kirsch, B.

    2008-12-01

    This study explores the uncertainty and tradeoffs associated with up to six conflicting water supply portfolio planning objectives. A ten-year Monte Carlo simulation model is used to evaluate water supply portfolios blending permanent rights, adaptive options contracts, and spot leases for a single city in the Lower Rio Grande Valley. Historical records of reservoir mass balance, lease pricing, and demand serve as the source data for the Monte Carlo simulation. Portfolio planning decisions include the initial volume and annual increases of permanent rights, thresholds for an adaptive options contract, and anticipatory decision rules for purchasing leases and exercising options. Our work distinguishes three cases: (1) permanent rights as the sole source of supply, (2) permanent rights and adaptive options, and (3) a combination of permanent rights, adaptive options, and leases. The problems have been formulated such that cases 1 and 2 are sub-spaces of the six objective formulation used for case 3. Our solution sets provide the tradeoff surfaces between portfolios' expected values for cost, cost variability, reliability, frequency of purchasing permanent rights increases, frequency of using leases, and dropped (or unused) transfers of water. The tradeoff surfaces for the three cases show that options and leases have a dramatic impact on the marginal costs associated with improving the efficiency and reliability of urban water supplies. Moreover, our many-objective analysis permits the discovery of a broad range of high quality portfolio strategies. We differentiate the value of adaptive options versus leases by testing a representative subset of optimal portfolios' abilities to effectively address regional increases in demand during drought periods. These results provide insights into the tradeoffs inherent to a more flexible, portfolio-style approach to urban water resources management, an approach that should become increasingly attractive in an environment of

  2. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  3. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  4. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Directory of Open Access Journals (Sweden)

    J. D. S. Cullis

    2018-02-01

    Full Text Available Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing

  5. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Science.gov (United States)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  6. Rapid evaluation of water supply project feasibility in Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-03-01

    Full Text Available Mega cities in developing countries are mostly dependent on external funding for improving the civic infrastructures like water supply. International and sometimes national agencies stipulate financial justifications for infrastructure funding. Expansion of drinking water network with external funding therefore requires explicit economic estimates. A methodology suitable for local condition has been developed in this study. Relevant field data were collected for estimating the cost of supply. The artificial neural network technique has been used for cost estimate. The willingness to pay survey has been used for estimating the benefits. Cost and benefit have been compared with consideration of time value of money. The risk and uncertainty have been investigated by Monte Carlo's simulation and sensitivity analysis. The results in this case indicated that consumers were willing to pay for supply of drinking water. It has been also found that supply up to 20 km from the treatment plant is economical after which new plants should be considered. The study would help to plan for economically optimal improvement of water supply. It could be also used for estimating the water tariff structure for the city.

  7. Pressure: the politechnics of water supply in Mumbai.

    Science.gov (United States)

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city.

  8. Inferring Anthropogenic Trends from Satellite Data for Water-sustainability of US Cities Near Artificial Reservoirs

    Science.gov (United States)

    Yigzaw, W. Y.; Hossain, F.

    2015-12-01

    Impact of anthropogenic activities on water cycle and water supply has different effects at global and regional spatial scales, ensuing the need for a design and water management approach that considers anthropogenic inputs. One of the major inputs in local-to-regional availability of water and the water cycle are land use land cover change as a result of urbanization, artificial reservoirs and irrigation activity. This study employed a multi-factorial approach involving population trends, water use (and demand), streamflow; and various satellite derived water-relevant variables. These variables are: daily precipitation (from TRMM, 3B42.V7), Normalized Difference Vegetation Index-NDVI (from MODIS-MOD13A1), land surface temperature-LST (from MODIS-MOD11A2), and land cover (MODIS-MCD12Q1). Long terms exhibited by such data were used to understand temporal and spatial trends in impounded watersheds hosting a large and growing city in its proximity. The selected cities are: City of Atlanta-Georgia and Buford dam; Columbia-South Carolina and Saluda dam; Columbus-Ohio and Alum Creek dam; Montgomery-Alabama and Jordan dam; Tulsa-Oklahoma and Keystone dam; Tuscaloosa-Alabama and Tuscaloosa dam were selected. our study reveals that daily mean stream flow has been decreasing in all but one (Tulsa) of the areas selected. Satellite data trends between 2000 and 2012 showed a steady decrease in precipitation and NDVI; while LST has gradually increased. We attribute the NDVI (i.e., gradual decrease in vegetation cover) to LST rather than precipitation trends. The results of this research suggested that future temperature projection from climate models can be used in understanding vegetation activity and water availability over the study areas. Cities with larger upstream watershed area are potentially more sustainable and resilient (than those with small watersheds) as a result of spatial variability of water resources' response to climate change. Inter-basin water resources

  9. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  10. An open source hydroeconomic model for California's water supply system: PyVIN

    Science.gov (United States)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  11. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    Science.gov (United States)

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  12. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  13. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2017-10-01

    Full Text Available The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”. However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1 model, and build a new GM (1,1 model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1 model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  14. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Science.gov (United States)

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  15. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    Science.gov (United States)

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  16. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    Science.gov (United States)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  17. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  18. Renewable energy water supply - Mexico program summary

    Energy Technology Data Exchange (ETDEWEB)

    Foster, R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  19. Radiological assessment of private water supplies in Dolgellau, North Wales

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 100 private water supplies in the Meirionnydd District Council area of Dolgellau, North Wales have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of radon-222. Of the 100 supplies tested all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical critical group which would arise from the consumption of water during a single year. The maximum adult annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 3.2 and 560 μSv, respectively. (author)

  20. Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2015-01-01

    Full Text Available The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SNWDP, which commenced transferring water in 2014. Integrated research on the evaluation, prediction, and protection of water quality in the Danjiangkou Reservoir was carried out in this study in order to improve environmental management. Based on 120 water samples, wherein 17 water quality indices were measured at 20 monitoring sites, a single factor evaluation method was used to evaluate the current status of water quality. The results show that the main indices influencing the water quality in the Danjiangkou Reservoir are total phosphorus (TP, permanganate index (CODMn, dissolved oxygen (DO, and five-day biochemical oxygen demand (BOD5, and the concentrations of TP, BOD5, ammonia nitrogen (NH3–N, CODMn, DO, and anionic surfactant (Surfa do not reach the specified standard levels in the tributaries. Seasonal Mann–Kendall tests indicated that the CODMn concentration shows a highly significant increasing trend, and the TP concentration shows a significant increasing trend in the Danjiangkou Reservoir. The distribution of the main water quality indices in the Danjiangkou Reservoir was predicted using a two-dimensional water quality numerical model, and showed that the sphere of influence from the tributaries can spread across half of the Han Reservoir if the pollutants are not controlled. Cluster analysis (CA results suggest that the Shending River is heavily polluted, that the Jianghe, Sihe, and Jianhe rivers are moderately polluted, and that they should be the focus of environmental remediation.

  1. Evaluating changes to reservoir rule curves using historical water-level data

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  2. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  3. Fluorine level in some city water supplies of Bangladesh

    International Nuclear Information System (INIS)

    Hoque, A.K.M.F.; Abedin, M.J.; Rahman, M.M.; Mia, M. Y.; Tarafder, M.S.A.; Khaliquzzaman, M.; Hossain, M.D.; Khan, A.H.

    2003-01-01

    Nuclear reaction based Proton Induced Gamma Emission (PIGE) analytical method was employed for the quantitative measurement of fluorine in the city water supplies of the major cities of Bangladesh. 102 water samples collected from 14 city supplies were analyzed and these samples contain fluorine in the range of 0.03 to 1.10 mg/L with a mean of 0.33 ± 0.21 mg/L. It was also observed that except the samples of Barisal, Dinajpur and Rajshahi, all other water samples analyzed contain a much lower amount of fluorine than the maximum permissible value for Bangladesh in drinking water, which is 1 mg/L. The mean concentration of fluorine in the samples of Barisal, Dinajpur and Rajshahi are respectively 0.79±0.01, 0.71±0.13 and 0.92±0.18 mg/L. For the 55 samples of Dhaka city supply the mean fluorine concentration is 0.31±0.17 mg/L and that of 9 samples from Chittagong city supply is 0.19±0.10 mg/L, which is the lowest among the 14 city supply samples analyzed in this study

  4. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    Science.gov (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design

  5. Ichthyofaunal Diversity and Water Quality in the Kangsabati Reservoir, West Bengal, India

    OpenAIRE

    Amalesh Bera; Manojit Bhattacharya; Bidhan Chandra Patra; Utpal Kumar Sar

    2014-01-01

    The ichthyofauna in relation to water quality was studied on monthly basis from March, 2010 to February, 2011 in the Kangsabati Reservoir, West Bengal. The study revealed that physicochemical parameters of Kangsabati Reservoir were congenial for 39 fish species of commercial importance, belonging to 7 orders, 15 families, and 26 genera. The Cypriniformes were dominant with 17 species, followed by Siluriformes and Perciformes, with 7 species each, Channiformes with 3 species, Osteoglossifor...

  6. Impact on Water Quality of Nandoni Water Reservoir Downstream of Municipal Sewage Plants in Vhembe District, South Africa

    Directory of Open Access Journals (Sweden)

    Jabulani Ray Gumbo

    2016-06-01

    , chloride, fluoride, nitrate, and strongly negatively associated with rainfall, which represented Luvuvhu downstream, associated with inflows from Vuwani oxidation ponds, Elim and Waterval sewage plants, and agriculture. The PCA accounted for 14% of the variation and was moderately associated with rainfall and weakly associated with chloride and bromide and negatively associated with nitrate, which represented the natural Nandoni reservoir system. The continued discharge of effluent may render the raw water supply unsuitable for human consumption and lead to eutrophication due to nitrate enrichment and proliferation of harmful algal blooms and schistomiasis infections in the long term.

  7. Triangulating the Sociohydrology of Water Supply, Quality and Forests in the Triangle

    Science.gov (United States)

    Band, L. E.

    2016-12-01

    The North Carolina Research Triangle is among the most rapidly growing metropolitan areas in the United States, with decentralized governance split among several different municipalities, counties and water utilities. Historically smaller populations, plentiful rainfall, and riparian rights based water law provided both a sense of security for water resources and influenced the development of separate infrastructure systems across the region. The growth of water demand with rising populations with typical suburban sprawl, the development of multi-use reservoirs immediately downstream of urban areas, and increased hydroclimate variability have raised the potential for periodic water scarcity coupled with increasing eutrophication of water supplies. We discuss the interactions and tradeoffs between management of emerging water scarcity, quality and forest biodiversity in the Triangle as a model for the US Southeast. Institutional stakeholders include water supply and stormwater utilities, environmental NGOs, federal, state, county and municipal governments, developers and home owner associations. We emphasize principles of ecohydrologic resilience learned in heavily instrumented research watersheds, adapted to rapidly developing urban systems, and including socioeconomic and policy dynamics. Significant 20th century reforestation of central North Carolina landscapes have altered regional water balances, while providing both flood and water quality mitigation. The regrowth forest is dynamic and heterogeneous in water use based on age class and species distribution, with substantial plantation and natural regeneration. Forecasts of land use and forest structural and compositional change are based on scenario socioeconomic development, climate change and forecast wood product markets. Urban forest and green infrastructure has the potential to mediate the trade-offs and synergies of these goals, but is in a very nascent state. Computational tools to assess policy

  8. Radon exposed workplaces in Bavarian public water supplies

    International Nuclear Information System (INIS)

    Heinrich, T.; Huebel, K.; Schindlmeier, W.

    1998-01-01

    From April 1996 to July 1996 a radon-screening in 112 Bavarian water supplies was carried out to determine the radon concentration in workplaces. In some regions with granit or gneiss stones as underground a considerable radiation exposure to the employees in public water supplies can be expected. The median of the measured radon concentration in relevant workplaces is found to be 4000 Bq/m 3 in the areas with granite or gneiss. This is approximately the fourfold of the median measured in a reference area with sandstone as underground. In some workplaces radon concentrations of more than 100000 Bq/m 3 can be found. (orig.) [de

  9. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  10. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  11. Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

    CSIR Research Space (South Africa)

    Tagliabue, A

    2014-04-01

    Full Text Available Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surfacewaters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter...

  12. Influence of watershed activities on the water quality and fish assemblages of a tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-09-01

    Agricultural and fisheries activities around the watershed of an African tropical reservoir (Oyun reservoir, Offa, Nigeria) were found to contribute significantly to water quality deterioration of the dam axis of the reservoir, leading to eutrophication of that part of the reservoir. This is evident from the high amount of nitrate (6.4 mg/l), phosphate (2.2 mg/l) and sulphate (16.9 mg/l) in the water body which was higher than most other reservoirs in Nigeria. These nutrients originate in fertilizer run-offs from nearby farmlands and were found in higher concentrations in the rainy season which is usually the peak of agricultural activities in the locality. The eutrophication was more pronounced on the dam axis because it is the point of greatest human contact where pressure and run-off of sediments were high. The eutrophication altered the food web cycle which consequently affected the fish species composition and abundance with the dominance of cichlids (planktivorous group) and decline of some species in the fish population. Best management practices (BMP) to control and reduce the eutrophication and improve water quality and fish assemblages should be adopted and adapted to suit the situation in the reservoir.

  13. Ground-water quality, levels, and flow direction near Fort Cobb Reservoir, Caddo County, Oklahoma, 1998-2000

    Science.gov (United States)

    Becker, Carol J.

    2001-01-01

    Fort Cobb Reservoir in northwest Caddo County Oklahoma is managed by the Bureau of Reclamation for water supply, recreation, flood control, and wildlife. Excessive amounts of nitrogen in the watershed have the potential to cause long-term eutrophication of the reservoir and increase already elevated concentrations of nitrogen in the Rush Springs aquifer. The U.S. Geological Survey in cooperation with the Bureau of Reclamation studied ground water in the area surrounding a swine feeding operation located less than 2 miles upgradient from Fort Cobb Reservoir in Caddo County, Oklahoma. Objectives of the study were to (1) determine if the operation was contributing nitrogen to the ground water and (2) measure changes in ground-water levels and determine the local ground-water flow direction in the area surrounding the swine feeding operation. Nitrate concentrations (28.1 and 31.5 milligrams per liter) were largest in two ground-water samples from a well upgradient of the wastewater lagoon. Nitrate concentrations ranged from 4.30 to 8.20 milligrams per liter in samples from downgradient wells. Traces of ammonia and nitrite were detected in a downgradient well, but not in upgradient wells. d15N values indicate atmospheric nitrogen, synthetic fertilizer, or plants were the predominate sources of nitrate in ground water from the downgradient wells. The d15N values in these samples are depleted in nitrogen-15, indicating that animal waste was not a significant contributor of nitrate. Manganese concentrations (1,150 and 965 micrograms per liter) in samples from a downgradient well were substantially larger than concentrations in samples from other wells, exceeding the secondary drinking-water standard of 50 micrograms per liter. Larger concentrations of bicarbonate, magnesium, fluoride, and iron and a higher pH were also measured in water from a downgradient well. Ground-water levels in an observation well were higher from April to mid-July and lower during the late summer

  14. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  15. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  16. Integrated Supply Network Maturity Model: Water Scarcity Perspective

    Directory of Open Access Journals (Sweden)

    Ekaterina Yatskovskaya

    2018-03-01

    Full Text Available Today’s supply chains (SCs are more than ever prone to disruptions caused by natural and man-made events with water scarcity identified as one of the highest impact events among these. Leading businesses, understanding that natural resource scarcity (NRS has become a critical supply chain risk factor, extensively incorporate sustainable water management programmes into their corporate social responsibility and environmental management agenda. The question of how industries can efficiently evaluate the progress of these water scarcity mitigation practices, however, remains open. In order to address this question, the present study proposes a conceptual maturity model. The model is rooted in strategies for water scarcity mitigation using a framework developed by Yatskovskaya and Srai and develops an extensive literature review of recent publications on maturity frameworks in the fields of sustainability and operations management. In order to test the proposed proposed, model an exploratory case study with a leading pharmaceutical company was conducted. The proposed maturity model presents an evaluation tool that allows systematic assessment and visualisation of organisational routines and practices relevant to sustainable manufacturing in the context of water scarcity. This model was designed to help illustrate mitigation capabilities evolution over time, where future state desired capabilities were considered through alternative supply network (SN configurations, network structure, process flow, product architecture, and supply partnerships.

  17. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan

    Science.gov (United States)

    Qocamanov, M. H.; Gurbanov, Ch. Z.

    2016-10-01

    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  18. [Waterborne outbreak of gastroenteritis transmitted through the public water supply].

    Science.gov (United States)

    Godoy, P; Borrull, C; Palà, M; Caubet, I; Bach, P; Nuín, C; Espinet, L; Torres, J; Mirada, G

    2003-01-01

    The chlorination of public water supplies has led researchers to largely discard drinking water as a potential source of gastroenteritis outbreaks. The aim of this study was to investigate an outbreak of waterborne disease associated with drinking water from public supplies. A historical cohort study was carried out following notification of a gastroenteritis outbreak in Baqueira (Valle de Arán, Spain). We used systematic sampling to select 87 individuals staying at hotels and 67 staying in apartments in the target area. Information was gathered on four factors (consumption of water from the public water supply, sandwiches, water and food in the ski resorts) as well as on symptoms. We assessed residual chlorine in drinking water, analyzed samples of drinking water, and studied stool cultures from 4 patients. The risk associated with each water source and food type was assessed by means of relative risk (RR) and 95% confidence intervals (CI). The overall attack rate was 51.0% (76/149). The main symptoms were diarrhea 87.5%, abdominal pain 80.0%, nausea 50.7%, vomiting 30.3%, and fever 27.0%. The only factor associated with a statistically significant risk of disease was consumption of drinking water (RR = 11.0; 95% CI, 1.6-74.7). No residual chlorine was detected in the drinking water, which was judged acceptable. A problem associated with the location of the chlorinator was observed and corrected. We also recommended an increase in chlorine levels, which was followed by a reduction in the number of cases. The results of stool cultures of the four patients were negative for enterobacteria. This study highlights the potential importance of waterborne outbreaks of gastroenteritis transmitted through drinking water considered acceptable and suggests the need to improve microbiological research into these outbreaks (viruses and protozoa detection).

  19. REMOVING BIOMASS FROM WATER PONDS AND SMALL WATER RESERVOIRS BY USING NON-WOVEN FILTERS

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2015-10-01

    Full Text Available Small water bodies, for example garden ponds, play many functions in the environment, including biocenotic, hydrological, climatic, sozological, landfill-creative, and aesthetic. Due to their small size, these reservoirs are sensitive to external and internal factors, they are also a common natural contaminants receivers. Nonwoven filters have been investigated for several years as a useful device for treatment of domestic wastewater pre-treated in a septic tank. The aim of this study was to verify the possibility of using this type of filters for water originating from small water body purification. The effectiveness of filters were tested on the water originating from the garden pond, contained high levels of nutrients and intensive algal bloom. Research was carried out on three filters (each filter consisted of four geotextile TS 20 layers. Basic water quality indicators: total suspended solids, turbidity, COD and BOD5, temperature, pH and dissolved oxygen were measured. The research results can be considered as satisfactory in terms of mechanical treatment (removal of turbidity and total suspended solids. An important positive effect of the filters was the oxygenation of the treated water, which is especially important for fish.

  20. An adaptive robust optimization scheme for water-flooding optimization in oil reservoirs using residual analysis

    NARCIS (Netherlands)

    Siraj, M.M.; Van den Hof, P.M.J.; Jansen, J.D.

    2017-01-01

    Model-based dynamic optimization of the water-flooding process in oil reservoirs is a computationally complex problem and suffers from high levels of uncertainty. A traditional way of quantifying uncertainty in robust water-flooding optimization is by considering an ensemble of uncertain model

  1. modelling for optimal number of line storage reservoirs in a water

    African Journals Online (AJOL)

    user

    RESERVOIRS IN A WATER DISTRIBUTION SYSTEM. By. B.U. Anyata. Department ... water distribution systems, in order to balance the ... distribution line storage systems to meet peak demands at .... Evaluation Method. The criteria ... Pipe + Energy Cost (N). 191, 772 ... Economic Planning Model for Distributed information ...

  2. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions

    NARCIS (Netherlands)

    Olsson, O.; Ikramova, M.; Bauer, M.; Froebrich, J.

    2010-01-01

    This paper introduces the conjunctive use of a deterministic water quality model and water balance criteria for supporting the assessment of simulation and to evaluate the effectiveness of proposed operation strategies. By this, the applicability of enhanced reservoir operation strategies addressing

  3. Realisation of a small hydro power plant in the water supply of the Gudo municipality; Realizzazione di una microcentrale idroelettrica sulla condotta di adduzione tra le sorgenti Valle del Cugnolo e il serbatoio Sasso Grande - Studio di fattibilita

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, M.

    2008-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the feasibility study for the renewal of the drinking-water supply of the Gudo Municipality, Switzerland, including a new micro-scale power plant at the entrance of the main water reservoir. The water quantities available are listed. The investment cost is evaluated. The major cost arises from the replacement of the main pipe connecting the remote spring to the water reservoir by a penstock following a new lie. The project is technically feasible, but economically not. However, considering the age and actual status of the water supply, the authorities will anyway soon have to take adequate measures.

  4. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  5. 7 CFR 612.6 - Application for water supply forecast service.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts or...

  6. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  7. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  8. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  9. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    Science.gov (United States)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops

  10. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  11. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  12. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  13. Rehabilitation actions in water supply systems: effects on biofilm susceptibility

    OpenAIRE

    RAMOS MARTINEZ, EVA; Herrera Fernández, Antonio Manuel; Gutiérrez-Pérez, Joanna A.; Izquierdo Sebastián, Joaquín; Pérez García, Rafael

    2014-01-01

    Biofilm development in water supply systems (WSSs) depends on infrastructure and operational factors, apart from water quality. We have developed a methodology that considers WSSs hydraulic (operation) and physical (design) characteristics to identify areas with different biofilm development trends within a WSS. To achieve this aim we have used meta-analysis and multi-agent system label propagation via discriminant analysis. As a result, we recognise areas with different susceptibility to bio...

  14. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.

    2012-01-01

    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible

  15. The church: asset and agent in achieving sustainable water supply ...

    African Journals Online (AJOL)

    Journal of Religion and Human Relations ... argues that the church as both asset and agent is most useful in conscientizing and transforming people to adopt a new mindset- a behavioral attitude required to halt the progression of environmental degradation in general and specifically improve urban water supply in Nigeria.

  16. Development and utilization of spring water in small scale supply ...

    African Journals Online (AJOL)

    Development and utilization of spring water in small scale supply scheme for the Kogi State Polytechnic, Lokoja, central Nigeria. Joseph Omada. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 131-135. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  17. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. The conventional production flow control and pressure control of the facility was replaced by the advanced control software called OPIR. To assess the differences between conventional and advanced

  18. Spatial distribution of water supply in the coterminous United States

    Science.gov (United States)

    Thomas C. Brown; Michael T. Hobbins; Jorge A. Ramirez

    2008-01-01

    Available water supply across the contiguous 48 states was estimated as precipitation minus evapotranspiration using data for the period 1953-1994. Precipitation estimates were taken from the Parameter- Elevation Regressions on Independent Slopes Model (PRISM). Evapotranspiration was estimated using two models, the Advection-Aridity model and the Zhang model. The...

  19. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  20. Electricity, Gas and Water Supply. Industry Training Monograph No. 4.

    Science.gov (United States)

    Dumbrell, Tom

    Australia's electricity, gas, and water supply industry employs only 0.8% of the nation's workers and employment in the industry has declined by nearly 39% in the last decade. This industry is substantially more dependent on the vocational education and training (VET) sector for skilled graduates than is the total Australian labor market. Despite…

  1. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2017-05-01

    Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.

  2. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  3. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  4. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change

    Science.gov (United States)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.

    2006-12-01

    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The

  5. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Directory of Open Access Journals (Sweden)

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  6. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Science.gov (United States)

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  7. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities

    Science.gov (United States)

    Wheater, H. S.

    2015-12-01

    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  8. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  9. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.

  10. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  11. Successful flow testing of a gas reservoir in 3,500 feet of water

    International Nuclear Information System (INIS)

    Shaughnessy, J.M.; Carpenter, R.S.; Coleman, R.A.; Jackson, C.W.

    1992-01-01

    The test of Viosca Knoll Block 957 Well No. 1 Sidetrack No. 2 was Amoco Production Co.'s deepest test from a floating rig. Viosca Knoll 957 is 115 miles southeast of New Orleans in 3,500 ft of water. The test, at a record water depth for the Gulf of Mexico, also set a world water-depth record for testing a gas reservoir. Safety to crew and the environmental were top priorities during the planning. A team consisting of drilling, completion, reservoir, and facilities engineers and a foreman were assigned to plan and implement the test. Early planning involved field, service company, and engineering groups. Every effort was made to identify potential problems and to design the system to handle them. This paper reports that the goals of the test were to determine reservoir properties and reservoir limits. Several significant challenges were involved in the well test. The reservoir was gas with a potentially significant condensate yield. The ability to dispose of the large volumes of produced fluids safely without polluting was critical to maintaining uninterrupted flow. Potential shut-in surface pressure was 6,500 psi. Seafloor temperature in 3,500 ft of water was 39 degrees F

  12. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria

    Directory of Open Access Journals (Sweden)

    Bahroun Sofia

    2017-09-01

    Full Text Available In this work, we have conducted a physicochemical study that assesses the impact of agricultural activities and urban domestic wastewater on the surface water quality of the dam reservoir Mexa in the area of El-Taref, which is located in the eastern coastal basin of Constantine. 36 samplings have been conducted for three years (2010, 2011 and 2012, at the rate of one sampling per month on the dam reservoir water; 36 samples have been analysed. The samples taken have been subjected to an in situ measurement of physicochemical parameters (temperature, hydrogen potential, electric conductivity and dissolved oxygen and laboratory analysis (anions, cations, biological oxygen demand, chemical oxygen demand, organic matter, phosphate, nitrate, nitrite and ammonium. Concentrations of various organic and inorganic pollutants varied from one month to another and from one year to another. From a temporal point of view, the contamination of water of the dam reservoir Mexa varies according to climatic conditions, being generally low during the winter period and high during the low-flow periods. The results obtained reveal that water of the dam reservoir Mexa is fairly contaminated. It is certain that the dam reservoir is subject to pollution of agricultural and urban origin.

  13. Size of age-0 crappies (Pomoxis spp.) relative to reservoir habitats and water levels

    Science.gov (United States)

    Kaczka, Levi J.; Miranda, Leandro E.

    2014-01-01

    Variable year-class strength is common in crappie Pomoxis spp. populations in many reservoirs, yet the mechanisms behind this variability are poorly understood. Size-dependent mortality of age-0 fishes has long been recognized in the population ecology literature; however, investigations about the effects of environmental factors on age-0 crappie size are lacking. The objective of this study was to determine if differences existed in total length of age-0 crappies between embayment and floodplain habitats in reservoirs, while accounting for potential confounding effects of water level and crappie species. To this end, we examined size of age-0 crappies in four flood-control reservoirs in northwest Mississippi over 4years. Age-0 crappies inhabiting uplake floodplain habitats grew to a larger size than fish in downlake embayments, but this trend depended on species, length of time a reservoir was dewatered in the months preceding spawning, and reservoir water level in the months following spawning. The results from our study indicate that water-level management may focus not only on allowing access to quality nursery habitat, but that alternating water levels on a multiyear schedule could increase the quality of degraded littoral habitats.

  14. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential.

    Science.gov (United States)

    Su, Ming; Yu, Jianwei; Zhang, Junzhi; Chen, Hui; An, Wei; Vogt, Rolf D; Andersen, Tom; Jia, Dongmin; Wang, Jingshi; Yang, Min

    2015-01-01

    The production of odorant 2-methylisoborneol (MIB) in water bodies by Planktothrix sp. have not been understood very well. Through a four-year investigation in Miyun Reservoir, a huge mesotrophic drinking water reservoir known to have the MIB episodes, we found that the Planktothrix sp. bloomed during September and October causing the high levels of MIB in the reservoir. The concentration of MIB and the biomass of MIB-producing cyanobacteria Planktothrix were measured (n = 887) at different sites and depths during different seasons. The results indicated that the shallow region of the reservoir is the major habitat for Planktothrix sp. due to that the light is able to penetrate down to the relatively high concentrations of nutrients close to the sediments. Quantile regression analysis between Planktothrix biomass and MIB concentration shows that the risk o