WorldWideScience

Sample records for water supply policy

  1. Adoption of irrigation water policies to guarantee water supply: A choice experiment

    NARCIS (Netherlands)

    Alcon, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D.

    2014-01-01

    More efficient and sustainable use of water is increasingly becoming an urgency in drought prone parts of the world. In particular, in water scarce regions such as the Mediterranean, water supply is expected to become more uncertain because of climate change. Consequently, pro-active policy

  2. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery

    Science.gov (United States)

    Mashauri, Damas A.; Katko, Tapio S.

    1993-01-01

    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  3. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation

  4. 18 CFR 801.6 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs, the...

  5. Energy-Cost Optimisation in Water-Supply System

    OpenAIRE

    Farrukh Mahmood; Haider Ali

    2013-01-01

    Households as well as community water-supply systems for utilisation of underground aquifers are massive consumers of energy. Prevailing energy crisis and focus of the government on demand-side energy policies (i.e., energy conservation) in Pakistan raises need of using energy efficient techniques in almost every aspect of life. This paper analyses performance of community relative to household water-supply system in connection with efficient energy utilisation. Results suggest that total ope...

  6. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  7. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  8. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  9. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  10. Managing California’s Water: Insights from Interviews with Water Policy Experts

    Directory of Open Access Journals (Sweden)

    Sarah E. Null

    2012-12-01

    Full Text Available This paper presents insights from interviews with over 100 California water policy experts, who answered open-ended questions regarding California’s long-term water policy challenges and potential solutions. Interviews were conducted in the spring and summer of 2010, and interviewees were selected from a range of sectors and regions within California. Top long-term policy problems cited include management of the Sacramento–San Joaquin Delta, dysfunctional institutions and water governance, unsustainable water supplies and flood management, poor environmental protection, and problems with water rights and valuing water. In addition to a range of specific management solutions, respondents emphasized the importance of public education, incentivized cooperation, more holistic water management, local innovation, and removal of regulatory obstacles as primary solutions to California’s long-term water challenges. There was little emphasis on new surface storage projects, except from politicians. Other respondents preferred local and regional approaches to improve water supply, such as conservation, groundwater banking, recycling, or stormwater management. Despite differences in opinion on the problems with implementation of the Endangered Species Act, there was broad agreement that environmental management approaches need to shift away from single-species, piecemeal approaches toward ecosystem-based, multi-species approaches. 

  11. Public-supply water use and self-supplied industrial water use in Tennessee, 2010

    Science.gov (United States)

    Robinson, John A.

    2018-04-26

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Water Resources, prepared this report and displayed and analyzed water use by self-supplied industrial and public-supply water systems in Tennessee for 2010. Public-supply water systems in Tennessee provide water for domestic, industrial, and commercial uses and for municipal services. In 2010, 474 public-supply water systems distributed 917 million gallons per day (Mgal/d) of surface water (67 percent, 617 Mgal/d) and groundwater (33 percent, 300 Mgal/d) to a population of 5.7 million in Tennessee. Gross per capita water use in Tennessee during 2010 was 162 gallons per day.Since 1950, water withdrawals by public-supply water systems in Tennessee have increased from 160 Mgal/d to 917 Mgal/d in 2010. Each of the 95 counties in Tennessee was served by at least 1 public-supply water system in 2010. Tennessee public-supply water systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. Since 2005, surface-water withdrawals have increased by 26 Mgal/d, and groundwater withdrawals have decreased by 29 Mgal/d, which is the first decrease in groundwater withdrawals since 1950; however, 29 systems reported increased groundwater withdrawals during 2010, and 12 of these 29 systems reported increases of 1 Mgal/d or more. Davidson County had the largest surface-water withdrawal rate (136 Mgal/d) in 2010. The largest groundwater withdrawal rate (151 Mgal/d) by a single public-supply water system was reported by Memphis Light, Gas and Water, which served more than 669,000 people in Shelby County in 2010.Self-supplied industrial water use includes water for such purposes as fabrication, processing, washing, diluting, cooling, or transporting a product; incorporating water into a product; or for sanitation needs in facilities that manufacture various products. Water withdrawals for self-supplied

  12. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Directory of Open Access Journals (Sweden)

    J. D. S. Cullis

    2018-02-01

    Full Text Available Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing

  13. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Science.gov (United States)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  14. 77 FR 42486 - Intent To Prepare an Integrated Water Supply Storage Reallocation Report; Environmental Impact...

    Science.gov (United States)

    2012-07-19

    ... Water Supply Storage Reallocation Report; Environmental Impact Statement for Missouri River Municipal... Policy Act of 1969 (NEPA), as amended and the 1958 Water Supply Act, as amended, the U.S. Army Corps of... purpose of the study is to determine if changes to the current allocation of storage for M&I water supply...

  15. Vaccine supply, demand, and policy: a primer.

    Science.gov (United States)

    Muzumdar, Jagannath M; Cline, Richard R

    2009-01-01

    To provide an overview of supply and demand issues in the vaccine industry and the policy options that have been implemented to resolve these issues. Medline, Policy File, and International Pharmaceutical Abstracts were searched to locate academic journal articles. Other sources reviewed included texts on the topics of vaccine history and policy, government agency reports, and reports from independent think tanks. Keywords included vaccines, immunizations, supply, demand, and policy. Search criteria were limited to English language and human studies. Articles pertaining to vaccine demand, supply, and public policy were selected and reviewed for inclusion. By the authors. Vaccines are biologic medications, therefore making their development and production more difficult and costly compared with "small-molecule" drugs. Research and development costs for vaccines can exceed $800 million, and development may require 10 years or more. Strict manufacturing regulations and facility upgrades add to these costs. Policy options to increase and stabilize the supply of vaccines include those aimed at increasing supply, such as government subsidies for basic vaccine research, liability protection for manufacturers, and fast-track approval for new vaccines. Options to increase vaccine demand include advance purchase commitments, government stockpiles, and government financing for select populations. High development costs and multiple barriers to entry have led to a decline in the number of vaccine manufacturers. Although a number of vaccine policies have met with mixed success in increasing the supply of and demand for vaccines, a variety of concerns remain, including developing vaccines for complex pathogens and increasing immunization rates with available vaccines. New policy innovations such as advance market commitments and Medicare Part D vaccine coverage have been implemented and may aid in resolving some of the problems in the vaccine industry.

  16. Energy supplying of the Europe and foreign policy

    International Nuclear Information System (INIS)

    Noel, P.

    1998-03-01

    This paper aims to answer the question on the impact of the energy supply in Europe on the foreign and safety policy. The geo-political principles of the energy, the european petroleum and gaseous supply and the american policy facing the european energy supply are analyzed. (A.L.B.)

  17. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges.

    Science.gov (United States)

    Gunnarsdottir, Maria J; Persson, Kenneth M; Andradottir, Hrund O; Gardarsson, Sigurdur M

    2017-11-01

    Access to safe water is essential for public health and is one of the most important prerequisites for good living and safe food production. Many studies have shown that non-compliance with drinking water quality standards in small water supply systems is much higher than in large systems. Nevertheless, people served by small water supply systems have the right to the same level of health protection. Actions are therefore needed to improve the situation. The objective of the present study was to carry out a baseline analysis of the situation in the Nordic region and provide recommendations for governmental policy and actions. Data were gathered on number of water supplies, population served, compliance with regulations and waterborne disease outbreaks from various sources in the Nordic countries. The collected data showed that there are about 12500 regulated water supplies, 9400 of which serve fewer than 500 persons. The number of unregulated and poorly regulated supplies is unknown, but it can be roughly estimated that these serve 10% of the Nordic population on a permanent basis or 2.6 million people. However, this does not tell the whole story as many of the very small water supplies serve transient populations, summerhouse dwellers and tourist sites, with many more users. Non-compliance regarding microbes is much higher in the small supplies. The population weighted average fecal contamination incidence rate in the Nordic region is eleven times higher in the smaller supplies than in the large ones, 0.76% and 0.07%, respectively. Registered waterborne disease outbreaks were also more frequent in the small supplies than in the large ones. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Institutional and socioeconomic aspects of water supply

    Science.gov (United States)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  19. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    Science.gov (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  20. Energy security of supply under EU climate policies

    International Nuclear Information System (INIS)

    Groenenberg, H.; Wetzelaer, B.J.H.W.

    2006-12-01

    The implications of various climate policies for the security of supply in the EU-25 were investigated. The security of supply was quantified using the Supply/Demand (S/D) Index. This index aggregates quantitative information on a country's energy system into one single figure. It takes a value between 0 and 100, with higher values indicating a more secure energy system. The S/D Index was calculated for the year 2020 based on the information in a series of policy scenarios, including a baseline (S/D Index 50.7), an energy efficiency scenario (53.8), two renewable energy scenarios (52.6 and 53.3) and two scenarios with combined policies (55.9 and 55.6).The S/D Index proved a useful indicator for assessing the implications of climate policies for the security of supply. As climate policies become more stringent, CO2 index fall, and the S/D index increases. The magnitude of the changes in the two indices is not always similar however. Major falls in CO2 indices in the order of 20% for two scenarios with combined energy efficiency and renewable energy polices lead to less noteworthy improvements in the associated S/D indices. Nevertheless, this combination of policies leads to the greatest improvements in the security of supply

  1. Water Supply or ‘Beautiful Latrines’? Microcredit for Rural Water Supply and Sanitation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nadine Reis

    2012-01-01

    Full Text Available Around half of the Mekong Delta’s rural population lacks year-round access to clean water. In combination with inadequate hygiene and poor sanitation this creates a high risk of diseases. Microcredit schemes are a popular element in addressing such problems on the global policy level. The present paper analyses the contradictory results of such a microcredit programme for rural water supply and sanitation in the context of the Mekong Delta, Vietnam, through a qualitative study primarily based on semi-structured interviews in rural communes of Can Tho City. We come to the conclusion that the programme has a positive effect regarding the safer disposal of human excreta as well as surface water quality, but a marginal impact on poverty reduction as it only reaches better-off households already having access to clean water. The paper shows how the outcome of rural water supply and sanitation policies are strongly influenced by the local ecological, technological, and social settings, in particular by stakeholders’ interests. The authors challenge the assumption that water supply and sanitation should be integrated into the same policy in all circumstances. ----- Etwa die Hälfte der ländlichen Bevölkerung des Mekong-Deltas hat nicht das ganze Jahr über Zugang zu sauberem Wasser. Zusammen mit unzureichender Hygiene und mangelnder sanitärer Grundversorgung erhöht diese Situation das Krankheitsrisiko. Auf globaler Ebene sind Mikrokreditprogramme eine gefragte Strategie, um diese Probleme zu behandeln. Der vorliegende Artikel analysiert die widersprüchlichen Ergebnisse eines solchen Mikrokreditprogramms für ländliche Wasser- und sanitäre Grundversorgung im Mekong-Delta in Vietnam im Rahmen einer qualitativen Studie, die auf halbstrukturierten Interviews im Raum Can Tho City basiert. Die Studie kommt zu dem Schluss, dass das Programm eine positive Wirkung in Bezug auf die sichere Entsorgung von Fäkalien und die Qualität des Regenwassers

  2. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  3. A review of formal institutions affecting water supply and access in Botswana

    Science.gov (United States)

    Mogomotsi, Patricia K.; Mogomotsi, Goemeone E. J.; Matlhola, Dimpho M.

    2018-06-01

    Over the years, many countries across the world have increasingly experienced the collapse of their ecosystems, leading to an elevated increase on the demand for freshwater resources. Botswana is not an exception. The problem of disrupted potable water supply is widespread across the country. However, the physical shortage of water in the country is arguably coupled by lack of effective and efficient water supply and management institutions and water infrastructure. Most of the research on water scarcity in Botswana is mostly inclined towards physical water scarcity, while little is investigated on how the design of institutions for water management in developing countries leads to water scarcity. Furthermore, the premises of most research is neoclassical economics ideas, thereby offering solutions as developing and/or reforming water markets and water pricing mechanisms, among other findings. This paper analyses potable water supply and access in Botswana within a new institutional economics paradigm. The study examines key features of water institutions in Botswana on how they affect water supply and access, applying new institutional economics fundamentals. The study extensively uses various secondary data sources including weather and climate reports, policy documents, maps and charts and survey data, among others. The paper argues that to achieve effective water allocation in Botswana, there is a need to balance social and environmental water resource needs through water policies and other statutory enactments, as well as the crafting of practical management strategies. The country, therefore, requires not only a swift institutional transformation in the water sector, but also needs practical governance structure necessary for implementing integrated water resources management and driving water resources towards sustainability.

  4. Water supply as a constraint on transmission expansion planning in the Western interconnection

    Science.gov (United States)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; Moreland, Barbara D.

    2016-12-01

    Consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development of new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water

  5. How much should customers be compensated for interruptions in the drinking water supply?

    Science.gov (United States)

    Molinos-Senante, María; Sala-Garrido, Ramon

    2017-05-15

    Water supply interruptions directly affect customers, and customers should be compensated accordingly. However, few water regulators have applied compensation policies given the difficulty of estimating the economic value of compensation to customers. In this study, a pioneering approach based on the concept of shadow prices is proposed to determine the compensation that customers should receive for unplanned water interruptions. The Chilean water industry was selected as a case study because there is an ongoing policy discussion between the use of penalties or compensation as an incentive to prevent water supply interruptions. The estimated results indicate that for 2014, the value of compensation ranges between 2.4% and 35.4% of the fixed charge of the water tariff. The methodology and findings of this study are of great relevance to water regulators in defining incentives to prompt water companies to provide reliable water service. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Blue Water Footprint Management in a UK Poultry Supply Chain under Environmental Regulatory Constraints

    Directory of Open Access Journals (Sweden)

    Naoum Tsolakis

    2018-02-01

    Full Text Available Chicken is the most consumed meat in the UK, accounting for 40% of meat consumption, while national production sufficiency reaches about 80%. As a farmed animal product, chicken meat is responsible for significant freshwater appropriation volumes during its production cycle. In this context, this research aims at exploring freshwater dynamics in the UK processed poultry industry. Specifically, we develop a System Dynamics model to capture the blue water footprint, as a key sustainability performance indicator of a poultry supply chain, in the case that relevant environmental and regulatory constraints are applied. The model contributes towards investigating the impact of two potential policy-making scenarios, namely, the “water penalty” and the “water tax”, on the nexus between profitability and water usage across the poultry supply chain. Responding to the regulatory constraints, the food processor either reconfigures the supply chain through rethinking desired inventory levels or implements a water management intervention. The results indicate that investing in water-friendly production technologies could offer a greater advantage to sustainable supply chains in terms of blue water efficiency and profitability, compared to employing inventory management strategies. Overall, our analysis highlights that effective policy-making and technology-driven interventions could provide potential towards ensuring economic growth and environmental sustainability of the UK poultry sector.

  7. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  8. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  9. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  10. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  11. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  12. The challenge of integration in the implementation of Zimbabwe’s new water policy: case study of the catchment level institutions surrounding the Pungwe-Mutare water supply project

    Science.gov (United States)

    Tapela, Barbara Nompumelelo

    Integrated water resources management (IWRM) is viewed by policy makers and practitioners as facilitating the achievement of a balance between water resource use and resource protection, and the resolution of water-related conflicts. The IWRM approach has found particular use in the new water policies of Southern African countries such as Zimbabwe, where water scarcity, after the land question, is perceived to be a major threat to political, economic, social, military and environmental security. Ultimately, IWRM is seen as providing a framework towards ensuring broader security at the local, national, regional and global levels. However, the pilot phase implementation of the new water policy in the various regional countries has revealed that although the legal and institutional frameworks have been put in place, the implementation of the IWRM approach has tended to be problematic (J. Latham, 2001; GTZ, 2000; Leestemaker, 2000; Savenige and van der Zaag, 2000; Sithole, 2000). This paper adopts a case study approach and empirically examines the institutional challenges of implementing the IWRM approach in the post-pilot phase of Zimbabwe's new water policy. The focus is mainly on the institutional arrangements surrounding the Pungwe-Mutare Water Supply Project located within the Save Catchment Area in Eastern Zimbabwe. The major findings of the study are that, while there persist some problems associated with the traditional management approach, there have also emerged new challenges to IWRM. These mainly relate to the transaction costs of the water sector reforms, institutional resilience, stakeholder participation, and the achievement of the desired outcomes. There have also been problems emanating from unexpected political developments at the local and national levels, particularly with regard to the government's ;fast track; land resettlement programme. The paper concludes that there is a need for a more rigorous effort towards integrating the management of

  13. Multi-Item Distribution Policies with Supply Hub and Lateral Transshipment

    OpenAIRE

    Zhong Jin-Hong; Jiang Rui-Xuan; Zheng Gui

    2015-01-01

    Supply Hub is defined as the horizontal coordination among the suppliers while lateral transshipment is a horizontal coordination policy among the retailers. By considering the Supply Hub and lateral transshipment simultaneously, ones can reduce the total cost of the supply chain system and improve the response to customer requirement and the customers’ satisfaction. We investigate the distribution policies for the supply chain which consists of multisuppliers, single Supply Hub, and multidis...

  14. Towards risk-based drought management in the Netherlands: making water supply levels transparent to water users

    Science.gov (United States)

    Maat Judith, Ter; Marjolein, Mens; Vuren Saskia, Van; der Vat Marnix, Van

    2016-04-01

    To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, assessed the impact of climate change and socio-economic development, and explored strategies to deal with these impacts. The Programme initiated a joint approach to water supply management with stakeholders and developed a national adaptation plan that is able to adapt to future uncertain conditions. The adaptation plan consists of a set of preferred policy pathways - sequences of possible actions and measures through time - to achieve targets while responding in a flexible manner to uncertain developments over time, allowing room to respond to new opportunities and insights. With regard to fresh water allocation, the Delta Programme stated that supplying water of sufficient quality is a shared responsibility that requires cohesive efforts among users in the main and regional water system. The national and local authorities and water users involved agreed that the water availability and, where relevant, the water quality should be as transparent and predictable as possible under normal, dry and extremely dry conditions. They therefore introduced the concept of "water supply service levels", which should describe water availability and quality that can be delivered with a certain return period, for all regions and all relevant water users in the Netherlands. The service levels form an addition to the present policy and should be decided on by 2021. At present water allocation during periods of (expected) water shortage occurs according to a prearranged ranking system (a water hierarchy scheme based on a list of priorities), if water availability drops below a critical low level. The aim is to have supply levels available that are based on the probability of occurrence and economic impact of water shortage, and that are transparent for all water users in the regional water systems and the main water system. As part of the European project

  15. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  16. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2018-01-01

    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  17. 46 CFR 108.467 - Water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  18. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  19. Energy supply security and foreign policy

    International Nuclear Information System (INIS)

    2006-05-01

    The title memo has been sent to the Dutch Lower House. This memo reflects the response of the cabinet to the advice on Energetic Foreign Policy of the Dutch Advisory Council on International Affairs (AIV) and the Dutch Energy Council (AER). Moreover, the development of foreign policy with respect to energy supply security is depicted. [mk] [nl

  20. A Study on the preparation of environmental act system in Korea II - concentrated on the preparation of environmental policy fundamental act, protection of water supply source, and greenbelt area act

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hwan [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    This study is to propose to reform environmental policy fundamental act and land related act into future-oriented direction. First of all, the environmental policy fundamental act presented the direction of reforming water supply, national parks, and greenbelt related acts in environmental preservation perspective. 54 refs., 17 tabs.

  1. Water stress, water salience, and the implications for water supply planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  2. WATER SUPPLY ANALYSIS

    International Nuclear Information System (INIS)

    Clark, R.D.

    1996-01-01

    This analysis defines and evaluates the surface water supply system from the existing J-13 well to the North Portal. This system includes the pipe running from J-13 to a proposed Booster Pump Station at the intersection of H Road and the North Portal access road. Contained herein is an analysis of the proposed Booster Pump Station with a brief description of the system that could be installed to the South Portal and the optional shaft. The tanks that supply the water to the North Portal are sized, and the supply system to the North Portal facilities and up to Topopah Spring North Ramp is defined

  3. Economies of scale and firm size optimum in rural water supply

    Science.gov (United States)

    Sauer, Johannes

    2005-11-01

    This article is focused on modeling and analyzing the cost structure of water-supplying companies. A cross-sectional data set was collected with respect to water firms in rural areas of former East and West Germany. The empirical data are analyzed by applying a symmetric generalized McFadden (SGM) functional form. This flexible functional form allows for testing the concavity required by microeconomic theory as well as the global imposition of such curvature restrictions without any loss of flexibility. The original specification of the SGM cost function is modified to incorporate fixed factors of water production and supply as, for example, groundwater intake or the number of connections supplied. The estimated flexible and global curvature correct cost function is then used to derive scale elasticities as well as the optimal firm size. The results show that no water supplier in the sample produces at constant returns to scale. The optimal firm size was found to be on average about three times larger than the existing one. These findings deliver evidence for the hypothesis that the legally set supplying areas, oriented at public administrative criteria as well as local characteristics of water resources, are economically inefficient. Hence structural inefficiency in the rural water sector is confirmed to be policy induced.

  4. Consumers’ Preferences and Derived Willingness-to-Pay for Water Supply Safety Improvement: The Analysis of Pricing and Incentive Strategies

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2018-05-01

    Full Text Available With increasing water supply accidents and higher water demand, urban water supply safety (WSS remains a crucial public policy issue in developing countries. The purpose of this paper is to investigate consumers’ willingness-to-pay (WTP and their preferences to improve WSS in China, to support governments in water regulation policy design and water providers in investment-decisions. A discrete choice experiment method with the consideration of not only attributes of WSS but also attitudinal and demographic variables have been adopted to assess consumers’ WTP and preferences for WSS improvement. The results show that Chinese urban residents are willing to pay a significantly higher price for improved WSS. Demonstrated marginal mean WTP for the change of the attributes range from 0.18 RMB/m3 (0.03 USD/m3 (1 RMB was around 0.154 USD in 2016 for decreased water supply interruption to 2.33 Yuan RMB/m3 (0.35 USD/m3 for improved drinking water quality. Investments in water processing facilities and water distribution networks should come first. Cross-subsidy concerning different developing districts is the most efficient policy instrument. The study contributes to the recent literature not only by introducing attitudinal variables in choice experiment survey in water supply field, but also by revealing the correlation of choice modeling applications in WSS improvement programs.

  5. State transformation and policy networks: The challenging implementation of new water policy paradigms in post-apartheid South Africa

    Directory of Open Access Journals (Sweden)

    Magalie Bourblanc

    2017-06-01

    Full Text Available For many years, South Africa had represented a typical example of a hydrocracy. Following the democratic transition in South Africa, however, new policy paradigms emerged, supported by new political elites from the ANC. A reform of the water policy was one of the priorities of the new Government, but with little experience in water management, they largely relied on 'international best practices' in the water sector, although some of these international principles did not perfectly fit the South African water sector landscape. In parallel, a reform called 'transformation' took place across all public organisations with the aim of allowing public administrations to better reflect the racial components in South African society. As a result, civil engineers lost most of their power within the Department of Water Affairs and Sanitation (DWS. However, despite these changes, demand-side management has had difficulties in materializing on the ground. The paper aims at discussing the resilience of supply-side management within the Ministry, despite its new policy orientation. Using a policy network concept, the paper shows that the supply-side approach still prevails today, due to the outsourcing of most DWS tasks to consulting firms with whom DWS engineers have nourished a privileged relationship since the 1980s. The article uses the decision-making process around the Lesotho Highlands Water Project (LHWP Phase 2 as an emblematic case study to illustrate such developments. This policy network, which has enjoyed so much influence over DWS policies and daily activities, is now being contested. As a consequence, we argue that the fate of the LHWP Phase 2 is ultimately linked to a competition between this policy network and a political one.

  6. Village-level supply reliability of surface water irrigation in rural China: effects of climate change

    Science.gov (United States)

    Li, Yanrong; Wang, Jinxia

    2018-06-01

    Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.

  7. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    Science.gov (United States)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  8. 9 CFR 354.224 - Water supply.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  9. 24 CFR 3285.603 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  10. Security management of water supply

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2017-03-01

    Full Text Available The main aim of this work is to present operational problems concerning the safety of the water supply and the procedures for risk management systems functioning public water supply (CWSS and including methods of hazard identification and risk assessment. Developed a problem analysis and risk assessment, including procedures called. WSP, which is recommended by the World Health Organization (WHO as a tool for comprehensive security management of water supply from source to consumer. Water safety plan is a key element of the strategy for prevention of adverse events in CWSS.

  11. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  12. EU Energy Policy in a Supply-constrained World

    International Nuclear Information System (INIS)

    De Jong, J.; Van der Linde, C.

    2008-10-01

    Energy is quickly becoming an issue of integration and disintegration of the EU and will perhaps turn out to be the ultimate litmus test of political and economic unity in the EU, as energy issues are increasingly intertwined with wider security issues on the continent. Very often, economic issues are elevated to the political-strategic level, serving a different agenda than merely contributing to the energy policy agenda of the EU. The challenges to the EU and its member states in the energy sector are many: some issues are part of the wider geopolitical and geo-economic agenda, but some are also the product of the new EU that emerged after the fall of the Berlin Wall. The enlargement with member states that are asymmetrically dependent on oil and gas supplies mainly from Russia has further emphasised the growth of structural energy import dependency. Moreover, the new member states did not have the benefit of introducing the energy 'acquis', i.e. liberalisation, in a period of ample supply and relatively low prices. From 2004 onwards, energy has become tighter and more politicised. It was these developments that also uncovered the calculated risk of the old member states to embark on liberalisation without putting a crisis management policy into place. With the increasing worries about the security of supply and the asymmetric exposure of Eastern Europe to a single supplier, energy security issues also began to dominate the internal policy debates both in energy and in external relations. The new developments require the EU member states to consider how and to what extent their external energy policies should also be merged into a more EU-wide approach, if they can agree on the common risks that need to be averted and the common benefits gained, and if and how a crisis mechanism for fuels other than oil is needed to manage the perceived increased security of supply risks. Moreover, they should also consider the internal market design they set out to implement and

  13. 20 CFR 654.405 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  14. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  15. 25 CFR 137.1 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  16. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  17. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh Five-year Plan

    International Nuclear Information System (INIS)

    Gu, Alun; Teng, Fei; Wang, Yu

    2014-01-01

    Highlights: • Energy and water limit China’s sustainable development. • Current energy policies fail to address water saving issues. • The energy-water coefficient is estimated for both direct use and indirect use. • Water saving effects associated with energy-saving policies is calculated. • Water-energy nexus should be enhanced in key industrial sectors. - Abstract: Energy and water have become major factors limiting sustainable development in China. Energy efficiency and optimization of water management are critical for the healthy growth of the Chinese economy. Current national energy policies fail to adequately address water use issues. Similarly, current water policies do not consider the impact of energy consumption and greenhouse gas emissions. Consequently, few studies have investigated the relationship between energy consumption and water use. The present study analyzes the energy-water nexus in Chinese industries using input–output tables. Coefficients that characterize the relationship between energy consumption and water are used to describe the supply-consumption relationship between the water supply and primary energy sectors. Next, we calculate the water-saving effects associated with the enforcement of energy-saving policies in selected industrial sectors during the eleventh Five-year Plan, from 2005 to 2010. These calculations address the ferrous metals, non-ferrous metals, petrochemical engineering, building materials, and electricity industries as well as key light industries. Our findings indicate that energy-saving efforts in these industries will result in savings in water consumption. This study suggests that a cooperative relationship between water and energy conservation efforts should be an important factor in creating policies that encourage simultaneous savings of both resources. Additionally, the study indicates that government should promote water- and energy-saving techniques in key industrial sectors to encourage

  18. 30 CFR 874.14 - Water supply restoration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are those...

  19. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami

    2014-08-01

    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  20. The impact of cost recovery and sharing system on water policy implementation and human right to water: a case of Ileje, Tanzania.

    Science.gov (United States)

    Kibassa, Deusdedit

    2011-01-01

    In Tanzania, the National Water Policy (NAWAPO) of 2002 clearly stipulates that access to water supply and sanitation is a right for every Tanzanian and that cost recovery is the foundation of sustainable service delivery. To meet these demands, water authorities have introduced cost recovery and a water sharing system. The overall objective of this study was to assess the impact of cost recovery and the sharing system on water policy implementation and human rights to water in four villages in the Ileje district. The specific objectives were: (1) to assess the impact of cost recovery and the sharing system on the availability of water to the poor, (2) to assess user willingness to pay for the services provided, (3) to assess community understanding on the issue of water as a human right, (4) to analyse the implications of the results in relation to policies on human rights to water and the effectiveness of the implementation of the national water policy at the grassroots, and (5) to establish the guidelines for water pricing in rural areas. Questionnaires at water demand, water supply, ability and willingness to pay and revenue collection were the basis for data collection. While 36.7% of the population in the district had water supply coverage, more than 73,077 people of the total population of 115,996 still lacked access to clean and safe water and sanitation services in the Ileje district. The country's rural water supply coverage is 49%. Seventy-nine percent of the interviewees in all four villages said that water availability in litres per household per day had decreased mainly due to high water pricing which did not consider the income of villagers. On the other hand, more than 85% of the villagers were not satisfied with the amount they were paying because the services were still poor. On the issue of human rights to water, more than 92% of the villagers know about their right to water and want it exercised by the government. In all four villages, more than

  1. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  2. Strategies to strengthen public health inputs to water policy in response to climate change: an Australian perspective.

    Science.gov (United States)

    Goater, Sarah; Cook, Angus; Hogan, Anthony; Mengersen, Kerrie; Hieatt, Arron; Weinstein, Philip

    2011-03-01

    Under current climate change projections, the capacity to provide safe drinking water to Australian communities will be challenged. Part of this challenge is the lack of an adaptive governance strategy that transcends jurisdictional boundaries to support integrated policy making, regulation, or infrastructural adaptation. Consequently, some water-related health hazards may not be adequately captured or forecast under existing water resource management policies to ensure safe water supplies. Given the high degree of spatial and temporal variability in climate conditions experienced by Australian communities, new strategies for national health planning and prioritization for safe water supplies are warranted. The challenges facing public health in Australia will be to develop flexible and robust governance strategies that strengthen public health input to existing water policy, regulation, and surveillance infrastructure through proactive risk planning, adopting new technologies, and intersectoral collaborations. The proposed approach could assist policy makers avert or minimize risk to communities arising from changes in climate and water provisions both in Australia and in the wider Asia Pacific region.

  3. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  4. Urban community perception towards intermittent water supply system.

    Science.gov (United States)

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  5. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.

    2014-07-01

    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  6. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  7. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS

    2010-01-01

    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  8. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Improving the Performance of Water Policies: Evidence from Drought in Spain

    Directory of Open Access Journals (Sweden)

    Mohamed Taher Kahil

    2016-01-01

    Full Text Available Water scarcity is a critical environmental issue worldwide, especially in arid and semiarid regions. In those regions, climate change projections suggest further reductions in freshwater supplies and increases of the recurrence, longevity and intensity of drought events. At present, one important question for policy debate is the identification of water policies that could address the mounting water scarcity problems. Suitable policies should improve economic efficiency, achieve environmental sustainability, and meet equity needs. This paper develops and applies an integrated hydro-economic model that links hydrological, economic and environmental elements to such issues. The model is used to conduct a direct comparison of water markets, water pricing and institutional cooperation, based on their economic, environmental and equity outcomes. The analysis is performed in the Jucar Basin of Spain, which is a good natural experiment for studying water scarcity and climate change policies. Results indicate that both institutional and water market policies are high performing instruments to limit the economic damage costs of droughts, achieving almost the same social benefits. However, the environmental effects of water markets are worrying. Another important finding is that water pricing is a poor policy option not only in terms of private and environmental benefits but also in terms of equity.

  10. Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning in Phoenix

    Science.gov (United States)

    Gober, P.; Sampson, D. A.; Quay, R.; White, D. D.; Chow, W.

    2016-12-01

    There is increasing interest in using the results of water models for long-term planning and policy analysis. Achieving this goal requires more effective integration of human dimensions into water modeling and a paradigm shift in the way models are developed and used. A user-defined focus argues in favor of models that are designed to foster public debate and engagement about the difficult trade-offs that are inevitable in managing complex water systems. These models also emphasize decision making under uncertainty and anticipatory planning, and are developed through a collaborative and iterative process. This paper demonstrates the use of anticipatory modeling for long-term drought planning in Phoenix, one of the largest and fastest growing urban areas in the southwestern USA. WaterSim 5, an anticipatory water policy and planning model, was used to explore groundwater sustainability outcomes for mega-drought conditions across a range of policies, including population growth management, water conservation, water banking, direct reuse of RO reclaimed water, and water augmentation. Results revealed that business-as-usual population growth, per capita use trends, and management strategies may not be sustainable over the long term, even without mega-drought conditions as years of available groundwater supply decline over the simulation period from 2000 to 2060. Adding mega-drought increases the decline in aquifer levels and increases the variability in flows and uncertainty about future groundwater supplies. Simulations that combine drought management policies can return the region to sustainable. Results demonstrate the value of long-term planning and policy analysis for anticipating and adapting to environmental change.

  11. Non-OPEC Oil Supply: Economics and Energy Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Mourik, Maarten van [Paris (France); Shepherd, Richard K. [Perpignan (France)

    2003-07-01

    Apart from the enigmatic FSU, there is little prospect of long term growth for non-OPEC oil supply and a strong likelihood that over the next few years the trend will flatten and then decline irrevocably. Decline will come faster if the spectacular discoveries in the deep water offshore plays of the southern Atlantic and the Gulf of Mexico attract sufficient investment to match the loss of production in the North Sea. Deep water oil supply might be expected to reach a peak of as much as 6-7 million barrels a day by the time the North Sea has lost more than half its current output in the period beyond 2010. But economics play as strong a role as geology in real world oil business. Current indicators suggest that the prolific deep water wells are delivering less oil than expected and for a shorter period. That means less revenue. This paper outlines the disappointing performance of recent offshore fields, in both deep water and conventional water depths, and suggests consequences for global supply in the next decade. The 30 year success story of non-OPEC oil supply stems directly from the oil price revolution of the 1970s, without which the North Sea and most other offshore oil plays would not have been economic. The non-OPEC oil boom was also necessary because access to the cheap oil of the Persian Gulf and a few other plays were simply not available to the international private sector oil industry, as they had been before. That era is now over. It is ending not because oil is too cheap, but because there are powerful reasons for change. Firstly there is not enough oil left to make a difference beyond the next few years. Secondly, the economics of deep water and other offshore oil may not be attractive enough. Thirdly the doors to the Middle East are now being opened again to companies that can write those assets on their balance sheets and generate profits, allowing better return on investment and their higher share prices. There is no more compelling reason for a

  12. Uranium removal from the water supply

    International Nuclear Information System (INIS)

    Miranzadeh, Mohammad Bagher.

    1996-01-01

    Uranium can be naturally occurring radionuclides that contaminate some potable water supplies. Uranium is found both in surface water and ground water supplies. The United States Environmental Protection Agency recently proposed a maximum contaminant of 20 micro gram/liter for uranium because of concerns about its association with kidney disease and cancer. uranium can be removed from the supply by strong base anion-resin. Exhausted resin is regenerated by sodium chloride solution. (Author)

  13. Exploring Tradeoffs in Demand-Side and Supply-Side Management of Urban Water Resources Using Agent-Based Modeling and Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Lufthansa Kanta

    2015-11-01

    Full Text Available Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger: (1 increases in the volume of water pumped through inter-basin transfers from an external reservoir; and (2 drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  14. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  15. Quality Improvement Policies in a Supply Chain with Stackelberg Games

    Directory of Open Access Journals (Sweden)

    Gang Xie

    2014-01-01

    Full Text Available We first analyze quality and price decisions in a supply chain with two Stackelberg games: Manufacturer’s Stackelberg (MS and Supplier’s Stackelberg (SS. Then, we investigate how equilibrium solutions are influenced by proposed quality improvement policies: coordination and manufacturer’s involvement. Also, we derive the conditions under which the policies can be implemented in both MS and SS strategies. Numerical experiments illustrate the problems and several related issues are discussed. The results suggest that proposed quality improvement policies can realize Pareto improvement for the supply chain performance.

  16. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  17. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2014-05-01

    Full Text Available Innovation born of necessity to secure water for the U.S. state of Arizona has yielded a model of water banking that serves as an international prototype for effective use of aquifers for drought and emergency supplies. If understood and adapted to local hydrogeological and water supply and demand conditions, this could provide a highly effective solution for water security elsewhere. Arizona is a semi-arid state in the southwestern United States that has growing water demands, significant groundwater overdraft, and surface water supplies with diminishing reliability. In response, Arizona has developed an institutional and regulatory framework that has allowed large-scale implementation of managed aquifer recharge in the state’s deep alluvial groundwater basins. The most ambitious recharge activities involve the storage of Colorado River water that is delivered through the Central Arizona Project (CAP. The CAP system delivers more than 1850 million cubic meters (MCM per year to Arizona’s two largest metropolitan areas, Phoenix and Tucson, along with agricultural users and sovereign Native American Nations, but the CAP supply has junior priority and is subject to reduction during declared shortages on the Colorado River. In the mid-1980s the State of Arizona established a framework for water storage and recovery; and in 1996 the Arizona Water Banking Authority was created to mitigate the impacts of Colorado River shortages; to create water management benefits; and to allow interstate storage. The Banking Authority has stored more than 4718 MCM of CAP water; including more than 740 MCM for the neighboring state of Nevada. The Nevada storage was made possible through a series of interrelated agreements involving regional water agencies and the federal government. The stored water will be recovered within Arizona; allowing Nevada to divert an equal amount of Colorado River water from Lake Mead; which is upstream of CAP’s point of diversion

  18. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  19. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2010-09-01

    Full Text Available This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources. A model of multi-criteria optimization for energy efficiency based on water and environmental management policies, including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution, was developed and applied to a water supply system. The methodology developed includes three solutions: (1 the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed, (2 the optimization of pumping operation according to the electricity tariff and water demand, and (3 the use of other renewable energy sources, including a wind turbine, to supply energy to the pumping station, with the remaining energy being sold to the national electric grid. The use of an integrated solution (water and energy proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power, and the use of a wind source allows for the reduction of energy consumption in pumping stations, as well as of the CO2 emission to the atmosphere.

  20. An oil demand and supply model incorporating monetary policy

    International Nuclear Information System (INIS)

    Askari, Hossein; Krichene, Noureddine

    2010-01-01

    Oil price inflation may have had a significant role in pushing the world economy into its worst post-war recession during 2008-2009. Reserve currency central banks pursued an overly expansionary monetary policy during 2001-2009, in the form of low or negative real interest rates and accompanied by a rapidly falling US dollar, while paying inadequate attention to the destabilizing effects on oil markets. In this paper, we show that monetary policy variables, namely key interest rates and the US dollar exchange rate, had a powerful effect on oil markets. World oil demand was significantly influenced by interest and dollar exchange rates, while oil supply was rigid. Oil demand and supply have very low price elasticity and this characteristic makes oil prices highly volatile and subject to wider fluctuations than the prices of other commodities. Aggressive monetary policy would stimulate oil demand, however, it would be met with rigid oil supply and would turn inflationary and disruptive to economic growth if there was little excess capacity in oil output. We argue that a measure of stability in oil markets cannot be achieved unless monetary policy is restrained and real interest rates become significantly positive. Monetary tightening during 1979-1982 might imply that monetary policy has to be restrained for a long period and with high interest rates in order to bring stability back to oil markets. (author)

  1. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  2. Monetary policy and the causality between inflation and money supply in Indonesia

    Directory of Open Access Journals (Sweden)

    Gatot Sasongko

    2018-05-01

    Full Text Available Conceptually and empirically, inflation volatility in Indonesia is a monetary and fiscal phenomenon. This study focuses on the macroeconomic policy and public policy especially causality between two variables namely inflation and money supply in Indonesia. This study uses Indonesian macroeconomic data of inflation and money supply from the Bank of Indonesia publication during 2007.1–2017.7. Inflation is measured by the consumer price index, reflects the annual percentage change in costs of acquiring a basket of goods and services to the average consumers that may change at specified intervals. Meanwhile, money supply is measured by the currency, demand deposits, time deposits, and saving deposits. Methodically, this study uses the Granger Causality model to determine the causality between inflation and money supply. The results show that there is a one-way causality between inflation and money supply in Indonesia. These findings imply that money supply causes inflation, but not vice versa. This condition implies that the role of Indonesian Government and Bank of Indonesia were very crucial in managing and controlling macroeconomic policy and public policy. Then, analysis of money supply and inflation also related to impacting factors such as money laundering, role of banks, taxation, tax evasion, and corruption.

  3. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  4. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.

    1974-01-01

    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  5. Impact of Asymmetric Carbon Information on Supply Chain Decisions under Low-Carbon Policies

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2016-01-01

    Full Text Available Through the establishment of the leading manufacturer Stackelberg game model under asymmetric carbon information, this paper investigates the misreporting behaviors of the supply chain members and their influences on supply chain performance. Based on “Benchmarking” allocation mechanism, three policies are considered: carbon emission trading, carbon tax, and a new policy which combined carbon quota and carbon tax mechanism. The results show that, in the three models, the leader in the supply chain, even if he has advantages of carbon information, will not lie about his information. That is because the manufacturer’s misreporting behavior has no effect on supply chain members’ performance. But the retailer will lie about the information when he has carbon information advantage. The high-carbon-emission retailers under the carbon trading policy, all the retailers under the carbon tax policy, and the high-carbon-emission retailers under combined quotas and tax policy would like to understate their carbon emissions. Coordination of revenue sharing contract is studied in supply chain to induce the retailer to declare his real carbon information. Optimal contractual parameters are deduced in the three models, under which the profit of the supply chain can be maximized.

  6. Irregular water supply, household usage and dengue: a bio-social study in the Brazilian Northeast.

    Science.gov (United States)

    Caprara, Andrea; Lima, José Wellington de Oliveira; Marinho, Alice Correia Pequeno; Calvasina, Paola Gondim; Landim, Lucyla Paes; Sommerfeld, Johannes

    2009-01-01

    Despite increased vector control efforts, dengue fever remains endemic in Fortaleza, Northeast Brazil, where sporadic epidemic outbreaks have occurred since 1986. Multiple factors affect vector ecology such as social policy, migration, urbanization, city water supply, garbage disposal and housing conditions, as well as community level understanding of the disease and related practices. This descriptive study used a multi-disciplinary approach that bridged anthropology and entomology. A multiple case study design was adopted to include research in six study areas, defined as blocks. The water supply is irregular in households from both under-privileged and privileged areas, however, clear differences exist. In the more privileged blocks, several homes are not connected to the public water system, but have a well and pump system and therefore irregularity of supply does not affect them. In households from under-privileged blocks, where the water supply is irregular, the frequent use of water containers such as water tanks, cisterns, barrels and pots, creates environmental conditions with a greater number of breeding areas. In under-privileged homes, there are more possible breeding areas and environmental conditions that may improve the chances of Aedes aegypti survival.

  7. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  8. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  9. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  10. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  11. Impacts of imports, government policy and technology on future natural gas supply

    International Nuclear Information System (INIS)

    Allison, E.

    2009-01-01

    This presentation discussed the impacts of imports, government policy and technology on future natural gas supply. Specifically, it discussed projections of natural gas supply and demand; the potential impact of imports on United States natural gas supply; the potential impacts of government policy on natural gas supply and demand; and the impact of technological innovations on natural gas supply such as coalbed methane and methane hydrate. Specific government policies that were examined included the American Recovery and Reinvestment Act of 2009; the American Clean Energy and Security Act of 2009; and the Clean Energy Jobs and American Power Act of 2009. It was concluded that the United States demand for natural gas will expand and that the impact of pending clean energy legislation is unclear. In addition, each potential future resource will face constraints and new resources may come on line in the next 20 years. figs.

  12. Triangulating the Sociohydrology of Water Supply, Quality and Forests in the Triangle

    Science.gov (United States)

    Band, L. E.

    2016-12-01

    The North Carolina Research Triangle is among the most rapidly growing metropolitan areas in the United States, with decentralized governance split among several different municipalities, counties and water utilities. Historically smaller populations, plentiful rainfall, and riparian rights based water law provided both a sense of security for water resources and influenced the development of separate infrastructure systems across the region. The growth of water demand with rising populations with typical suburban sprawl, the development of multi-use reservoirs immediately downstream of urban areas, and increased hydroclimate variability have raised the potential for periodic water scarcity coupled with increasing eutrophication of water supplies. We discuss the interactions and tradeoffs between management of emerging water scarcity, quality and forest biodiversity in the Triangle as a model for the US Southeast. Institutional stakeholders include water supply and stormwater utilities, environmental NGOs, federal, state, county and municipal governments, developers and home owner associations. We emphasize principles of ecohydrologic resilience learned in heavily instrumented research watersheds, adapted to rapidly developing urban systems, and including socioeconomic and policy dynamics. Significant 20th century reforestation of central North Carolina landscapes have altered regional water balances, while providing both flood and water quality mitigation. The regrowth forest is dynamic and heterogeneous in water use based on age class and species distribution, with substantial plantation and natural regeneration. Forecasts of land use and forest structural and compositional change are based on scenario socioeconomic development, climate change and forecast wood product markets. Urban forest and green infrastructure has the potential to mediate the trade-offs and synergies of these goals, but is in a very nascent state. Computational tools to assess policy

  13. Development of Policies, Institutions and Procedures for Water Reuse

    Science.gov (United States)

    Demouche, L.; Pfiefer, J.; Hanson, A.; Skaggs, R.

    2009-12-01

    In the arid, water scarce region of New Mexico and West Texas there is growing interest in the potential for water reuse to extend existing supplies and mitigate drought shortage impacts. There are no new sources of water in New Mexico, except reclaimed water. Communities and individuals are uncertain about and have many unanswered questions about polices, institutions involved (agencies), legal and regulatory requirements, and procedures governing water reuse. Issues to be addressed by this project include: the legal ability to reuse water, ownership of water rights, downstream or third party impacts, regulatory and procedural requirements, water quality concerns, state and local agency involvement, and cost effectiveness of water reuse compared to alternative sources. Presently, there is very little implementation or directives in New Mexico policy that addresses reuse, reclamation, or recycled water. The only regulations pertaining to reuse is New Mexico Environmental Department currently allows the use of reclaimed domestic wastewater for irrigation of golf courses and green spaces, which is listed in the Policy for the Above Ground Use of Reclaimed Domestic Wastewater (NMED, 2003). This document identifies the various reclaimed quality classifications that are required for specific applications and the permits required for application. This document does not identify or address policy applications on the distribution, ownership, or trading of reclaimed water. Even though reclaimed water reuse projects are currently being implemented in many cities in the U.S., mainly for commercial and municipal irrigation (golf courses and green space), its potential has not yet been exploited. A policy analysis matrix (PAM) is being designed to identify and examine the policy framework and consequences of non-policy implementation for decision makers and interest groups and assist them in understanding the consequences of policy actions and project outcomes if no laws or

  14. Using Water Transfers to Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  15. Optimization and coordination of South-to-North Water Diversion supply chain with strategic customer behavior

    Directory of Open Access Journals (Sweden)

    Zhi-song Chen

    2012-12-01

    Full Text Available The South-to-North Water Diversion (SNWD Project is a significant engineering project meant to solve water shortage problems in North China. Faced with market operations management of the water diversion system, this study defined the supply chain system for the SNWD Project, considering the actual project conditions, built a decentralized decision model and a centralized decision model with strategic customer behavior (SCB using a floating pricing mechanism (FPM, and constructed a coordination mechanism via a revenue-sharing contract. The results suggest the following: (1 owing to water shortage supplements and the excess water sale policy provided by the FPM, the optimal ordering quantity of water resources is less than that without the FPM, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without the FPM; (2 wholesale pricing and supplementary wholesale pricing with SCB are higher than those without SCB, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without SCB; and (3 considering SCB and introducing the FPM help increase the optimal profits of the whole supply chain, supplier, and external distributor, and improve the efficiency of water resources usage.

  16. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  17. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  18. Radon in private water supplies in SW England

    International Nuclear Information System (INIS)

    Bowring, C.S.; Banks, D.

    1995-01-01

    It has been known since at least the early 1960s that high levels of radon gas can be found dissolved in some water supplies in South West England and, as a result of this, degassing plant was installed in some mains water supplies at this time in order to remove the radon from the water. More recently the result of a survey of just over 500 drinking water supplies throughout the UK has been published. This concluded that the radon level in UK water supplies in general do not constitute a health hazard. In this note we present results from 22 private water supplies in South West England and conclude that for certain individuals levels of radon in water may well present a radiological hazard which is not negligible and that this problem needs to be investigated more fully. (author)

  19. Conflicts in Coalitions: A Stability Analysis of Robust Multi-City Regional Water Supply Portfolios

    Science.gov (United States)

    Gold, D.; Trindade, B. C.; Reed, P. M.; Characklis, G. W.

    2017-12-01

    Regional cooperation among water utilities can improve the robustness of urban water supply portfolios to deeply uncertain future conditions such as those caused by climate change or population growth. Coordination mechanisms such as water transfers, coordinated demand management, and shared infrastructure, can improve the efficiency of resource allocation and delay the need for new infrastructure investments. Regionalization does however come at a cost. Regionally coordinated water supply plans may be vulnerable to any emerging instabilities in the regional coalition. If one or more regional actors does not cooperate or follow the required regional actions in a time of crisis, the overall system performance may degrade. Furthermore, when crafting regional water supply portfolios, decision makers must choose a framework for measuring the performance of regional policies based on the evaluation of the objective values for each individual actor. Regional evaluations may inherently favor one actor's interests over those of another. This work focuses on four interconnected water utilities in the Research Triangle region of North Carolina for which robust regional water supply portfolios have previously been designed using multi-objective optimization to maximize the robustness of the worst performing utility across several objectives. This study 1) examines the sensitivity of portfolio performance to deviations from prescribed actions by individual utilities, 2) quantifies the implications of the regional formulation used to evaluate robustness for the portfolio performance of each individual utility and 3) elucidates the inherent regional tensions and conflicts that exist between utilities under this regionalization scheme through visual diagnostics of the system under simulated drought scenarios. Results of this analysis will help inform the creation of future regional water supply portfolios and provide insight into the nature of multi-actor water supply systems.

  20. Effective planning and management as critical factors in urban water supply and management in Umuahia and Aba, Abia State, Nigeria

    Science.gov (United States)

    Uchegbu, Smart N.

    Plan and policy development usually define the course, goal, execution, success or failure of any public utilities initiative. Urban water supply is not an exception. Planning and management in public water supply systems often determine the quality of service the water supply authorities can render. This paper, therefore, addresses the issue of effective planning and management as critical determinants of urban water supply and management with respect to two Nigerian cities Umuahia and Aba both in Abia State. Appropriate sampling methods systematic sampling and cluster techniques were employed in order to collect data for the study. The collected data were analyzed using multiple linear regression. The findings of the study indicate that planning and management indices such as funding, manpower, water storage tank capacity greatly influence the volume of water supplied in the study areas. Funding was identified as a major determinant of the efficiency of the water supply system. Therefore, the study advocates the need for sector reforms that would usher in private participants in the water sector both for improved funding and enhanced productivity.

  1. Water demand management: A policy response to climate change

    International Nuclear Information System (INIS)

    Rivers, R.; Tate, D.

    1990-01-01

    The impacts of climate change on the water resources of the Great Lakes region are discussed. It is predicted that there will be a relative water scarcity in the Great Lakes basin of Ontario as climate changes occur over the next two decades. Declines in water supply will be accompanied by deterioration in the quality of fresh water as higher temperatures and higher relative quantities of discharged wastewater to water bodies reduce both assimilative and dilutive capacity. The most cost effective policy is to encourage water conservation through programs of water demand management. Water should be priced at the point at which its marginal cost is equal to its marginal product, ie. if priced any higher, less efficient substitutes would be used. Not only would water usage, and subsequent degradation of used water, be reduced, but energy and other cost savings would be achieved. The additional costs that apply to water users could be returned to the communities as additional revenue to be applied against sewage treatment upgrades and other environmental enhancements. Communities involved in water study should consider the development of water use analysis models to assist with decision making about allocation, pricing and availability of water supplies. 10 refs

  2. Hardwood supply in the Pacific Northwest-a policy perspective.

    Science.gov (United States)

    Terry L. Raettig; Kent P. Connaughton; Glenn R. Ahrens

    1995-01-01

    The policy framework for the hardwood resource and hardwood industry in western Oregon and Washington is examined. Harvesting trends, harvesting behavior of public and private landowners, and harvesting regulation are presented to complete the analysis of factors affecting short-run hardwood supply. In the short term, the supply of hardwoods is generally favorable, but...

  3. Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization

    Directory of Open Access Journals (Sweden)

    Zhisong Chen

    2018-04-01

    Full Text Available The inter-basin water transfer (IBWT projects have quasi-public-welfare characteristics, whose operations should take into account the water green level (WGL and social welfare maximization (SWM. This paper explores the interactions between multiple stakeholders of an IBWT green supply chain through the game-theoretic and coordination research approaches considering the government’s subsidy to the WGL improvement under the SWM. The study and its findings complement the IBWT literature in the area of the green supply chain and social welfare maximization modeling. The analytical modeling results with and without considering the SWM are compared. A numerical analysis for a hypothetical IBWT green supply chain is conducted to draw strategic insights from this study. The research results indicate that (1 If the SWM is not considered, coordination strategy could effectively improve the operations performances of the IBWT supply chain and its members, the consumers’ surplus, and the social welfare when compared with the equilibrium strategy; (2 If the SWM is considered, the IBWT green supply chain and its members have a strong intention to adopt the equilibrium strategy to gain more profits, while the government has a strong intention to encourage the IBWT green supply chain and its members to adopt the coordination strategy to maximize social welfare with a smaller public subsidy; (3 The government’s subsidy policy should be designed and provided to encourage the IBWT green supply chain and its members to improve WGL and pursue the SWM, and a subsidy threshold policy can be designed to maximize social welfare with a lower subsidy budget: only when the IBWT green supply chain and its members adopt the coordination strategy can they get a subsidy from the government.

  4. An open source hydroeconomic model for California's water supply system: PyVIN

    Science.gov (United States)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  5. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Natural radioactivity in private water supplies in Devon

    International Nuclear Information System (INIS)

    Talbot, D.; Davis, J.; Rainey, M.

    2000-01-01

    This report details a study of the occurrence of natural radioactivity in private water Supplies in West Devon. Supplies sourced from wells, springs boreholes and a small number surface supplies were sampled. The findings of a laboratory simulation of the radon content in drinks such as tea, coffee and squash are also presented. Of supplies sampled in phase one of the work approximately 8% of tap water and 9% of samples directly from the supply contained radon at concentrations exceeding the draft European Union Commission Recommendation action level of 1000 Bq/I for individual and public water supplies. In a small number of supplies 238 U is present at levels exceeding 2 μg/I, the World Health Organisation (WHO) provisional guideline value for uranium in drinking water. The final aspect of the study looked at seasonal variation in the radon content of selected supplies. This showed considerable variability in radon concentration over the course of a week and between studies carried out several months apart. (author)

  7. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is

  8. Public-supply water use in Kansas, 1990-2012

    Science.gov (United States)

    Kenny, Joan F.

    2014-01-01

    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  9. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  10. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  11. STATE OF WATER SUPPLY INFRASTRUCTURE IN THE SUBCARPATHIAN CITIES

    Directory of Open Access Journals (Sweden)

    Katarzyna PIETRUCHA-URBANIK

    Full Text Available The characteristics of equipping the Subcarpathian province cities with water supply infrastructure was made on the basis of data collected from the Provincial Office, Statistical Office, reports submitted by water companies regarding the functioning of water supply infrastructure and literature data. The indicators characterizing water supply infrastructure were determined for the years 1995-2014. In the paper the indicators of equipping cities with water supply systems were presented. Also water consumption and changes in the length of the water supply network in the cities of the Subcarpathian Province were examined. The analysis shows that the water consumption for the years 1995-2014 decreased by almost 6 m3∙year-1 per capita. The reason for such situation was the increasing price of water and the ecological awareness of the inhabitants of the Subcarpathian region. In the last year of the analysis the water supply system in urban areas of the Subcarpathian province was used by 95% of the population and, for comparison, in rural areas by 77% of the population. In the paper also changes in prices for water in the Subcarpathian region were shown, on the basis of data from the water tariffs in individual water companies. The important element of urban development is the technical infrastructure which reduces the investment costs. The determined indicators of equipping cities with water supply systems show an upward trend in the development of technical infrastructure. Based on the operational data from the water companies the failure rates in selected water supply networks were determined.

  12. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan

    OpenAIRE

    Rosenberg, David E.; Talozi, Samer; Lund, Jay

    2008-01-01

    Intermittent access to improved urban water supplies is a large and expanding global problem. This paper describes 16 supply enhancement and 23 demand management actions available to urban residential water users in Jordan to cope with intermittent supplies. We characterize actions by implementation, costs, and water quantities and qualities acquired or conserved. This effort systematically identifies potential options prior to detailed study and shows that water users have significant capaci...

  13. Economic Effects of Reservoir Re-operation Policy in the Rio Grande/Bravo for Sustainable Human and Environmental Water Management

    Science.gov (United States)

    Ortiz Partida, J. P.; Sandoval Solis, S.; Lane, B.

    2015-12-01

    A central challenge of integrated water management is the design and implementation of policies to allocate water to both humans and the environment in a sustainable manner. This study uses the results from a reach-scale water-planning model to quantify and compare the economic benefits of two water management policies: (1) a business as usual (Baseline) policy and (2) a proposed reservoir re-operation policy to provide environmental flows (EFs). Results show that the EF policy would increase water supply profit, slightly decrease recreational activities profit, and reduce costs from flood damage and environmental restoration compared to the Baseline policy. In addition to supporting ecological objectives, the proposed EF policy would increase the economic benefits of water management objectives.

  14. Water Supply: Management of Water Sources in the City of San Luis Potosí (México, 1831-1887

    Directory of Open Access Journals (Sweden)

    Yuritzi Hernández Fuentes

    2015-07-01

    Full Text Available This paper proposes an approach about the management of water sources, hydraulic systems and the measures taken by the city government of San Luis Potosí (México concerning the need of water supply during the years 1831 to 1886. This paper examines two important projects on water management in the city: the aqueduct of La Cañada del Lobo and the policies taken by the authorities on waterways through La Corriente. Both projects faced several problems, including the outbreak of illnesses associated with bodies of water and shortage of liquid flow through the aqueduct of La Cañada del Lobo.

  15. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  16. THE DILEMMA OF DEMAND SIDE POLICIES VERSUS SUPPLY SIDE POLICIES FOR RELAUNCHING CAPITALIST ECONOMIES

    Directory of Open Access Journals (Sweden)

    PETRE PRISECARU

    2014-11-01

    Full Text Available The first important economic recession in this century started in USA with the burst of real estate bubble followed by the bankruptcy of some investment and commercial banks and the collapse of capital market. The financial-banking crisis spilt over the world economy and caused the second deepest economic recession in the last 80 years. The financial crisis has badly affected almost all market economies and was the result of a combination between market failures and mistakes made in macroeconomic policies. In the financial sector there was not enough regulation and supervision of corporate governance while in goods industry the pressure of over-regulation led to higher factor costs and supply contraction. The direct result of supply side policies and particularly of monetarist instruments is seen now clearly in the USA: large deficits, huge debts, reduced savings, heavy dependence on foreign money (capital and resources, relatively low domestic output and supply.

  17. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  18. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  19. An Analysis on the Economical Impacts from the Establishment of Environment-friendly Taxation System I concentrating on a Subsidy for Water Supply

    Energy Technology Data Exchange (ETDEWEB)

    Min, D.K.; Cho, S.H.; Kang, M.O.; Lim, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    Recently, rapid economic growth and water shortage have become of growing concern. The relationship between the economy and water resources is not seemingly apparent, but in the environmental context, there exists a close interaction. By and large, government policies emphasizing economic issues can very well be subject to neglecting environmental issues. In addition, it is a well-known fact that supply side management policies have a negative impact on the environmental sector. The primary purpose of this study is to investigate the possibility of securing economic growth and improving environmental quality simultaneously by taking a static general equilibrium approach. Implementation of such policy is initiated by means of cutting environmentally unfriendly subsidies to water sector (water supply and sewage). The revenue from the reduction of subsidies is associated with indirect taxes in production sectors, which consequently reduces indirect tax rates. The study has revealed a type of double dividend effect: reduction of water supply and increase of gross domestic products (GDP). The GDP changes 0.299% - 0.561% according to variations of elasticities and the way revenue is linked with indirect taxes applied to scenarios. Meanwhile, the impacts of cutting subsidies in the water sector result in the significant increase of water prices and the reduction of water output respectively. The output reduction is proportional to values of elasticity utilized; starting a 10% for zero up to 60%. Several policy implications can be inferred from the results of this study. Taking in account the long-term effects of the subsidy-cut policy, the study predicts more output reduction in the water sector since, economically-speaking, long-term elasticities are larger than the short-term ones, like that in the present study. Hence, a current water policy that is under-priced, so as to allow over-consumption, should be changed in order for the society to achieve economic growth and

  20. Exploring the water-energy nexus in Brazil: The electricity use for water supply

    International Nuclear Information System (INIS)

    Nogueira Vilanova, Mateus Ricardo; Perrella Balestieri, José Antônio

    2015-01-01

    The present work evaluates the electricity use for the water production and supply in Brazil. Five categories of indicators were proposed, that is, per capita, water losses, energy, greenhouse gases (GHGs) and financial/economic, which were used in the definition of municipal average values. It takes an average 0.862 ± 0.046 kWh m −3 for production and water supply in the country. The results demonstrate that the water supply systems accounted for, at least, 1.9% of total electricity consumption in Brazil in 2012, and the water loss wastes 27% of water and energy in the water supply systems from Brazil. The production and distribution of 1 m 3 of water in Brazilian cities represents the emission of 0.050 ± 0.004 kgCO2e, being 0.014 ± 0.001 kgCO2e.m −3 associated with the water loss volumes. Furthermore, the average Brazilian cities' expenditure with electricity for the water supply is US$ 0.14 ± US$ 0.01, which corresponds to 16.8% ± 0.7% of operating expenditures and 12.9% ± 0.5% of total expenditure of the WSSs. The NE Region is the one that presents the greatest potential for the application of hydraulic and energy efficiency measures in water supply systems (WSSs). - Highlights: • We analyze the electricity use in Brazilian water supply systems. • Five categories of indicators were analyzed statistically. • Brazilian water supply systems uses 0.862 ± 0.046 kWh m −3 to supply water. • At least 1.9% of Brazilian electricity consumption is used in water supply systems. • The Northeast Region of Brazil presents the higher energy/water saving potential

  1. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  2. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    Science.gov (United States)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  3. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  4. Integrating policy, disintegrating practice: water resources management in Botswana

    Science.gov (United States)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  5. Community-based management of water supply services

    CSIR Research Space (South Africa)

    Mogane-Ramahotswa, B

    1992-01-01

    Full Text Available One of the most important aspects of suitability of water supply is the ability of the community to manage its own scheme. Unlike in urban settlement institutional arrangements for rural water supply are rudimentary. Over the past decade...

  6. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  7. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  8. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  9. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  10. 7 CFR 612.6 - Application for water supply forecast service.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts or...

  11. Managing urban water supplies in developing countries Climate change and water scarcity scenarios

    Science.gov (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  12. Wildland Fire Research: Water Supply and Ecosystem Protection

    Science.gov (United States)

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  13. Managing water supply systems using free-market economy approaches: A detailed review of the implications for developing countries

    Science.gov (United States)

    Chikozho, C.; Kujinga, K.

    2017-08-01

    Decision makers in developing countries are often confronted by difficult choices regarding the selection and deployment of appropriate water supply governance regimes that sufficiently take into account national socio-economic and political realities. Indeed, scholars and practitioners alike continue to grapple with the need to create the optimum water supply and allocation decision-making space applicable to specific developing countries. In this paper, we review documented case studies from various parts of the world to explore the utility of free-market economics approaches in water supply governance. This is one of the major paradigms that have emerged in the face of enduring questions regarding how best to govern water supply systems in developing countries. In the paper, we postulate that increasing pressure on available natural resources may have already rendered obsolete some of the water supply governance regimes that have served human societies very well for many decades. Our main findings show that national and municipal water supply governance paradigms tend to change in tandem with emerging national development frameworks and priorities. While many developing countries have adopted water management and governance policy prescriptions from the international arena, national and local socio-economic and political realities ultimately determine what works and what does not work on the ground. We thus, conclude that the choice of what constitutes an appropriate water supply governance regime in context is never simple. Indeed, the majority of case studies reviewed in the paper tend to rely on a mix of market economics and developmental statism to make their water governance regimes more realistic and workable on the ground.

  14. Radon in private water supplies: the unknown risk

    International Nuclear Information System (INIS)

    Clapham, D.; Horan, N.J.

    1996-01-01

    Radon gas, which is the main contributor to human radiation exposure, is easily dissolved in, and dissipated from, water. Problems with radon occur because, in addition to being ingested, it (a) becomes attached to particles which lodge in the lungs and (b) emits alpha radiation. Concentration has been found to increase inversely with the size of a water supply. Although of little problem in mains water, private water supplies in the UK have been found to contain more than ten times the recommended US levels. Despite this, very little monitoring is carried out for radon in private supplies. Local authorities, situated in areas where the geological conditions are such that high levels of radon would be expected, should carry out a suitable sampling and monitoring programme of their private water supplies. (Author)

  15. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  16. Groundwater potential for water supply during droughts in Korea

    Science.gov (United States)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  17. Analytical Bibliography for Water Supply and Conservation Techniques.

    Science.gov (United States)

    1982-01-01

    American Water Works Association 67:331-35. This article describes the activities of the COMASP (water authority for Sao Paulo , Brazil ) during a...the Water Supply Act of 1958, as amiended. Flood Control Act of 1944. The Secretary of the Army was authorized to sell surplus impounded water in...each category. The issues discussed are: climate and water supply, floods and droughts, groundwater, water conservation in irrigation, water quality

  18. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  19. Combination of drainage, water supply and environmental protection as well as rational distribution of water resource in Zhengzhou mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Li, D.; Di, Z.Q.; Miao, Y.; Zhao, S.Q.; Guo, Q.W. [CUMT, Beijing (China). Resource Exploitation Engineering College

    2005-10-01

    The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environmental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environmental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and difficulty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judgement of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.

  20. Contingency interim measure for the public water supply at Barnes, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2009-07-09

    This document presents a conceptual design for a contingency interim measure (IM) for treatment of the public water supply system at Barnes, Kansas, should this become necessary. The aquifer that serves the public water supply system at Barnes has been affected by trace to low concentrations of carbon tetrachloride and its degradation product, chloroform. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2008a) have demonstrated that groundwater at the Barnes site is contaminated with carbon tetrachloride at concentrations exceeding the Kansas Tier 2 risk-based screening level (RBSL) and the EPA maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) formerly operated a grain storage facility in Barnes, approximately 800 ft east-southeast of the public water supply wells. Carbon tetrachloride was used in the treatment of grain. Another potential source identified in an investigation conducted for the KDHE (PRC 1996) is the site of a former agriculture building owned by the local school district (USD 223). This building is located immediately east of well PWS3. The potential contingency IM options evaluated in this report include the treatment of groundwater at the public water supply wellheads and the provision of an alternate water supply via Washington County Rural Water District No.2 (RWD 2). This document was developed in accordance with KDHE Bureau of Environmental Remediation (BER) Policy No.BER-RS-029 (Revised) (KDHE 2006a), supplemented by guidance from the KDHE project manager. Upon the approval of this contingency IM conceptual design by the KDHE, the CCC/USDA will prepare a treatment system design document that will contain the following elements: (1) Description of the approved contingency IM treatment method; (2) Drawings and/or schematics provided by the contractor and/or manufacturer of the approved technology; (3) A

  1. 40 CFR 230.50 - Municipal and private water supplies.

    Science.gov (United States)

    2010-07-01

    ... a municipal or private water supply system. (b) Possible loss of values: Discharges can affect the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal...

  2. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    Science.gov (United States)

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  5. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  6. Travel demand policies for saving oil during a supply emergency

    International Nuclear Information System (INIS)

    Noland, Robert B.; Cowart, William A.; Fulton, Lewis M.

    2006-01-01

    An area of growing concern is the future stability of oil producing regions and the ability to maintain stability in international petroleum markets. The transport sector, in particular, is extremely vulnerable to short-term supply disruptions with consequent implications on economic activities in most countries. This paper analyses potential transport demand restraint strategies that could potentially mitigate the impact of short-term supply disruptions. Our analysis includes estimates of the potential fuel savings from several policies. Specifically, we examine various work-based policies (telecommuting, flexible work schedules), the potential of carpooling, speed limit reductions, driving bans and restrictions, increased public transport usage, and providing information on the effect of maintaining optimal tire pressures. The analysis uses various assumptions based on existing knowledge about how travelers may respond under emergency conditions to develop estimates of potential fuel savings. Results suggest that the most restrictive policies, such as driving bans and mandatory carpooling are the most effective. Other policies provide small reductions with some, such as telecommuting and flexible work schedules, having the potential to be easily implemented. Those policies, focussed on encouraging public transport use, are less effective and potentially more costly to implement

  7. Travel demand policies for saving oil during a supply emergency

    Energy Technology Data Exchange (ETDEWEB)

    Noland, Robert B. [Department of Civil and Environmental Engineering, Centre for Transport Studies, Imperial College London, London SW7 2AZ (United Kingdom)]. E-mail: r.noland@imperial.ac.uk; Cowart, William A. [ICF Consulting, Ltd., Egmont House, 25-31 Tavistock Place, Bloomsbury, London, WC1H 9SU (United Kingdom); Fulton, Lewis M. [International Energy Agency, 9 Rue de la Federation, Paris 75015 (France)

    2006-11-15

    An area of growing concern is the future stability of oil producing regions and the ability to maintain stability in international petroleum markets. The transport sector, in particular, is extremely vulnerable to short-term supply disruptions with consequent implications on economic activities in most countries. This paper analyses potential transport demand restraint strategies that could potentially mitigate the impact of short-term supply disruptions. Our analysis includes estimates of the potential fuel savings from several policies. Specifically, we examine various work-based policies (telecommuting, flexible work schedules), the potential of carpooling, speed limit reductions, driving bans and restrictions, increased public transport usage, and providing information on the effect of maintaining optimal tire pressures. The analysis uses various assumptions based on existing knowledge about how travelers may respond under emergency conditions to develop estimates of potential fuel savings. Results suggest that the most restrictive policies, such as driving bans and mandatory carpooling are the most effective. Other policies provide small reductions with some, such as telecommuting and flexible work schedules, having the potential to be easily implemented. Those policies, focussed on encouraging public transport use, are less effective and potentially more costly to implement.

  8. Credit supply and monetary policy : Identifying the bank balance-sheet channel with loan applications

    NARCIS (Netherlands)

    Jimenez Porras, G.; Ongena, S.; Peydro, J.L.; Saurina, J.

    2012-01-01

    We analyze the impact of monetary policy on the supply of bank credit. Monetary policy affects both loan supply and demand, thus making identification a steep challenge. We therefore analyze a novel, supervisory dataset with loan applications from Spain. Accounting for time-varying firm

  9. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  10. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  11. Many-Objective Reservoir Policy Identification and Refinement to Reduce Institutional Myopia in Water Management

    Science.gov (United States)

    Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.

    2013-12-01

    Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing

  12. Urban water supply infrastructure planning under predictive groundwater uncertainty: Bayesian updating and flexible design

    Science.gov (United States)

    Fletcher, S.; Strzepek, K.

    2017-12-01

    Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for

  13. Application of BIM Technology in Building Water Supply and Drainage Design

    Science.gov (United States)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  14. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  15. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  16. Polycentrism and Poverty: Experiences of Rural Water Supply Reform in Namibia

    Directory of Open Access Journals (Sweden)

    Thomas Falk

    2009-02-01

    This paper investigates how polycentric rural water supply reform impacts on natural resource management and water users’ livelihoods in three communal areas of Namibia. The analysis takes into account the effects of historic discriminative policies and the resulting low financial, human and social capital of rural communities. We conclude that the devolution of institutional and financial responsibility for water supply to users has had a positive impact on rural water management. However, the introduction of cost recovery principles conflicts with the objectives of the Namibian government to alleviate poverty and inequality. The high level of inequality within the country as a whole and also within communities impedes the development of fair fee systems. Polycentrism faces the major challenge of building on existing structures without replicating historic injustices. It allows, however, for the state to mitigate any negative impact on livelihoods. While the reform is in the process of full implementation, the government is discussing various options of how the poor can be guaranteed access to water without diminishing their development opportunities. The Namibian experience demonstrates the difficulties in developing effective incentive mechanisms without undermining major social objectives. Our analyses show that, compared to naive monocentric governance approaches, polycentrism offers much broader opportunities for achieving multidimensional objectives. Nonetheless, a reform does not become successful simply because it is polycentric.

  17. WATER SUPPLY OF TRANSPORT OBJECTS

    OpenAIRE

    Badyuk, N. S.

    2009-01-01

    Badyuk N. S. WATER SUPPLY OF TRANSPORT OBJECTS. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 3 (17), 2009 г. P. 96-104 DOI http://dx.doi.org/10.5281/zenodo.1020024 http://dspace.nbuv.gov.ua/bitstream/handle/123456789/23091/13-Badyuk.pdf?sequence=1 WATER SUPPLY OF TRANSPORT OBJECTS Badyuk N. S. Ukrainian Research Institute for Medicine of Transport, Odessa, Ukraine Summary In the work presented they discuss several peculiarities of wa...

  18. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    Science.gov (United States)

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  19. Water supply studies. [management and planning of water supplies in California

    Science.gov (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  20. Water supply at Los Alamos during 1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1978-08-01

    The Los Alamos water supply for 1977 consisted of 1474 x 10 6 gal from wells in three fields and 57 x 10 6 gal from the gallery in Water Canyon. The production from the well fields was at its lowest volume since 1970. Water-level trends were as anticipated under current production practices. Well rehabilitation should be continued to ensure an adequate and reliable supply from wells that are 10 to over 25 yr old

  1. Features of internal water supply and water disposal of shopping centers

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2014-01-01

    Full Text Available Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold, which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

  2. Policies, Programmes and Institutions of Water Sector in Sub-Saharan Africa

    International Nuclear Information System (INIS)

    Krhoda, G.O

    2001-01-01

    Meaningful investment in the water sector can easily increase food production and productivity of human resources and thus stimulate economic growth, human and environmental health. The author indicates that, the Mar del Plata Action Plan (1977), the New Delhi Statement (1990), Dublin Statement (1991)and the Agenda 21 Chapter 18 of UNCED (1992) emphasise the urgent need for integrated, sustainable water resources management. The publication looks at the policy development in the water sector, the disparities in the allocation of water supplies in the urban and the rural areas, the importance of water in the development of the industrial sector and how to manage the demand for water in sub-Saharan Africa

  3. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Kuria, Faith W; Vogel, Richard M

    2014-01-01

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  4. A Study on Rational Pricing System for Water Supply

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    are important for systematizing pricing mechanism and reasonable use of water resource. The study recommends the institutional structure for efficient water management/use include an integrated river basin management system and establishment of an independent agency for executive function (separation of policy making function and executive function). A corporatized organization for actual water supply function is also recommended (separation of regulation function and supply function). (author). 46 refs., 18 figs., 59 tabs.

  5. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  6. Policy and Economics of Managed Aquifer Recharge and Water Banking

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2015-02-01

    Full Text Available Managed Aquifer Recharge (MAR and water banking are of increasing importance to water resources management. MAR can be used to buffer against drought and changing or variable climate, as well as provide water to meet demand growth, by making use of excess surface water supplies and recycled waters. Along with hydrologic and geologic considerations, economic and policy analyses are essential to a complete analysis of MAR and water banking opportunities. The papers included in this Special Issue fill a gap in the literature by revealing the range of economic and policy considerations relevant to the development and implementation of MAR programs. They illustrate novel techniques that can be used to select MAR locations and the importance and economic viability of MAR in semi-arid to arid environments. The studies explain how MAR can be utilized to meet municipal and agricultural water demands in water-scarce regions, as well as assist in the reuse of wastewater. Some papers demonstrate how stakeholder engagement, ranging from consideration of alternatives to monitoring, and multi-disciplinary analyses to support decision-making are of high value to development and implementation of MAR programs. The approaches discussed in this collection of papers, along with the complementary and necessary hydrologic and geologic analyses, provide important inputs to water resource managers.

  7. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    Science.gov (United States)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more essential) purposes residential and industrial water supply, irrigation and flood control in scarcer areas. The quantitative explication of how the burden of water consumption from reservoirs is

  8. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  9. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the use...

  10. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  11. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  12. A Supply-Chain Analysis Framework for Assessing Densified Biomass Solid Fuel Utilization Policies in China

    Directory of Open Access Journals (Sweden)

    Wenyan Wang

    2015-07-01

    Full Text Available Densified Biomass Solid Fuel (DBSF is a typical solid form of biomass, using agricultural and forestry residues as raw materials. DBSF utilization is considered to be an alternative to fossil energy, like coal in China, associated with a reduction of environmental pollution. China has abundant biomass resources and is suitable to develop DBSF. Until now, a number of policies aimed at fostering DBSF industry have been proliferated by policy makers in China. However, considering the seasonality and instability of biomass resources, these inefficiencies could trigger future scarcities of biomass feedstocks, baffling the resilience of biomass supply chains. Therefore, this review paper focuses on DBSF policies and strategies in China, based on the supply chain framework. We analyzed the current developing situation of DBSF industry in China and developed a framework for policy instruments based on the supply chain steps, which can be used to identify and assess the deficiencies of current DBSF industry policies, and we proposed some suggestions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance the development of DBSF industry.

  13. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  14. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  15. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  16. A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States

    International Nuclear Information System (INIS)

    Becker, Dennis R.; Moseley, Cassandra; Lee, Christine

    2011-01-01

    The number of state policies aimed at fostering biomass utilization has proliferated in recent years in the United States. Several states aim to increase the use of forest and agriculture biomass through renewable energy production. Several more indirectly encourage utilization by targeting aspects of the supply chain from trees standing in the forest to goods sold. This research classifies 370 state policies from across the United States that provides incentives for forest biomass utilization. We compare those policies by types of incentives relative to the supply chain and geographic clustering. We then develop a framework for policy evaluation building on the supply chain steps, which can be used to assess intended and unintended consequences of policy interactions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance forest biomass utilization.

  17. Water Quality and Quantity in Intermittent and Continuous Piped Water Supplies in Hubli-Dharwad, India

    OpenAIRE

    Kumpel, Emily Katherine

    2013-01-01

    In at least 45 low- and middle-income countries, piped water systems deliver water for limited durations. Few data are available of the impact of intermittent water supply (IWS) on the water quality and quantity delivered to households. This thesis examines the impact of intermittently supplied piped water on the quality and quantity of water delivered to residential taps in Hubli-Dharwad, India, when compared to continuous piped water supply. A framework for understanding the pathways throug...

  18. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  19. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    Science.gov (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    long-term control watersheds that have served as the cornerstone for most watershed-scale forest hydrology studies. The net result is that forest and water managers are facing greater uncertainty about future water supplies, water quality, and aquatic ecosystems, and their planning must consider a broader range of future scenarios than in the past. In this presentation, we outline a way forward for the research community to address the challenging questions of the future related to forests and water, and we chart a path for the involvement of various stakeholder groups to engage in water resources research, monitoring and policy formation.

  20. Robust Water Supply Infrastructure Development Pathways: What, When and Where Matters the Most? (INVITED)

    Science.gov (United States)

    Reed, Patrick; Zeff, Harrison; Characklis, Gregory

    2017-04-01

    Water supply adaptation frameworks that seek robustness must adaptively trigger actions that are contextually appropriate to emerging system observations and avoid long term high regret lock-ins. As an example, emerging water scarcity concerns in southeastern United States are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify regionally coordinated, scarcity-mitigating infrastructure development pathways that trigger time appropriate actions. Mistakes can lead to water shortages, overbuilt stranded assets and possibly financial failures. This presentation uses the Research Triangle area of North Carolina to illustrate the key concerns and challenges that emerged when helping Raleigh, Durham, Cary and Chapel Hill develop their long term water supply infrastructure pathways through 2060. This example shows how the region's water utilities' long term infrastructure pathways are strongly shaped by their short term conservation policies (i.e., reacting to evolving demands) and their ability to consider regional water transfers (i.e., reacting to supply imbalances). Cooperatively developed, shared investments across the four municipalities expand their capacity to use short term transfers to better manage severe droughts with fewer investments in irreversible infrastructure options. Cooperative pathways are also important for avoiding regional robustness conflicts, where one party benefits strongly at the expense of one or more the others. A significant innovation of this work is the exploitation of weekly and annual dynamic risk-of-failure action triggers that exploit evolving feedbacks between co-evolving human demands and regional supplies. These dynamic action triggers provide high levels of adaptivity, tailor actions to their specific context

  1. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  2. Modeling Integrated Water-User Decisions with Intermittent Supplies

    Science.gov (United States)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  3. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  4. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  5. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are usually...

  6. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  7. Sustainability of Drinking Water Supply Projects in Rural of North ...

    African Journals Online (AJOL)

    Background: Safe water supply coverage in the rural areas of Ethiopia is very marginal. The coverage still remains very low because of limited progress in water supply activities in these areas. Factors affecting the continued use of the outcome of water supply projects in the background of limited resources are not well ...

  8. Soft computing techniques toward modeling the water supplies of Cyprus.

    Science.gov (United States)

    Iliadis, L; Maris, F; Tachos, S

    2011-10-01

    This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. Initially, ε-Regression Support Vector Machines (ε-RSVM) and fuzzy weighted ε-RSVMR models have been developed that accept five input parameters. At the same time, reliable artificial neural networks have been developed to perform the same job. The 5-fold cross validation approach has been employed in order to eliminate bad local behaviors and to produce a more representative training data set. Thus, the fuzzy weighted Support Vector Regression (SVR) combined with the fuzzy partition has been employed in an effort to enhance the quality of the results. Several rational and reliable models have been produced that can enhance the efficiency of water policy designers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  10. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  11. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.

    1975-01-01

    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  12. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  13. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Using underground mine Karst water to solve water supply problem in underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Wanbei Mining Administration (China). Liuqiao No. 2 Mine

    1995-05-01

    There is a very rich karst water resource under the Liuqiao No. 2 underground mine. Under normal mining conditions the drainage is 546 m{sup 3}/h while the maximum drainage is up to 819 m{sup 3}/h. If water inrush occurred from a broken zone of a fault or a sinkhole of the karst, the flow could be up to 3269 m{sup 3}/h. The karst water is of good quality and high in pressure. The water head pressure at -400 m level is about 3.5 MPa. To save mine construction cost, it was decided that the water supply for coal production equipment, mining operation and mine fire control was to be changed from the surface to the underground by drilling a water well to tap the karst water resource. A water well with a depth of 63.3 m was drilled in the -400 m transportation roadway. The diameter of the well is 127 mm and it has a casing pipe with a diameter of 108 mm which is connected to the water supply pipeline. The pressure of the water supply is measured at 23.5 MPa and the water flow rate is 252 m{sup 3}/h. The establishment of the water supply system has achieved great cost saving for Liuqiao No. 2 Mine. 2 figs.

  15. A Fuzzy Linear Programming Model for Improving Productivity of Electrical Energy in Potable Water Supply Facilities (Case study: Sistan Water Supply Project

    Directory of Open Access Journals (Sweden)

    Vahid Baradaran

    2018-03-01

    Full Text Available One of the most important operational issues in urban drinking water production and distribution systems is to assign a plan for running hours of water supplying electric pumps. The cost of consuming electricity in these pumps allocates most of water and wastewater companies operational costs to itself which is dependent to their running hours. In this paper, meanwhile having a field study in Sistan rural water and wastewater company, the constraints for specifying electric pumps operational time in water supplying resources such as restrictions in fulfilling demand, supply potable water with suitable quality and uselessness of electric pumps have been identified. Due to uncertainty and fuzziness of the constraints, a linear programming model with fuzzy restrictions for determining electric pumps running hours per day is submitted with the aim to minimize electricity consumption and cost. After collecting and using required data for model, it proved that using the proposed model could reduce the costs of electrical energy and increase productivity up to 23 percent per month. The proposed mathematical fuzzy programming is able to specify electric pumps scheduling plan for water supply resources with the aim to reduce the costs of consuming energy.

  16. Supply-side and demand-side policies for biosimilars: an overview in 10 European member states

    OpenAIRE

    R?muzat, C?cile; Kapu?niak, Anna; Caban, Aleksandra; Ionescu, Dan; Radi?re, Guerric; Mendoza, Cyril; Toumi, Mondher

    2017-01-01

    ABSTRACT Objective: This study aimed to provide an overview of biosimilar?policies in 10 EU MSs. Methods: Ten EU MS pharmaceutical markets (Belgium, France, Germany, Greece, Hungary, Italy, Poland, Spain, Sweden, and the UK) were selected. A comprehensive literature review?was performed to identify supply-side and demand-side policies in place in the selected countries. Results: Supply-side policies for biosimilars commonly include price linkage, price re-evaluation, and tendering; the use of...

  17. The Impact of Carbon Emissions Policies on Reverse Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Bandar A. ALKHAYYAL

    2018-01-01

    Full Text Available Reverse Supply Chain is described as an initiative that plays an important role in the global supply chain for those who seek environmentally responsible solutions for their end-of-life products. The relative economic and environmental benefits of reverse supply chain are influenced by costs and emissions during collection, transportation, recovery facilities, disassembly, recycling, remanufacturing, and disposal of unrecoverable components. The design of reverse supply chain network takes into account social, economic and environmental objectives. This paper addresses the design of reverse supply chain under the three common regulatory policies, strict carbon caps, carbon tax, and carbon cap-and-trade.

  18. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio

    2012-01-01

    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  19. Food and water supply

    Science.gov (United States)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  20. Working group report on water resources, supply and demand

    International Nuclear Information System (INIS)

    Marta, T.J.

    1990-01-01

    A summary is presented of the issues discussed, and the conclusions and recommendations of a working group on water resources, supply and demand. The issues were grouped into the categories of detecting climatic change and water impacts, simulating potential impacts, and responding to potential impacts. The workshop groups achieved consensus on the following points: the physics of global warming and climatic change have been satifactorily proven; there appears to be some evidence of climatic change and a signal could soon be detected; policy decisions and strategic plans for climatic change and its potential impacts are needed immediately; and targets and priorities for decison making should be identified and addressed immediately. Three top-priority issues are the identification of indicators for the detection of climatic change impacts on hydrology, determining response to climate-related change, and evaluation of design criteria. Better information on regional climate and hydrology under conditions of global warming is needed before design criteria could be altered

  1. National water summary 1987: Hydrologic events and water supply and use

    Science.gov (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade.Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants.Ground water provided drinking water for 53 percent of the Nation's total

  2. 76 FR 49787 - Rural Water Supply Program Approved Appraisal Reports; Availability

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Rural Water Supply Program Approved Appraisal...: Reclamation provides assistance for appraisal investigations and feasibility studies for rural water supply... the findings and conclusions of the appraisal investigations that identified the water supply problems...

  3. Irregular water supply, household usage and dengue: a bio-social study in the Brazilian Northeast

    OpenAIRE

    Caprara,Andrea; Lima,José Wellington de Oliveira; Marinho,Alice Correia Pequeno; Calvasina,Paola Gondim; Landim,Lucyla Paes; Sommerfeld,Johannes

    2009-01-01

    Despite increased vector control efforts, dengue fever remains endemic in Fortaleza, Northeast Brazil, where sporadic epidemic outbreaks have occurred since 1986. Multiple factors affect vector ecology such as social policy, migration, urbanization, city water supply, garbage disposal and housing conditions, as well as community level understanding of the disease and related practices. This descriptive study used a multi-disciplinary approach that bridged anthropology and entomology. A multip...

  4. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains.

    Science.gov (United States)

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q

    2018-02-01

    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    Ringer, W.; Simader, M.; Bernreiter, M.; Aspek, W.; Kaineder, H.

    2006-01-01

    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  6. On-plot drinking water supplies and health: A systematic review.

    Science.gov (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  8. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  9. Specific features of auxiliary water supply at underground NPPs

    International Nuclear Information System (INIS)

    Pergamenshchik, B.K.; Pavlov, A.S.

    1991-01-01

    Specific features of auxiliary water supply systems for underground NPPs related to peculiarities of NPP basis equipment arrangement, are considered. Circulation water supply scheme, in which water cooling storage basin (cooling towers) with operational area corresponding to NPP power is on the surface and has traditional design, is proposed. Sufficiently high efficiency of the arrangement proposed is proved

  10. Building a Public Health Response to the Flint Water Crisis: Implications for Policy and Decision-Making

    Science.gov (United States)

    Furr-Holden, D.

    2017-12-01

    Flint, MI has experienced a recent, man-made public health crisis. The Flint Water Crisis, caused by a switch in the municipal water supply and subsequent violation of engineering and regulatory standards to ensure water quality lead to a large portion of the city being exposed to excess metals (including lead), bacteria and other water-borne pathogens. The data used to initially rebut the existence of the crisis were ecologically flawed as they included large numbers of people who were not on the Flint water supply. Policy-makers, municipal officials, the medical community, and public health professionals were at odds over the existence of a problem and the lack of data only fueled the debate. Pediatricians, lead by Dr. Mona Hannah-Attisha, began testing children in the Hurley Children's Medical Center for blood-lead levels and observed a 2-fold increase in elevated blood lead levels in Flint children compared to children in the area not on the Flint municipal water supply, where no increases in elevated lead were observed. Subsequent geospatial analyses revealed spatial clustering of cases based on where children live, go to school and play. These data represented the first step in data driven decision making leading to the subsequent switch of the municipal water supply and launch of subsequent advocacy efforts to remediate the effect of the Water Crisis. Since that time, a multi-disciplinary team of scientists including engineers, bench scientists, physicians and public health researchers have mounted evidence to promote complete replacement of the city's aging water infrastructure, developed a data registry to track cases and coordinate care and services for affected residents, and implemented a community engagement model that puts residents and community stakeholders at the heart of the planning and implementation efforts. The presentation will include data used at various stages to mount a public health response to the Flint Water Crisis and establish the

  11. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  12. Socioeconomic impacts of climate change on U.S. water supplies

    Science.gov (United States)

    Frederick, K.D.; Schwarz, G.E.

    1999-01-01

    A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.

  13. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  14. Water Loss Reduction as the Basis of Good Water Supply Companies’ Management

    Directory of Open Access Journals (Sweden)

    Ociepa-Kubicka Agnieszka

    2017-01-01

    Full Text Available Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK. The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI, as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  15. Water Loss Reduction as the Basis of Good Water Supply Companies' Management

    Science.gov (United States)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof

    2017-10-01

    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  16. Water Economics and Policy

    Directory of Open Access Journals (Sweden)

    Julio Berbel

    2017-10-01

    Full Text Available Economics plays a double role in the field of water management, firstly as a powerful analytical tool supporting water allocation and policy decisions, and secondly in the form of policy instruments (water pricing, markets, etc.. This Special Issue presents a platform for sharing results connecting excellent interdisciplinary research applied to different regional and sectoral problems around the world. The 22 peer-reviewed papers collected in this Special Issue have been grouped into five broad categories: Water valuation and accounting; Economic instruments; Cost effectiveness and cost-benefit analysis; and Water productivity and Governance. They are briefly presented.

  17. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Science.gov (United States)

    2010-07-01

    ... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and... § 125.61. (b) Impact of discharge on public water supplies. (1) The applicant's modified discharge must...

  18. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.; Ramsey, J.

    2004-12-01

    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior

  19. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.

    1985-01-01

    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  20. Syrian Refugees: Are They a Non Traditional Threat to Water Supplies in Lebanon and Jordan

    Science.gov (United States)

    2016-09-01

    effects of Syrian refugees on the water supplies of each country as a non-traditional security threat. Political stability is the ultimate goal of each...security.html. 11 against Syrians sets the stage for political instability because the Syrians represent an increasing portion of the population, if...of political instability could send shockwaves through the region and drastically alter U.S. foreign policy in the Middle East. Though the stakes

  1. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  2. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  3. Global assessment of water policy vulnerability under uncertainty in water scarcity projections

    Science.gov (United States)

    Greve, Peter; Kahil, Taher; Satoh, Yusuke; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Byers, Edward; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Langan, Simon; Wada, Yoshihide

    2017-04-01

    vulnerabilities under large uncertainty about the future socio-economic and climatic changes and to guide policymakers in charting a more sustainable pathway and avoiding maladaptive development pathways. The results show that water scarcity is increasing in up to 83% of all land area under a high-emission scenario (RCP 6.0-SSP3). Importantly, the range of uncertainty in projected water scarcity is increasing; in some regions by several orders of magnitude (e.g. sub-Saharan Africa, eastern Europe, Central Asia). This is further illustrated by focusing on a set of large river basins that will be subject both to substantial changes in basin-wide water scarcity and to strong increases in the overall range of uncertainty (e.g. the Niger, Indus, Yangtze). These conditions pose a significant challenge for water management options in those vulnerable basins, complicating decisions on needed investments in water supply infrastructure and other system improvements, and leading to the degradation of valuable resources such as non-renewable groundwater resources and water-dependent ecosystems. The results of this study call for careful and deliberative design of water policy interventions under a wide range of socio-economic and climate conditions.

  4. An Environmental Analysis of the Effect of Energy Saving, Production and Recovery Measures on Water Supply Systems under Scarcity Conditions

    Directory of Open Access Journals (Sweden)

    Valeria Puleo

    2015-06-01

    Full Text Available Water is one of the primary resources provided for maintaining quality of life and social status in urban areas. As potable water is considered to be a primary need, water service has usually been managed without examining the economic and environmental sustainability of supply processes. Currently, due to increases in energy costs and the growth of environment preservation policies, reducing water leakage, energy consumption and greenhouse gas (GHG production have become primary objectives in reducing the environmental footprint of water service. The present paper suggests the implementation of some performance indicators that show the interdependence of water loss, energy consumption and GHG emission. These indicators are used to compare a few possible mitigation scenarios involving water loss reduction and increasing the system’s energy efficiency. The proposed indicators were applied to a complex urban water supply system serving the city of Palermo (Italy.

  5. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  6. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.; Danser, Philip Alexander; Amy, Gary L.; Pankratz, Tom M.

    2014-01-01

    decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling

  7. How much are households willing to contribute to the cost recovery of drinking water supply? Results from a household survey

    Directory of Open Access Journals (Sweden)

    S. Tarfasa

    2013-04-01

    Full Text Available Financial resources are crucial to improve existing urban drinking water supply in developing countries typically characterized by low cost recovery rates and high and rapidly growing demand for more reliable services. This study examines the willingness to pay for improved urban drinking water supply employing a choice model (CM in an urban context in Ethiopia, Hawassa, with a household survey of 170 respondents. The design of the choice model allows the estimation of the values of two attributes of urban drinking water service (extra day water delivery per week and safer water. The findings indicate that households are willing to pay up to 60% extra for improved levels of water supply over and above their current water bill. Especially those households living in the poorest part of the city with the lowest service levels demonstrate that they are willing to pay more despite significant income constraints they are facing. Women value the improvement of water quality most, while a significant effect is found for averting behavior and expenditures. The estimated economic values can be used in policy appraisals of investment decisions.

  8. Pressure: the politechnics of water supply in Mumbai.

    Science.gov (United States)

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city.

  9. Modelling the Effects of Parking Charge and Supply Policy Using System Dynamics Method

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2017-01-01

    Full Text Available Reasonable parking charge and supply policy are essential for the regular operation of the traffic in city center. This paper develops an evaluation model for parking policies using system dynamics. A quantitative study is conducted to examine the effects of parking charge and supply policy on traffic speed. The model, which is composed of three interrelated subsystems, first summarizes the travel cost of each travel mode and then calibrates the travel choice model through the travel mode subsystem. Finally, the subsystem that evaluates the state of traffic forecasts future car speed based on bureau of public roads (BPR function and generates new travel cost until the entire model reaches a steady state. The accuracy of the model is verified in Hangzhou Wulin business district. The related error of predicted speed is only 2.2%. The results indicate that the regular pattern of traffic speed and parking charge can be illustrated using the proposed model based on system dynamics, and the model infers that reducing the parking supply in core area will increase its congestion level and, under certain parking supply conditions, there exists an interval of possible pricing at which the service reaches a level that is fairly stable.

  10. Supply-side and demand-side policies for biosimilars: an overview in 10 European member states.

    Science.gov (United States)

    Rémuzat, Cécile; Kapuśniak, Anna; Caban, Aleksandra; Ionescu, Dan; Radière, Guerric; Mendoza, Cyril; Toumi, Mondher

    2017-01-01

    This study aimed to provide an overview of biosimilar policies in 10 EU MSs. Methods : Ten EU MS pharmaceutical markets (Belgium, France, Germany, Greece, Hungary, Italy, Poland, Spain, Sweden, and the UK) were selected. A comprehensive literature review was performed to identify supply-side and demand-side policies in place in the selected countries. Results : Supply-side policies for biosimilars commonly include price linkage, price re-evaluation, and tendering; the use of internal or external reference pricing varies between countries; health technology assessment is conducted in six countries. Regarding demand-side policies, pharmaceutical prescription budgets or quotas and monitoring of prescriptions (with potential financial incentives or penalties) are in place in eight and in seven countries respectively. Switching is generally allowed, but is solely the physician's responsibility. Automatic substitution is not recommended, or even forbidden, in most EU MSs. Prescription conditions or guidelines that apply to biosimilars are established in nearly all surveyed EU MSs. Conclusions : Important heterogeneity in policies on biosimilars was seen between (and even within) selected countries, which may partly explain variations in biosimilar uptake. Supply-side policies targeting price have been reported to limit biosimilar penetration in the long term, despite short-term savings, while demand-side policies are considered to positively impact uptake.

  11. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  12. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  13. Fluorine level in some city water supplies of Bangladesh

    International Nuclear Information System (INIS)

    Hoque, A.K.M.F.; Abedin, M.J.; Rahman, M.M.; Mia, M. Y.; Tarafder, M.S.A.; Khaliquzzaman, M.; Hossain, M.D.; Khan, A.H.

    2003-01-01

    Nuclear reaction based Proton Induced Gamma Emission (PIGE) analytical method was employed for the quantitative measurement of fluorine in the city water supplies of the major cities of Bangladesh. 102 water samples collected from 14 city supplies were analyzed and these samples contain fluorine in the range of 0.03 to 1.10 mg/L with a mean of 0.33 ± 0.21 mg/L. It was also observed that except the samples of Barisal, Dinajpur and Rajshahi, all other water samples analyzed contain a much lower amount of fluorine than the maximum permissible value for Bangladesh in drinking water, which is 1 mg/L. The mean concentration of fluorine in the samples of Barisal, Dinajpur and Rajshahi are respectively 0.79±0.01, 0.71±0.13 and 0.92±0.18 mg/L. For the 55 samples of Dhaka city supply the mean fluorine concentration is 0.31±0.17 mg/L and that of 9 samples from Chittagong city supply is 0.19±0.10 mg/L, which is the lowest among the 14 city supply samples analyzed in this study

  14. Construction raw materials policy and supply practices in Northwestern Europe

    NARCIS (Netherlands)

    Meulen, M.J. van der; Koopmans, T.P.F.; Pietersen, H.S.

    2003-01-01

    The present contribution is an inventory of the construction raw materials policy and supply practices in The Netherlands, Belgium, North Rhine-Westphalia, Lower Saxony, Great Britain, Norway and Denmark. The work has been commissioned by the Dutch government in order to benchmark its domestic

  15. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  16. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  17. Integrated Supply Network Maturity Model: Water Scarcity Perspective

    Directory of Open Access Journals (Sweden)

    Ekaterina Yatskovskaya

    2018-03-01

    Full Text Available Today’s supply chains (SCs are more than ever prone to disruptions caused by natural and man-made events with water scarcity identified as one of the highest impact events among these. Leading businesses, understanding that natural resource scarcity (NRS has become a critical supply chain risk factor, extensively incorporate sustainable water management programmes into their corporate social responsibility and environmental management agenda. The question of how industries can efficiently evaluate the progress of these water scarcity mitigation practices, however, remains open. In order to address this question, the present study proposes a conceptual maturity model. The model is rooted in strategies for water scarcity mitigation using a framework developed by Yatskovskaya and Srai and develops an extensive literature review of recent publications on maturity frameworks in the fields of sustainability and operations management. In order to test the proposed proposed, model an exploratory case study with a leading pharmaceutical company was conducted. The proposed maturity model presents an evaluation tool that allows systematic assessment and visualisation of organisational routines and practices relevant to sustainable manufacturing in the context of water scarcity. This model was designed to help illustrate mitigation capabilities evolution over time, where future state desired capabilities were considered through alternative supply network (SN configurations, network structure, process flow, product architecture, and supply partnerships.

  18. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program? This program addresses domestic, municipal, and industrial water...

  19. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  20. Dealing with uncertainty in modeling intermittent water supply

    Science.gov (United States)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  1. THE ROLE OF FARMERS IN MANAGING WATER Dr Tony Colman Professor Tony Allan Farmers manage about 92% of the water consumed by society which needs to recognise that farming practices and the decisions made by those who operate food supply chains - including corporates and those making public policy - determine how water is stewarded.

    Science.gov (United States)

    Colman, A. J.

    2017-12-01

    Title Food-water and society Dr. Tony Colman and Professor Tony Allan Abstract The purpose of the paper is to highlight some key relationships between water resources and society. First, water is an very important resource for society in that it provides an essential input to society's food supply chains. Secondly, it is an essential input to farmer livelihoods. About half of the families of the world still work in agriculture - albeit a declining proportion. Thirdly, farmers manage about 92% of the water consumed by society - including the blue water (surface and groundwater) for irrigation and the green water (effective rainfall) consumed on rainfed farms. They also account for about 66% of society's impacts on biodiversity and about 25% of emissions. Finally it will be argued that those who analyse allocation and management of water must recognise that farming practices and the decisions made by those who operate food supply chains - including corporates and those making public policy - must recognise that it is farmers and food consumers who determine how water is stewarded. It will be suggested that we need to understand that well informed consumers could be the regulators.

  2. Reduction of radon from household water supplies

    International Nuclear Information System (INIS)

    Shapiro, P.S.; Sorg, T.J.

    1988-01-01

    Groundwater can be a major source of indoor radon in homes that use individual wells or are served by very small community water supply systems. In the United States, several wells have been found to contain more than 37,000,000 Bq.m -3 of radon dissolved in the water. This radon can be released in the indoor air in the course of using water for normal household activities. A measurement of the radon in the drinking water can be made when an indoor radon problem is suspected. While ventilation may reduce indoor radon levels that result from household water usage, the most common control technique presently applied is removing the radon from the water using a granular activated carbon (GAC) treatment system. Aeration methods are also effective and have been proven to be economical for small community water supplies. Some of the issues faced in using GAC are sizing and maintaining the unit and shielding and disposing of the GAC to prevent exposure from gamma radiation. (author)

  3. POTABLE WATER SUPPLY IN OWERRI METROPOLIS: A ...

    African Journals Online (AJOL)

    address the problems of water supply and management. These include: ..... total replacement of under-laid water pipes has not been done, and there is no modern way .... If the present trend continues, the vast majority of these people will be living ... maintenance and management of water facilities and other logistics.

  4. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  5. Effect of type of water supply on water quality in a developing community in South Africa

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1997-01-01

    Full Text Available Efforts to provide water to developing communities in South Africa have resulted in various types of water supplies being used. This study examined the relationship between the type of water supply and the quality of water used. Source (communal...

  6. The Canadian heavy water supply program

    International Nuclear Information System (INIS)

    Dahlinger, A.; McNally, P.J.

    1976-06-01

    The performance to date of individual Canadian heavy water plants is described in detail as are the current plant construction plans. These data, when related to the long-term electricity demand indicate that heavy water supply and demand are in reasonable balance and that the CANDU program will not be inhibited because of shortages of the commodity. (author)

  7. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  8. Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria

    OpenAIRE

    Amilkar E. Ilaya-Ayza; Carlos Martins; Enrique Campbell; Joaquín Izquierdo

    2017-01-01

    Intermittent supply is a common way of delivering water in many developing countries. Limitations on water and economic resources, in addition to poor management and population growth, limit the possibilities of delivering water 24 h a day. Intermittent water supply networks are usually designed and managed in an empirical manner, or using tools and criteria devised for continuous supply systems, and this approach can produce supply inequity. In this paper, an approach based on the hydraulic ...

  9. Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2017-11-01

    Full Text Available Intermittent supply is a common way of delivering water in many developing countries. Limitations on water and economic resources, in addition to poor management and population growth, limit the possibilities of delivering water 24 h a day. Intermittent water supply networks are usually designed and managed in an empirical manner, or using tools and criteria devised for continuous supply systems, and this approach can produce supply inequity. In this paper, an approach based on the hydraulic capacity concept, which uses soft computing tools of graph theory and cluster analysis, is developed to define sectors, also called district metered areas (DMAs, to produce an equitable water supply. Moreover, this approach helps determine the supply time for each sector, which depends on each sector’s hydraulic characteristics. This process also includes the opinions of water company experts, the individuals who are best acquainted with the intricacies of the network.

  10. A decision model for selecting sustainable drinking water supply and greywater reuse systems for developing communities with a case study in Cimahi, Indonesia.

    Science.gov (United States)

    Henriques, Justin J; Louis, Garrick E

    2011-01-01

    Capacity Factor Analysis is a decision support system for selection of appropriate technologies for municipal sanitation services in developing communities. Developing communities are those that lack the capability to provide adequate access to one or more essential services, such as water and sanitation, to their residents. This research developed two elements of Capacity Factor Analysis: a capacity factor based classification for technologies using requirements analysis, and a matching policy for choosing technology options. First, requirements analysis is used to develop a ranking for drinking water supply and greywater reuse technologies. Second, using the Capacity Factor Analysis approach, a matching policy is developed to guide decision makers in selecting the appropriate drinking water supply or greywater reuse technology option for their community. Finally, a scenario-based informal hypothesis test is developed to assist in qualitative model validation through case study. Capacity Factor Analysis is then applied in Cimahi Indonesia as a form of validation. The completed Capacity Factor Analysis model will allow developing communities to select drinking water supply and greywater reuse systems that are safe, affordable, able to be built and managed by the community using local resources, and are amenable to expansion as the community's management capacity increases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan

    Science.gov (United States)

    Qocamanov, M. H.; Gurbanov, Ch. Z.

    2016-10-01

    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  12. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  13. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  14. Supply-side and demand-side policies for biosimilars: an overview in 10 European member states

    Science.gov (United States)

    Rémuzat, Cécile; Kapuśniak, Anna; Caban, Aleksandra; Ionescu, Dan; Radière, Guerric; Mendoza, Cyril; Toumi, Mondher

    2017-01-01

    ABSTRACT Objective: This study aimed to provide an overview of biosimilar policies in 10 EU MSs. Methods: Ten EU MS pharmaceutical markets (Belgium, France, Germany, Greece, Hungary, Italy, Poland, Spain, Sweden, and the UK) were selected. A comprehensive literature review was performed to identify supply-side and demand-side policies in place in the selected countries. Results: Supply-side policies for biosimilars commonly include price linkage, price re-evaluation, and tendering; the use of internal or external reference pricing varies between countries; health technology assessment is conducted in six countries. Regarding demand-side policies, pharmaceutical prescription budgets or quotas and monitoring of prescriptions (with potential financial incentives or penalties) are in place in eight and in seven countries respectively. Switching is generally allowed, but is solely the physician’s responsibility. Automatic substitution is not recommended, or even forbidden, in most EU MSs. Prescription conditions or guidelines that apply to biosimilars are established in nearly all surveyed EU MSs. Conclusions: Important heterogeneity in policies on biosimilars was seen between (and even within) selected countries, which may partly explain variations in biosimilar uptake. Supply-side policies targeting price have been reported to limit biosimilar penetration in the long term, despite short-term savings, while demand-side policies are considered to positively impact uptake. PMID:28740617

  15. Rapid evaluation of water supply project feasibility in Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-03-01

    Full Text Available Mega cities in developing countries are mostly dependent on external funding for improving the civic infrastructures like water supply. International and sometimes national agencies stipulate financial justifications for infrastructure funding. Expansion of drinking water network with external funding therefore requires explicit economic estimates. A methodology suitable for local condition has been developed in this study. Relevant field data were collected for estimating the cost of supply. The artificial neural network technique has been used for cost estimate. The willingness to pay survey has been used for estimating the benefits. Cost and benefit have been compared with consideration of time value of money. The risk and uncertainty have been investigated by Monte Carlo's simulation and sensitivity analysis. The results in this case indicated that consumers were willing to pay for supply of drinking water. It has been also found that supply up to 20 km from the treatment plant is economical after which new plants should be considered. The study would help to plan for economically optimal improvement of water supply. It could be also used for estimating the water tariff structure for the city.

  16. Irrigation, risk aversion, and water right priority under water supply uncertainty

    Science.gov (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  17. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    Science.gov (United States)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    Water resource managers attempt to minimize conflicts among users, preserve the environment as much as possible, and satisfy user necessities at a minimum cost. Several European directives indirectly address mine restoration policies, with a goal of minimizing negative impacts and adding social and environmental value where possible. Water management must consider water sources, ecological flows, flood control, and variability in the demands for urban, industrial, and agricultural uses. In the context of the present study, the city of A Coruña is located in Galicia (NW Spain). The water supply system for this city and surrounding municipalities (~400.000 inhabitants) is based on the Abegondo-Cecebre reservoir. In cases when precipitation is scarce (e.g. no rain for more than seven consecutive months) and there is a seasonal increase in demand significantly stress the supply system so that, as occurred in 2010, shortages and water supply restrictions need to be considered. This is a clear indication of that, at present, the Abegondo-Cecebre reservoir has not enough capacity to cope with a scenario of increasing water demand (due to the vegetative and seasonal increase of population) and hydric stress likely connected with the widely acknowledged climate change. In the present context of monetary resources scarcity and society concern with respect large new public work projects, the construction of a new dam is challenging. However the opportunity provided by the recent flooding of the Meirama open pit (a large mine void that has been forced-flooded for its reclamation and it is located in the headwaters of one of the rivers draining towards the Abegondo-Cecebre reservoir) proves to be a significant new asset that will help to improve the future water management scenarios under the acknowledged uncertain conditions. In this study we have studied in detail the hydrochemistry of the affected systems (lake, river and reservoir) in order to make clear whether or not the

  18. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    Science.gov (United States)

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial

  19. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  20. Evaluating Environmental Governance along Cross-Border Electricity Supply Chains with Policy-Informed Life Cycle Assessment: The California-Mexico Energy Exchange.

    Science.gov (United States)

    Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B

    2018-05-01

    This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.

  1. Optimal Inventory Policy under Permissible Payment Delay in Fashion Supply Chains

    OpenAIRE

    Guo Li; Yuchen Kang; Mengqi Liu; Zhaohua Wang

    2014-01-01

    This paper investigates a retailer’s optimal inventory cycle and the corresponding time of payment in fashion supply chains where a supplier allows the payment delay. Here according to the established model we first analyze the retailer's reaction, and then find out the retailer’s optimal inventory policy and time of payment to maximize its total profit. Our result shows that it is not always the best choice for retailers of fashion supply chains to choose the discount way to replenish stocks...

  2. The Geographical Distribution of Water Supply in Ekiti

    African Journals Online (AJOL)

    FIRST LADY

    Indexed African Journals Online: www.ajol.info. An International ... time spent for water collection, the rating of water supply, and problems associated ... The people were asked to indicate how long it would take them to get good quality water ...

  3. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  4. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    NARCIS (Netherlands)

    Breeze, T.; Vaissiere, B.E.; Bommarco, R.; Petanidou, T.; Seraphides, N.; Kozak, L.; Scheper, J.A.; Biesmeijer, J.C.; Kleijn, D.; Gyldenkaerne, S.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from

  5. Chemical, physical, and radiological quality of selected public water supplies in Florida, January-May 1979. Water-resources investigations

    International Nuclear Information System (INIS)

    Franks, B.J.; Irwin, G.A.

    1980-01-01

    Most public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. This conclusion is based on a water quality reconnaissance of 131 raw and treated public supplies throughout the State during the period January through May 1979. In a few public supplies, primary drinking water regulation maximum contaminant levels were exceeded for mercury, turbidity, and gross alpha particle activity. Secondary drinking water regulations were also occasionally exceeded in some public supplies for such parameters as chloride, pH, color, dissolved solids, iron, and manganese

  6. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  7. Protection of Urban Water body Infrastructure - Policy Requirements

    Science.gov (United States)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  8. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  9. Public supply and domestic water use in the United States, 2015

    Science.gov (United States)

    Dieter, Cheryl A.; Maupin, Molly A.

    2017-10-30

    IntroductionThe U.S. Geological Survey (USGS) National Water Use Science Project (NWUSP), part of the USGS Water Availability and Use Science Program (WAUSP), has estimated water use in the United States every 5 years since 1950. This report provides an overview of total population, public-supply use, including the population that is served by public-supply systems and the domestic deliveries to those users, and self-supplied domestic water use in the United States for 2015, continuing the task of estimating water use in the United States every 5 years. In this report, estimates for the United States include the 50 States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands (hereafter referred to as “states” for brevity).County-level data for total population, public-supply withdrawals and the population served by public-supply systems, and domestic withdrawals for 2015 were published in a data release in an effort to provide data to the public in a timely manner. Data in the current version (1.0) of Dieter and others (2017) contains county-level total withdrawals from groundwater and surface-water sources (both fresh and saline) for public-water supply, the deliveries from those suppliers to domestic users, and the quantities of water from groundwater and surface-water sources for self-supplied domestic users, and total population. Methods used to estimate the various data elements for the public-supply and domestic use categories at the county level are described by Bradley (2017).This Open-File Report is an interim report summarizing the data published in Dieter and others (2017) at the state and national level. This report includes discussions on the total population, totals for public-supply withdrawals and population served, total domestic withdrawals, and provides comparisons of the 2015 estimates to 2010 estimates (Maupin and others, 2014). Total domestic water use, as described in this report, represents the summation of deliveries from

  10. Water Scarcity and Water Policy in Mexico

    OpenAIRE

    Facchini, Gianluca

    2009-01-01

    This thesis addresses the possible solutions to control demand and supply of water for a sustainable environment in Mexico, along with a detailed analyses of economic implications related to the water sector. At the same time it focuses on the opportunities and constraints to improve the use of water and the allocation in the agricultural sector, by a system of transferable water-use permits. Actual examples are provided nationwide to the current situation in Mexico, focusing on problems rela...

  11. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  12. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  13. Modeling and Optimization for Management of Intermittent Water Supply

    Science.gov (United States)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  14. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Karst aquifer in Galichica and possibilities for water supply to Ohrid with ground -water

    International Nuclear Information System (INIS)

    Mirchovski, Vojo; Kekich, Aleksandar; Spasovski, Orce; Mirchovski, Vlado

    2009-01-01

    In this paper are presented some hydrogeological features of the karst aquifer in Mt Galichica, which contains important quantities of ground-water that can to used for the water supply of the town Ohrid. Based on the hydrogeological data are given three solutions that be can to used for water supply of Ohrid, the first one is to drill of deep wells, combination of deep and shallow wells, as well as construction of horizontal galleries.

  16. The Supply of Medical Radioisotopes. Policy Options for Ensuring Long-term Supply Security of Molybdenum-99 and/or Technetium-99m Produced Without Highly Enriched Uranium Targets

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    Following the shortages of the key medical radioisotopes, molybdenum-99 ( 99 Mo) and its daughter technetium-99m (' 99m Tc), the OECD-Nuclear Energy Agency (NEA) created the High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). Since 2009, this group has identified the reasons for the isotope shortages and developed a policy approach to address the challenges to a long-term secure supply of these important medical isotopes. On top of the ongoing concerns related to long-term reliability, all current long-term major 99 Mo-producing nations have agreed to convert to using low-enriched uranium (LEU) targets for the production of 99 Mo. This decision was made based on important nonproliferation reasons; however, the conversion will have potential impacts on the global supply chain - both in terms of costs and available capacity. Recognising that conversion is important and will occur, and also recognising the need to ensure a long-term secure supply of 99 Mo/' 99m Tc, the NEA, along with stakeholders, examined potential policy options that could be used by to ensure a reliable supply of 99 Mo and/or ' 99m Tc produced without highly enriched uranium (HEU), consistent with the time frames and policies of the HLG-MR. This discussion paper provides the various policy options available to governments to encourage a reliable supply of 99 Mo and/or ' 99m Tc produced without HEU. The examination of these options was done through the lens of ensuring a reliable supply, consistent with the time frames and policies of the HLG-MR. The options described in this document are meant to meet this objective by taking one of three general actions: - Making the option of purchasing or producing non-HEU-based 99 Mo and/or ' 99m Tc more attractive. - Making the option of purchasing or producing HEU-based 99 Mo and/or ' 99m Tc less attractive. - Limiting access to HEU-based 99 Mo and/or ' 99m Tc. This paper presents the options in each category and provides some views

  17. Climate policy and the intertemporal supply of fossil resources

    International Nuclear Information System (INIS)

    Beermann, Christian

    2015-01-01

    This thesis was written by Christian Beermann while he was a research assistant at the Center for Economic Studies (CES) at the University of Munich. It was completed in December 2014 and accepted as a doctoral thesis by the Department of Economics at the University of Munich in May 2015. The thesis analyses the intertemporal supply reaction of the fossil resource supply side to demand-reducing climate policies while explicitly taking into account the global warming problem. The interaction between a climate coalition that can either be global or incomplete, comprising only a subset of the world's countries in the latter case, and a representative competitive resource supplier is analysed in a Stackelberg differential game in which the coalition leads.

  18. Climate policy and the intertemporal supply of fossil resources

    Energy Technology Data Exchange (ETDEWEB)

    Beermann, Christian

    2015-05-13

    This thesis was written by Christian Beermann while he was a research assistant at the Center for Economic Studies (CES) at the University of Munich. It was completed in December 2014 and accepted as a doctoral thesis by the Department of Economics at the University of Munich in May 2015. The thesis analyses the intertemporal supply reaction of the fossil resource supply side to demand-reducing climate policies while explicitly taking into account the global warming problem. The interaction between a climate coalition that can either be global or incomplete, comprising only a subset of the world's countries in the latter case, and a representative competitive resource supplier is analysed in a Stackelberg differential game in which the coalition leads.

  19. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  20. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  1. China's water, energy and food nexus - an assessment of the sustainability of the "3 Red Lines" water policies in the Haihe Basin

    Science.gov (United States)

    Qin, Ying; Allwood, Julian; Richards, Keith

    2016-04-01

    Population growth and economic development continue to put increasing pressures on China's limited resources which are further exacerbated by the country's substantial regional variations in both natural and socioeconomic conditions. China's pursuit of water, energy and food security faces trade-offs and tensions and the Haihe Basin exemplifies these issues. The river basin contains the capital region of Beijing, Hebei and Tianjin which are already experiencing stress and shortfalls of water resources as a result of intense competition for limited resources. To tackle water scarcity and promote more sustainable use of water, the government has implemented national and regional "3 Red Lines" water policies but they are not integrated with energy and food policies. The aim of this analysis is to assess the sustainability of the regional "3 Red Lines" water targets and their compatibility with energy and food security. This study uses a spatially-explicit, integrated resource model which integrates a hydrological model (GWAVA) with energy and food sub-models in order to analyse current and future resource availability and demand. To assess resource futures, different demand and supply scenarios were analysed up to 2030. Results are visualised as maps and connected Sankey diagrams and outputs are compared with the "3 Red Lines" water targets as well as against indicators related to land and energy policies. The results show that under a business-as-usual scenario, total water demands for Beijing, Tianjin and Hebei are unlikely to comply with future water targets. Reducing water use in the industry and agriculture sectors will be critical in this water-scarce region and whilst efficiency improvements are important, technology choices appear to make the most significant impact e.g. irrigation method for agriculture and cooling technology for power generation. However, both these water saving-measures have trade-offs in energy consumption. Proposed water saving plans of

  2. THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK

    Science.gov (United States)

    Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi

    The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.

  3. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  4. Pricing Policies in Green Supply Chains with Vertical and Horizontal Competition

    Directory of Open Access Journals (Sweden)

    Shan Chen

    2017-12-01

    Full Text Available The paper explores the pricing policies and green strategies in a duopoly green supply chain with vertical and horizontal competition, which includes a green manufacturer, a traditional manufacturer and a common retailer. The purpose of the paper is to address the following research problems: (1 How manufacturers’ market power influences the pricing policies and green strategies of supply chain members in a green supply chain? (2 What conditions do first-mover advantage and green competitive advantage be effective simultaneously? We establish the linear demand functions of the duopoly green supply chain and obtain the players’ optimal decisions under channel members’ different market power. Further, we conduct sensitivity analysis and numerical examples of players’ optimal decisions about consumer’s environmental awareness and greening cost effector. Based on the theoretical and numerical analysis, we find that green manufacturer would benefit from the increment of consumer’s environmental awareness but be depressed by the increase of greening cost, which is contrary to the traditional manufacturer. Additionally, correlations of retailer’ optimal decisions and profits between consumer’s environmental awareness and greening cost effector are related to the manufacturers’ market power structures. Furthermore, we find that the green competitive advantage is more effective than first-mover advantage while first-mover advantage does not always effective in the duopoly green supply chain. Specially, traditional manufacturer always prefers to be the follower competing with the green manufacturer, no matter with the variety of consumer’s environmental awareness and greening cost effector, while green manufacturer would like to be the leader only when the consumer’s environmental awareness is relatively high or the greening cost effector is relatively low.

  5. Mitigating Corporate Water Risk: Financial Market Tools and Supply Management Strategies

    Directory of Open Access Journals (Sweden)

    Wendy M. Larson

    2012-10-01

    Full Text Available A decision framework for business water-risk response is proposed that considers financial instruments and supply management strategies. Based on available and emergent programmes, companies in the agricultural, commodities, and energy sectors may choose to hedge against financial risks by purchasing futures contracts or insurance products. These strategies address financial impacts such as revenue protection due to scarcity and disruption of direct operations or in the supply chain, but they do not directly serve to maintain available supplies to continue production. In contrast, companies can undertake actions in the watershed to enhance supply reliability and/or they can reduce demand to mitigate risk. Intermediate strategies such as purchasing of water rights or water trading involving financial transactions change the allocation of water but do not reduce overall watershed demand or increase water supply. The financial services industry is playing an increasingly important role, by considering how water risks impact decision making on corporate growth and market valuation, corporate creditworthiness, and bond rating. Risk assessment informed by Conditional Value-at-Risk (CVaR measures is described, and the role of the financial services industry is characterised. A corporate decision framework is discussed in the context of water resources management strategies under complex uncertainties.

  6. Bacterial indicators of faecal pollution of water supplies and public ...

    African Journals Online (AJOL)

    Bacterial indicators of faecal pollution of water supplies and their significance to public health are reviewed in this paper, to highlight their levels of general acceptability and suitability as safeguards against health hazards associated with water supplies. Regular bacteriological analysis with the sole aim of detecting faecal ...

  7. Innovation in agro-food supply chains – The EU policy context

    NARCIS (Netherlands)

    Materia, V.C.; Dries, L.K.E.; Pascucci, S.

    2014-01-01

    This report provides insights into the definition of innovation and specifically how policies affect knowledge creation and innovation in agro-food supply chains (D9.1a, objective 1), considering innovation as a key determinant for competitiveness. The innovation system – rather than the linear

  8. [Comparison of different types automatic water-supply system for mouse rearing (author's transl)].

    Science.gov (United States)

    Kikuchi, S; Suzuki, M; Tagashira, Y

    1979-04-01

    Rearing and breeding scores were compared between groups of mice (JCL : ICR and ddN strains) raised with two different types of automatic water-supply systems; the Japanese type and the American type, using manual water-supply system as control. The mice raised with the manual water-supply system were superior in body weight gain as compared to those with two automatic water-supply systems. As to the survival rate, however, the m; anual water-supply system and the Japanese type gave better results than the American type. As to weanling rate in the breeding test, the manual water-supply system gave somewhat better result than either of the two automatic types. Accidental water leaks, which are serious problems of automatic systems, occurred frequently only when the American type was used. Only one defect of the Japanese type revealed was that it was unfavorable for mice with smaller size (e.g., young ddN mice), resulting in lower body weight gain as well as lower breeding scores.

  9. Long term assurance of supply of heavy water

    International Nuclear Information System (INIS)

    1978-01-01

    The answer of Switzerland and Great Britain to a number of questions concerning the long-term assurance of the supply of heavy water are presented. The original problems are seen in the wider context of raw materials supply and its assurance in general. Non-proliferation aspects are touched

  10. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  11. Energy efficiency of elevated water supply tanks for high-rise buildings

    International Nuclear Information System (INIS)

    Cheung, C.T.; Mui, K.W.; Wong, L.T.

    2013-01-01

    Highlights: ► We evaluate energy efficiency for water supply tank location in buildings. ► Water supply tank arrangement in a building affects pumping energy use. ► We propose a mathematical model for optimal design solutions. ► We test the model with measurements in 22 Hong Kong buildings. ► A potential annual energy saving for Hong Kong is up to 410 TJ. -- Abstract: High-rise housing, a trend in densely populated cities around the world, increases the energy use for water supply and corresponding greenhouse gas emissions. This paper presents an energy efficiency evaluation measure for water supply system designs and a mathematical model for optimizing pumping energy through the arrangement of water tanks in a building. To demonstrate that the model is useful for establishing optimal design solutions that integrate energy consumption into urban water planning processes which cater to various building demands and usage patterns, measurement data of 22 high-rise residential buildings in Hong Kong are employed. The results show the energy efficiency of many existing high-rise water supply systems is about 0.25 and can be improved to 0.26–0.37 via water storage tank relocations. The corresponding annual electricity that can be saved is 160–410 TJ, a 0.1–0.3% of the total annual electricity consumption in Hong Kong.

  12. Energy supplying of the Europe and foreign policy; Approvisionnement energetique de l'Europe et politique etrangere commune. Une problematique

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P

    1998-03-01

    This paper aims to answer the question on the impact of the energy supply in Europe on the foreign and safety policy. The geo-political principles of the energy, the european petroleum and gaseous supply and the american policy facing the european energy supply are analyzed. (A.L.B.)

  13. Electricity price and Southern California's water supply options

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry [Lawrence Berkeley National Laboratory, Camilla Dunham Whitehead, Andre Fargeix, Golden Gate Economics, 1 Cycltron Road, Berkeley, CA 94720 (United States)

    2004-11-01

    This paper evaluates the impact of fluctuating electricity prices on the cost of five options to increase the water supply to urban areas in Southern California-new surface storage, water purchases, desalination, wastewater recycling, and conservation.We show that the price of electricity required to produce and transport water influences the cost of water supply options and may alter the decision makers economic ranking of these options. When electricity prices are low, water purchase is the cost effective option. When prices exceed US$ 86/MWh, conservation of electricity and water through installation of high efficiency clothes washers is the most effective option.

  14. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  15. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  16. Water supply and management concepts

    Science.gov (United States)

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  17. Water Policy Brief no.2

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    The Millennium Development Goals identify lack of clean water supply as a key factor in the lives of the ... provides a foundation to motivate investment by ... participate in decision-making, and have ... water years, allowing farmers to invest in.

  18. Optimal inventory policy in a closed loop supply chain system with multiple periods

    International Nuclear Information System (INIS)

    Sasi Kumar, A.; Natarajan, K.; Ramasubramaniam, Muthu Rathna Sapabathy.; Deepaknallasamy, K.K.

    2017-01-01

    Purpose: This paper aims to model and optimize the closed loop supply chain for maximizing the profit by considering the fixed order quantity inventory policy in various sites at multiple periods. Design/methodology/approach: In forward supply chain, a standard inventory policy can be followed when the product moves from manufacturer, distributer, retailer and customer but the inventory in the reverse supply chain of the product with the similar standard policy is very difficult to manage. This model investigates the standard policy of fixed order quantity by considering the three major types of return-recovery pair such as commercial returns, end- of- use returns, end –of- life returns and their inventory positioning at multiple periods. The model is configured as mixed integer linear programming and solved by IBM ILOG CPLEX OPL studio. Findings: To find the performance of the model a numerical example is considered for a product with three Parts (A which of 2nos, B and C) for 12 multiple periods. The results of the analysis show that the manufacturer can know how much should to be manufacture in multiple periods based on Variations of the demand by adopting the FOQ inventory policy at different sites considering its capacity constraints. In addition, it is important how much of parts should be purchased from the supplier at the given 12 periods. Originality/value: A sensitivity analysis is performed to validate the proposed model two parts. First part of the analysis will focus on the inventory of product and parts and second part of analysis focus on profit of the company. The analysis which provides some insights in to the structure of the model.

  19. Optimal inventory policy in a closed loop supply chain system with multiple periods

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, A.; Natarajan, K.; Ramasubramaniam, Muthu Rathna Sapabathy.; Deepaknallasamy, K.K.

    2017-07-01

    Purpose: This paper aims to model and optimize the closed loop supply chain for maximizing the profit by considering the fixed order quantity inventory policy in various sites at multiple periods. Design/methodology/approach: In forward supply chain, a standard inventory policy can be followed when the product moves from manufacturer, distributer, retailer and customer but the inventory in the reverse supply chain of the product with the similar standard policy is very difficult to manage. This model investigates the standard policy of fixed order quantity by considering the three major types of return-recovery pair such as commercial returns, end- of- use returns, end –of- life returns and their inventory positioning at multiple periods. The model is configured as mixed integer linear programming and solved by IBM ILOG CPLEX OPL studio. Findings: To find the performance of the model a numerical example is considered for a product with three Parts (A which of 2nos, B and C) for 12 multiple periods. The results of the analysis show that the manufacturer can know how much should to be manufacture in multiple periods based on Variations of the demand by adopting the FOQ inventory policy at different sites considering its capacity constraints. In addition, it is important how much of parts should be purchased from the supplier at the given 12 periods. Originality/value: A sensitivity analysis is performed to validate the proposed model two parts. First part of the analysis will focus on the inventory of product and parts and second part of analysis focus on profit of the company. The analysis which provides some insights in to the structure of the model.

  20. Optimal inventory policy in a closed loop supply chain system with multiple periods

    Directory of Open Access Journals (Sweden)

    SasiKumar A.

    2017-05-01

    Full Text Available Purpose: This paper aims to model and optimize the closed loop supply chain for maximizing the profit by considering the fixed order quantity inventory policy in various sites at multiple periods. Design/methodology/approach: In forward supply chain, a standard inventory policy can be followed when the product moves from manufacturer, distributer, retailer and customer but the inventory in the reverse supply chain of the product with the similar standard policy is very difficult to manage. This model investigates the standard policy of fixed order quantity by considering the three major types of return-recovery pair such as commercial returns, end- of- use returns, end –of- life returns and their inventory positioning at multiple periods.  The model is configured as mixed integer linear programming and solved by IBM ILOG CPLEX OPL studio. Findings: To find the performance of the model a numerical example is considered for a product with three Parts (A which of 2nos, B and C for 12 multiple periods. The results of the analysis show that the manufacturer can know how much should to be manufacture in multiple periods based on Variations of the demand by adopting the FOQ inventory policy at different sites considering its capacity constraints. In addition, it is important how much of parts should be purchased from the supplier at the given 12 periods. Originality/value: A sensitivity analysis is performed to validate the proposed model two parts. First part of the analysis will focus on the inventory of product and parts and second part of analysis focus on profit of the company. The analysis which provides some insights in to the structure of the model.

  1. Energy policy of the EU and the role of Turkey in Energy Supply Security

    Directory of Open Access Journals (Sweden)

    MEHTER AYKIN Sibel

    2018-01-01

    Full Text Available All the nations define strategies and develop policies on national and international levels to eliminate risks against energy security. The aim of this paper is to define the energy policy of the European Union and identify the potential of Turkey in securing energy supply to the European Union. To achieve this end, after explaining the policy frame of the European Union and that of Turkey in energy related matters, the existing and planned energy routes expanding from the Russian Federation, Caspian Sea and the Middle East to the European Continent are mapped, and the role assigned to Turkey as an energy hub is exemplified with reference to its accession process. It is concluded that Turkey’s membership is to enrich the European Union and contribute to its energy supply security.

  2. Accessibility levels to potable Water Supply in Rural Areas of Akwa ...

    African Journals Online (AJOL)

    ... of 50 rural communities were sampled using table of random numbers. Community heads or their spokesmen/women in the sampled areas were target respondents and data on major sources of water supply, distance to the nearest major source of water supply and the number of water boreholes in the communities were ...

  3. Policy Preferences about Managed Aquifer Recharge for Securing Sustainable Water Supply to Chennai City, India

    Directory of Open Access Journals (Sweden)

    Norbert Brunner

    2014-12-01

    Full Text Available The objective of this study is to bring out the policy changes with respect to managed aquifer recharge (focusing on infiltration ponds, which in the view of relevant stakeholders may ease the problem of groundwater depletion in the context of Chennai City; Tamil Nadu; India. Groundwater is needed for the drinking water security of Chennai and overexploitation has resulted in depletion and seawater intrusion. Current policies at the municipal; state and national level all support recharge of groundwater and rainwater harvesting to counter groundwater depletion. However, despite such favorable policies, the legal framework and the administrative praxis do not support systematic approaches towards managed aquifer recharge in the periphery of Chennai. The present study confirms this, considering the mandates of governmental key-actors and a survey of the preferences and motives of stakeholder representatives. There are about 25 stakeholder groups with interests in groundwater issues, but they lack a common vision. For example, conflicting interest of stakeholders may hinder implementation of certain types of managed aquifer recharge methods. To overcome this problem, most stakeholders support the idea to establish an authority in the state for licensing groundwater extraction and overseeing managed aquifer recharge.

  4. Conflict between Water Policy and Sustainability

    Science.gov (United States)

    Barros, A. F.

    2001-05-01

    Recent developments in the area of water policy have focussed around the concepts of Integrated Water Resources Management (IWRM). The goal of this activity has been to improve the efficiency of the potential worldwide investment of \\$80 billion per year into the water sector, and to lobby for more expenditure to meet the rapidly expanding demands placed upon water resources worldwide. Unfortunately, there is no definitive and widely accepted definition of IWRM and this fuels the long-standing feeling amongst the scientific community that water policy studies and institutions shortchange sustainability considerations, including those dealing scientific understanding of hydrology and aquatic ecosystems. This is made more difficult because the concepts used in describing sustainability are themselves diffuse and can be contradictory. The nature of understanding of the essential elements of sustainable development and those of the policy community are basically different. Policy has to be general, descriptive, and immediate-sustainability is just the opposite; it must be specific, analytical, and take a long perspective. No one on either side of the divide would claim that the other activities are not important, but bridging the divide is extremely difficult and rare. Typically, policy studies try to incorporate the bureaucratic concepts of water management and institutional reforms without considering the analytical work associated with long-term sustainability of water resources. Furthermore, water resource problems are characterized by high levels of complexity and require a strong interdisciplinary mix of approaches. Unfortunately, what is known and what is likely in the near future are subject to wide interpretation by different observers. This paper examines the conflict between the demands of water policy, which is essentially short-term and narrowly focused with the demands of sustainability, which are long-term and broadly based.

  5. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.

    1998-01-01

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  6. Use of the water supply system of special purpose in buildings

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    Full Text Available A water supply system of a special purpose is a necessary element in hot and cold shops of the industrial enterprises, office buildings and the medical centers, and also other rooms. The water supply systems of a special purpose, which give subsalty, sparkling water and water sated with oxygen, allow people to prevent, for example, strong dehydration of an organism, which is possible at big losses of water, especially in case of the people working in hot shops. Various elements of special drinking water supply system are given in the article, their main functions are described. Different types of the water folding devices pumping water to consumers, one of which is drinking fountain, are considered. Possible systems of water filtration, which can be established for quality improvement, are transferred. Among them the great role is played by membrane technologies and the return osmosis, which is widely applied now. Today there is a possibility of construction, both the centralized water supply system of a special purpose, and local. Besides, the least is a more preferable option taking into account capital expenditure for construction and operation, and also it can lead to solid resource-saving as a result of the electric energy saving going for water heating in heaters. Automatic machines of drinking water for a local water supply system of a special purpose have indisputable advantages. They are capable to carry out several functions at the same time, and also to distribute water to consumers. It allows placing all the necessary equipment, which will be well in harmony with the environment in their small and compact case, and will fit into any difficult interior of the room. Also they are very easily connected to the systems of an internal water supply system by means of a propylene tube that allows to change their sposition in space and to transfer to any place of the room with fast installation of equipment. Also the ecological effect was

  7. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    Science.gov (United States)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  8. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  9. Bridging the Water Policy and Management Silos: An Opportunity for Leveraged Capacity Building

    Science.gov (United States)

    Wegner, D. L.

    2017-12-01

    The global community is challenged by increasing demand and decreasing water supplies. Historically nations have focused on local or regional water development projects that meet specific needs, often without consideration of the impact on downstream transboundary water users or the watershed itself. Often these decisions have been based on small sets of project specific data with little assessment on river basin impacts. In the United States this disjointed approach to water has resulted in 26 federal agencies having roles in water management or regulation, 50 states addressing water rights and compliance, and a multitude of tribal and local entities intersecting the water process. This approach often manifests itself in a convoluted, disjointed and time-consuming approach. The last systematic and comprehensive review of nationwide water policy was the 1973 National Water Commission Report. A need exists for capacity building collaborative and integrative leadership and dialogue. NASA's Western Water Applications Office (WWAO) provides a unique opportunity to leverage water and terrain data with water agencies and policy makers. A supported WWAO can provide bridges between federal and state water agencies; provide consistent integrated hydrologic and terrain based data set acquired from multiple earth orbiting satellites and airborne platforms; provide data sets leveraged with academic and research based entities to develop specific integrative predictive tools; and evaluate hydrology information across multiple boundaries. It is the author's conclusion that the Western Water Applications Office can provide a value-added approach that will help translate transboundary water and earth terrain information to national policy decisions through education, increased efficiency, increased connectivity, improved coordination, and increased communication. To be effective the WWAO should embrace five objectives: (1) be technically and scientifically valid; (2

  10. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, Berit; Jørgensen, C.

    2013-01-01

    Nordhavn, a former industrial harbour area is under development into an integrated part of Copenhagen City. All infrastructures will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. Our project assesses the potential for establishing a secondary water supply to relieve...... the pressure on the primary and conventional groundwater based drinking water supply. Four alternative water resources for a secondary water supply have been considered: 1) polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3...... assessment method for use in alternative water supplies and an evaluation of the four suggested concepts for alternative water supply in Copenhagen....

  11. Water Supply and Sanitation Facility Accessibility in Off-Campus ...

    African Journals Online (AJOL)

    Water Supply and Sanitation Facility Accessibility in Off-Campus Houses ... on drinking water source, rate of illness, type and usage of sanitation facilities. ... wells, unprotected dug wells; while others during the wet season harvest rain water.

  12. Measuring the Impact of Convenient Water Supply on Household Time Use in Rural Ethiopia

    Science.gov (United States)

    Cook, J.; Masuda, Y.; Fortmann, L.; Smith-Nilson, M.; Gugerty, M.

    2012-12-01

    What is the impact of providing convenient water supply on water carriers' pattern of time use? How much of the freed time is re-allocated to paid market work, education (for girls), agricultural labor, or leisure? Do women report spending more time on activities they enjoy? Does convenient water supply lead to a re-allocation of leisure time to other household members? These questions are an important, but largely missing, piece of the economic evidence base for investment in the water supply sector. Cairncross and Valdmanis (2007) observe that "given the relevance of the time-saving benefit to water supply policy and the fact that the benefit is usually uppermost in the mind of the consumer, it is remarkable how few data have been collected on the amounts of time spent collecting water". We address this gap by measuring changes in time use among female water carriers before and after new water systems are installed in three rural villages in the Oromia region of Ethiopia. The timing of completion of the projects in the three villages was staggered over time for logistical reasons, so our quasi-experimental design allows us to control for any region-wide changes in time use. Because of low literacy levels, we used a pictorial time use elicitation approach based on respondents' recall of the previous day as well as the standard questions used in the DHS and LSMS ("how many minutes..."). We measured time use for all household members over the age of 10. We use this unique panel dataset with both pre- and post-project time use data to examine not only the effect on water carriers' time use but also any intra-household reallocation of time savings. In total, we interviewed 454 randomly-selected households in the three villages over three rainy seasons, and collected time use information on 1,590 household members. Primary water carriers spend (pre-project) an average of 110 minutes per day collecting water, roughly representative of water collection times reported in

  13. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    Directory of Open Access Journals (Sweden)

    Li Xueying

    2017-03-01

    Full Text Available Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  14. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Horton, T. R.

    1985-10-01

    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  15. Game theory competition analysis of reservoir water supply and hydropower generation

    Science.gov (United States)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  16. The Supply of Medical Radioisotopes. Implementation of the HLG-MR Policy Approach: Results from a Self-assessment by the Global 99Mo/'99mTc Supply Chain

    International Nuclear Information System (INIS)

    Peykov, Pavel; Cameron, Ron

    2013-03-01

    At the request of its member countries, OECD/NEA became involved in global efforts to ensure a secure supply of 99 Mo and ' 99m Tc. Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) examined the causes of supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The 'Economic Study' of the molybdenum-99 ( 99 Mo) and technetium-99m (' 99m Tc) supply chain published by the NEA clearly demonstrated that the pricing structure at nuclear research reactors prior to the most recent supply shortage in 2009-10 was not economically sustainable. Host nations traditionally subsidised the cost of irradiation services for 99 Mo production, along with experimental research at reactors. With a move away from subsidising 99 Mo production that often benefits foreign nations or foreign companies, pricing must recover the full cost of production to ensure economic sustainability and a long-term secure supply of medical isotopes. Appropriate pricing would also encourage an efficient use of the product, reducing wasted 99 Mo/' 99m Tc and thus reducing excess production and the associated radioactive waste. A key principle adopted by the HLG-MR was that all producers should move towards full-cost recovery and should implement the other principles adopted by the group. In February 2012, the NEA web-published a guidance document with a methodology for full- cost recovery and an associated Excel spreadsheet. This costing methodology identifies the essential elements that should be included when determining the full cost of 99 Mo irradiation services and how these elements should be allocated between various missions in the case of multipurpose facilities. The application of the costing methodology at all 99 Mo/' 99m Tc-producing research reactors and other production technology facilities within the global supply chain will ensure a common approach to full

  17. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  18. How to control water supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Hornby, D M

    1965-05-17

    Exploring for water can be as expensive as exploring for oil, a factor which is likely to become increasingly clear. Basic essentials of any water-supply study require an understanding and knowledge of the limiting conditions of quality, quantity, cost, and reliability. A logical 10-step program is outlined. The initial steps are as follows: (1) analyze the acutal water demand for flood requirements; (2) select the logical and apparent sources of supply; (3) collect and assess all availabe pertinent information; and (4) formulate a plan of analysis and attack for the study. The intermediate steps are as follows: (5) use this plan in making field and office investigations: (6) having determined the alternatives and preliminary costs, prepare a written assessment; and (7) using the brain-storming technique within the company or unit, utilize the assessment to devise a master action plan and budget for anticipated expenditures. The final steps are as follows: (8) complete other required investigations based upon the master plan and budget; (9) prepare detailed design, specifications and estimates; and (10) call tenders or negotiate the most favorable arrangements with respect to construction time and price.

  19. Defining regulatory requirements for water supply systems in Vietnam

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgiyevich

    2014-01-01

    Full Text Available In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.. It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person, work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning

  20. Improving Water Demand Management by Addressing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    Efforts to conserve water by improving water demand management policies .... First, ensure fair access to sustainable water supply, as well as, responsible water use. ... Water policy can also mandate reducing the loss of quantity or quality of ...

  1. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  2. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  3. Pricing and ordering decisions of two competing supply chains with different composite policies

    DEFF Research Database (Denmark)

    Taleizadeh, Ata Allah; Noori-Daryan, Mahsa; Govindan, Kannan

    2016-01-01

    In todays global highly competitive markets, competition happens among supply chains instead of companies, as the members of supply chains. So, the partners of the chains seek to apply efficient coordinating strategies like discount, return, refund, buyback, or the other coordinating policies...... to abate the operation costs of the chains and subsequently increase market shares. Hence, because of the importance and application of these strategies in the current non-exclusive markets, in this study, we introduce different composite coordinating strategies to enhance the coordination of the supply...... chains. Here, we consider two competing supply chains where both chains launch the same product under different brands to the market by applying different composite coordinating strategies. Each supply chain comprises one manufacturer and a group of non-competing retailers where the manufacturer receives...

  4. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  5. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    Science.gov (United States)

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum

  6. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  7. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  8. FEATURES OF SCIENTIFIC INVESTIGATIONS CONDUCTED IN THE LABORATORIES OF THE DEPARTMENT OF WATER SUPPLY OF MGSU

    Directory of Open Access Journals (Sweden)

    Nikitina Irina Nikolaevna

    2016-03-01

    Full Text Available The article focuses on the work of the laboratories of the Department of Water Supply of MGSU. The laboratory of pipe-lines, pumping equipment and sanitary equipment operates in MGSU affiliated to the department of water supply. A hydraulic stand for testing and defining the the hydraulic characteristics of pressure and free-flow pipelines of water supply and sewerage systems is installed there. There are also stands for investigating the sanitary equipment of the buildings, the fire and hot water supply systems. The main research directions of the department of water supply are diverse: hydraulics of water supply systems, recon-struction of pipelines using trenchless technologies, reliable water supply and distribution systems, purification of natural water for drinking and industrial water supply, post-treatment of natural water for domestic water supply, resource conservation in domes-tic water supply systems, etc. The laboratory also has a computer lab, able to simultane-ously hold up to 30 students. In collaboration with the laboratory there operates a scien-tific circle for students and Master students, which provides a lot of interesting and useful information on the latest developments.

  9. Development of datamining software for the city water supply company

    Science.gov (United States)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  10. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Science.gov (United States)

    2010-10-01

    ... the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.58 Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with...

  11. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  12. Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network

    Science.gov (United States)

    Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad

    2017-11-01

    Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.

  13. How Do Households Respond to Unreliable Water Supplies? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Batsirai Majuru

    2016-12-01

    Full Text Available Although the Millennium Development Goal (MDG target for drinking water was met, in many developing countries water supplies are unreliable. This paper reviews how households in developing countries cope with unreliable water supplies, including coping costs, the distribution of coping costs across socio-economic groups, and effectiveness of coping strategies in meeting household water needs. Structured searches were conducted in peer-reviewed and grey literature in electronic databases and search engines, and 28 studies were selected for review, out of 1643 potentially relevant references. Studies were included if they reported on strategies to cope with unreliable household water supplies and were based on empirical research in developing countries. Common coping strategies include drilling wells, storing water, and collecting water from alternative sources. The choice of coping strategies is influenced by income, level of education, land tenure and extent of unreliability. The findings of this review highlight that low-income households bear a disproportionate coping burden, as they often engage in coping strategies such as collecting water from alternative sources, which is labour and time-intensive, and yields smaller quantities of water. Such alternative sources may be of lower water quality, and pose health risks. In the absence of dramatic improvements in the reliability of water supplies, a point of critical avenue of enquiry should be what coping strategies are effective and can be readily adopted by low income households.

  14. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  15. Fragmented landscapes of water supply in suburban Hanoi

    NARCIS (Netherlands)

    Wright-Contreras, Lucia; March, Hug; Schramm, S.

    2017-01-01

    Facing the challenges of city planning in the frame of rapid urbanization in the Global South, this study addresses the relationship between the urban development of Hanoi, Vietnam, and water supply including users’ perception of water accessibility and satisfaction of coverage, quality, and cost.

  16. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, B.; Jørgensen, C.

    2014-01-01

    Increasing stress on water resources is driving urban water utilities to establish new concepts for water supply. This paper presents the consequences of proposed alternative water supply options using a unique combination of quantitative and qualitative methods from different research fields....... A former industrial harbor area in Copenhagen, Denmark, is currently under development and all infrastructure will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. To reduce stress on water resources it has been proposed to establish a secondarywater supply in the area...... as an alternative to the conventional groundwater-based drinking water supply. Four alternative concepts for a secondarywater supply have been considered: 1) slightly polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3) desalinated...

  17. Forestland owners’ willingness to consider multiple ways of supplying biomass simultaneously: Implications for biofuel incentive policies

    International Nuclear Information System (INIS)

    Wolde, Bernabas; Lal, Pankaj; Burli, Pralhad

    2017-01-01

    Because socioeconomic based approaches account for relevant limiting and motivating factors, they provide a more realistic measurement of forestland owners’ willingness to supply biomass for bioenergy production- information useful to policy makers in setting production targets and in designing relevant incentive programs. Although forestland owners can supply biomass using different means, including supplying biomass from existing stands and changing land use to establish feedstock plantation, among others, previous studies mostly focus only on a given way of supplying biomass at a time. This produces incomplete information that adversely affects its use. By presenting survey takers in Virginia and Texas three different ways of supplying biomass at the same time, we determine forestland owners’ willingness to consider multiple ways of supplying biomass simultaneously and identify the factors that predict such behavior, assess overlap in forestland owners across the different ways of supplying biomass, and assess if and how respondents’ forest management plans and sustainability concerns correspond with their supply decision. Our results show a higher and more articulated rate of willingness to supply biomass than reported in previous studies. The results also suggest that opportunities exist for synergizing programs that incentivize disparate ways of supplying biomass. - Highlights: • Forestland owners are more willing to supply biomass than previous estimated. • Forestland owners will consider multiple ways of supplying biomass simultaneously. • Socioeconomics, sustainability concerns, and management plans predict this behavior. • Incentive programs can target multiple means of supplying biomass simultaneously. • Considerable mismatches exist between the suppliers’ preferences and existing policies.

  18. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    Science.gov (United States)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  19. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  20. Consumer returns policies with endogenous deadline and supply chain coordination

    DEFF Research Database (Denmark)

    Xu, Lei; Li, Yongjian; Govindan, Kannan

    2015-01-01

    on consumers' behavior and the pricing and inventory policies of the retailer are systematically investigated. Moreover, based on the analysis of consumer return behavior on a traditional buy-back contract, we present a new differentiated buy-back contract, contingent on return deadline, to coordinate a supply......This paper considers returns policies under which consumers' valuation depends on the refund amount they receive and the length of time theymustwait after the item is returned. Consumers face an uncertain valuation before purchase, and the realization of that purchase's value occurs only after...... chain consisting of an upstream manufacturer and a downstream retailer. Finally, extensions on some specific behavioral factors such as moral hazard, inertia return, and external effect are investigated....

  1. Radon exposed workplaces in Bavarian public water supplies

    International Nuclear Information System (INIS)

    Heinrich, T.; Huebel, K.; Schindlmeier, W.

    1998-01-01

    From April 1996 to July 1996 a radon-screening in 112 Bavarian water supplies was carried out to determine the radon concentration in workplaces. In some regions with granit or gneiss stones as underground a considerable radiation exposure to the employees in public water supplies can be expected. The median of the measured radon concentration in relevant workplaces is found to be 4000 Bq/m 3 in the areas with granite or gneiss. This is approximately the fourfold of the median measured in a reference area with sandstone as underground. In some workplaces radon concentrations of more than 100000 Bq/m 3 can be found. (orig.) [de

  2. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    Science.gov (United States)

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American

  3. Margins of the law pertaining to water supplies and waterways

    International Nuclear Information System (INIS)

    Bickel, C.

    1981-01-01

    The author examines legal questions coming from points of contact of the law pertaining to water supplies and waterways on the one hand with the Waste Management Law, the Atomic Energy Law and Criminal Law on the other hand. He tries to find ways for solving the practical problems which arise with the execution of the law pertaining to water supplies and waterways. (HSCH) [de

  4. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich

    2014-12-01

    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  5. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  6. Emission-dependent supply chain and environment-policy-making in the ‘cap-and-trade’ system

    International Nuclear Information System (INIS)

    Du, Shaofu; Zhu, Lili; Liang, Liang; Ma, Fang

    2013-01-01

    The paper focuses on a so-called emission-dependent supply chain consisting of one single emission-dependent manufacturer and one single emission permit supplier in the ‘cap-and-trade’ system, where emission permit becomes requisite for production. We consider the emission cap of emission-dependent manufacturer allocated by the government as a kind of environmental policy and formally investigate its influence on decision-makings within the concerned emission-dependent supply chain as well as distribution fairness in social welfare. It is proved that the system-wide and the manufacturer's profits increase with the emission cap while the permit supplier's decreases. There is room for manufacturer and permit supplier to coordinate the supply chain to get more profit in a certain condition. - Highlights: ► We model an emission-dependent supply chain with a permit supplier and a firm. ► We game-theoretically analyze their optimal decisions in a ‘cap-and-trade' system. ► It is possible to coordinate the supply chain in a certain condition. ► The effect of emission cap as an environment policy is considered. ► Bernoulli–Nash Social Welfare Function is employed to analyze the optimal cap

  7. Radiological assessment of private water supplies in Dolgellau, North Wales

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 100 private water supplies in the Meirionnydd District Council area of Dolgellau, North Wales have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of radon-222. Of the 100 supplies tested all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical critical group which would arise from the consumption of water during a single year. The maximum adult annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 3.2 and 560 μSv, respectively. (author)

  8. From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Guangwei Huang

    2015-07-01

    Full Text Available A water allocation policy that aimed to balance water demand with water availability to ensure sustainability was implemented in an arid region of China over ten years ago. This policy’s success was assessed across three dimensions: society, the environment, and the economy. While the assessment was not intended to be comprehensive, it highlighted the best outcomes of the policy intervention while revealing some hidden issues. It was found that although the policy was successful in placing a ceiling on water use in the middle reaches of the Heihe River, the Water User Association, one of the main actors in water policy implementation, was under-recognized, even though it functioned well. Moreover, the economic structural adjustment at the macro level had not led to any significant reduction in water use, the reasons for which were explored.

  9. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  10. Forests, Water and People: Drinking water supply and forest lands in the Northeast and Midwest United States, June 2009

    Science.gov (United States)

    Martina Barnes; Albert Todd; Rebecca Whitney Lilja; Paul Barten

    2009-01-01

    Forests are critically important to the supply of clean drinking water in the Northeast and Midwest portion of the United States. In this part of the country more than 52 million people depend on surface water supplies that are protected in large part by forested lands. The public is generally unaware of the threats to their water supplies or the connection between...

  11. Does Clean Water Make You Dirty? Water Supply and Sanitation in the Philippines

    Science.gov (United States)

    Bennett, Daniel

    2012-01-01

    Water supply investments in developing countries may inadvertently worsen sanitation if clean water and sanitation are substitutes. This paper examines the negative correlation between the provision of piped water and household sanitary behavior in Cebu, the Philippines. In a model of household sanitation, a local externality leads to a sanitation…

  12. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  13. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  14. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    Science.gov (United States)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    greatest climate change risk to water supply. Identifying the key climate vulnerability will inform effective adaptation and water management policies, which may include increasing the watersheds capacity to capture and divert wet season precipitation. It will also inform future research, which may involve age dating water, developing local adaptation plans, and improving climate and streamflow monitoring.

  15. Radiological assessment of private water supplies in Berwick-upon-Tweed, England

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 95 private water supplies and 5 main supplies in the Berwick-Upon-Tweed area of England have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of Radon-222. Of the 100 supplies tested, all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical ''Critical'' group which would arise from the consumption of water during a single year. The maximum infant annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 0.5 μSv and 2290μSv respectively. (Author)

  16. A methodology for the design of photovoltaic water supply systems

    International Nuclear Information System (INIS)

    Vilela, O.C.; Fraidenraich, N.

    2001-01-01

    Photovoltaic pumping systems are used nowadays as a valuable alternative to supply water to communities living in remote rural areas. Owing to the seasonal variation and the stochastic behavior of solar radiation, at certain times the supply of water may not be able to meet demand. A study has been made of the relationship between water pumping capacity, reservoir size and water demand, for a given water deficit. As a result, curves of equal water deficit (iso-deficit lines) can be obtained for various combinations of PV pumping capacity and reservoir size. A methodology to generate those curves is described, using as its main tool the characteristic curve of the system, that is, the relationship between water flow and collected solar radiation. The characteristic curve represents the combined behavior of the water pumping system and the well. The influence of the minimum collected solar radiation level, necessary to start the system's operation (the critical radiation level I C ). is also analyzed. Results show that PV pumping systems with different characteristic curves, but with the same critical levels, yield the same set of iso-deficit lines. This drastically reduces the number of necessary solutions to those corresponding to a few values of I C . Iso-deficit lines, calculated for the locality of Recife (PE), Brazil, are used to illustrate the sizing procedure PV water supply systems. (author)

  17. Factors that affect public-supply water use in Florida, with a section on projected water use to the year 2020

    Science.gov (United States)

    Marella, R.L.

    1992-01-01

    Public-supply water use in Florida increased 242 percent between 1960 and 1987 from 530 Mgal/d (million gallons per day) to 1,811 Mgal/d. This change is primarily a result of increases in population and tourism since 1960. Public-supply utilities provide water to a variety of users. In 1985, 71 percent of the water used for public supply was delivered for residential uses, 15 percent for commercial uses, 9 percent for industrial uses, and the remaining 5 percent for public use or other uses. Residential use of public-supply water in Florida has increased nearly 280 Mgal/d, but has decreased in the proportion of total deliveries from 80 to 71 percent between 1975 and 1985. This trend resulted from increased tourism and related commercial services associated with population and visitors. One of several factors that influences public-supply water use in Florida is the increase in resident population, which increased from 4.95 million in 1960 to more than 12.0 million in 1987. Additionally, Florida's nonresident population increased from 18.8 million visitors in 1977, to 34.1 million visitors in 1987, and the part of Florida?s population that relies on public-supply water increased from 68 percent in 1960, to 86 percent in 1987. The public supply per capita use was multiplied by the projected populations for each county for the years 2000, 2010, and 2020 to forecast public-supply water use. Using medium projections, Florida?s population is expected to increase to nearly 16 million in the year 2000, to 18 million in the year 2010, and to almost 20 million in the year 2020, of which an estimated 13.5 million people will be supplied water from public-supply water systems in the year 2000, 15 million in 2010, and nearly 17 million by the year 2020. Public-supply water use is expected to increase to a projected (medium) 2,310 Mgal/d in the year 2000, 2,610 Mgal/d in the year 2010, and 2,890 Mgal/d in the year 2020. If the population exceeds the medium projections for the

  18. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  19. The Effects of Intermittent Drinking Water Supply in Arraiján, Panama

    OpenAIRE

    Erickson, John Joseph

    2016-01-01

    Over three hundred million people throughout the world receive supply from piped drinking water distribution networks that operate intermittently. This dissertation evaluates the effects of intermittent supply on water quality, pipe damage and service reliability in four study zones (one continuous and three intermittent) in a peri-urban drinking water distribution network in Arraiján, Panama. Normal water quality in all zones was good, with 97% of routine water quality grab samples from the ...

  20. Policy design in closed-loop supply chains for the integrated management of component recycling and spare parts supply in the electronics industry

    Science.gov (United States)

    Schroeter, Marcus; Spengler, Thomas

    2004-02-01

    The strategy to recover components from discarded electrical and electronic equipment to obtain spare parts is promising, especially during the final service phase. In that phase, the original product is no longer produced and the sources of new parts are often limited. Controlling those closed-loop supply chains is challenging. Decision makers have to choose when to acquire discarded equipment, when to recover used parts, and when to produce new parts. We developed a generic system dynamics model that provides a test for various proposed policies to control closed-loop supply chains with parts recovery and spare-parts supply.

  1. Assessment of domestic water supply situation in rural communities ...

    African Journals Online (AJOL)

    Water is needed by man for the sustenance of life and it is the second most important natural resource used by man after the air were breathe. Man survives longer without food than without water. The socio-economic development of man is determined partly by the availability of water. The supply of safe pipe-borne water in ...

  2. How war, drought, and management impact water supply in the Tigris/Euphrates

    Science.gov (United States)

    Hasan, M.; Moody, A.; Benninger, L. K.

    2017-12-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region, particularly on structures such as Mosul and Haditha dams, and the Ramadi and Falluja Barrages, all of which have experienced threats or changes in sovereignty. Water supply is also under pressure from upstream dam management and drought. In this research, we use the normalized difference water index (NDWI) applied to Landsat imagery in order to monitor changes in the extent of various water bodies (1985-present). We looked to see if significant anomalies from expected surface area were best explained by conflict, drought, or dam management. Conflict (though not every conflict) produced the greatest sudden changes in water supply; drought produced the greatest absolute changes, but at a gentle pace. Drought impacts are strongest in the furthest downstream reservoirs. Conflict-driven changes were tied to very specific human manipulations in water supply in order to either advance military objectives, "punish" civilians on the wrong side of the fight, or to prevent humanitarian catastrophe. Satellite images allow for an objective analysis of how strong these manipulations were. The information may not be as exact as on-the-ground information, but when the flow of information is disrupted by war, satellite data can be an alternative source of insights into water supply changes.

  3. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  4. Understanding the policy environment for immunization supply chains: Lessons learned from landscape analyses in Uganda and Senegal.

    Science.gov (United States)

    Luzze, Henry; Badiane, Ousseynou; Mamadou Ndiaye, El Hadji; Ndiaye, Annette Seck; Atuhaire, Brian; Atuhebwe, Phionah; Guinot, Phillippe; Fry Sosne, Erin; Gueye, Abdoulaye

    2017-04-19

    As immunization programs around the world undergo rapid change and expansion, supply chain and logistics systems have become strained, making it increasingly challenging for national public health systems to provide reliable, safe, and efficient access to vaccines. Governments and immunization partners have been aware of this problem for several years, and in 2010, the World Health Organization (WHO) launched the Effective Vaccine Management (EVM) process to help countries identify shortcomings in their immunization supply chains and develop plans for systematic improvement. EVM improvement plans now exist in all Gavi-eligible countries plus many middle- and upper-income countries; however, implementation has been slow and in many cases fraught with financial, managerial, structural, and political roadblocks. Recognizing that significant change of any kind requires a supportive policy environment and strong leadership, PATH began working in Uganda and Senegal to landscape the policy environment around immunization and identify relevant policies, administrative and technical roles and responsibilities, and other issues that may be affecting the supply chain for immunization. The policy landscape assessments included a desk review and a series of structured, in-depth interviews with key international, national, and local stakeholders. The findings highlighted a number of critical issues and challenges in both countries that may be preventing supply chains from functioning optimally. These challenges include a need for better coordination and planning between immunization programs and supply chain managers; the need for sufficient, timely and reliable financing for all aspects of immunization programs; the need for high-level managers trained in immunization supply chain management; and an urgent need for better, more timely data for decision-making. Overcoming these challenges will require the involvement of high-level political actors-including ministers of health

  5. Farmers' Willingness to Pay for Private Irrigation Supply in Nandom ...

    African Journals Online (AJOL)

    2017-05-01

    May 1, 2017 ... by income, age, farm size, engagement in an off-farm occupation, labour hours invested in farm operation, yield losses ... food insecurity and migration of their household members (Rademacher-Schulz & ... Ghana's current policy on agriculture water supply, the National Irrigation Policy,. Strategies and ...

  6. A Holistic ICT Solution to Improve Matching between Supply and Demand over the Water Supply Distribution Chain

    Directory of Open Access Journals (Sweden)

    Gabriel Anzaldi

    2014-12-01

    Full Text Available While many water management tools exist, these systems are not usually interconnected and therefore cannot communicate between one another, preventing Integrated Water Resources Management to be fully achieved. This paper presents the solution proposed by WatERP project* where a novel solution enables better matching between water supply and demand from holistic perspective. Subsystems that control the production, management and consumption of water will be interconnected through both information architecture and intelligent infrastructure. The main outcome will consist of, a web-based Open Management Platform integrating near real-time knowledge on water supplies and demand, from sources to users, across geographic and organizational scales and supported by a knowledge base where information will be structured in water management ontology to ensure interoperability and maximize usability. WatERP will thus provide a major contribution to: 1 Improve coordination among actors, 2 Foster behavioural change, 3 Reduce water and energy consumption, 4 Optimize water accountability.

  7. Analysis of the nexus between population, water resources and Global Food Security highlights significance of governance and research investments and policy priorities.

    Science.gov (United States)

    Yunusa, Isa A M; Zerihun, Ayalsew; Gibberd, Mark R

    2018-05-10

    Analyses of sensitivity of Global Food Security (GFS) score to a key set of supply or demand factors often suggest population and water supply as being the most critical and on which policies tend to focus. To explore other policy options, we characterised the nexus between GFS and a set of supply or demand factors including defining including population, agricultural and industrial water-use, agricultural publications (as a surrogate for investment in agricultural research and development [R&D]), and corruption perception index (CPI), to reveal opportunities for attaining enduring GFS. We found that despite being the primary driver of demand for food, population showed no significant correlation with GFS scores. Similarly agricultural water-use was poorly correlated with GFS scores, except in countries where evaporation exceeds precipitation and irrigation is significant. However, GFS had a strong positive association with industrial water-use as a surrogate for overall industrialisation. Recent expansions in cultivated land area failed to yield concomitant improvements in GFS score since such expansions have been mostly into marginal lands with low productivity and also barely compensated for lands retired from cropping in several developed economies. However, GFS was positively associated with agricultural R&D investments, as it was with the CPI scores. The apparent and relative strengths of these drivers on GFS outcome amongst countries were in the order: industrial water-use ≈ publication rate ≈ corruption perception > agricultural water-use > population. We concluded by suggesting that to enshrine enduring food security, policies should prioritise (1) increased R&D investments that address farmer needs, and (2) governance mechanisms that promote accountability in both research and production value chains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Assessing rural small community water supply in Limpopo, South Africa: water service benchmarks and reliability.

    Science.gov (United States)

    Majuru, Batsirai; Jagals, Paul; Hunter, Paul R

    2012-10-01

    Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (pwater sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The main microelements and phosphorus content of sediments formed in a drinking water supply system

    Directory of Open Access Journals (Sweden)

    Marina Valentukeviciene

    2016-11-01

    Full Text Available Groundwater is the only source for drinking water supply in Lithuania. Twenty water intakes exploiting Quaternary aquifers are operating in Vilnius City. The main aim of this study was to characterize the heavy metal content of internal pipeline sediments in the water supply network. It also provides a new insight into the accumulation of phosphorus and its variation in pipeline sediments in the study area. The results of this research reflect the level of heavy metals that accumulated during the water supply process. The main microelements detected were lead, nickel, zinc and copper. The research results will be useful for conducting preliminary evaluations of possible microelement accumulation in other similar water supply systems. The evaluation of water supply sediments is considered as one of the most important activities associated with a water safety approach. The results of this research indicate the dependence between phosphorus accumulation and Pb, Cr, Zn, Ni and Cu quantities in the internal sediments of water supply pipelines.

  10. Climate policy implications for agricultural water demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Vaibhav [Joint Global Change Research Inst., College Park, MD (United States); Hejazi, Mohamad I. [Joint Global Change Research Inst., College Park, MD (United States); Edmonds, James A. [Joint Global Change Research Inst., College Park, MD (United States); Clarke, Leon E. [Joint Global Change Research Inst., College Park, MD (United States); Kyle, G. Page [Joint Global Change Research Inst., College Park, MD (United States); Davies, Evan [Univ. of Alberta, Edmonton, AB (Canada); Wise, Marshall A. [Joint Global Change Research Inst., College Park, MD (United States); Calvin, Katherine V. [Joint Global Change Research Inst., College Park, MD (United States)

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  11. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Tariff policy in Romania. Strategic elements for developing electricity supply

    International Nuclear Information System (INIS)

    Manea, D.; Indre, G.; Gugu, F.; Vilceanu, M.

    1996-01-01

    Starting from considerations of economic mechanisms as the main tools for developing electricity supply technology in Romania. The guidelines of Romanian policy for electricity rates and tariffs are presented. The main constraints and difficulties of designing rates and tariffs in a transitional economy are analysed. Models are presented for strategic development of rates and tariffs, and the role of tariffs is discussed in promoting electric technologies in Romanian social and economic activities. (author)

  13. Sustainability, energy policy, climatic change, world food supply. Political and legal challenges of the 21th century

    International Nuclear Information System (INIS)

    Haertel, Ines

    2014-01-01

    The book on sustainability, energy policy, climatic change, world food supply as political challenges in the 21th century includes contributions on the following topics: sustainability and environment, energy and climatic change, agriculture and world food supply.

  14. Determination of aluminium and physicochemical parameters in the palm oil estates water supply at Johor, Malaysia.

    Science.gov (United States)

    Siti Farizwana, M R; Mazrura, S; Zurahanim Fasha, A; Ahmad Rohi, G

    2010-01-01

    The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.

  15. [Impact of Increased Supply of Newly Licensed Nurses on Hospital Nurse Staffing and Policy Implications].

    Science.gov (United States)

    Kim, Yunmi; You, Sunju; Kim, Jinhyun

    2017-12-01

    This study aimed to analyze the impact of increasing the supply of newly licensed nurses on improving the hospital nurse staffing grades for the period of 2009~2014. Using public administrative data, we analyzed the effect of newly licensed nurses on staffing in 1,594 hospitals using Generalized Estimating Equation (GEE) ordered logistic regression, and of supply variation on improving staffing grades in 1,042 hospitals using GEE logistic regression. An increase of one newly licensed nurse per 100 beds in general units had significantly lower odds of improving staffing grades (grades 6~0 vs. 7) (odds ratio=0.95, p=.005). The supply of newly licensed nurses increased by 32% from 2009 to 2014, and proportion of hospitals whose staffing grade had improved, not changed, and worsened was 19.1%, 70.1%, and 10.8% respectively. Compared to 2009, the supply variation of newly licensed nurses in 2014 was not significantly related to the increased odds of improving staffing grades in the region (OR=1.02, p=.870). To achieve a balance in the regional supply and demand for hospital nurses, compliance with nurse staffing legislation and revisions in the nursing fee differentiation policy are needed. Rather than relying on increasing nurse supply, retention policies for new graduate nurses are required to build and sustain competent nurse workforce in the future. © 2017 Korean Society of Nursing Science

  16. The Ambiguity of Community: Debating Alternatives to Private-Sector Provision of Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Karen Bakker

    2008-10-01

    Full Text Available The concept of community has become increasingly important in debates over alternatives to privatisation, and is invoked by both proponents and opponents of private sector provision of water supply. This paper presents a critique of the concept of community water supply when it is invoked as an alternative to privatisation. The analysis presents a typology of proposals for community ownership and governance of water supply, and proceeds to critique some of the flawed assumptions in the concepts of community deployed in these proposals, together with references to more general debates about the viability of the 'commons' as enacted through community-controlled water supply systems. The paper closes with a brief discussion of the future evolution of the debate over 'community' alternatives to privatisation, focusing on water supply.

  17. Water Supply. Fire Service Certification Series. Unit FSCS-FF-9-80.

    Science.gov (United States)

    Pribyl, Paul F.

    This training unit on water supply is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist the firefighter in the proper use of water supplies and the understanding of the…

  18. A case study on the status of water supply for domestic purposes in ...

    African Journals Online (AJOL)

    Domestic water supply is a daily necessity and key factor in human health and well being. Without water, life cannot be sustained and lack of access to adequate water supplies leads to wide spread of diseases with children bearing the greatest health burden associated with poor water quality and sanitation. The WHO ...

  19. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978. Water-resources investigations

    International Nuclear Information System (INIS)

    Irwin, G.A.; Hull, R.W.

    1979-04-01

    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids, chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects

  20. Monitoring Antimicrobial Resistance in the Food Supply Chain and Its Implications for FDA Policy Initiatives.

    Science.gov (United States)

    Zawack, Kelson; Li, Min; Booth, James G; Love, Will; Lanzas, Cristina; Gröhn, Yrjö T

    2016-09-01

    In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring System (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages. We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distinguish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statistically significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-generation fluoroquinolone. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  2. Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions

    NARCIS (Netherlands)

    Hulme, Philip E.; Brundu, Giuseppe; Carboni, Marta; Dehnen-schmutz, Katharina; Dullinger, Stefan; Early, Regan; Essl, Franz; González-moreno, Pablo; Groom, Quentin J.; Kueffer, Christoph; Kühn, Ingolf; Maurel, Noëlie; Novoa, Ana; Pergl, Jan; Pyšek, Petr; Seebens, Hanno; Tanner, Rob; Touza, Julia M.; Van Kleunen, Mark; Verbrugge, Laura Nicoline Halley

    2017-01-01

    1.Ornamental horticulture is the primary pathway for invasive alien plant introductions. We critically appraise published evidence on the effectiveness of four policy instruments that tackle invasions along the horticulture supply chain: pre-border import restrictions, post-border bans, industry

  3. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  4. A Technical Assessment Of The Current Water Policy Boundary At U.S. Department Of Energy, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    None

    2012-01-01

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The

  5. Metabolic modelling to support long term strategic decisions on water supply systems

    Science.gov (United States)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  6. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  7. Threat to the New York City water supply - plutonium

    International Nuclear Information System (INIS)

    Bogen, D.C.; Krey, P.W.; Volchok, H.L.; Feldstein, J.; Calderon, G.

    1988-01-01

    The mayor of the City of New York received an anonymous letter on April 1st 1985 threatening to contaminate the water supply with plutonium unless all criminal charges against Mr Bernhard Goetz, the suspect in a dramatic subway shooting incident, were dismissed by April 11th 1985. The Environmental Measurements Laboratory, EML, was requested to analyse a composite, large volume (∼ 175 litres) drinking water sample collected on April 16th 1985. The concentration measured was 21 fCi/l which was a factor of 100 greater than previously observed results in the EML data base, and the mass isotopic content of the plutonium was very unusual. Additional samples were collected one to three months later at various distribution points in the water supply system. The plutonium concentrations were much lower and comparable to EML's earlier data. Mass isotopic analysis of these samples provided more reasonable compositions but with high uncertainties due to very low plutonium concentration. Due to the inability to confirm the elevated plutonium concentration value for the composite sample, it is impossible to conclude whether the threat to contaminate the New York City water supply was actually carried out or whether the sample was contaminated prior to receipt at EML. 5 refs.; 1 figure; 5 tabs

  8. Radioactivity levels in well water supplies within the greater Chicago area

    International Nuclear Information System (INIS)

    Kristoff, L.M.; Lordi, D.T.; Lue-Hing, C.

    1976-01-01

    The radiological analysis of well water supplies within the geographical boundaries of the Metropolitan Sanitary District of Greater Chicago was prompted by the relatively high total alpha levels encountered in wastewaters of a MSDGC water reclamation plant as compared to the wastewaters of the other waste treatment plants. Consequently, 87 wells constituting 42 water supplies were sampled and analyzed for total alpha and beta radioactivity. The wells were grouped according to depth. In general, both total alpha and total beta radioactivity concentrations were found to be a function of well depth. The relatively higher total alpha and beta activities in the wastewaters to one of the treatment plants was attributed to the higher levels found in the well water supply. Comparison with the USEPA's Drinking Water Regulations for Radionuclides (July 9, 1976) showed the maximum total alpha level of 15 pCi/liter was exceeded in 3 wells and 32 of the deep well waters had total alpha level greater than 5 pCi/liter. The total beta level of 50 pCi/liter was exceeded in 8 wells

  9. Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach

    Science.gov (United States)

    Al Zayed, Islam Sabry; Elagib, Nadir Ahmed

    2017-12-01

    This study proposes a novel monitoring tool based on Satellite Remote Sensing (SRS) data to examine the status of water distribution and Water Use Efficiency (WUE) under changing water policies in large-scale and complex irrigation schemes. The aim is to improve our understanding of the water-food nexus in such schemes. With a special reference to the Gezira Irrigation Scheme (GeIS) in Sudan during the period 2000-2014, the tool devised herein is well suited for cases where validation data are absent. First, it introduces an index, referred to as the Crop Water Consumption Index (CWCI), to assess the efficiency of water policies. The index is defined as the ratio of actual evapotranspiration (ETa) over agricultural areas to total ETa for the whole scheme where ETa is estimated using the Simplified Surface Energy Balance model (SSEB). Second, the tool uses integrated Normalized Difference Vegetation Index (iNDVI), as a proxy for crop productivity, and ETa to assess the WUE. Third, the tool uses SSEB ETa and NDVI in an attempt to detect wastage of water. Four key results emerged from this research as follows: 1) the WUE has not improved despite the changing agricultural and water policies, 2) the seasonal ETa can be used to detect the drier areas of GeIS, i.e. areas with poor irrigation water supply, 3) the decreasing trends of CWCI, slope of iNDVI-ETa linear regression and iNDVI are indicative of inefficient utilization of irrigation water in the scheme, and 4) it is possible to use SSEB ETa and NDVI to identify channels with spillover problems and detect wastage of rainwater that is not used as a source for irrigation. In conclusion, the innovative tool developed herein has provided important information on the efficiency of a large-scale irrigation scheme to help rationalize laborious water management processes and increase productivity.

  10. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  11. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  12. Water supply at Los Alamos during 1996. Progress report

    International Nuclear Information System (INIS)

    McLin, S.G.; Purtymun, W.D.; Maes, M.N.; Longmire, P.A.

    1997-12-01

    Production of potable municipal water supplies during 1996 totaled about 1,368.1 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from either the spring gallery in Water Canyon or from Guaje Reservoir during 1996. About 2.6 million gallons of water from Los Alamos Reservoir was used for lawn irrigation. The total water usage in 1996 was about 1,370.7 million gallons, or about 131 gallons per day per person living in Los Alamos County. Groundwater pumpage was up about 12.0 million gallons in 1996 compared with the pumpage in 1995. This report fulfills requirements specified in US Department of Energy (DOE) Order 5400.1 (Groundwater Protection Management Program), which requires the Los Alamos National Laboratory (LANL) to monitor and document groundwater conditions below Pajarito Plateau and to protect the regional aquifer from contamination associated with Laboratory operations. Furthermore, this report also fulfills special conditions by providing information on hydrologic characteristics of the regional aquifer, including operating conditions of the municipal water supply system

  13. Desirable Strategic Petroleum Reserves policies in response to supply uncertainty: A stochastic analysis

    International Nuclear Information System (INIS)

    Bai, Yang; Zhou, Peng; Tian, Lixin; Meng, Fanyi

    2016-01-01

    Highlights: • A stochastic model is proposed to study Strategic Petroleum Reserves (SPR) policy. • The model aims to find desirable SPR size, acquisition, drawdown and refilling policy. • The impact of SPR policy and supply disruption on oil price has been examined. - Abstract: The paper proposes a survey on three issues related to Strategic Petroleum Reserves (SPR) policy. Firstly, what are the optimal SPR acquisition, drawdown and refilling policy in response to various market risks? Secondly, how SPR policy or actions will affect the market factors, i.e. oil demand or price. Thirdly, in what extend a disruption may induce price shock. For the purpose, the study proposed a Markov Decision Process model (SPR-MDP). In the model, oil supply, disruption size and duration are considered to be highly stochastic. Oil price is determined by market fundamentals exclusively. According to the empirical study, we come to some interesting conclusions. Firstly, oil price and disruption risk show different ways in influencing the desirable SPR size. It is found that the SPR size increases with the decrease of oil price while increase of disruption risk. Secondly, SPR acquisition may increase oil price slightly by influencing the basic fundamentals. In given case, we find acquisition of 7 million barrels per month increase the price by 2.6%. But the influence weakens with decrease of acquisition size. Thirdly, disruption duration shows significant impact on SPR drawdown policy. In a two-month disruption case, it is found that 51% of SPR should be released in the first month. Another 40% is released in the following month. The other 9% SPR is left for forthcoming disruptions. Meanwhile, SPR drawdown shows high efficient in damping oil price in the disruption. In given case, after drawdown of SPR, the oil prices only increases by 0.7% in the second month though continue disruption.

  14. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  15. Exploration of an Optimal Policy for Water Resources Management Including the Introduction of Advanced Sewage Treatment Technologies in Zaozhuang City, China

    Directory of Open Access Journals (Sweden)

    Gengyu He

    2016-12-01

    Full Text Available Water shortage and water pollution are important factors restricting sustainable social and economic development. As a typical coal resource-exhausted city and a node city of the South-to-North Water Transfer East Route Project in China, Zaozhuang City’s water resources management faces multiple constraints such as transformation of economic development, restriction of groundwater exploitation, and improvement of water environment. In this paper, we develop a linear optimization model by input–output analysis to study water resources management with the introduction of three advanced sewage treatment technologies for pollutant treatment and reclaimed water production. The simulation results showed that from 2014 to 2020, Zaozhuang City will realize an annual GDP growth rate of 7.1% with an annual chemical oxygen demand (COD emissions reduction rate of 5.5%. The proportion of primary industry, secondary industry, and tertiary industry would be adjusted to 5.6%, 40.8%, and 53.6%, respectively. The amount of reclaimed water supply could be increased by 91% and groundwater supply could be decreased by 6%. Based on the simulation, this model proposes a scientific reference on water resources management policies, including water environment control, water supply plan, and financial subsidy, to realize the sustainable development of economy and water resources usage.

  16. Application for Planning and Improvement of Public Water Supply in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The study applied the tool of GIS in the planning and improvement of water ... proffer an acceptable solution to the problems of water supply in the study area. Primary data generated ..... Tropical Hydrology and Water. Resources. Iloeje, N.P. ...

  17. Monetary Policy Rules, Supply Shocks, and the Price-Level Elasticity of Aggregate Demand: A Graphical Examination.

    Science.gov (United States)

    Kyer, Ben L.; Maggs, Gary E.

    1995-01-01

    Utilizes two-dimensional price and output graphs to demonstrate the way that the price-level elasticity of aggregate demand affects alternative monetary policy rules designed to cope with random aggregate supply shocks. Includes graphs illustrating price-level, real Gross Domestic Product (GDP), nominal GDP, and nominal money supply targeting.…

  18. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert

    2015-07-01

    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  19. Exploring geophysical processes influencing U.S. West Coast precipitation and water supply

    Science.gov (United States)

    Ralph, F.M.; Prather, K.; Cayan, D.

    2011-01-01

    CalWater Science Workshop; La Jolla, California, 8-10 June 2011 CalWater is a multiyear, multiagency research project with two primary research themes: the effects of changing climate on atmospheric rivers (ARs) and associated extreme events, and the potential role of aerosols in modulating cloud properties and precipitation, especially regarding orographic precipitation and water supply. Advances made in CalWater have implications for both water supply and flood control in California and other West Coast areas, both in the near term and in a changing climate.

  20. Water use impacts of future transport fuels: role of California's climate policy & National biofuel policies (Invited)

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.; Tiedeman, K.; Yang, C.

    2013-12-01

    In the coming decades, growing demand for energy and water and the need to address climate change will create huge challenges for energy policy and natural resource management. Synergistic strategies must be developed to conserve and use both resources more efficiently. California (CA) is a prime example of a region where policymakers have began to incorporate water planning in energy infrastructure development. But more must be done as CA transforms its energy system to meet its climate target. We analyze lifecycle water use of current and future transport fuel consumption to evaluate impacts & formulate mitigation strategies for the state at the watershed scale. Four 'bounding cases' for CA's future transportation demand to year 2030 are projected for analysis: two scenarios that only meet the 2020 climate target (business-as-usual, BAU) with high / low water use intensity, and two that meet long-term climate target with high / low water use intensity (Fig 1). Our study focuses on the following energy supply chains: (a) liquid fuels from conventional/unconventional oil & gas, (b) thermoelectric and renewable generation technologies, and (c) biofuels (Fig 2-3). We develop plausible siting scenarios that bound the range of possible water sources, impacts, and dispositions to provide insights into how to best allocate water and limit water impacts of energy development. We further identify constraints & opportunities to improve water use efficiency and highlight salient policy relevant lessons. For biofuels we extend our scope to the entire US as most of the biofuels consumed in California are and will be produced from outside of the state. We analyze policy impacts that capture both direct & indirect land use effects across scenarios, thus addressing the major shortcomings of existing studies, which ignore spatial heterogeneity as well as economic effects of crop displacement and the effects of crop intensification and extensification. We use the agronomic

  1. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  2. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Science.gov (United States)

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education).

  3. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Directory of Open Access Journals (Sweden)

    Liangxin Fan

    Full Text Available Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use and cultural backgrounds (age, education.

  4. Establishment of Grain Farmers' Supply Response Model and Empirical Analysis under Minimum Grain Purchase Price Policy

    OpenAIRE

    Zhang, Shuang

    2012-01-01

    Based on farmers' supply behavior theory and price expectations theory, this paper establishes grain farmers' supply response model of two major grain varieties (early indica rice and mixed wheat) in the major producing areas, to test whether the minimum grain purchase price policy can have price-oriented effect on grain production and supply in the major producing areas. Empirical analysis shows that the minimum purchase price published annually by the government has significant positive imp...

  5. Study of the radioactive contents in Barcelona's water supply during 1986

    International Nuclear Information System (INIS)

    Ortega, X.; Valles, I.

    1988-01-01

    Throughout 1986 several determinations were carried out of the contents in α and β radioactivity transmitters of different samples of the Barcelona water supply. It could be verified that beta radioactivity was ten times higher in the waters collected in the basin of Llobregat river than water from Ter river. Both rivers are the main sources of Barcelona supply. The reason for this unbalanced result is the high potassic content of the first river, coming from the mining exploitation of the basin. On the other hand, the contamination that could be measured in May, due to the Chernobyl nuclear accident, showed that the supply system from Llobregat river was more sensitive to the incorporation of contaminants carried down by the rain, whereas in the case of Ter river, owing to the presence of impounding regulation, a higher retention time of these waters was obtained. (author)

  6. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2016-03-01

    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  7. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  8. Assessment of Water Supply Quality in Awka, Anambra State, Nigeria

    African Journals Online (AJOL)

    The patronage of water of questionable qualities in the study area due to the failure of the Anambra State Water Corporation to provide potable water supply in Awka and environs prompted this research work. Various water sources patronized in the study area were collected and subjected to physical, chemical and ...

  9. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  10. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  11. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  12. Participation in European water policy

    NARCIS (Netherlands)

    J.A. van Ast (Jacko); S.P. Boot (Sander Paul)

    2003-01-01

    textabstractThis paper considers the possibilities for interactive policy-making in European water management. In the new European Water Framework Directive, public information and consultation are major elements in the procedure (process) that leads to River Basin Management Plans. In general,

  13. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    Science.gov (United States)

    Hussey, Karen; Petit, Carine

    2010-05-01

    Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A

  14. Evaluating the hydrological functioning and the supply of water provisioning services to support the ecosystem-water-food-energy nexus in the Arno river basin

    Science.gov (United States)

    Pacetti, Tommaso; Willaarts, Barbara; Caporali, Enrica; Schroeder Esselbach, Boris

    2017-04-01

    Water, flowing in a basin, underpins key provisioning ecosystem services like freshwater supply, food and energy production. River basin management largely determines the type of water-related ecosystem services (WES) that are provided and the extent to which trade-offs and synergies might arise. Gaining insights on the ecohydrological behavior of a basin and on the conflicting anthropic pressures on the available water resources allows to identify the most important WES, as well as the existence of WES supply and demand hotspots. This information is crucial for water resources management and, in the context of the European Union, also required to comply with the requirements of the Water Framework Directive (WFD). The purpose of this research is to quantify the provisioning WES in the upstream part of the Arno river basin (Central Italy) and identify WES hotspots and fluxes. Current information on how water is allocated in the Arno basin remains scarce, despite the increasing water demand by some sectors, particularly irrigation, and a number of emerging conflicts among users. It is expected that research outputs can support the improvement of the existing management framework, moving from the classical DPSIR (Driving forces, Pressure, State, Impact e Response) approach, where impacts must be reduced or mitigated, to a more proactive framework to support the sustainability of the Arno basin and meet the different policy goals. The eco-hydrological model SWAT (Soil Water Assessment Tool) is applied to spatially quantify the provision of WES. The preliminary results of this research indicate that the highest amount of water yield, i.e. net amount of water that contributes to streamflow and represents the main blue water fund, originates in the northern part of the basin, characterized by forest areas. In contrast, the southern part of the basin, which is mainly agriculturally used, gives a minor contribution to the overall water yield, in direct proportion to the

  15. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems

    Science.gov (United States)

    Slocum, Alexander H.; Whittle, Andrew J.

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462

  16. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems.

    Science.gov (United States)

    Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.

  17. External control of the public water supply in 29 Brazilian cities

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba Moimaz

    2012-02-01

    Full Text Available The fluoridation of public water supplies is considered the most efficient public health measure for dental caries prevention. However, fluoride levels in the public water supply must be kept constant and adequate for the population to gain preventive benefit. The aim of this study was to analyze fluoride levels in the public water supply of 29 Brazilian municipalities during a 48-month period from November 2004 to October 2008. Three collection sites were defined for each source of municipal public water supply. Water samples were collected monthly and analyzed at the Research Laboratory of the Nucleus for Public Health (NEPESCO, Public Health Postgraduate Program, Araçatuba Dental School (UNESP. Of the 6862 samples analyzed, the fluoride levels of 53.5% (n = 3671 were within the recommended parameters, those of 30.4% (n = 2084 were below these parameters, and those of 16.1% (n = 1107 were above recommended values. Samples from the same collection site showed temporal variability in fluoride levels. Variation was also observed among samples from collection sites with different sources within the same municipality. Although 53.5% of the samples contained the recommended fluoride levels, these findings reinforce the importance of monitoring to minimize the risk of dental fluorosis and to achieve the maximum benefit in the prevention of dental caries.

  18. Policy and network regulation for the integration of distribution generation and renewables for electricity supply

    International Nuclear Information System (INIS)

    Ten Donkelaar, M.; Van Oostvoorn, F.

    2005-08-01

    This study has analysed the existing policy and regulation aimed at the integration of an increased share of Distributed Generation (DG) in electricity supply systems in the European Union. It illustrates the state of the art and progress in the development of support mechanisms and network regulation for large-scale integration of DG. Through a benchmark study a systematic comparison has been made of different DG support schemes and distribution network regulation in EU Member States to a predefined standard, the level playing field. This level playing field has been defined as the situation where energy markets, policy and regulation provide neutral incentives to central versus distributed generation, which results in an economically more efficient electricity supply to the consumer. In current regulation and policy a certain discrepancy can be noticed between the actual regulation and policy support systems in a number of countries, the medium to long term targets and the ideal situation described according to the level playing field objective. Policies towards DG and RES are now mainly aimed at removing short-term barriers, increasing the production share of DG/RES, but often ignoring the more complex barriers of integrating DG/RES that is created by the economic network regulation in current electricity markets

  19. Decision-making under surprise and uncertainty: Arsenic contamination of water supplies

    Science.gov (United States)

    Randhir, Timothy O.; Mozumder, Pallab; Halim, Nafisa

    2018-05-01

    With ignorance and potential surprise dominating decision making in water resources, a framework for dealing with such uncertainty is a critical need in hydrology. We operationalize the 'potential surprise' criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive decision rules to manage water resources under uncertainty and ignorance. We apply this framework to managing water supply systems in Bangladesh that face severe, naturally occurring arsenic contamination. The uncertainty involved with arsenic in water supplies makes the application of conventional analysis of decision-making ineffective. Given the uncertainty and surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid irreversible outcomes instead of conventional cost-effective actions. We observe that a diversification of the water supply system also emerges as a robust strategy to avert unintended outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) compare to deep wells and surface treatment which had allocation levels of roughly 32% under each. The approach can be applied in a variety of other cases that involve decision making under uncertainty and surprise, a frequent situation in natural resources management.

  20. Designing water supplies: Optimizing drinking water composition for maximum economic benefit

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Bath, A.

    2011-01-01

    to water quality aspects, costs of water production, fresh water abstraction and CO2-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.......3 ± 0.2 per delivered m3 for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water...... includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition...

  1. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  2. Public health risk status of the water supply frame work at Kwame ...

    African Journals Online (AJOL)

    The aim of the study is to assess the public health risk status of the potable water supply framework at the Kwame Nkurumah Postgraduate Residence (PG) Hall, University of Nigeria, Nsukka, (UNN), Enugu State, Nigeria, and environs. Four potable water supply frame-works at the PG Hall, UNN, and exposed stagnant ...

  3. [Waterborne outbreak of gastroenteritis transmitted through the public water supply].

    Science.gov (United States)

    Godoy, P; Borrull, C; Palà, M; Caubet, I; Bach, P; Nuín, C; Espinet, L; Torres, J; Mirada, G

    2003-01-01

    The chlorination of public water supplies has led researchers to largely discard drinking water as a potential source of gastroenteritis outbreaks. The aim of this study was to investigate an outbreak of waterborne disease associated with drinking water from public supplies. A historical cohort study was carried out following notification of a gastroenteritis outbreak in Baqueira (Valle de Arán, Spain). We used systematic sampling to select 87 individuals staying at hotels and 67 staying in apartments in the target area. Information was gathered on four factors (consumption of water from the public water supply, sandwiches, water and food in the ski resorts) as well as on symptoms. We assessed residual chlorine in drinking water, analyzed samples of drinking water, and studied stool cultures from 4 patients. The risk associated with each water source and food type was assessed by means of relative risk (RR) and 95% confidence intervals (CI). The overall attack rate was 51.0% (76/149). The main symptoms were diarrhea 87.5%, abdominal pain 80.0%, nausea 50.7%, vomiting 30.3%, and fever 27.0%. The only factor associated with a statistically significant risk of disease was consumption of drinking water (RR = 11.0; 95% CI, 1.6-74.7). No residual chlorine was detected in the drinking water, which was judged acceptable. A problem associated with the location of the chlorinator was observed and corrected. We also recommended an increase in chlorine levels, which was followed by a reduction in the number of cases. The results of stool cultures of the four patients were negative for enterobacteria. This study highlights the potential importance of waterborne outbreaks of gastroenteritis transmitted through drinking water considered acceptable and suggests the need to improve microbiological research into these outbreaks (viruses and protozoa detection).

  4. INTEGRATION OF MANAGEMENT SYSTEM QMS/EMS/OHSAS/FMS/LMS IN WATER SUPPLY ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-12-01

    Full Text Available Level of difficulties arises when goes up number of integrated management systems (IMS. In this paper are given model and empirical research which provide the details of an integrated management system with five component subsystems in area of water supply. Presented model addresses the issues of scope and carracterisctics based on process approach and is tested in water supply organization in Kragujevac, Serbia. Testing in the proposed model is accomplish through realization project of design and implementation of IMS in regional water supply organization in Kragujevac.

  5. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  6. Localizing the strategy for achieving rural water supply and ...

    African Journals Online (AJOL)

    Water is essential for sustenance of life and determines the overall socio- economic development of any nation. In Nigeria, so many programmes to improve water supply and sanitation situation had been put in place by different administrations. Despite this, the hope of meeting the UN Millennium Development Goals ...

  7. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  8. Fuzzy multi-criteria approach to ordering policy ranking in a supply chain

    Directory of Open Access Journals (Sweden)

    Tadić Danijela

    2005-01-01

    Full Text Available In this paper, a new fuzzy multi-criteria mathematical model for the selection of the best among a finite number of ordering policy of raw material in a supply chain is developed. The problem treated is a part of the purchasing plan of a company in an uncertain environment and it is very common in business practice. Optimization criteria selected describe the performance measures of ordering policies and generally their relative importance is different. It is assumed that the values of the optimization criteria are vague and imprecise. They are described by discrete fuzzy numbers and by linguistic expressions. The linguistic expressions are modeled by discrete fuzzy sets. The measures of belief that one ordering policy is better than another are defined by comparing fuzzy numbers. An illustrative example is given.

  9. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  10. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2006-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  11. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2007-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  12. Integration of environmental aspects in modelling and optimisation of water supply chains.

    Science.gov (United States)

    Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G

    2018-04-26

    Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.

  13. The Evaluation of Water Conservation for Municipal and Industrial Water Supply: Illustrative Examples. Water Conservation and Supply Information Transfer and Analysis Program. Revision.

    Science.gov (United States)

    1981-02-01

    measures. In other words, discussion of such issues is often, indeed usually, more successful in leading to the identification and delineation of basic ...discussion of urban growth reveals a basic dichotomy of values that runs through the Atlanta sample; various groups of influence align themselves on one side...leak detection, land use policies, ratemaking policy, and tax incentives or subsidies. Available data on unaccounted-for water indicate that the

  14. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  15. Managed groundwater development for water-supply security in Sub ...

    African Journals Online (AJOL)

    What is the scope for promoting much increased groundwater use for irrigated agriculture, and how might the investment risks be reduced and sustainable outcomes ensured? • How can the demand to expand urban groundwater use, for both further supplementing municipal water-supply systems and for direct in situ water ...

  16. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  17. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  18. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  19. 43 CFR 404.51 - Are proposed projects under the Rural Water Supply Program reviewed by the Administration?

    Science.gov (United States)

    2010-10-01

    ... Water Supply Program reviewed by the Administration? 404.51 Section 404.51 Public Lands: Interior... SUPPLY PROGRAM Feasibility Studies § 404.51 Are proposed projects under the Rural Water Supply Program... the Reclamation's Rural Water Supply Program. This includes review under Executive Order 12322 to...

  20. 78 FR 42945 - Public Water Supply Supervision Program; Program Revision for the State of Oregon

    Science.gov (United States)

    2013-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9834-9] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Oregon has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; Ground Water...

  1. Public Health Practice Report: water supply and sanitation in Chukotka and Yakutia, Russian Arctic.

    Science.gov (United States)

    Dudarev, Alexey A

    2018-12-01

    Information from 2013-2015 have been analysed on water accessibility, types of water service to households, use of water pretreatment, availability of sewerage, use of sewage treatment in Chukotka Autonomous Okrug and Yakutia Republic, based on evaluation information accessible in open sources, such as regional statistics and sanitary-epidemiologic reports. The main causes of the poor state of water supply and sanitation in the study regions include: very limited access to in-home running water (one-quarter of settlements in Chukotka and half of settlements in Yakutia have no regular water supply) and lack of centralised sewerage (78% and 94% of settlements correspondingly have no sewerage); lack of water pretreatment and sewage treatment, outdated technologies and systems; serious deterioration of facilities and networks, frequent accidents; secondary pollution of drinking water. Lack of open objective information on Russian Arctic water supply and sanitation in the materials of the regional and federal statistics hampers the assessment of the real state of affairs. The situation for water and sanitation supply in these Russian Arctic regions remains steadily unfavourable. A comprehensive intervention from national and regional governmental levels is urgently needed.

  2. The development of new environmental policies and processes in response to a crisis: the case of the multiple barrier approach for safe drinking water

    International Nuclear Information System (INIS)

    Plummer, Ryan; Velaniskis, Jonas; Grosbois, Danuta de; Kreutzwiser, Reid D.; Loe, Rob de

    2010-01-01

    While new environmental policies and procedures often are developed incrementally, they can also result from crises or other significant events. In situations where policies and procedures are introduced in response to a crisis, questions about the strengths and weaknesses of existing mechanisms, and the extent to which they can be used to address concerns, may be ignored. This paper explores the complexities of introducing new policies and processes where planning systems and procedures already exist. Drinking water source protection policies that are being developed in response to the tragic events in Walkerton, Ontario, Canada serve as the context for the inquiry. Three case study watersheds were selected to reflect the diversity of municipal jurisdictions and water supply systems in Ontario. A content analysis was undertaken on regulatory and non-regulatory policy documents to determine the extent to which they addressed elements of the multi-barrier approach for drinking water safety. Findings from the research reveal considerable evidence of the multi-barrier approach in the policy and guiding documents analyzed. Policy development in response to a crisis can advance progress on the issue of drinking water safety and coincide with emerging governance strategies. Policy effectiveness may be enhanced by considering existing policies as well as contextual and jurisdictional differences.

  3. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities

    Science.gov (United States)

    Wheater, H. S.

    2015-12-01

    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  5. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Fair share: Water Demand Management can help provide fair access to water for the poor. Water Policy. Brief no.2 ... management (WDM) can help spread water more equitably, providing a measure of opportunity, security and ... improving health and quality of life for families. WDM measures can improve the efficiency of.

  6. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  7. 77 FR 33456 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2012-06-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9682-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted regulations analogous to... of Health--Office of Drinking Water, [[Page 33457

  8. Risk Assessment for Water Supply Systems in Iran During Crises Using the RAMCAP Method

    Directory of Open Access Journals (Sweden)

    Jalal Nakhaei

    2017-09-01

    Full Text Available Heavy damages might be inflicted upon national infrastructure due to a variety of disasters caused by natural events or human activities. One example of such vital infrastructure at risk is the water supply system. At the time of crises, the water supply system is expected to continue supplying water to citizens, or the crisis will be augmented. This warrants the potential threats and their effects on the system to be identified and evaluated in an attempt to determine the vulnerable systems and sites toward proper solutions. In this study, the assets and the associated threats of the water supply are identified followed by a vulnerability analysis. The RAMCAP method is then employed to determine values for the risks associated with each of the assets including dams, water storage systems, pumping stations, treatment plants, water wells, and building units. Methods are proposed to reduce these risks before a crisis occurs. In addition, basic threats due to air-missile and Cyber attacks are also considered.

  9. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  10. 76 FR 366 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9247-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted a definition for public water system that is analogous to EPA's definition of public water system, and has adopted regulations...

  11. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    Science.gov (United States)

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-01-01

    ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260

  12. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    Full Text Available ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65% were positive for Acanthamoeba spp., and one (5% was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.

  13. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  14. Potable water supply in owerri metropolis: a challenge to mdgs ...

    African Journals Online (AJOL)

    The results of the analysis were related directly to the affected MDG targets to reveal that the Otamiri Water Scheme that supplies water to Owerri urban is not functioning effectively. Also, the water distribution facilities are inadequate, overused and worn-out. They generally wear a poor state as evidenced from blockages, ...

  15. Water Policies of Turkey

    Directory of Open Access Journals (Sweden)

    Hakan Istanbulluoglu

    2011-06-01

    Full Text Available Water is one of our most critical resources. Civilization has historically flourished around major waterways. The most important uses of water are; agricultural, industrial and domestic use. This critical resource is under threat around the world. In the next 20 years, the quantity of water available to everyone is predicted to decrease by 30%. 40% of the world\\\\\\\\\\\\\\'s inhabitants currently have insufficient fresh water for minimal hygiene. In 2000 more than 2.2 million people died from waterborne diseases. Water politics is politics affected by water and water resources. There are connections between water resources, water systems, and international security and conflict. Today, water is a strategic resource in the globe and an important element in many political conflicts. Turkey can be faced severe water-stress in the near future. Therefore Turkey has to develop realistic and feasible water policy for future generations. [TAF Prev Med Bull 2011; 10(3.000: 327-338

  16. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    OpenAIRE

    Ilaya-Ayza, Amilkar Ernesto; Campbell-Gonzalez, Enrique; Pérez García, Rafael; Izquierdo Sebastián, Joaquín

    2016-01-01

    [EN] Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how...

  17. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  18. Geographical heterogeneity and inequality of access to improved drinking water supply and sanitation in Nepal.

    Science.gov (United States)

    He, Wen-Jun; Lai, Ying-Si; Karmacharya, Biraj M; Dai, Bo-Feng; Hao, Yuan-Tao; Xu, Dong Roman

    2018-04-02

    Per United Nations' Sustainable Development Goals, Nepal is aspiring to achieve universal and equitable access to safe and affordable drinking water and provide access to adequate and equitable sanitation for all by 2030. For these goals to be accomplished, it is important to understand the country's geographical heterogeneity and inequality of access to its drinking-water supply and sanitation (WSS) so that resource allocation and disease control can be optimized. We aimed 1) to estimate spatial heterogeneity of access to improved WSS among the overall Nepalese population at a high resolution; 2) to explore inequality within and between relevant Nepalese administrative levels; and 3) to identify the specific administrative areas in greatest need of policy attention. We extracted cluster-sample data on the use of the water supply and sanitation that included 10,826 surveyed households from the 2011 Nepal Demographic and Health Survey, then used a Gaussian kernel density estimation with adaptive bandwidths to estimate the distribution of access to improved WSS conditions over a grid at 1 × 1 km. The Gini coefficient was calculated for the measurement of inequality in the distribution of improved WSS; the Theil L measure and Theil T index were applied to account for the decomposition of inequality. 57% of Nepalese had access to improved sanitation (range: 18.1% in Mahottari to 100% in Kathmandu) and 92% to drinking-water (range: 41.7% in Doti to 100% in Bara). The most unequal districts in Gini coefficient among improved sanitation were Saptari, Sindhuli, Banke, Bajura and Achham (range: 0.276 to 0.316); and Sankhuwasabha, Arghakhanchi, Gulmi, Bhojpur, Kathmandu (range: 0.110 to 0.137) among improved drinking-water. Both the Theil L and Theil T showed that within-province inequality was substantially greater than between-province inequality; while within-district inequality was less than between-district inequality. The inequality of several districts was

  19. Perceived Impact of Private Sector Involvement In Water Supply on ...

    African Journals Online (AJOL)

    Perceived Impact of Private Sector Involvement In Water Supply on the Urban Poor in Dar es Salaam. ... Tanzania Journal of Development Studies ... Dar es Salaam is not perceived to be a panacea to the water problems facing the urban poor.

  20. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    Science.gov (United States)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  1. The Geographical Distribution of Water Supply in Ekiti State ...

    African Journals Online (AJOL)

    The provision of potable water to every nock and crannies of the state must be pursed vigorously. To achieve this task in Ekiti State, the problems militating against the supply of clean water need to be tackled effectively. For this reason, the rehabilitation of existing dams provision of funds, completion of the 132 KVA ...

  2. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    Science.gov (United States)

    Kravitz, J D; Nyaphisi, M; Mandel, R; Petersen, E

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning.

  3. Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change

    Science.gov (United States)

    Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.

    2016-12-01

    Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some

  4. Well Head Protection Areas For Public Non-Community Water Supply Wells In New Jersey

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Well Head Protection Area for a Public Non-Community Water Supply Well (PNCWS) in New Jersey is a map area calculated around a Public Non-Community Water Supply...

  5. Multiperiod Production and Ordering Policies for a Retailer-Led Supply Chain through Option Contracts

    Directory of Open Access Journals (Sweden)

    Nana Wan

    2018-01-01

    Full Text Available This paper formulates two groups of multiperiod production and ordering models with call and bidirectional option contracts for a two-party supply chain consisting of one followed supplier and one dominant retailer, respectively. Based on dynamic programming theory, we characterize the optimal policy structures for two partners in each period. We also provide an approximation for the corresponding policy parameters evaluation in two cases. Then, we investigate the impacts of different option contracts and the demand risk on the decisions and performances of two members. Our results suggest that, whether concerning call or bidirectional option contracts, the optimal policies for two members always follow a base stock type. When the price parameters are the same for different option contracts, the service levels of both the system and the retailer are higher with call option contracts than with bidirectional ones, whereas the retailer’s inventory risk is lower with bidirectional option contracts than with call ones. Under the same conditions stated above, call option contracts can always benefit the supplier, but not the retailer. Owing to the retailer’s dominant position, call option contracts are better choice for the supply chain if the option (exercise price is low (high, while bidirectional option contracts are more suitable choice for the supply chain if the option (exercise price is high (low. In addition, an increase in the demand risk would prompt the supplier to increase his production quantity and the retailer to reduce the initial firm order quantity, either with call or bidirectional option contracts.

  6. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems

    Directory of Open Access Journals (Sweden)

    Géssica Maria Cambrainha

    2018-02-01

    Full Text Available Abstract Paper aims this paper proposes a model to aid a group of decision makers to establish a portfolio of feasible actions (alternatives that are able to balance water supply-demand strategies. Originality Long periods of water shortages cause problems in semi-arid region of northeast Brazil, which affects different sectors such as food, public health, among others. This problem situation is intensified by population growth. Therefore, this type of decision making is complex, and it needs to be solving by a structured model. Research method The model is based on a problem structuring method (PSM and a multi-criteria decision making (MCDM method. Main findings Due to society and government influences, the proposed model showed appropriate to conduct a robust and well-structured decision making. Implications for theory and practice The main contributions were the study in regions suffering from drought and water scarcity, as well as the combination of PSM and MCDM methods to aid in this problem.

  7. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.

    1990-01-01

    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  8. A Comprehensive plan of improving water quality considering water system - concentrated on a basin of the Han River

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jee Yong; Moon, Hyun Joo; Yum, Kyu Jin; Kim, Eun Jung; Lee, Young Soon; Kim, Kang Suk; Lee, Chang Hee; Shin, Eun Sung; Kim, Jee Hoon [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The contents of this study are following: reviewing the present policy on land use in basin to improve the water quality of water supply source in Paldang and so on; improvement policy on land use in basin; management scheme of pollutant into Paldang; the variety and quantity of toxic substances, a control of particular pollutant; management of polluted deposit in Paldang; the control of efficient environment investment in upper stream of Paldang; financial assistance for damaged region; and purchasing land of sensitivity region for protecting water supply. 32 refs., 13 figs., 124 tabs.

  9. Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean.

    Science.gov (United States)

    Valster, Rinske M; Wullings, Bart A; van den Berg, Riemsdijk; van der Kooij, Dick

    2011-10-01

    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).

  10. Impacts of multiple stresses on water demand and supply across the southeastern United States

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen

    2008-01-01

    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  11. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  12. Diarrhoeal Health Risks Attributable to Water-Borne-Pathogens in Arsenic-Mitigated Drinking Water in West Bengal are Largely Independent of the Microbiological Quality of the Supplied Water

    Directory of Open Access Journals (Sweden)

    Debapriya Mondal

    2014-04-01

    Full Text Available There is a growing discussion about the possibility of arsenic mitigation measures in Bengal and similar areas leading to undesirable substitution of water-borne-pathogen attributable risks pathogens for risks attributable to arsenic, in part because of uncertainties in relative pathogen concentrations in supplied and end-use water. We try to resolve this discussion, by assessing the relative contributions of water supply and end-user practices to water-borne-pathogen-attributable risks for arsenic mitigation options in a groundwater arsenic impacted area of West Bengal. Paired supplied arsenic-mitigated water and end-use drinking water samples from 102 households were collected and analyzed for arsenic and thermally tolerant coliforms [TTC], used as a proxy for microbiological water quality, We then estimated the DALYs related to key sequelae, diarrheal diseases and cancers, arising from water-borne pathogens and arsenic respectively. We found [TTC] in end-use drinking water to depend only weakly on [TTC] in source-water. End-user practices far outweighed the microbiological quality of supplied water in determining diarrheal disease burden. [TTC] in source water was calculated to contribute <1% of total diarrheal disease burden. No substantial demonstrable pathogen-for-arsenic risk substitution attributable to specific arsenic mitigation of supplied waters was observed, illustrating the benefits of arsenic mitigation measures in the area studied.

  13. Neighbourhood effects and household responses to water supply problems in Nigerian cities

    Directory of Open Access Journals (Sweden)

    Charisma Acey

    2008-04-01

    Full Text Available Between 1990 and 2004, Nigeria’s urban population jumped to nearly half the national population, while access to improved sources of water in urban areas dropped by nearly 15 per cent during the same period. This paper presents preliminary results on the relationship between water supply, neighbourhood characteristics, and household strategies in response to dissatisfaction with water provision as reported by 389 respondents in 10 neighbourhoods in Lagos and Benin City, Nigeria between October 2007 and February 2008. In this paper, a conceptual model of consumer demand for water is used, based upon Hirschman’s exit, voice and loyalty (EVL framework. The model explicitly factors in the quality of water provision and variables at the household and neighbourhood levels that could affect perceptions about quality and the strategies that households use to cope with inadequate public services. Preliminary results show that reported household strategies to secure water are affected by community-level factors such as the range, cost, and quality of water supply alternatives, as well as neighbourhood composition. Furthermore, the percentage of urban migrants and households that live in rented flats in a neighbourhood seems to be associated with the use of exit strategies (as opposed to voice in response to problems with their primary water supply.

  14. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply.

    Science.gov (United States)

    Hutton, Guy

    2013-03-01

    Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.

  15. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  16. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. U.S. International Agricultural Trade Policy: Interests, Institutions and Information in the Corn Supply Chain

    Directory of Open Access Journals (Sweden)

    Laís Forti Thomaz

    2016-04-01

    Full Text Available The purpose of this article is to analyze the U.S. international agricultural trade policy by focusing on instruments and institutional arrangements. Policy decision-making is analyzed by means of three variables: 1 how interests are mobilized; 2 how information is disseminated; and 3 how spaces are occupied in deliberation arenas. The study refers to the corn sector and observes how the National Corn Growers Association operated to ensure subsidies and incentives for this supply chain along the elaboration of the 2002 and 2008 Farm Bills, as well as from other laws pertaining to agricultural and energy incentives. This paper provides evidences in favor of four arguments: first, empirical studies on the formulation and implementation of foreign trade policy, especially when it comes to agricultural issues, would greatly benefit with a greater attention on understanding the role domestic actors play in the decision-making processes; second, interest groups play a key role in this decision-making process; third, they provide the rationale for the formulation and implementation of the U.S. international agricultural trade policy; and, fourth, when the economic sector coordinates complex and relevant supply chains in the U.S. economy, it is hardly possible to revert the U.S. protectionist position in the Legislative branch.

  18. Modeling the resilience of urban water supply using the capital portfolio approach

    Science.gov (United States)

    Krueger, E. H.; Klammler, H.; Borchardt, D.; Frank, K.; Jawitz, J. W.; Rao, P. S.

    2017-12-01

    The dynamics of global change challenge the resilience of cities in a multitude of ways, including pressures resulting from population and consumption changes, production patterns, climate and landuse change, as well as environmental hazards. Responses to these challenges aim to improve urban resilience, but lack an adequate understanding of 1) the elements and processes that lead to the resilience of coupled natural-human-engineered systems, 2) the complex dynamics emerging from the interaction of these elements, including the availability of natural resources, infrastructure, and social capital, which may lead to 3) unintended consequences resulting from management responses. We propose a new model that simulates the coupled dynamics of five types of capitals (water resources, infrastructure, finances, political capital /management, and social adaptive capacity) that are necessary for the provision of water supply to urban residents. We parameterize the model based on data for a case study city, which is limited by constraints in water availability, financial resources, and faced with degrading infrastructure, as well as population increase, which challenge the urban management institutions. Our model analyzes the stability of the coupled system, and produces time series of the capital dynamics to quantify its resilience as a result of the portfolio of capitals available to usher adaptive capacity and to secure water supply subjected to multiple recurring shocks. We apply our model to one real urban water supply system located in an arid environment, as well as a wide range of hypothetical case studies, which demonstrates its applicability to various types of cities, and its ability to quantify and compare water supply resilience. The analysis of a range of urban water systems provides valuable insights into guiding more sustainable responses for maintaining the resilience of urban water supply around the globe, by showing how unsustainable responses risk the

  19. Effect of Rainfall Variability on Water Supply in Ikeduru L.G.A. of Imo ...

    African Journals Online (AJOL)

    User

    alternatives, which are that there is a strong relationship between rural water supply in ... Rainfall is a renewable resource, highly variable in space and time and ..... Due to the total dependence on the immediate environment for water supply,.

  20. Adaptive policy responses to climate change scenarios in the musi catchment, India

    NARCIS (Netherlands)

    Davidson, Brian; George, Biju; Malano, Hector; Hellegers, Petra

    2017-01-01

    In India the stresses on water resource systems have increased, due in part to increased demand for scarce water supplies. Yet, what could be of greater concern is the potential long-run threats of climate change affecting supplies. Before thinking of a policy response to these long-run concerns,

  1. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  2. The supply of steam from Candu reactors for heavy water production

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1975-09-01

    By 1980, Canada's energy needs for D 2 O production will be 420 MW of electrical energy and 3600 MW of thermal energy (as steam). The nature of the process demands that this energy supply be exceptionally stable. Today, production plants are located at or close to nuclear electricity generating sites where advantage can be taken of the low cost of both the electricity and steam produced by nuclear reactors. Reliability of energy supply is achieved by dividing the load between the multiple units which comprise the sites. The present and proposed means of energy supply to the production sites at the Bruce Heavy Water Plant in Ontario and the La Prade Heavy Water Plant in Quebec are described. (author)

  3. Domestic rainwater harvesting to improve water supply in rural South Africa

    Science.gov (United States)

    Mwenge Kahinda, Jean-marc; Taigbenu, Akpofure E.; Boroto, Jean R.

    Halving the proportion of people without sustainable access to safe drinking water and basic sanitation, is one of the targets of the 7th Millennium Development Goals (MDGs). In South Africa, with its mix of developed and developing regions, 9.7 million (20%) of the people do not have access to adequate water supply and 16 million (33%) lack proper sanitation services. Domestic Rainwater Harvesting (DRWH), which provides water directly to households enables a number of small-scale productive activities, has the potential to supply water even in rural and peri-urban areas that conventional technologies cannot supply. As part of the effort to achieve the MDGs, the South African government has committed itself to provide financial assistance to poor households for the capital cost of rainwater storage tanks and related works in the rural areas. Despite this financial assistance, the legal status of DRWH remains unclear and DRWH is in fact illegal by strict application of the water legislations. Beyond the cost of installation, maintenance and proper use of the DRWH system to ensure its sustainability, there is risk of waterborne diseases. This paper explores challenges to sustainable implementation of DRWH and proposes some interventions which the South African government could implement to overcome them.

  4. Changing landscape for North American supply

    International Nuclear Information System (INIS)

    Deegan, J.

    2005-01-01

    The United States represents 29 per cent of world natural gas consumption but holds 5 per cent of world natural gas resources. Supply and demand balances in the United States were examined in this PowerPoint presentation. Issues concerning market considerations and the Energy Policy Act were reviewed. The impacts of hurricanes were assessed and the U.S. supply and demand balance for the winter of 2004-2005 was considered. Growing producer expenditures were reviewed, and average finding and development cost increases were presented. New supply sources were examined, and details of expected major domestic supply contributors by 2010 were presented by region. It was suggested that unconventional sources will play a greater role in U.S. natural gas supply, and that liquefied natural gas (LNG) will be needed to attract resources within the world market. Increased regulatory certainty and supply flexibility is essential to economical supply development decisions. Issues concerning the Federal Energy Regulatory Commission's role in LNG terminal siting were examined. Permits, taxes and royalty incentives for deep water exploration were discussed. It was suggested that the Energy Policy Act falls short on increasing access to new supply. It was observed that traditional North American producing areas will provide only 75 per cent of long-term U.S. needs. Access to multi-use, non-park, non-wilderness federal lands for gas exploration will be needed. It was concluded that non-conventional resources are more costly and face greater public resistance than conventional resource plays. tabs., figs

  5. Changing landscape for North American supply

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, J. [Natural Gas Supply Association, Washington DC (United States)

    2005-07-01

    The United States represents 29 per cent of world natural gas consumption but holds 5 per cent of world natural gas resources. Supply and demand balances in the United States were examined in this PowerPoint presentation. Issues concerning market considerations and the Energy Policy Act were reviewed. The impacts of hurricanes were assessed and the U.S. supply and demand balance for the winter of 2004-2005 was considered. Growing producer expenditures were reviewed, and average finding and development cost increases were presented. New supply sources were examined, and details of expected major domestic supply contributors by 2010 were presented by region. It was suggested that unconventional sources will play a greater role in U.S. natural gas supply, and that liquefied natural gas (LNG) will be needed to attract resources within the world market. Increased regulatory certainty and supply flexibility is essential to economical supply development decisions. Issues concerning the Federal Energy Regulatory Commission's role in LNG terminal siting were examined. Permits, taxes and royalty incentives for deep water exploration were discussed. It was suggested that the Energy Policy Act falls short on increasing access to new supply. It was observed that traditional North American producing areas will provide only 75 per cent of long-term U.S. needs. Access to multi-use, non-park, non-wilderness federal lands for gas exploration will be needed. It was concluded that non-conventional resources are more costly and face greater public resistance than conventional resource plays. tabs., figs.

  6. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E

    2013-01-01

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  7. Policy and institutional dimensions of the water-energy nexus

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Christopher A., E-mail: cascott@email.arizona.edu [Udall Center for Studies in Public Policy, and School of Geography and Development, University of Arizona, 803 E. First St., Tucson AZ 85719 (United States); Pierce, Suzanne A. [Center for International Energy and Environmental Policy, Jackson School of Geosciences, University of Texas-Austin (United States); Pasqualetti, Martin J. [School of Geographical Sciences and Urban Planning, Arizona State University (United States); Jones, Alice L. [Eastern Kentucky Research Institute and Department of Geography and Geology, Eastern Kentucky University (United States); Montz, Burrell E. [Department of Geography, East Carolina University (United States); Hoover, Joseph H. [Department of Geography, University of Denver (United States)

    2011-10-15

    Energy and water are interlinked. The development, use, and waste generated by demand for both resources drive global change. Managing them in tandem offers potential for global-change adaptation but presents institutional challenges. This paper advances understanding of the water-energy nexus by demonstrating how these resources are coupled at multiple scales, and by uncovering institutional opportunities and impediments to joint decision-making. Three water-energy nexus cases in the United States are examined: (1) water and energy development in the water-scarce Southwest; (2) conflicts between coal development, environmental quality, and social impacts in the East; and (3) tensions between environmental quality and economic development of shale natural gas in the Northeast and Central U.S. These cases are related to Eastern, Central, and Western regional stakeholder priorities collected in a national effort to assess energy-water scenarios. We find that localized challenges are diminished when considered from broader perspectives, while regionally important challenges are not prioritized locally. The transportability of electricity, and to some extent raw coal and gas, makes energy more suitable than water to regionalized global-change adaptation, because many of the impacts to water availability and quality remain localized. We conclude by highlighting the need for improved coordination between water and energy policy. - Highlights: >Water-energy nexus construct considers institutions not just resource inputs. > Energy policy offers more scope for global-change adaptation than does water policy. > U.S. scenarios highlight water impacts and policy choices of energy development. > Water-energy policy tradeoffs may be mitigated across scales of resource use.

  8. Policy and institutional dimensions of the water-energy nexus

    International Nuclear Information System (INIS)

    Scott, Christopher A.; Pierce, Suzanne A.; Pasqualetti, Martin J.; Jones, Alice L.; Montz, Burrell E.; Hoover, Joseph H.

    2011-01-01

    Energy and water are interlinked. The development, use, and waste generated by demand for both resources drive global change. Managing them in tandem offers potential for global-change adaptation but presents institutional challenges. This paper advances understanding of the water-energy nexus by demonstrating how these resources are coupled at multiple scales, and by uncovering institutional opportunities and impediments to joint decision-making. Three water-energy nexus cases in the United States are examined: (1) water and energy development in the water-scarce Southwest; (2) conflicts between coal development, environmental quality, and social impacts in the East; and (3) tensions between environmental quality and economic development of shale natural gas in the Northeast and Central U.S. These cases are related to Eastern, Central, and Western regional stakeholder priorities collected in a national effort to assess energy-water scenarios. We find that localized challenges are diminished when considered from broader perspectives, while regionally important challenges are not prioritized locally. The transportability of electricity, and to some extent raw coal and gas, makes energy more suitable than water to regionalized global-change adaptation, because many of the impacts to water availability and quality remain localized. We conclude by highlighting the need for improved coordination between water and energy policy. - Highlights: →Water-energy nexus construct considers institutions not just resource inputs. → Energy policy offers more scope for global-change adaptation than does water policy. → U.S. scenarios highlight water impacts and policy choices of energy development. → Water-energy policy tradeoffs may be mitigated across scales of resource use.

  9. 76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-01-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9259-6] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and...

  10. 76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-07-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9444-8] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that these revisions are no less stringent than the corresponding...

  11. Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Bojan Đurin

    2014-05-01

    Full Text Available Because of the importance of water supply for the sustainability of urban areas, and due to the significant consumption of energy with prices increasing every day, an alternative solution for sustainable energy supply should be sought in the field of Renewable Energy Sources (RES. An innovative solution as presented in this paper has until now not been comprehensively analyzed. This work presents the solution with the application of a (Photovoltaic PV generator. The main technological features, in addition to the designing methodology and case study are presented in this paper. The critical period approach has been used for the first time for system sizing. The application of this sizing method provides a high reliability of the proposed system. The obtained results confirm the assumption that the PV generator is a promising energy sustainable solution for urban water supply systems. The service reservoir, which acts as water and energy storage for the proposed system, provides the basis for a sustainable solution of water and energy supply. In accordance with the proposed, the reliability of such system is high. This concept of energy supply operation does not generate any atmospheric emission of greenhouse gases, which contributes significantly to the reduction of the impacts of climate changes. The proposed solution and designing methodology are widely applicable and in accordance with the characteristics of the water supply system and climate.

  12. Occurrence of Cryptosporidium oocysts and Giardia cysts in water supplies of San Pedro Sula, Honduras

    Directory of Open Access Journals (Sweden)

    Solo-Gabriele Helena María

    1998-01-01

    Full Text Available During June 1996, water supplies of the city of San Pedro Sula, Honduras, were sampled to obtain an assessment of Cryptosporidium oocyst and Giardia cyst concentrations. Each sample was concentrated and stained with an indirect immunofluorescent antibody, and parasites were counted through microscopic analysis. In three surface water supplies, Cryptosporidium oocyst concentrations ranged from 58 to 260 oocysts per 100 L, and Giardia cysts were present in concentrations ranging from 380 to 2100 cysts per 100 L. Unlike the surface water samples, groundwater had a higher concentration of Cryptosporidium oocysts (26/100 L than Giardia cysts (6/100 L, suggesting that the groundwater aquifer protects the water supply more effectively from larger Giardia cysts. Cryptosporidium oocyst concentrations are within the typical range for surface water supplies in North America whereas Giardia cyst concentrations are elevated. Efforts should be made to protect raw water from sources of contamination.

  13. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.

    Science.gov (United States)

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto

    2012-05-01

    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  14. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  15. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies

    Science.gov (United States)

    Munger, R.; Isacson, P.; Hu, S.; Burns, T.; Hanson, J.; Lynch, C.F.; Cherryholmes, K.; Van Dorpe, P.; Hausler, W.J.

    1997-01-01

    In a statewide survey of 856 Iowa municipal drinking water supplies in 1986-1987 the Rathbun rural water system was found to contain elevated levels of triazine herbicides. Rates of low birth weight, prematurity, and intrauterine growth retardation (IUGR) in live singleton births during the period 1984-1990 by women living in 13 communities served by the Rathbun water system were compared to other communities of similar size in the same Iowa counties. The Rathbun communities had a greater risk of IUGR than southern Iowa communities with other surface sources of drinking water (relative risk = 1.8; 95% CI = 1.3, 2.7). Multiple linear regression analyses revealed that levels of the herbicides atrazine, metolachlor, and cyanazine were each significant predictors of community IUGR rates in southern Iowa after controlling for several potentially confounding factors including maternal smoking and socioeconomic variables. The association with IUGR was strongest for atrazine, but all three herbicides were intercorrelated and the independent contributions of each to IUGR risk could not be determined. We conclude that communities in southern Iowa with drinking water supplies contaminated with herbicides have elevated rates of IUGR compared to neighboring communities with different water supplies. Because of the limitations of the ecologic design of this study, including aggregate rather than individual measures of exposure and limited ability to control for confounding factors related to source of drinking water and risk of IUGR, a strong causal relationship between any specific water contaminant and risk of IUGR cannot yet be inferred. The association between the water supplied to the Rathbun communities and the increased risk of IUGR should be considered a preliminary finding that needs to be verified by more detailed epidemiologic studies.

  16. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  17. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  18. Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach

    International Nuclear Information System (INIS)

    Okadera, Tomohiro; Geng, Yong; Fujita, Tsuyoshi; Dong, Huijuan; Liu, Zhu; Yoshida, Noboru; Kanazawa, Takaaki

    2015-01-01

    Water and energy are important resources for regional economies and are inextricably and reciprocally linked. Global water and energy demand will increase significantly by 2030 while climate change will worsen water availability. Thus, it is important to ensure a sustainable energy supply despite the increasing severity of water resource constraints. Numerous studies have analyzed water requirements to produce energy from production perspectives. However, energy is generally supplied by both internal and external producers. Thus, it is necessary to consider the availability of water to produce energy from consumption perspectives also. We evaluate the water footprint of the energy supply of Liaoning Province, China. We apply the standard top-down approach using an input–output framework. We estimate the water footprint of the energy supply of Liaoning Province at 854 million m 3 in 2002, with 47% of water used for electricity and heating. Our results reveal that energy supply could depend on water resources in neighboring provinces; external producers met 80% of the water footprint of energy supply, although only 35% of energy supply was imported. If Liaoning Province decreased its external dependency, withdrawal of available water resources within the province would increase from 86% to 91%. To guarantee future regional energy security, it is important to manage water resources effectively through water-efficient electricity generation and by allocating water resources among sectors. - Highlights: • We assess the water footprint of energy supply (WFES) for Liaoning Province, China. • The WFES for 2002 was 854 million m 3 , with 47% used for electricity and heating. • External sources accounted for 80% of the WFES and 47% of the energy supply. • Without energy imports, water resource withdrawal would increase from 86% to 91%. • Effective water resource management is important for regional energy security

  19. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  20. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)