Sample records for water supply and distribution structures

  1. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.


    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  2. Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems


    Herrera, Manuel; Meniconi, Silvia; Alvisi, Stefano; Izquierdo, Joaquin


    This document is intended to be a presentation of the Special Issue “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems”. The final aim of this Special Issue is to propose a suitable framework supporting insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system design, optimization of network perf...

  3. A Holistic ICT Solution to Improve Matching between Supply and Demand over the Water Supply Distribution Chain

    Directory of Open Access Journals (Sweden)

    Gabriel Anzaldi


    Full Text Available While many water management tools exist, these systems are not usually interconnected and therefore cannot communicate between one another, preventing Integrated Water Resources Management to be fully achieved. This paper presents the solution proposed by WatERP project* where a novel solution enables better matching between water supply and demand from holistic perspective. Subsystems that control the production, management and consumption of water will be interconnected through both information architecture and intelligent infrastructure. The main outcome will consist of, a web-based Open Management Platform integrating near real-time knowledge on water supplies and demand, from sources to users, across geographic and organizational scales and supported by a knowledge base where information will be structured in water management ontology to ensure interoperability and maximize usability. WatERP will thus provide a major contribution to: 1 Improve coordination among actors, 2 Foster behavioural change, 3 Reduce water and energy consumption, 4 Optimize water accountability.


    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  5. Combination of drainage, water supply and environmental protection as well as rational distribution of water resource in Zhengzhou mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Li, D.; Di, Z.Q.; Miao, Y.; Zhao, S.Q.; Guo, Q.W. [CUMT, Beijing (China). Resource Exploitation Engineering College


    The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environmental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environmental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and difficulty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judgement of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.

  6. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers. (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong


    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Food and water supply (United States)

    Popov, I. G.


    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  8. Collector feedwater supply and stability of the power distribution in a pressurized-water reactor

    International Nuclear Information System (INIS)

    Budnikov, V.I.; Kosolapov, S.V.; Kramerov, A.Ya.


    It is necessary to determine how the collector feedwater supply affects the disposition of the stability limits and the instability period for the power distribution in such a reactor. The main reason for the fluctuations in feedwater flow rate were shown by additional calculations with the general power regulator switched out to be due to instability on the fundamental in the neutron distribution. The power-level fluctuations are due to oscillation of the feed valve in the level regulator, and consequently to oscillations in the feedwater flow rate. If collector feed is to be employed, it is desirable to improve the response of the pressure control system for the separator drum, because under certain emergency conditions there will be a considerable fall in pressure in the separator drum. The deviation from saturation for the water in the separator drum tube is less in the second method than it is in the first, so the cavitation margin in the principal pumps may be reduced somewhat. Calculations show that this reduction will not occur if the time constant of the turbine synchronizer is about 10 sec. Also, the dynamic characteristics of the nuclear power station in these modes of feedwater supply are appreciably influenced by the parameters of the pressure-control system and the water-level control for the separator drum

  9. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply (United States)

    Goyal, Roopali V.; Patel, H. M.


    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  10. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts (United States)

    Delaney, David F.; Maevsky, Anthony


    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  11. Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China. (United States)

    Zhang, Kai; Niu, Zhi-Guang; Lv, Zhiwei; Zhang, Ying


    Jingjinji area occupies important position in developing of the Chinese economy, while there exists a sharp conflict between economic growth and limited water resources in this area. To ensure the safety of water consumption of cities in Jingjinji area, we investigated the abundance of three classes of antibiotic resistance genes (ARGs) in water and sediment of six water supply reservoirs in this area. The results showed that the detection frequency of sul1, tetM and ermB were 100%. However, the content ranges of these genes were different (10 -5 to 10 -2 /16S gene copies for sul1, 10 -5 to 10 -3 /16S gene copies for ermB, and 10 -5 to 10 -3 /16S gene copies for tetM). The content of ribosome protection proteins (RPP) genes were the highest in all selected tet genes. The highest abundance of ARGs in water and sediment samples was sampled from Panjiakou reservoir and Guanting reservoir, respectively. Except COD, chla and tetM, there are no significant correlation between water quality parameters and ARGs. Overall, this study provides integrated profiles of the three types of ARGs in water supply reservoirs of Jingjinji area and thus helps to re-evaluate the effects of human activities to water supply reservoirs.

  12. Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network. (United States)

    Skjevrak, Ingun; Lund, Vidar; Ormerod, Kari; Herikstad, Hallgeir


    The objective of this work was investigation of volatile organic compounds (VOC) in natural biofilm inside polyethylene (HDPE) pipelines at continuously flowing water. VOC in biofilm may contribute to off-flavour episodes in drinking water. The pipelines were supplied with raw lake water and treated water from the distribution network. Biofilm was established at test sites located at two different drinking water distribution networks and their raw water sources. A whole range of volatile compounds were identified in the biofilm, including compounds frequently associated with cyanobacteria and algae, such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone and 6-methyl-5-hepten-2-one. In addition, volatile amines, dimethyldisulphide and 2-nonanone, presumably originating from microorganisms growing in the biofilm, were identified. C8-compounds such as 1-octen-3-one and 3-octanone were believed to be products from microfungi in the biofilm. Degradation products from antioxidants such as Irgafos 168, Irganox 1010 and Irganox 1076 used in HDPE pipes, corresponding to 2,4-di-tert-butylphenol and 2,6-di-tert-butylbenzoquinone, were present in the biofilm.

  13. Nitrate distribution and potential attenuation mechanisms of a municipal water supply bedrock aquifer

    International Nuclear Information System (INIS)

    Opazo, Tomás; Aravena, Ramón; Parker, Beth


    The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO_3"−-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO_3"− in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis ("3H, δ"1"5N-NO_3, δ"1"8O-NO_3, δ"1"8O-SO_4, δ"3"4S-SO_4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO_3 concentrations at the ARS exhibits a manure-related δ"1"5N and δ"1"8O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO_3"− groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO_3"−-N concentrations associated with more oxygen-limited conditions and coincident with high SO_4"2"− concentrations are related to more

  14. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.


    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  15. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System (United States)

    Kumpel, E.; Nelson, K. L.


    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  16. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris


    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  17. Occurrence and distribution of taste and odor compounds in subtropical water supply reservoirs and their fates in water treatment plants. (United States)

    Bai, Xiuzhi; Zhang, Ting; Wang, Chaoyi; Zong, Dongliang; Li, Haipu; Yang, Zhaoguang


    Taste and odor (T&O) problems in surface water supplies attract growing environmental and ecological concerns. In this study, 10 T&O compounds, 2-methylisoborneol (2-MIB), geosmin, β-ionone, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2,4,6-trichloroanisole (2,4,6-TCA), 2,3,6-trichloroanisole (2,3,6-TCA), 2,3,4-trichloroanisole (2,3,4-TCA), 2,4,6-tribromoanisole (2,4,6-TBA), and trans-2,cis-6-nonadienal (NDE) were investigated in 13 water supply reservoirs and 2 water treatment plants (WTPs) in S City of China. 2-MIB, geosmin, and β-ionone were detected in most of the reservoirs and WTPs. The highest concentrations in reservoirs reached 196.0 ng L -1 for 2-MIB, 11.4 ng L -1 for geosmin, and 39.7 ng L -1 for β-ionone. Canonical correspondence analysis (CCA) was used to examine the relationship between the 3 T&O compounds and environmental parameters of the reservoirs. The results showed that TP was strongly positively correlated with 2-MIB in wet season and negatively correlated in dry season. It was suggested that controlling nutrient (TP, TN/TP, and NH 3 -N) inputs was required for better management of drinking water reservoirs. Furthermore, the maximum concentrations in raw water of WTPs was kept at 82.1 ng L -1 for 2-MIB, 5.6 ng L -1 for geosmin, and 66.1 ng L -1 for β-ionone. β-Ionone could not be detected in the post-filtration and finished water of two WTPs, and both 2-MIB and geosmin significantly decreased in the water of XWTP. It was indicated that T&O compounds could be removed partly or completely by the filtration of conventional treatment processes.

  18. The Geographical Distribution of Water Supply in Ekiti

    African Journals Online (AJOL)


    Indexed African Journals Online: An International ... time spent for water collection, the rating of water supply, and problems associated ... The people were asked to indicate how long it would take them to get good quality water ...

  19. The Geographical Distribution of Water Supply in Ekiti State ...

    African Journals Online (AJOL)

    The provision of potable water to every nock and crannies of the state must be pursed vigorously. To achieve this task in Ekiti State, the problems militating against the supply of clean water need to be tackled effectively. For this reason, the rehabilitation of existing dams provision of funds, completion of the 132 KVA ...

  20. Institutional and socioeconomic aspects of water supply (United States)

    Rauchenschwandtner, H.; Pachel, M.


    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  1. Potential impacts of changing supply-water quality on drinking water distribution: A review. (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter


    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  3. Water supply and management concepts (United States)

    Leopold, Luna Bergere


    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  4. Spatial distribution of water supply in the coterminous United States (United States)

    Thomas C. Brown; Michael T. Hobbins; Jorge A. Ramirez


    Available water supply across the contiguous 48 states was estimated as precipitation minus evapotranspiration using data for the period 1953-1994. Precipitation estimates were taken from the Parameter- Elevation Regressions on Independent Slopes Model (PRISM). Evapotranspiration was estimated using two models, the Advection-Aridity model and the Zhang model. The...

  5. Public-supply water use and self-supplied industrial water use in Tennessee, 2010 (United States)

    Robinson, John A.


    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Water Resources, prepared this report and displayed and analyzed water use by self-supplied industrial and public-supply water systems in Tennessee for 2010. Public-supply water systems in Tennessee provide water for domestic, industrial, and commercial uses and for municipal services. In 2010, 474 public-supply water systems distributed 917 million gallons per day (Mgal/d) of surface water (67 percent, 617 Mgal/d) and groundwater (33 percent, 300 Mgal/d) to a population of 5.7 million in Tennessee. Gross per capita water use in Tennessee during 2010 was 162 gallons per day.Since 1950, water withdrawals by public-supply water systems in Tennessee have increased from 160 Mgal/d to 917 Mgal/d in 2010. Each of the 95 counties in Tennessee was served by at least 1 public-supply water system in 2010. Tennessee public-supply water systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. Since 2005, surface-water withdrawals have increased by 26 Mgal/d, and groundwater withdrawals have decreased by 29 Mgal/d, which is the first decrease in groundwater withdrawals since 1950; however, 29 systems reported increased groundwater withdrawals during 2010, and 12 of these 29 systems reported increases of 1 Mgal/d or more. Davidson County had the largest surface-water withdrawal rate (136 Mgal/d) in 2010. The largest groundwater withdrawal rate (151 Mgal/d) by a single public-supply water system was reported by Memphis Light, Gas and Water, which served more than 669,000 people in Shelby County in 2010.Self-supplied industrial water use includes water for such purposes as fabrication, processing, washing, diluting, cooling, or transporting a product; incorporating water into a product; or for sanitation needs in facilities that manufacture various products. Water withdrawals for self-supplied

  6. Organization and scaling in water supply networks (United States)

    Cheng, Likwan; Karney, Bryan W.


    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  7. Simplification of Water Distribution Network Simulation by Topological Clustering – Investigation of its Potential Use in Copenhagen's Water Supply Monitoring and Contamination Contingency Plans

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin


    Topological clustering was investigated to simplify a complex water distribution network of Copenhagen, Denmark, into recogniz- able water movement patterns. This made it possible to assess the general transport of the water and to suggest strategic sampling locations. Through a topological...... the samples’ comparability over time, and locations, where samples represent the distributed and consumed water in the Nørrebro district....

  8. Flocculation alters the distribution and flux of melt-water supplied sediments and nutrients in the Arctic

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest; Ernstsen, Verner Brandbyge

    In the Arctic, thawing permafrost and increased melting of glaciers are important drivers for changes in fine-grained sediment supply and biogeochemical fluxes from land to sea. Flocculation of particles is a controlling factor for the magnitude of fluxes and deposition rates in the marine...... environment but comparatively little is known about the flocculation processes in the Arctic. We investigated flocculation dynamics from a melt-water river in the inner Disko Fjord, West Greenland. A novel, laser-illuminated camera system significantly improved the particle size measurement capabilities...... and settling tubes were sampled to enable sub-sampling of different floc size fractions. Flocculation was observed during periods with low turbulent shear and also at the front of the fresh water plume resulting in significant volumes of large sized flocs at depth below the plume. The floc sizes and volumes...

  9. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.


    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  10. Biofouling potential and material reactivity in a simulated water distribution network supplied with stormwater recycled via managed aquifer recharge. (United States)

    Gonzalez, Dennis; Tjandraatmadja, Grace; Barry, Karen; Vanderzalm, Joanne; Kaksonen, Anna H; Dillon, Peter; Puzon, Geoff J; Sidhu, Jatinder; Wylie, Jason; Goodman, Nigel; Low, Jason


    The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth. (United States)

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou


    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  12. Electricity supply of Switzerland. Development and structure

    International Nuclear Information System (INIS)

    Mutzner, J.


    An overview of the history of the Swiss power supply since the founding of the Swiss Electricity Works Association in the year 1985 is provided. Power supply, requirements, linkage and exchange with other countries are dealt with. Further themes are the organizational structures, tariffs, power supply and energy policies, as well as national and international connections. 87 figs., 40 refs

  13. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation. (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen


    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus

  14. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.


    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  15. Water management, agriculture, and ground-water supplies (United States)

    Nace, Raymond L.


    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  16. Water stress, water salience, and the implications for water supply planning (United States)

    Garcia, M. E.; Islam, S.


    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  17. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.


    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  18. Supply of FDG : production and distribution

    International Nuclear Information System (INIS)

    Pilloy, W.J.; Fallais, A.


    Full text: Aim: To review the means of production of PET tracers and the logistIcs of their distribution, with special emphasis on 18 FDG - from an end-user point of view. Material and method: The experience of a satellite center (i.e. without in-house cyclotron) over one year. Results: The following topics are presented: Basic introduction to FDG and its radio-synthesis; properties of cyclotrons and linear accelerators; the economics of buying and running a cyclotron to produce FDG; satellite facilities (availability from radiopharmacies; fraction of FDG in the cost of running a PET center; recent developments in PET cameras, and their implications of FDG supply; diversification in the offer of commercial PET tracers; regulatory issues, and their influence on FDG supply; possible developments in onco-PET, neuro-PET, cardio-PET; generators and full PET Nuclear Medicine. Conclusion: The European experience is not necessarily completely applicable to a large country like South Africa; the question can be raised whether it is advisable to move the patients, the FDG or the camera around the country or its provinces. (author)

  19. Water supply and needs for West Texas (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  20. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin (United States)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.


    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In

  1. Information technology, innovation and supply chain structure

    NARCIS (Netherlands)

    Stroeken, J.H.M.


    The link between IT, innovation and supply chain structure is central here. This article is divided into three parts. First, a theoretical analysis of the role of IT in innovation processes. Actually, it involves the total innovation of the supply chain, not merely logistic innovation. The

  2. Distribution of uranium supply and enrichment

    International Nuclear Information System (INIS)

    Bamford, F.W.


    Uranium supply and demand is examined from the perspective of companies in the uranium hexafluoride (UF6) conversion business whose main interest is their sources of uranium supply and UF6 destinations because of transportation costs. Because of the variations in yellowcake transport, charges for conversion, and UF6 transport costs, most converters don't have standard prices. Companies try to look ahead to determine patterns of supplies and delivery points when they analyze the market and estimate future prices. Market analyses must take into account the purchasing policies of utilities around the world. The presentation shows North America supplying about 40% of world uranium, with about 13% of the enrichment done elsewhere. It also shows North American converters getting 53% of the business, but that will require importing uranium from outside North America. 6 tables

  3. Modeling and Optimization for Management of Intermittent Water Supply (United States)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.


    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  4. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella


    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  5. Water Supply and Treatment Equipment (United States)


    j. Results of physical inspection and record of any repair or maintenance accomplished to restore the system to a fully functional state...for the specific membrane; b. For technologies employing membrane ultrafiltration and/or membrane microfiltration , identification of the

  6. Automated Water Supply System and Water Theft Identification Using PLC and SCADA


    Prof. Anubha Panchal,; Ketakee Dagade


    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  7. Wildland Fire Research: Water Supply and Ecosystem Protection (United States)

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  8. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes (United States)

    Gao, Yan; Liu, Yuyou


    Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.

  9. Effect of sprinkler structure on water distribution uniformity

    International Nuclear Information System (INIS)

    Xu, M; Li, H; Chen, C; Tu, Q; Liu, J P


    Structures of sprinklers play important roles in the uniformity of water distribution. The advances and achievements to improve the distribution uniformity through the innovation in the sprinkler structures at home and abroad were presented in details. Analyses showed that three types of structure can ameliorate the water distribution efficiently. First, novel nozzle structures were applied, including the application of non-circle nozzle and special spread nozzles. Second, new structures of flow channel were used. Third, assistant device was added so as to improve the uneven water distribution, such as an assistant stream interrupter, pressure or flow rate regulator and so on. Compared to domestic sprinklers, sprinklers produced abroad have novel and special structures with better hydraulic performance. Basic theoretical researches should be strengthened and new materials, new manufacturing processes and new technique should be applied. Then new kinds of sprinkler will be produced and the hydraulic performance of sprinklers will be promoted to a higher level.

  10. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system – Effects of pipe material and sedimentation

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik


    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (......Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (...

  11. Effects of some structural materials on the reactivity and flux distributions in a pressurised water reactor

    International Nuclear Information System (INIS)

    Mondal, A.M.W.; Mannan, M.A.


    The effect of the structural materials of the guide tubes, spacer grids and the shroud on the reactivity and the flux distribution of a Pressurised Water Reactor (PWR) has been studied. Group constants of different cells of guide tubes, spacer grids, shroud and the fuel have been calculated using the cell codes LEOPARD, PANTHER and METHUSELAH. Core calculations have been performed using the diffusion code EQUIPOISE. It has been found for a PWR of 1300 MWe of Kraftwork Union design for Iron that the total change in reactivity due to the presence of guide tubes, spacer grids and the shroud is about -2.48x10 -2 . (author)

  12. 9 CFR 354.224 - Water supply. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  13. 40 CFR 230.50 - Municipal and private water supplies. (United States)


    ... a municipal or private water supply system. (b) Possible loss of values: Discharges can affect the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal...

  14. Mean Residence Time and Emergency Drinking Water Supply. (United States)

    Kralik, Martin; Humer, Franko


    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  15. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Imayoshi, Shou


    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  16. 46 CFR 76.25-15 - Pumps and water supply. (United States)


    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  17. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council


    ... or well supplies to consumers’ taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management...

  18. Analytical Bibliography for Water Supply and Conservation Techniques. (United States)


    American Water Works Association 67:331-35. This article describes the activities of the COMASP (water authority for Sao Paulo , Brazil ) during a...the Water Supply Act of 1958, as amiended. Flood Control Act of 1944. The Secretary of the Army was authorized to sell surplus impounded water in...each category. The issues discussed are: climate and water supply, floods and droughts, groundwater, water conservation in irrigation, water quality

  19. Benthic foraminiferal distribution in surface sediments along continental slope of the southern Okinawa Trough:dependance on water masses and food supply

    Institute of Scientific and Technical Information of China (English)

    向荣; 李铁刚; 杨作升; 阎军; 曹奇原


    Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Oki-nawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidlywith increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm themodem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to thebottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corre-sponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, domi-nated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower con-tinental slope- trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua andCibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottomagglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds tostrongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southemOkinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygenconcentration and carbonate dissolution of the water masses are important controlling factors especiallyfor the continental shelf break and trough bottom assemblages. The food supply also plays an importantrole in these benthic foraminiferal assemblages along the westem slope of the Okinawa Trough. Both theabundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supplyalong the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulateorganic

  20. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  1. Water Supply and Sanitation Facility Accessibility in Off-Campus ...

    African Journals Online (AJOL)

    Water Supply and Sanitation Facility Accessibility in Off-Campus Houses ... on drinking water source, rate of illness, type and usage of sanitation facilities. ... wells, unprotected dug wells; while others during the wet season harvest rain water.

  2. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.


    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.


    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  4. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin


    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  5. Optimal pricing of transmission and distribution services in electricity supply

    International Nuclear Information System (INIS)

    Farmer, E.D.; Cory, B.J.; Perera, B.L.P.P.


    A new strategy for the separate pricing of transmission and distribution services in electricity supply is formulated and evaluated. The proposed methodology is a multivariate transmission generalisation of the method of peak load pricing previously applied to the optimal time-of-use pricing of generation on a power system with diverse generation technologies and with elastic demand. The method allocates both capacity and operational costs on a time-of-use basis, in an optimal manner, that avoids cross-subsidisation both between differing supply system participants and differing times of usage. The method is shown to promote the optimal development of the transmission, distribution or interconnecting systems, rewarding justified investments in transmission capacity and discouraging overinvestment. It also leads to appropriate returns on invested capital without significant 'revenue reconciliation'. This contrasts with SRMC pricing as is shown by a comparative revenue evaluation. It is concluded that the method has wide potential application in electricity supply. (author)

  6. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin


    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  7. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.


    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is

  8. Managing urban water supplies in developing countries Climate change and water scarcity scenarios (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  9. Bacterial indicators of faecal pollution of water supplies and public ...

    African Journals Online (AJOL)

    Bacterial indicators of faecal pollution of water supplies and their significance to public health are reviewed in this paper, to highlight their levels of general acceptability and suitability as safeguards against health hazards associated with water supplies. Regular bacteriological analysis with the sole aim of detecting faecal ...

  10. Chlorine treatment effectiveness and physico-chemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana (United States)

    Karikari, A. Y.; Ampofo, J. A.


    Drinking water quality from two major treatment plants in Ghana; Kpong and Weija Plants, and distribution networks in the Accra-Tema Metropolis were monitored monthly for a year at fifteen different locations. The study determined the relationship between chlorine residual, other physico-chemical qualities of the treated water, and, bacteria regrowth. Results indicated that the treated water at the Kpong and Weija Treatment Plants conformed to WHO guidelines for potable water. However, the water quality deteriorated bacteriologically, from the plants to the delivery points with high numbers of indicator and opportunistic pathogens. This could be due to inadequate disinfection residual, biofilms or accidental point source contamination by broken pipes, installation and repair works. The mean turbidity ranged from 1.6 to 2.4 NTU; pH varied from 6.8 to 7.4; conductivity fluctuated from 71.1 to 293 μS/cm. Chlorine residual ranged from 0.13 to 1.35 mg/l. High residual chlorine was observed at the treatment plants, which decreased further from the plants. Results showed that additional chlorination does not take place at the booster stations. Chlorine showed inverse relationship with microbial counts. Total coliform bacteria ranged from 0 to 248 cfu/100 ml, and faecal coliform values varied from 0 to 128 cfu/100 ml. Other microorganisms observed in the treated water included Aeromonas spp., Clostridium spp. and Pseudomonas spp. Boiling water in the household before consumption will reduce water-related health risks.

  11. Water Quality and Quantity in Intermittent and Continuous Piped Water Supplies in Hubli-Dharwad, India


    Kumpel, Emily Katherine


    In at least 45 low- and middle-income countries, piped water systems deliver water for limited durations. Few data are available of the impact of intermittent water supply (IWS) on the water quality and quantity delivered to households. This thesis examines the impact of intermittently supplied piped water on the quality and quantity of water delivered to residential taps in Hubli-Dharwad, India, when compared to continuous piped water supply. A framework for understanding the pathways throug...

  12. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.


    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  13. Supply and distribution for γ-ray sources

    International Nuclear Information System (INIS)

    Yamamoto, Takeo


    Japan Atomic energy Research Institute (JAERI) is the only facility to supply and distribute radioisotopes (RI) in Japan. The γ-ray sources for medical use are 192 Ir and 169 Yb for non-destructive examination and 192 Ir, 198 Au and 153 Gd for clinical use. All of these demands in Japan are supplied with domestic products at present. Meanwhile, γ-ray sources imported are 60 Co sources for medical and industrial uses including sterilization of medical instruments, 137 Cs for irradiation to blood and 241 Am for industrial measurements. The major overseas suppliers are Nordion International Inc. and Amersham International plc. RI products on the market are divided into two groups; one is the primary products which are supplied in liquid or solid after chemical or physical treatments of radioactive materials obtained from reactor and the other is the secondary product which is a final product after various processing. Generally these secondary products are used in practice. In Japan, both of the domestic and imported products are supplied to the users via JRIA (Japan Radioisotope Association). The association participates in the sales and the distributions of the secondary products and also in the processings of the primary ones to their sealed sources. Furthermore, stable supplying systems for these products are almost established according to the half life of each nuclide only if there is no accident in the reactor. (M.N.)

  14. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş


    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  15. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water... (United States)


    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  16. Water supply studies. [management and planning of water supplies in California (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.


    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  17. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)


    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  18. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio


    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  19. Structure functions and parton distributions

    International Nuclear Information System (INIS)

    Olness, F.; Tung, Wu-Ki


    Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed


    International Nuclear Information System (INIS)

    Clark, R.D.


    This analysis defines and evaluates the surface water supply system from the existing J-13 well to the North Portal. This system includes the pipe running from J-13 to a proposed Booster Pump Station at the intersection of H Road and the North Portal access road. Contained herein is an analysis of the proposed Booster Pump Station with a brief description of the system that could be installed to the South Portal and the optional shaft. The tanks that supply the water to the North Portal are sized, and the supply system to the North Portal facilities and up to Topopah Spring North Ramp is defined

  1. The energy and emissions footprint of water supply for Southern California (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.


    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  2. Metropolitan Washington Area Water Supply Study. Appendix F. Structural Alternatives. (United States)


    particulates (such as S. typhosa and the hepatitus virus) and asbestos fibers pose potential health risks. Particulates also produce indirect health risks due...metals, asbestos fibers , viruses, and other potentially pathogenic microorganisms. Since February 1979, questions were also raised on the suitability of...L Sqg/L ~(%/L (66/1, (66/1, as (g/i a (89/1. (mg/L. (109/L (.6/L attre as 1) as Cl) as 8.) s ) so 110.) 4 ca) a a) COWS) COCO .) an Co) eab) a f) e ft

  3. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J


    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  4. Application for Planning and Improvement of Public Water Supply in ...

    African Journals Online (AJOL)


    The study applied the tool of GIS in the planning and improvement of water ... proffer an acceptable solution to the problems of water supply in the study area. Primary data generated ..... Tropical Hydrology and Water. Resources. Iloeje, N.P. ...

  5. Margins of the law pertaining to water supplies and waterways

    International Nuclear Information System (INIS)

    Bickel, C.


    The author examines legal questions coming from points of contact of the law pertaining to water supplies and waterways on the one hand with the Waste Management Law, the Atomic Energy Law and Criminal Law on the other hand. He tries to find ways for solving the practical problems which arise with the execution of the law pertaining to water supplies and waterways. (HSCH) [de

  6. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B


    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  7. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna


    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  8. Family Structure and Female Labour Supply in Mexico City

    NARCIS (Netherlands)

    Gong, X.; van Soest, A.H.O.


    This paper investigates labour supply of the wives of the heads of households in Mexico City, with a focus on the impact of family structure. A static neoclassical structural model is used. We assume that each woman chooses her labour supply and corresponding income so that her utility is maximized,

  9. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong. (United States)

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping


    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  10. Assessing rural small community water supply in Limpopo, South Africa: water service benchmarks and reliability. (United States)

    Majuru, Batsirai; Jagals, Paul; Hunter, Paul R


    Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (pwater sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan


    Rosenberg, David E.; Talozi, Samer; Lund, Jay


    Intermittent access to improved urban water supplies is a large and expanding global problem. This paper describes 16 supply enhancement and 23 demand management actions available to urban residential water users in Jordan to cope with intermittent supplies. We characterize actions by implementation, costs, and water quantities and qualities acquired or conserved. This effort systematically identifies potential options prior to detailed study and shows that water users have significant capaci...

  12. Localizing the strategy for achieving rural water supply and ...

    African Journals Online (AJOL)

    Water is essential for sustenance of life and determines the overall socio- economic development of any nation. In Nigeria, so many programmes to improve water supply and sanitation situation had been put in place by different administrations. Despite this, the hope of meeting the UN Millennium Development Goals ...

  13. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data. (United States)


    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are usually...

  14. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration. (United States)

    Fish, K; Osborn, A M; Boxall, J B


    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Advanced power supply and distribution systems for Columbus (United States)

    Eggers, Gert


    The paper describes power supply and distribution systems to be used on unmanned/man-tended Columbus elements, capable of supplying 10 kW to 30 kW to a variety of users in low earth orbits (LEO's). For the definition of the Electrical Power System (EPS) challenging requirements as the provision of high power levels under hard LEO conditions, maintainability, commonality etc. are to be taken into account. These requirements are to be seen in conjunction with the Columbus IOC (initial operational capability) scenario stipulating that EPS hardware shall be used on the Polar Platform, the Pressurized Module attached to the U.S. Space Station and the Man-Tended Free Flier. According to the availability of European technologies, the baseline in the power generation area is a photovoltaic system which provides three regulated main buses (150 V d.c.) to the users. In order to maintain power supply during eclipse phases, nickel hydrogen batteries will be used for energy storage purposes with nickel cadmium as back-up solution. The power distribution system needs special attention. Due to the elevated voltage levels mechanical switch gear cannot be used any longer. It is to be replaced by solid state power controllers (SSPC). Because these devices show a totally different behaviour with regard to conventional relay contacts, new approaches in the area of switching and protection are necessary. In view of the crucial role of this new technology for the realization of medium voltage d.c. systems, it is of great importance for Columbus and, hence will receive adequate consideration in the paper. In order to cater for effective management and control of the power supply and distribution hardware, a so called power system internal data processing assembly (PINDAP) has been introduced in the EPS. PINDAP is the key to reduced dependence on ground stations (alleviated ground support requirements); it keeps crew involvement in the EPS control process to as minimum and provides

  16. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    Ringer, W.; Simader, M.; Bernreiter, M.; Aspek, W.; Kaineder, H.


    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  17. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  18. Occurrence and distribution of organic chemicals and nutrients and comparison of water-quality data from public drinking-water supplies in the Columbia aquifer in Delaware, 2000-08 (United States)

    Reyes, Betzaida


    The U.S. Geological Survey, in cooperation with the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey, conducted a groundwater-quality investigation to (a) describe the occurrence and distribution of selected contaminants, and (b) document any changes in groundwater quality in the Columbia aquifer public water-supply wells in the Coastal Plain in Delaware between 2000 and 2008. Thirty public water-supply wells located throughout the Columbia aquifer of the Delaware Coastal Plain were sampled from August through November of 2008. Twenty-two of the wells in the sampling network for this project were previously sampled in 2000. Eight new wells were selected to replace wells no longer in use. Groundwater collected from the wells was analyzed for the occurrence and distribution of selected pesticides, pesticide degradates, volatile organic compounds, nutrients, and major inorganic ions. Nine of the wells were analyzed for radioactive elements (radium-226, radium-228, and radon). Groundwater-quality data were compared for sites sampled in both 2000 and 2008 to document any changes in water quality. One or more pesticides were detected in samples from 29 of the 30 wells. There were no significant differences in pesticide and pesticide degradate concentrations and similar compounds were detected when comparing sampling results from 2000 and 2008. Pesticide and pesticide degradate concentrations were generally less than 1 microgram per liter. Twenty-four compounds, 14 pesticides, and 10 pesticide degradates were detected in at least one sample; the pesticide degradates, metolachlor ethanesulfonic acid, deethylatrazine, and alachlor ethanesulfonic acid were the most frequently detected compounds, each found in more than 50 percent of samples. Almost 80 percent of the detected pesticides were agricultural herbicides, which reflects the prevalence and wide distribution of agriculture in sampled areas, as well the dominance of

  19. Comparing microbial water quality in an intermittent and continuous piped water supply. (United States)

    Kumpel, Emily; Nelson, Kara L


    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Structure functions and parton distributions

    International Nuclear Information System (INIS)

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.


    The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed

  1. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬


    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  2. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone. (United States)

    Garboś, Sławomir; Święcicka, Dorota


    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water in the Contributing Recharge Area of a Public-Supply Well near Tampa, Florida, 2002-05 (United States)

    Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.


    In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic

  4. Triangulating the Sociohydrology of Water Supply, Quality and Forests in the Triangle (United States)

    Band, L. E.


    The North Carolina Research Triangle is among the most rapidly growing metropolitan areas in the United States, with decentralized governance split among several different municipalities, counties and water utilities. Historically smaller populations, plentiful rainfall, and riparian rights based water law provided both a sense of security for water resources and influenced the development of separate infrastructure systems across the region. The growth of water demand with rising populations with typical suburban sprawl, the development of multi-use reservoirs immediately downstream of urban areas, and increased hydroclimate variability have raised the potential for periodic water scarcity coupled with increasing eutrophication of water supplies. We discuss the interactions and tradeoffs between management of emerging water scarcity, quality and forest biodiversity in the Triangle as a model for the US Southeast. Institutional stakeholders include water supply and stormwater utilities, environmental NGOs, federal, state, county and municipal governments, developers and home owner associations. We emphasize principles of ecohydrologic resilience learned in heavily instrumented research watersheds, adapted to rapidly developing urban systems, and including socioeconomic and policy dynamics. Significant 20th century reforestation of central North Carolina landscapes have altered regional water balances, while providing both flood and water quality mitigation. The regrowth forest is dynamic and heterogeneous in water use based on age class and species distribution, with substantial plantation and natural regeneration. Forecasts of land use and forest structural and compositional change are based on scenario socioeconomic development, climate change and forecast wood product markets. Urban forest and green infrastructure has the potential to mediate the trade-offs and synergies of these goals, but is in a very nascent state. Computational tools to assess policy

  5. SNS AC Power Distribution and Reliability of AC Power Supply

    CERN Document Server

    Holik, Paul S


    The SNS Project has 45MW of installed power. A design description under the Construction Design and Maintenance (CDM) with regard to regulations (OSHA, NFPA, NEC), reliability issues and maintenance of the AC power distribution system are herewith presented. The SNS Project has 45MW of installed power. The Accelerator Systems are Front End (FE)and LINAC KLYSTRON Building (LK), Central Helium Liquefier (CHL), High Energy Beam Transport (HEBT), Accumulator Ring and Ring to Target Beam Transport (RTBT) Support Buildings have 30MW installed power. FELK has 16MW installed, majority of which is klystron and magnet power supply system. CHL, supporting the super conducting portion of the accelerator has 7MW installed power and the RING Systems (HEBT, RING and RTBT) have also 7MW installed power.*

  6. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.


    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  7. Sustainable development of water resources, water supply and environmental sanitation.

    CSIR Research Space (South Africa)

    Austin, LM


    Full Text Available and be capable of destroying or isolating pathogens. A need exists for documentary evidence to support various claims about different storage periods for ensuring pathogen die-off and safe handling of biosolids (Peasy 2000). Handling of faecal material... in Water and Environmental Health, Task no. 324. [Online] http://www/ WHO (2001). Water quality, guidelines, standards and health: Assessment of risk and risk management for water...

  8. Adoption and supply of a distributed energy technology (United States)

    Strachan, Neil Douglas


    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made. Micro-turbines were found to be the lowest cost technology, especially at higher heat loads. Engines are also very competitive providing their NOx and CO emissions are controlled. A cost optimization program was used to develop an optimal green-field supply mix for Florida and New York. (Abstract shortened by UMI.)

  9. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan (United States)

    Qocamanov, M. H.; Gurbanov, Ch. Z.


    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  10. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk (United States)

    Characklis, G. W.; Ramsey, J.


    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior

  11. Public Water Supply Systems (PWS) (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  12. The church: asset and agent in achieving sustainable water supply ...

    African Journals Online (AJOL)

    Journal of Religion and Human Relations ... argues that the church as both asset and agent is most useful in conscientizing and transforming people to adopt a new mindset- a behavioral attitude required to halt the progression of environmental degradation in general and specifically improve urban water supply in Nigeria.

  13. Electricity, Gas and Water Supply. Industry Training Monograph No. 4. (United States)

    Dumbrell, Tom

    Australia's electricity, gas, and water supply industry employs only 0.8% of the nation's workers and employment in the industry has declined by nearly 39% in the last decade. This industry is substantially more dependent on the vocational education and training (VET) sector for skilled graduates than is the total Australian labor market. Despite…

  14. Water Supply or ‘Beautiful Latrines’? Microcredit for Rural Water Supply and Sanitation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nadine Reis


    Full Text Available Around half of the Mekong Delta’s rural population lacks year-round access to clean water. In combination with inadequate hygiene and poor sanitation this creates a high risk of diseases. Microcredit schemes are a popular element in addressing such problems on the global policy level. The present paper analyses the contradictory results of such a microcredit programme for rural water supply and sanitation in the context of the Mekong Delta, Vietnam, through a qualitative study primarily based on semi-structured interviews in rural communes of Can Tho City. We come to the conclusion that the programme has a positive effect regarding the safer disposal of human excreta as well as surface water quality, but a marginal impact on poverty reduction as it only reaches better-off households already having access to clean water. The paper shows how the outcome of rural water supply and sanitation policies are strongly influenced by the local ecological, technological, and social settings, in particular by stakeholders’ interests. The authors challenge the assumption that water supply and sanitation should be integrated into the same policy in all circumstances. ----- Etwa die Hälfte der ländlichen Bevölkerung des Mekong-Deltas hat nicht das ganze Jahr über Zugang zu sauberem Wasser. Zusammen mit unzureichender Hygiene und mangelnder sanitärer Grundversorgung erhöht diese Situation das Krankheitsrisiko. Auf globaler Ebene sind Mikrokreditprogramme eine gefragte Strategie, um diese Probleme zu behandeln. Der vorliegende Artikel analysiert die widersprüchlichen Ergebnisse eines solchen Mikrokreditprogramms für ländliche Wasser- und sanitäre Grundversorgung im Mekong-Delta in Vietnam im Rahmen einer qualitativen Studie, die auf halbstrukturierten Interviews im Raum Can Tho City basiert. Die Studie kommt zu dem Schluss, dass das Programm eine positive Wirkung in Bezug auf die sichere Entsorgung von Fäkalien und die Qualität des Regenwassers

  15. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.


    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible

  16. Development and utilization of spring water in small scale supply ...

    African Journals Online (AJOL)

    Development and utilization of spring water in small scale supply scheme for the Kogi State Polytechnic, Lokoja, central Nigeria. Joseph Omada. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 131-135. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  17. Irrigation, risk aversion, and water right priority under water supply uncertainty (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.


    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  18. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities (United States)

    Wheater, H. S.


    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  19. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.


    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was

  20. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems (United States)

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.


    structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations. PMID:9435076

  1. Mechanisms affecting water quality in an intermittent piped water supply. (United States)

    Kumpel, Emily; Nelson, Kara L


    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  2. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation

    International Nuclear Information System (INIS)

    Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M.


    Highlights: • Difficulties in assessing distribution network adequacy with DG are addressed. • Indices are proposed to assess adequacy of energy supply and service continuity. • Analytical methodology is developed to assess the proposed indices. • Concept of joint probability distribution of demand and generation is applied. - Abstract: Continuity of electricity supply with renewable distributed generation (DG) is a topical issue for distribution system planning and operation, especially due to the stochastic nature of power generation and time varying load demand. The conventional adequacy and reliability analysis methods related to bulk generation systems cannot be applied directly for the evaluation of adequacy criteria such as ‘energy supply’ and ‘continuity of service’ for distribution networks embedded with renewable DG. In this paper, new indices highlighting ‘available supply capacity’ and ‘continuity of service’ are proposed for ‘energy supply’ and ‘continuation of service’ evaluation of generation-rich distribution networks, and analytical techniques are developed for their quantification. A probability based analytical method has been developed using the joint probability of the demand and generation, and probability distributions of the proposed indices have been used to evaluate the network adequacy in energy supply and service continuation. A data clustering technique has been used to evaluate the joint probability between coincidental demand and renewable generation. Time sequential Monte Carlo simulation has been used to compare the results obtained using the proposed analytical method. A standard distribution network derived from Roy Billinton test system and a practical radial distribution network have been used to test the proposed method and demonstrate the estimation of the well-being of a system for hosting renewable DG units. It is found that renewable DG systems improve the ‘energy supply’ and

  3. Water supply at Los Alamos: Current status of wells and future water supply

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Stoker, A.K.


    The municipal and industrial use of groundwater at the Los Alamos National Laboratory and Los Alamos County was about 1.5 billion gallons during 1986. From a total of 19 wells that range in age from 5 to 41 years, the water was pumped from 3 well fields. The life expectancy of a well in the area ranges from 30 to 50 years, dependent on the well construction and rate of corrosion of the casing and screen. Twelve of the wells are more than 30-years old and, of these, four cannot be used for production, three because of well damage and one because the quality of water is not suitable for use. Eight of the twelve oldest wells are likely to be unsuitable for use in the next 10 years because of well deterioration and failure. The remaining 7 wells include 2 that are likely to fail in the next 20 years. Five of the younger wells in the Pajarito well field are in good condition and should serve for another two or three decades. The program of maintenance and rehabilitation of pumps and wells has extended production capabilities for short periods of time. Pumps may be effectively repaired or replaced; however, rehabilitation of the well is only a short-term correction to increase the yield before it starts to decline again. The two main factors that prevent successful well rehabilitation are: (1) chemicals precipitated in the gravel pack and screen restrict or reduce the entrance of water to the well, which reduces the yield of the well, and (2) the screen and casing become corroded to a point of losing structural strength and subsequent failure allows the gravel pack and formation sand to enter the well. Both factors are due to long-term use and result in extensive damage to the pump and reduce the depth of the well, which in turn causes the yield to decline. Once such well damage occurs, rehabilitation is unlikely to be successful and the ultimate result is loss of the well. Two wells were lost in 1987 because of such damage. 29 refs., 15 figs., 15 tabs

  4. Uncertainty Categorization, Modeling, and Management for Regional Water Supply Planning (United States)

    Fletcher, S.; Strzepek, K. M.; AlSaati, A.; Alhassan, A.


    Many water planners face increased pressure on water supply systems from growing demands, variability in supply and a changing climate. Short-term variation in water availability and demand; long-term uncertainty in climate, groundwater storage, and sectoral competition for water; and varying stakeholder perspectives on the impacts of water shortages make it difficult to assess the necessity of expensive infrastructure investments. We categorize these uncertainties on two dimensions: whether they are the result of stochastic variation or epistemic uncertainty, and whether the uncertainties can be described probabilistically or are deep uncertainties whose likelihood is unknown. We develop a decision framework that combines simulation for probabilistic uncertainty, sensitivity analysis for deep uncertainty and Bayesian decision analysis for uncertainties that are reduced over time with additional information. We apply this framework to two contrasting case studies - drought preparedness in Melbourne, Australia and fossil groundwater depletion in Riyadh, Saudi Arabia - to assess the impacts of different types of uncertainty on infrastructure decisions. Melbourne's water supply system relies on surface water, which is impacted by natural variation in rainfall, and a market-based system for managing water rights. Our results show that small, flexible investment increases can mitigate shortage risk considerably at reduced cost. Riyadh, by contrast, relies primarily on desalination for municipal use and fossil groundwater for agriculture, and a centralized planner makes allocation decisions. Poor regional groundwater measurement makes it difficult to know when groundwater pumping will become uneconomical, resulting in epistemic uncertainty. However, collecting more data can reduce the uncertainty, suggesting the need for different uncertainty modeling and management strategies in Riyadh than in Melbourne. We will categorize the two systems and propose appropriate

  5. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.


    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  6. Water Supply Systems For Aircraft Fire And Rescue Protection (United States)


    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  7. Multi-Item Distribution Policies with Supply Hub and Lateral Transshipment


    Zhong Jin-Hong; Jiang Rui-Xuan; Zheng Gui


    Supply Hub is defined as the horizontal coordination among the suppliers while lateral transshipment is a horizontal coordination policy among the retailers. By considering the Supply Hub and lateral transshipment simultaneously, ones can reduce the total cost of the supply chain system and improve the response to customer requirement and the customers’ satisfaction. We investigate the distribution policies for the supply chain which consists of multisuppliers, single Supply Hub, and multidis...

  8. Investigating and evaluating the influcence of supply chain structure on supply chain risk

    Directory of Open Access Journals (Sweden)

    Sayed, Zehran


    Full Text Available Supply chains are exposed to disruptions resulting from internal or external factors that hinder the performance of one or more of their constituent entities. An exploratory study was conducted to determine whether supply chain structure (SCS influences supply chain risk (SCR, in the context of small and medium enterprises (SMEs in South Africa. Thematic content analysis was applied to the case data of four Gauteng-based manufacturing SMEs (SMMEs, and summarised in a literature-developed, conceptual structure-risk framework. Results indicate that SCS does influence SCR. Investment in facility infrastructure and supplier relationships appear to be the most influential features. SCS also affects the operational and financial risk of an enterprise. These risks drive the SMEs’ strategy and reputation, and consequently drive the corresponding risk dimensions (i.e., strategic and reputation risks. These findings are limited, and should not be generalised to all South African SMEs.

  9. 7 CFR 612.2 - Snow survey and water supply forecast activities. (United States)


    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  10. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin


    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  11. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin


    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  12. The Financing of Water Supply and Sewerage Services in Romania

    Directory of Open Access Journals (Sweden)

    Alina Florentina CUCOS


    Full Text Available Water supply and sewerage services represent utilities that must be provided to all users, both the urban and the rural. The responsibility to ensure these services in terms of non-discrimination and affordability belongs to the local authorities, which in the spirit of decentralization have exclusive jurisdiction on their establishment, organization and operation. Regardless of the chosen management, the funding of water supply and sewerage services, is accomplished by means of the prices and tariffs paid by the users. Their quantum, specific to some social services, covers the costs without allowing the accumulation of consistent profit margins, which would ensure the development of the specific infrastructure from the operators' own funds. It is therefore necessary that funding for the creation and rehabilitation of water supply and sewerage systems to be provided from other sources than the budgets of operators, such as: budgetary allocations of local public authorities, government or European funding programs. This paper is of interest because it captures just how the prices and tariffs for these services are composed, and the entire procedure for foundation, adjustment and modification that follows different rules from those of pricing in the market economy, and it provides a review of the types of programs through which the development of the specific technical-urban infrastructure and the significant increase in the number of users in the past 25 years.

  13. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar


    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  14. Decentralized energy supply and electricity market structures


    Weber, Christoph; Vogel, Philip


    Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate c...


    Directory of Open Access Journals (Sweden)

    Simona FRONE


    Full Text Available As we have stated in the previous year conference paper, the human right to water and sanitation entitles everyoneto water and sanitation services which are available, accessible, affordable, acceptable and safe. Developmentprograms for water and sanitation services, as many other socio-economic development programs have often beenassumed to be neutral in terms of gender. However, sometimes there can be failures in the implementation andharnessing of such projects because of errors arising from lack of adequate integration of gender equality. In thispaper are highlighted some aspects and issues of gender mainstreaming in water supply and sanitation developmentprojects, including conclusions from a case study conducted by an NGO in a commune of Romania and ownrecommendations.

  16. Karst aquifer in Galichica and possibilities for water supply to Ohrid with ground -water

    International Nuclear Information System (INIS)

    Mirchovski, Vojo; Kekich, Aleksandar; Spasovski, Orce; Mirchovski, Vlado


    In this paper are presented some hydrogeological features of the karst aquifer in Mt Galichica, which contains important quantities of ground-water that can to used for the water supply of the town Ohrid. Based on the hydrogeological data are given three solutions that be can to used for water supply of Ohrid, the first one is to drill of deep wells, combination of deep and shallow wells, as well as construction of horizontal galleries.

  17. [Medical and environmental aspects of the drinking water supply crisis]. (United States)

    Él'piner, L I


    Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined.

  18. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. (United States)

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K


    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optimal Dynamics of Intermittent Water Supply (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris


    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  20. Energy and air emission effects of water supply. (United States)

    Stokes, Jennifer R; Horvath, Arpad


    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  1. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis (United States)

    Aldea, Alexandru; Aldea, Mihaela


    The growth and concentration of population, housing and industry in urban and suburban areas in the continuous evolution of a city over time causes complex social, economic, and physical challenges. The population and its relationship with the use and development of the land and water is a critical issue of urban growth, and since ancient times land, water and man were directly involved in the human populations' survival. Nevertheless the current potential of study over this relationship between urban growth, water supply, drainage and water resources conditions becomes more and more attractive due to the possibility to make use of the broader variety of information sources and technologies readily available in recent years, with emphasis on the open data and on the big data as primary sources. In this regard we present some new possibilities of analyses over the demographics, land use/land cover and water supply and conservation based on a study over a Romanian region of development (Bucharest-Ilfov). As urban development usually outgrows the existing water supply systems, the resolution consists in drilling new and deeper wells, building new water distribution pipelines, building longer aqueducts and larger reservoirs, or finding new sources and constructing completely new water supply systems, water supplies may evolve this way from a result into a cause and driver of urban growth. The evolution trends of the studied area was estimated based on the open satellite time-series imagery and remote sensing techniques by land use/land cover extraction and the identification of the changes in urbanization. The survey is mainly focused on the expansion of the water network in terms of areal, total length and number of connections correlated with the amount of water produced, consumed and lost within a supply zone. Some urban human activities including the industrial ones alter water resource by pollution, over pumping of groundwater, construction of dams and reservoirs

  2. Security management of water supply

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara


    Full Text Available The main aim of this work is to present operational problems concerning the safety of the water supply and the procedures for risk management systems functioning public water supply (CWSS and including methods of hazard identification and risk assessment. Developed a problem analysis and risk assessment, including procedures called. WSP, which is recommended by the World Health Organization (WHO as a tool for comprehensive security management of water supply from source to consumer. Water safety plan is a key element of the strategy for prevention of adverse events in CWSS.

  3. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.


    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  4. Typhoon and elevated radon level in a municipal water supply

    International Nuclear Information System (INIS)

    Mao, Cheng-Hsin; Weng, Pao-Shan


    The Municipal Water Supply at Hsinchu City is a water treatment plant using poly- aluminum chloride (PAC) for coagulation and then followed by precipitation and filtration. Its capacity is 70,000 m 3 /day. The raw water is drawn from the nearby river. Since the subject of interest is the radon level during typhoon season, the sampling period was from March to December 1999. Commercially available electret was used for water samples taken from the five ponds in the plant. This technique relies on the measurement of radon in air above a water sample enclosed in a sealed vessel. The concentration of airbone radon released from water was determined by means of the electret ion chamber. During the first sampling period there came two typhoons. One is called Magie during June 10-17, and the other called Sam during August 20-26. The first typhoon led to the radon level measured from the water samples as high as 705 Bq/m 3 , while the second caused even higher radon level as high as 772 Bq/m 3 . Similar results were obtained for the second sampling period after August till December 1999. For those measured without typhoon influence, the average radon was lower from the coagulation pond yet without coagulation process during March through August 1999. However, water samples taken from the pond after precipitation did not show similar results in radon level. (author)

  5. A review of formal institutions affecting water supply and access in Botswana (United States)

    Mogomotsi, Patricia K.; Mogomotsi, Goemeone E. J.; Matlhola, Dimpho M.


    Over the years, many countries across the world have increasingly experienced the collapse of their ecosystems, leading to an elevated increase on the demand for freshwater resources. Botswana is not an exception. The problem of disrupted potable water supply is widespread across the country. However, the physical shortage of water in the country is arguably coupled by lack of effective and efficient water supply and management institutions and water infrastructure. Most of the research on water scarcity in Botswana is mostly inclined towards physical water scarcity, while little is investigated on how the design of institutions for water management in developing countries leads to water scarcity. Furthermore, the premises of most research is neoclassical economics ideas, thereby offering solutions as developing and/or reforming water markets and water pricing mechanisms, among other findings. This paper analyses potable water supply and access in Botswana within a new institutional economics paradigm. The study examines key features of water institutions in Botswana on how they affect water supply and access, applying new institutional economics fundamentals. The study extensively uses various secondary data sources including weather and climate reports, policy documents, maps and charts and survey data, among others. The paper argues that to achieve effective water allocation in Botswana, there is a need to balance social and environmental water resource needs through water policies and other statutory enactments, as well as the crafting of practical management strategies. The country, therefore, requires not only a swift institutional transformation in the water sector, but also needs practical governance structure necessary for implementing integrated water resources management and driving water resources towards sustainability.

  6. Does Clean Water Make You Dirty? Water Supply and Sanitation in the Philippines (United States)

    Bennett, Daniel


    Water supply investments in developing countries may inadvertently worsen sanitation if clean water and sanitation are substitutes. This paper examines the negative correlation between the provision of piped water and household sanitary behavior in Cebu, the Philippines. In a model of household sanitation, a local externality leads to a sanitation…

  7. Forests, Water and People: Drinking water supply and forest lands in the Northeast and Midwest United States, June 2009 (United States)

    Martina Barnes; Albert Todd; Rebecca Whitney Lilja; Paul Barten


    Forests are critically important to the supply of clean drinking water in the Northeast and Midwest portion of the United States. In this part of the country more than 52 million people depend on surface water supplies that are protected in large part by forested lands. The public is generally unaware of the threats to their water supplies or the connection between...

  8. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges. (United States)

    Gunnarsdottir, Maria J; Persson, Kenneth M; Andradottir, Hrund O; Gardarsson, Sigurdur M


    Access to safe water is essential for public health and is one of the most important prerequisites for good living and safe food production. Many studies have shown that non-compliance with drinking water quality standards in small water supply systems is much higher than in large systems. Nevertheless, people served by small water supply systems have the right to the same level of health protection. Actions are therefore needed to improve the situation. The objective of the present study was to carry out a baseline analysis of the situation in the Nordic region and provide recommendations for governmental policy and actions. Data were gathered on number of water supplies, population served, compliance with regulations and waterborne disease outbreaks from various sources in the Nordic countries. The collected data showed that there are about 12500 regulated water supplies, 9400 of which serve fewer than 500 persons. The number of unregulated and poorly regulated supplies is unknown, but it can be roughly estimated that these serve 10% of the Nordic population on a permanent basis or 2.6 million people. However, this does not tell the whole story as many of the very small water supplies serve transient populations, summerhouse dwellers and tourist sites, with many more users. Non-compliance regarding microbes is much higher in the small supplies. The population weighted average fecal contamination incidence rate in the Nordic region is eleven times higher in the smaller supplies than in the large ones, 0.76% and 0.07%, respectively. Registered waterborne disease outbreaks were also more frequent in the small supplies than in the large ones. Copyright © 2017 Elsevier GmbH. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Surekha Kishore


    Full Text Available Background: As per WHO estimates, 80% of all the diseases in developing countries including India are related to unsafe drinking water and poor sanitation. Water pollution is invariably high in community wells. As such, incidence of diarrhoeal diseases is more in the rural set up and can be partly attributed to this. About 40% of the population does not have access to safe drinking water. Objective: To establish a relationship between water supply and incidence of diarrhoeal diseases. Methods: A cross-sectional study was conducted in Sawli village, District Samudrapur (Maharashtra. The study group comprised of 75 under five children, selected by simple random sampling. Data was collected on a pre-designed questionnaire by interviewing the mothers and was analyzed using an appropriate statistical package. Results: Prevalence ofdiarrhoea was found out to be 71 %. only 8% ofthe children who were exclusively breast-fed had any episode of diarrhea. Incidence of diarrhea was high in cases that were drawing water from open wells i.e. 65.3%. Only 28.5% cases reported diarrhea and were drawing water from sanitaiy wells as against 80.32% who took water from insanitary welts. About 45.33% mothers had wrong beliefs about thecauses of diarrhea. ORSwas used in only 30.66% of the cases as a treatment modality. Conclusions: Diarrhoeal incidence was significantly high in children below 3 years of age, prevalence was least in exclusively breast fed

  10. Water and nitrogen use efficiency under limited water supply for maize to increase land productivity

    International Nuclear Information System (INIS)

    Craciun, I.; Craciun, M.


    As drought is the main environmental factor limiting productivity, the study of plant response to water deficit has been one of the major research topics. The increasing of maize evapotranspiration ET does not always mean the increase of efficiency because, the brightest ET value does not always mean the highest grain yield value, AS the result of the mechanisms relating to the grain yield and ET which are far from simple. The rain amount and distribution during the reproductive stage is the main meteorological factor in flouncing yield. In our study 1991, the high soil moisture content determines a reduction of maize grain yield, in the wet years due to excess of water under irrigation conditions which normally limits root development as a result of insufficient oxygen for transpiration and lac ha of nitrate formation, the yield response to water deficit of different hybrids is of major importance in production planing. The available water supply would be directed towards fully meeting requirements of the hybrids with the higher K sub y over the restricted area and for the hybrids with a lower K sub y, the overall production will increase by extending the area under irrigation, without fully meeting water requirement provided water deficit do not exceed critical values.1 tab; 9 figs (Author)

  11. Water sample-collection and distribution system (United States)

    Brooks, R. R.


    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  12. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems (United States)


    that Fort Drum uses water from two sources: (1) treated groundwater from its on-post wells and (2) treated surface water supplied by the Development...Complete replacement of distribution system piping $21 million Year 10 and Year 30 Leak repair $40,000 Annual Bottled water for drinking $20,000 per...about effects of the instal- lation’s dual water supplies on operation of the water -distribution system. 5.2 Recommendations 5.2.1 Applicability Model

  13. Water Utility Planning for an Emergency Drinking Water Supply (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  14. How war, drought, and management impact water supply in the Tigris/Euphrates (United States)

    Hasan, M.; Moody, A.; Benninger, L. K.


    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region, particularly on structures such as Mosul and Haditha dams, and the Ramadi and Falluja Barrages, all of which have experienced threats or changes in sovereignty. Water supply is also under pressure from upstream dam management and drought. In this research, we use the normalized difference water index (NDWI) applied to Landsat imagery in order to monitor changes in the extent of various water bodies (1985-present). We looked to see if significant anomalies from expected surface area were best explained by conflict, drought, or dam management. Conflict (though not every conflict) produced the greatest sudden changes in water supply; drought produced the greatest absolute changes, but at a gentle pace. Drought impacts are strongest in the furthest downstream reservoirs. Conflict-driven changes were tied to very specific human manipulations in water supply in order to either advance military objectives, "punish" civilians on the wrong side of the fight, or to prevent humanitarian catastrophe. Satellite images allow for an objective analysis of how strong these manipulations were. The information may not be as exact as on-the-ground information, but when the flow of information is disrupted by war, satellite data can be an alternative source of insights into water supply changes.

  15. Working group report on water resources, supply and demand

    International Nuclear Information System (INIS)

    Marta, T.J.


    A summary is presented of the issues discussed, and the conclusions and recommendations of a working group on water resources, supply and demand. The issues were grouped into the categories of detecting climatic change and water impacts, simulating potential impacts, and responding to potential impacts. The workshop groups achieved consensus on the following points: the physics of global warming and climatic change have been satifactorily proven; there appears to be some evidence of climatic change and a signal could soon be detected; policy decisions and strategic plans for climatic change and its potential impacts are needed immediately; and targets and priorities for decison making should be identified and addressed immediately. Three top-priority issues are the identification of indicators for the detection of climatic change impacts on hydrology, determining response to climate-related change, and evaluation of design criteria. Better information on regional climate and hydrology under conditions of global warming is needed before design criteria could be altered

  16. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR) (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul


    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  17. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio


    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  18. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel


    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  19. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system (United States)

    Vieira, João; da Conceição Cunha, Maria


    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  20. Distribution and Supply Chain Management: Educating the Army Officer

    National Research Council Canada - National Science Library

    Solseth, Mark E


    ... and distribution management environment. It analyzes how officers should attain these skills using the three pillars of leader development in Department of the Army Pamphlet 600-3, "Commissioned Officer Development and Career Management...



    Davor Dujak


    The paper reviews the trends in the design of distribution systems in retail supply chain management. Through goals, design decisions and costs of distribution system or distribution network, the paper points to the complexity and importance of this area of supply chain management. The goal of paper is to present modern trends in the distribution system, as well as specify the advantages and disadvantages of the leading distribution systems, with a special emphasis on the central distribution...

  2. Arsenic in public water supplies and cardiovascular mortality in Spain

    International Nuclear Information System (INIS)

    Medrano, Ma Jose; Boix, Raquel; Pastor-Barriuso, Roberto; Palau, Margarita; Damian, Javier; Ramis, Rebeca; Barrio, Jose Luis del; Navas-Acien, Ana


    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from 10 μg/L. Compared to municipalities with arsenic concentrations 10 μg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 μg/L.

  3. Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring

    Directory of Open Access Journals (Sweden)

    Jean-Marie Henault


    Full Text Available Although optical fiber sensors have been developed for 30 years, there is a gap between lab experiments and field applications. This article focuses on specific methods developed to evaluate the whole sensing chain, with an emphasis on (i commercially-available optoelectronic instruments and (ii sensing cable. A number of additional considerations for a successful pairing of these two must be taken into account for successful field applications. These considerations are further developed within this article and illustrated with practical applications of water leakage detection in dikes and concrete structures monitoring, making use of distributed temperature and strain sensing based on Rayleigh, Raman, and Brillouin scattering in optical fibers. They include an adequate choice of working wavelengths, dedicated localization processes, choices of connector type, and further include a useful selection of traditional reference sensors to be installed nearby the optical fiber sensors, as well as temperature compensation in case of strain sensing.

  4. 18 CFR 801.6 - Water supply. (United States)


    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs, the...

  5. Public Perception of Potable Water Supply in Abeokuta South west ...

    African Journals Online (AJOL)

    Well-structured interviewer administered questionnaire were distributed across the city through the stratified random sampling method using the network distribution map obtained from the Ogun State Water Corporation as guide. Sixty – eight per cent of the respondents attested that the quality of the water supplied was ...

  6. Features of internal water supply and water disposal of shopping centers

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich


    Full Text Available Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold, which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

  7. Rural water supply and sanitation (RWSS) coverage in Swaziland: Toward achieving millennium development goals (United States)

    Mwendera, E. J.

    An assessment of rural water supply and sanitation (RWSS) coverage in Swaziland was conducted in 2004/2005 as part of the Rural Water Supply and Sanitation Initiative (RWSSI). The initiative was developed by the African Development Bank with the aim of implementing it in the Regional Member Countries (RMCs), including Swaziland. Information on the RWSS sector programmes, costs, financial requirements and other related activities was obtained from a wide range of national documents, including sector papers and project files and progress reports. Interviews were held with staff from the central offices and field stations of Government of Swaziland (GOS) ministries and departments, non-governmental organizations (NGOs), bilateral and multilateral external support agencies, and private sector individuals and firms with some connection to the sector and/or its programmes. The assessment also involved field visits to various regions in order to obtain first hand information about the various technologies and institutional structures used in the provision of water supplies and sanitation services in the rural areas of the country. The results showed that the RWSS sector has made significant progress towards meeting the national targets of providing water and sanitation to the entire rural population by the year 2022. The assessment indicated that rural water supply coverage was 56% in 2004 while sanitation coverage was 63% in the same year. The results showed that there is some decline in the incidence of water-related diseases, such as diarrhoeal diseases, probably due to improved water supply and sanitation coverage. The study also showed that, with adequate financial resources, Swaziland is likely to achieve 100% coverage of both water supply and sanitation by the year 2022. It was concluded that in achieving its own national goals Swaziland will exceed the Millennium Development Goals (MDGs). However, such achievement is subject to adequate financial resources being

  8. Economies of scale and firm size optimum in rural water supply (United States)

    Sauer, Johannes


    This article is focused on modeling and analyzing the cost structure of water-supplying companies. A cross-sectional data set was collected with respect to water firms in rural areas of former East and West Germany. The empirical data are analyzed by applying a symmetric generalized McFadden (SGM) functional form. This flexible functional form allows for testing the concavity required by microeconomic theory as well as the global imposition of such curvature restrictions without any loss of flexibility. The original specification of the SGM cost function is modified to incorporate fixed factors of water production and supply as, for example, groundwater intake or the number of connections supplied. The estimated flexible and global curvature correct cost function is then used to derive scale elasticities as well as the optimal firm size. The results show that no water supplier in the sample produces at constant returns to scale. The optimal firm size was found to be on average about three times larger than the existing one. These findings deliver evidence for the hypothesis that the legally set supplying areas, oriented at public administrative criteria as well as local characteristics of water resources, are economically inefficient. Hence structural inefficiency in the rural water sector is confirmed to be policy induced.

  9. National water summary 1987: Hydrologic events and water supply and use (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.


    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade.Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants.Ground water provided drinking water for 53 percent of the Nation's total

  10. Electricity supply industry. Structure, ownership and regulation in OECD countries

    International Nuclear Information System (INIS)


    This study surveys developments and implications in the electricity supply industries in OECD countries. Chapter 1 introduces the issues. (Competition or electricity supply for everybody?) Electricity markets are dynamic and the participants are restructuring and repositioning themselves in order to benefit from new opportunities or policy initiatives. These changes are described in chapter 2. Privatisation is being pursued by some governments, not only for reasons of economic efficiency. Arguments for and against privatisation and different ways of introducing it are discussed in chapter 3. Fair trade and competition legislation, as it applies to all corporate entities, creates the institutional framework within which the utility has to operate. Various approaches to regulation and recent developments are described in chapter 4; the implications of regulatory changes are analysed in chapter 5. Having surveyed recent developments and their direct consequences, this study then goes on to look at their broader implications for the achievement of a range of energy policy objectives. Chapter 6 looks at fuel choice and investment decisions. Chapter 7 considers the issue of security of electricity supply, which has many special characteristics for both suppliers and regulators. OECD countries use different approaches for ensuring security of supply. Chapter 8 looks at environmental protection. Chapter 9 looks at energy efficiency. Chapter 10 discusses pricing. The introduction of competition has significant effects: it tends to reduce costs, remove cross subsidies, and bring prices more closely in line with the structure of costs. But there is no clear evidence at this stage as to whether, in the long run, competition produces lower overall prices. Finally chapter 11 analyses risk. The electricity business, like every other business, is faced with a variety of risks that cover every financial and technical facet of electricity production, transport, and supply. (N.C.)

  11. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy (United States)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.


    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  12. Application of BIM Technology in Building Water Supply and Drainage Design (United States)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde


    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  13. Local Commune Administration as a Regulator of the Local Water Supply and Sewage Disposal Services Market


    Małysko, Jacek


    In this article the author discusses problems related to the regulation of water and sewage disposal services market. In the beginning he describes the processes of water supply and sewage disposal taken by the local commune administration as a natural monopoly. Next he characterizes the structure of this market in Poland. Then he presents the role of local commune administration as a regulator. The author concludes by evaluating the existing Polish system of regulating wate...

  14. Arsenic in public water supplies and cardiovascular mortality in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Ma Jose, E-mail: [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Boix, Raquel; Pastor-Barriuso, Roberto [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Palau, Margarita [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain); Damian, Javier [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Ramis, Rebeca [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); CIBER en Epidemiologia y Salud Publica (CIBERESP), Madrid (Spain); Barrio, Jose Luis del [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States)


    water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 {mu}g/L.

  15. Supply Responses to Digital Distribution: Recorded Music and Live Performances


    Julie Holland Mortimer; Chris Nosko; Alan Sorensen


    Changes in technologies for reproducing and redistributing digital goods (e.g., music, movies, software, books) have dramatically affected profitability of these goods, and raised concerns for future development of socially valuable digital products. However, broader illegitimate distribution of digital goods may have offsetting demand implications for legitimate sales of complementary non-digital products. We examine the negative impact of file-sharing on recorded music sales and offsetting ...

  16. 24 CFR 3285.603 - Water supply. (United States)


    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  17. Relationships between Free-Living Protozoa, Cultivable Legionella spp., and Water Quality Characteristics in Three Drinking Water Supplies in the Caribbean▿†


    Valster, Rinske M.; Wullings, Bart A.; van den Berg, Riemsdijk; van der Kooij, Dick


    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in a...

  18. Prioritising alternatives for maintenance of water distribution ...

    African Journals Online (AJOL)

    ... for maintenance of water distribution networks: A group decision approach. ... Difficulties related to the group decision-making process in the water supply sector, ... This study focused on the rational use of water resources and reduction of ...

  19. Water Supply and Treatment Equipment. Change Notice 1 (United States)


    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  20. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems. (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A


    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  1. In the way of clean and safe drinking water : exploring limitations to improvement of the water supply in Bagamoyo District, Tanzania


    Bemspång, Josefina; Segerström, Rebecka


    Bagamoyo District, in the Pwani region in Tanzania, supplies a large part of Tanzania'sbiggest city, Dar es Salaam, with water. At the same time many people in rural villages in thedistrict do not have access to clean and safe water. This thesis aims to explore what limitationsthere are to improvement of the rural water supply in Bagamoyo District. Specific attention ispaid to the organizational structure of the water sector and how roles and responsibilities aredivided, defined and communica...


    Directory of Open Access Journals (Sweden)

    Jing Li


    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  3. Hydrology and heterogeneneous distribution of water quality ...

    African Journals Online (AJOL)

    A study was carried out on the hydrology and heterogeneous distribution of water quality characteristics in the Lagoon of Porto-Novo between July 2014 and June 2015. The water body was stratified into 12 strata for sampling. Data and samples were collected based on season and stations. The results were analyzed in the ...

  4. Regulatory review and barriers for the electricity supply system for distributed generation in EU-15

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Skytte, Klaus


    When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from di...... distributed generation. This paper reviews the current regulation of the grids with respect to distributed generation in EU-15 Member States and compares the different systems. Several barriers are identified.......When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from...

  5. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa


    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  6. Potable water supply (United States)

    Sauer, R. L.; Calley, D. J.


    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  7. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.


    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  8. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen


    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  9. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley (United States)

    Ahmad, S.


    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  10. Factors that may compromise bulk water distribution reliability



    D.Ing. This thesis considers water supply and divides the water supply environment into three categories; the macro water supply environment, the water supply scheme and the consumers. Each of the categories is briefly explored in terms of the factors that may influence it. Subsequently, some of the unique features of a bulk water distribution system are dealt with, as well as different approaches related to bulk water distribution system design and assessment. One of these approaches, the...

  11. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada


    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  12. The water-energy nexus at water supply and its implications on the integrated water and energy management. (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei


    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Determination of aluminium and physicochemical parameters in the palm oil estates water supply at Johor, Malaysia. (United States)

    Siti Farizwana, M R; Mazrura, S; Zurahanim Fasha, A; Ahmad Rohi, G


    The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.

  14. Chemical, physical, and radiological quality of selected public water supplies in Florida, January-May 1979. Water-resources investigations

    International Nuclear Information System (INIS)

    Franks, B.J.; Irwin, G.A.


    Most public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. This conclusion is based on a water quality reconnaissance of 131 raw and treated public supplies throughout the State during the period January through May 1979. In a few public supplies, primary drinking water regulation maximum contaminant levels were exceeded for mercury, turbidity, and gross alpha particle activity. Secondary drinking water regulations were also occasionally exceeded in some public supplies for such parameters as chloride, pH, color, dissolved solids, iron, and manganese

  15. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  16. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery (United States)

    Mashauri, Damas A.; Katko, Tapio S.


    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  17. 25 CFR 137.1 - Water supply. (United States)


    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  18. 20 CFR 654.405 - Water supply. (United States)


    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  19. New era / new solutions: The role of alternative tariff structures in water supply projects. (United States)

    Pinto, F Silva; Marques, R Cunha


    Water utilities face different challenges that may force them to seek prioritized objectives. When doing so, particular projects may have to be developed, being important to understand their impact on water tariffs, and thus, on customers. Such consequences may bear an increased relevance in cases stressed with, e.g., resource scarcity, poverty, and the need for infrastructure investments. The resulting cost and revenue variability demand a comprehensive study. If the first may require a stochastic modeling (in major cost components) in order to consider its inherent uncertainty, the second needs to be modeled following context-specific objectives set by the relevant stakeholders. The solutions achieved will likely promote distinct revenue sources, as well as diversified water tariff structures. A multi-objective optimization model (i.e., a Framework for Suitable Prices) is built to deal with those diversified requirements (e.g., stochastic energy costs, affordability, cost recovery, or administrative simplicity). The model is solved through achievement scalarizing functions with several weighting coefficients for a reference point, so as to provide a significant perception of possible revenue options (and their impact) to the decision makers. The proposed method is applied to a case study, Boa Vista Island in Cabo Verde, in which the background characteristics, namely water sources availability (e.g., the adoption of desalination technologies), economic development and other contextual factors were considered. The key role of tariff structure selection is displayed, instead of assuming it a priori, giving important insights regarding project feasibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impacts of multiple stresses on water demand and supply across the southeastern United States (United States)

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen


    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  1. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana


    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  2. Cumulus convection and the terrestrial water-vapor distribution (United States)

    Donner, Leo J.


    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  3. Sustainable water supply systems in India: The role of financial institutions and ethical perspective

    Directory of Open Access Journals (Sweden)

    Gowda Krishne


    Full Text Available Water is a scarce resource and an important basic necessity for the human survival. The quantity of potable water on earth is limited and its availability per person is reducing day by day due to increase in global population and damage to environment. Though water available in nature is free, sizeable investment is needed in order to supply water to the people at their doorsteps with required quality. This paper deals with the role of financial institutions in the balanced distribution of water for the public, the related problems with various regulatory instruments, and ethical perspectives for efficient utilization of this scarce resource through internal control aimed at long term sustainability.

  4. Optimal crop selection and water allocation under limited water supply in irrigation (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels


    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  5. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)



    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  6. Water Supply and Sanitation in Mauritania : Turning Finance into Services for 2015 and Beyond


    World Bank


    The situation within the water supply and sanitation (WSS) sector in Mauritania is somewhat contradictory: in spite of the weakness of the institutions in charge of the sector and the lack of financing for sanitation and, more recently, for the rural water supply (RWS) subsector, significant improvements have been made in the access rates since 1990. The institutional reform of the RWS sub...

  7. Assessment of scale formation and corrosion of drinking water supplies in Ilam city (Iran

    Directory of Open Access Journals (Sweden)

    Zabihollah Yousefi


    Full Text Available Background: Scaling and corrosion are the two most important indexes in water quality evaluation. Pollutants are released in water due to corrosion of pipelines. The aim of this study is to assess the scale formation and corrosion of drinking water supplies in Ilam city (Iran. Methods: This research is a descriptive and cross-sectional study which is based on the 20 drinking water sources in Ilam city. Experiments were carried out in accordance with the Water and Wastewater Co. standard methods for water and wastewater experiment. The data were analyzed by using Microsoft Excel and GraphPad Prism 5. The results were compared with national and international standards. Results: The mean and standard deviation (SD values of Ryznar, Langelier, Aggressive, Puckorius and Larson-Skold indices in year 2009 were equal to 7.833 (±0.28, -0.102 (±0.35, 11.88 (±0.34, 7.481 (±0.22 and 0.801 (±0.44, respectively, and were 7.861 (±0.28, -0.175 (±0.34, 11.84 (±0.37, 7.298(±0.32 and 0.633 (±0.47, for year 2013 respectively. The average of Langelier, Ryznar, Aggression, and Puckorius indices indicate that potable water resources in Ilam city have the tendency to be corrosive. Statistical analysis and figures carried out by GraphPad Prism version 5.04. Conclusion: The results of different indices for water resources of Ilam city revealed that water supplies of Ilam city were corrosive. Water quality control and replacement of distribution pipes in development of water network should be carried out. Moreover, water pipelines should be preserved with several modes of corrosion inhibition.

  8. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose


    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  9. Surface wastewater in Samara and their impact on water basins as water supply sources (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina


    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  10. Urban water supply infrastructure planning under predictive groundwater uncertainty: Bayesian updating and flexible design (United States)

    Fletcher, S.; Strzepek, K.


    Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for

  11. Modelling Reliability of Supply and Infrastructural Dependency in Energy Distribution Systems


    Helseth, Arild


    This thesis presents methods and models for assessing reliability of supply and infrastructural dependency in energy distribution systems with multiple energy carriers. The three energy carriers of electric power, natural gas and district heating are considered. Models and methods for assessing reliability of supply in electric power systems are well documented, frequently applied in the industry and continuously being subject to research and improvement. On the contrary, there are compar...

  12. Water supply in households and conditions for tourism development in Serbia

    Directory of Open Access Journals (Sweden)

    Ognjenović Kosovka


    Full Text Available The global structural change, together with "the green revolution", caused the economic growth to be based on the service sector today, instead on the traditional economic sectors. The main focus of this paper is on the factors that affect the decisions of households in Serbia to participate in the tourism industry in the context of the sustainable development. In particular, a significant portion of the analysis is devoted to the constraints that can be induced by inadequate drinking water supply and its quality in households. These factors can be considered the main limitations to those households that decide to provide accommodation and food services to the tourists in their local touristreceiver communities. The empirical analysis is based on survey data that describe conditions in the households, whereas the econometric framework is employed in order to determine structural relationships. The null hypothesis that drinking water supply and quality do not affect the likelihood of the household participating in the tourism industry is tested and accepted based on the probit model estimates. The difference between the public urban and local water supply systems that provide drinking water to the households is statistically confirmed, but it does not affect the likelihood of the household participating in the tourism industry. [Projekat Ministarstva nauke Republike Srbije, br. III-47009 i br. OI- 179015

  13. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply... (United States)


    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  14. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.


    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  15. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.


    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  16. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network. (United States)

    Samios, Stelios A; Golfinopoulos, Spyros K; Andrzejewski, Przemyslaw; Świetlik, Joanna


    Samples from the two main watersheds that provide Athens Water Supply and Sewerage Company (AWSSC) with raw water were examined for Dissolved Organic Carbon (DOC) and for their molecular weight distribution (MWD). In addition, water samples from water treatment plants (WTPs) and from the water supply network were examined for trihalomethane (THMs) levels. The main purpose of this study was to reveal the molecular composition of natural organic matter (NOM) and identify the individual differences between NOM from the two main Athens watersheds. High-performance size exclusion chromatography (HPSEC), a relatively simple technique, was applied to determine different NOM fractions' composition according to molecular weight. Various THM levels in the supply network of Athens are illustrated as a result of the different reservoirs' water qualities, and a suggestion for a limited application of chlorine dioxide is made in order to minimize THM formation.

  17. The modern condition of drinking water supply of rural Kazakstan settlements: problems and prospects

    International Nuclear Information System (INIS)

    Espolov, T.I.


    In this article author made conclusion that prospect of steady water supply of population and farms of the Republic and also prevention of desertification and crisis situations to a great extent determined by rational use of water resources

  18. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin (United States)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.


    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  19. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg


    water with a major ion composition of calcium and sulfate. There is no significant vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column within the two wells. The samples collected at MSW-3 are higher in sodium and lower in calcium than the samples collected from MSW-1 and MSW-2, and contain a similar sulfate-ion percentage. There is a vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column in MSW-3. Groundwater samples from the three water-supply wells analyzed for oxygen-18 and deuterium stable isotopes plot on a local water line that is approximately parallel to the global meteoric water line. Tritium concentrations in samples from MSW-1 and MSW-3 were equal to or less than laboratory detection limits and were interpreted to contain no modern (post-1952) water. Tritium concentration in a sample from the top of the water column at MSW-2 was 0.41 tritium units, indicating that the composition is primarily pre-bomb (pre-1952) water, but may contain a small fraction of post-bomb modern water. The calculated carbon-14 ages of groundwater in MSW-1 and MSW-2, both completed about 140 feet into the Navajo Sandstone, are about 3,000 years before present. The calculated carbon-14 age of groundwater in MSW-3, completed about 240 feet into the Kayenta Formation-Navajo Sandstone transition zone is about 5,000 years before present in the upper portion of the water column and about 8,500 years before present in the lower portion of the water column. The gross alpha radioactivity of samples collected from the three water-supply wells ranged from 5.1 to 9.8 picocuries per liter-less than the U.S. Environmental Protection Agency primary drinking water standard of 15 picocuries per liter. The gross beta radioactivity of samples collected from the wells ranged from 0.9 to 2.8 picocuries per liter and are not considered elevated relative to the U

  20. Thirsty Cities: Urban Environments and Water Supply in Latin America

    International Development Research Centre (IDRC) Digital Library (Canada)

    Many cities in Latin America and the Caribbean are experiencing a water crisis as sources become exhausted or degraded. Urbanization, deteriorating infrastructures with a lack of funds for repairs, and inadequate polices are conspiring to cause water shortages.

  1. On-plot drinking water supplies and health: A systematic review. (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie


    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida (United States)

    Cunningham, Kevin J.


    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  3. Prospects for jointly using solar and wind energy for heat supply and hot water supply to private houses under the conditions of Baku

    International Nuclear Information System (INIS)

    Salamov, O. M.; Aliev, F. F.


    This paper analyzes the discovery of the potential for jointly using solar and wind energy for heat supply (HS) and hot water supply (HWS) to a one-family private house located in the Apsheron Peninsula. (authors)

  4. Domestic Water Supply, Sanitation and Health in Rural Ghana ...

    African Journals Online (AJOL)

    The research notes that adequate provision of potable water and safe ... quality of water that is consumed is well-recognised as an important transmission route ... diarrhoeal disease due to unsafe water. sanitation and hygiene the 6th highest burden or .... and 'hygiene', have direct consequences for health in relation to both.


    Field surveys in the Willapa River basin, Washington State, indicate that the drainage area?channel slope threshold describing the distribution of bedrock and alluvial channels is influenced by the underlying lithology and that local variations in sediment supply can overwhelm ba...

  6. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage (United States)

    Li, Chunyan


    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  7. Change in the southern U.S. water demand and supply over the next forty years (United States)

    Steven C. McNulty; Ge Sun; Erika C. Cohen; Jennifer A. Moore Myers


    Water shortages are often considered a problem in the western United States, where water supply is limited compared to the eastern half of the country. However, periodic water shortages are also common in the southeastern United States due to high water demand and periodic drought. Southeastern U.S. municipalities spend billions of dollars to develop water storage...

  8. Multidimensional Structure for Definingthe Effect of Organizational Culture and Supply Chain Culture on Knowledge Sharing in Supply Chain of Automotive Industry: With Emphasis on Improving Supply Chain Performance

    Directory of Open Access Journals (Sweden)

    Mohsen Shafiei Nikabadi


    Full Text Available : One of the key aspects of knowledge management is organizational culture. Finding an appropriate culture and key indicators for culture in implementation and execution of knowledge management are one the most important matter in knowledge management implementation in any organization. So, the main purpose of this article was presenting a multidimensional structure for organizational culture and supply chain culture with the aim of effective knowledge sharing in supply chain of automotive industry of Iran. First, according to the literature review, key indicators for any dimension of multidimensional structure of the research were defined. Then, key indicators were revised, adjusted and modified by three industry experts and three college professors, so 4 questions and 5 hypotheses were offered. Next, that multidimensional structure has been assessed as a survey and cause-effect study in supply chains of Iran Khodro Company and Saipa Company.115 industry professionals have participated in this study. In the research, after testing co-linearity between variables, relations between different dimensions of the multidimensional structure have been assessed with the help of path analysis. Research findings showed that the multidimensional structure introduced in the study had an appropriate fitness in automotive industry. The results of path analysis also showed that the culture of the supply chain has had the greatest impact of Business culture. On the other hand, business culture had a strong but indirect effect on supply chain performance. And finally, the greatest effect of knowledge sharing and transferring was on non-financial performance of supply chain.

  9. Consumers’ Preferences and Derived Willingness-to-Pay for Water Supply Safety Improvement: The Analysis of Pricing and Incentive Strategies

    Directory of Open Access Journals (Sweden)

    Jia Wang


    Full Text Available With increasing water supply accidents and higher water demand, urban water supply safety (WSS remains a crucial public policy issue in developing countries. The purpose of this paper is to investigate consumers’ willingness-to-pay (WTP and their preferences to improve WSS in China, to support governments in water regulation policy design and water providers in investment-decisions. A discrete choice experiment method with the consideration of not only attributes of WSS but also attitudinal and demographic variables have been adopted to assess consumers’ WTP and preferences for WSS improvement. The results show that Chinese urban residents are willing to pay a significantly higher price for improved WSS. Demonstrated marginal mean WTP for the change of the attributes range from 0.18 RMB/m3 (0.03 USD/m3 (1 RMB was around 0.154 USD in 2016 for decreased water supply interruption to 2.33 Yuan RMB/m3 (0.35 USD/m3 for improved drinking water quality. Investments in water processing facilities and water distribution networks should come first. Cross-subsidy concerning different developing districts is the most efficient policy instrument. The study contributes to the recent literature not only by introducing attitudinal variables in choice experiment survey in water supply field, but also by revealing the correlation of choice modeling applications in WSS improvement programs.

  10. Effects of modifying water environments on water supply and human health (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.


    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  11. 26 CFR 301.6802-1 - Supply and distribution. (United States)


    ... prepayment, a suitable quantity of adhesive stamps (other than the stamps on playing cards), coupons, tickets... on sale by, the various postmasters in the United States in all post offices of the first and second... designated depositary, without prepayment, a suitable quantity of adhesive stamps to be kept on sale by the...

  12. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.


    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  13. Fishing for improvements: managing fishing by boat on New York City water supply reservoirs and lakes (United States)

    Nicole L. Green; Jennifer A. Cairo


    In 2003, the New York City Department of Environmental Protection Bureau of Water Supply undertook a 5-year initiative to improve fishing by boat on its water supply reservoirs and controlled lakes in upstate New York. The project includes: revising administrative procedures; cleaning up boat fishing areas on reservoir shores; improving two-way communication with...

  14. Risk classification and uncertainty propagation for virtual water distribution systems

    International Nuclear Information System (INIS)

    Torres, Jacob M.; Brumbelow, Kelly; Guikema, Seth D.


    While the secrecy of real water distribution system data is crucial, it poses difficulty for research as results cannot be publicized. This data includes topological layouts of pipe networks, pump operation schedules, and water demands. Therefore, a library of virtual water distribution systems can be an important research tool for comparative development of analytical methods. A virtual city, 'Micropolis', has been developed, including a comprehensive water distribution system, as a first entry into such a library. This virtual city of 5000 residents is fully described in both geographic information systems (GIS) and EPANet hydraulic model frameworks. A risk classification scheme and Monte Carlo analysis are employed for an attempted water supply contamination attack. Model inputs to be considered include uncertainties in: daily water demand, seasonal demand, initial storage tank levels, the time of day a contamination event is initiated, duration of contamination event, and contaminant quantity. Findings show that reasonable uncertainties in model inputs produce high variability in exposure levels. It is also shown that exposure level distributions experience noticeable sensitivities to population clusters within the contaminant spread area. High uncertainties in exposure patterns lead to greater resources needed for more effective mitigation strategies.

  15. Mozambique - Rural Water Supply (United States)

    Millennium Challenge Corporation — This report provides the results from (1) an impact evaluation of the MCA's Rural Water Point Implementation Program ('RWPIP') in Nampula and (2) an evaluation of...

  16. Petroleum product scarcity: a review of the supply and distribution of petroleum products in Nigeria

    International Nuclear Information System (INIS)

    Akpoghomeh, Osi S.; Badejo, Dele


    Nigeria ranks high among the comity of oil producers both at the world level and among the OPEC eleven. It is, therefore, paradoxical that the supply of all petroleum products is erratic and has declined sharply in the recent past. This paper thus reviews the petroleum product supply and distribution systems in the country to ascertain the extent to which the system may have contributed to the present product scarcity in Nigeria and, by extension, identify the causes of the present regime of petroleum product scarcity. The paper observes that the network density and connectivity of petroleum product distribution pipelines are low and both indicators consequently show the inadequacy/deficiency of the network in ensuring an efficient distribution system. The supply mode, on the other hand, has, over the years, demonstrated its inability to guarantee adequate supply due to factors including sabotage, vandalism, banditry and poorly maintained infrastructure. Further, the federal government and the major and independent marketers could not sustain the importation of petroleum products because of the shortfall between the landed cost of imported products and their selling prices in Nigeria, which made the business unprofitable. Finally, the paper examines the withdrawal by the federal government of subsidies on the price of petroleum products consumed locally. All the above factors together occasioned increases in the cost of products. In conclusion, this paper supports the call for the privatization of refineries and the depot/pipeline system as a viable option to end the supply problems. (Author)

  17. Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems. (United States)

    Brisson, Isabelle J; Levallois, Patrick; Tremblay, Hélène; Sérodes, Jean; Deblois, Christian; Charrois, Jeffrey; Taguchi, Vincent; Boyd, Jessica; Li, Xingfang; Rodriguez, Manuel J


    The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities.

  18. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi


    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  19. Topographic variations of water supply and plant hydraulics in a mountainous forest (United States)

    Tai, X.; Mackay, D. S.; Ewers, B. E.; Parsekian, A.; Sperry, J.; Beverly, D.; Speckman, H. N.; Ohara, N.; Fantello, N.; Kelleners, T.; Fullhart, A. T.


    How plants respond to variable local water supply in complex soil-topography systems is not clear although critical. This has been attributed to a lack of integrated models that can resolve relevant hydrological and physiological mechanisms and intensive field monitoring to inform/evaluate such a model. This research addresses these knowledge gaps by leveraging a newly developed distributed plant hydraulics model, ParFlow-TREES, and detailed geophysical and physiological measurements. Observations of sap flow, leaf water potentials, micrometeorology, and electrical resistivity tomography (ERT) are combined with the model to examine the key mechanisms affecting the spatial distribution of soil water and tree water stress. Modeling results showed higher soil water condition at bottom of the hillslope on average, corroborating the ERT-derived soil moisture observations. Hydraulic traits are critical to capture the sap flux dynamics of species with contrasting leaf water potential regulation strategies and heterogeneous soil drying at different hillslope positions. These results suggested the integrated effect of topography and plants on the evolvement of soil moisture distribution. Furthermore, sensitivity analysis demonstrated the importance of using distributed observations to validate/calibrate distributed models. Focusing on lumped variables or only one particular variable might give misleading conclusions. Co-located observations improve the characterization of plant traits and local living environment, providing key information needed as a first step in resolving the form and function of the critical zone from bedrock to atmosphere. We will discuss the broader implications and potential applications of this intensive data-model comparison at other sites and greater spatial extent.

  20. Analysis of Drinking Water Supply System Encompassing The Catchment, The Reservoir and The Treatment Facility (A Case Study of Osman Sagar Drinking Water Supply System, Hyderabad, India)


    Balijepalli, Valli Priya


    Unregulated urban growth and unscientific approach towards source protection led to the degradation and loss of fresh water lakes in Hyderabad. Osman Sagar is one of the few lakes that still retains its fresh water status. In recent times it witnessed drastic fluctuations in its inflows resulting in reduced drinking water supply. The study emphasizes the need to improve the overall water management based on the integration of scientific assessment and appropriate management strategies.

  1. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change (United States)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.


    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The

  2. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply. (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A


    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (treatment applied. The potential effects of the presence of these compounds at the ppt levels in drinking water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  3. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.


    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  4. Successful Rural Water Supply Projects and the Concerns of Women. Women in Development. (United States)

    Roark, Paula

    As the traditional water carriers and water managers, third world women are crucial to the success of rural water supply projects whose short term goal is increased water quality and quantity and whose long term goal is improved family health. Change depends on the utilization of local learning systems of the society and women are most often the…

  5. Cost-benefit comparisons of investments in improved water supply and cholera vaccination programs. (United States)

    Jeuland, Marc; Whittington, Dale


    This paper presents the first cost-benefit comparison of improved water supply investments and cholera vaccination programs. Specifically, we compare two water supply interventions -- deep wells with public hand pumps and biosand filters (an in-house, point-of-use water treatment technology) -- with two types of cholera immunization programs with new-generation vaccines -- general community-based and targeted and school-based programs. In addition to these four stand-alone investments, we also analyze five combinations of water and vaccine interventions: (1) borehole+hand pump and community-based cholera vaccination, (2) borehole+hand pump and school-based cholera vaccination, (3) biosand filter and community-based cholera vaccination, (4) biosand filter and school-based cholera vaccination, and (5) biosand filter and borehole+hand pump. Using recent data applicable to developing country locations for parameters such as disease incidence, the effectiveness of vaccine and water supply interventions against diarrheal diseases, and the value of a statistical life, we construct cost-benefit models for evaluating these interventions. We then employ probabilistic sensitivity analysis to estimate a frequency distribution of benefit-cost ratios for all four interventions, given a wide variety of possible parameter combinations. Our results demonstrate that there are many plausible conditions in developing countries under which these interventions will be attractive, but that the two improved water supply interventions and the targeted cholera vaccination program are much more likely to yield attractive cost-benefit outcomes than a community-based vaccination program. We show that implementing community-based cholera vaccination programs after borehole+hand pump or biosand filters have already been installed will rarely be justified. This is especially true when the biosand filters are already in place, because these achieve substantial cholera risk reductions on their own

  6. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.


    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  7. Geographical heterogeneity and inequality of access to improved drinking water supply and sanitation in Nepal. (United States)

    He, Wen-Jun; Lai, Ying-Si; Karmacharya, Biraj M; Dai, Bo-Feng; Hao, Yuan-Tao; Xu, Dong Roman


    Per United Nations' Sustainable Development Goals, Nepal is aspiring to achieve universal and equitable access to safe and affordable drinking water and provide access to adequate and equitable sanitation for all by 2030. For these goals to be accomplished, it is important to understand the country's geographical heterogeneity and inequality of access to its drinking-water supply and sanitation (WSS) so that resource allocation and disease control can be optimized. We aimed 1) to estimate spatial heterogeneity of access to improved WSS among the overall Nepalese population at a high resolution; 2) to explore inequality within and between relevant Nepalese administrative levels; and 3) to identify the specific administrative areas in greatest need of policy attention. We extracted cluster-sample data on the use of the water supply and sanitation that included 10,826 surveyed households from the 2011 Nepal Demographic and Health Survey, then used a Gaussian kernel density estimation with adaptive bandwidths to estimate the distribution of access to improved WSS conditions over a grid at 1 × 1 km. The Gini coefficient was calculated for the measurement of inequality in the distribution of improved WSS; the Theil L measure and Theil T index were applied to account for the decomposition of inequality. 57% of Nepalese had access to improved sanitation (range: 18.1% in Mahottari to 100% in Kathmandu) and 92% to drinking-water (range: 41.7% in Doti to 100% in Bara). The most unequal districts in Gini coefficient among improved sanitation were Saptari, Sindhuli, Banke, Bajura and Achham (range: 0.276 to 0.316); and Sankhuwasabha, Arghakhanchi, Gulmi, Bhojpur, Kathmandu (range: 0.110 to 0.137) among improved drinking-water. Both the Theil L and Theil T showed that within-province inequality was substantially greater than between-province inequality; while within-district inequality was less than between-district inequality. The inequality of several districts was

  8. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Immerzeel, W.; Droogers, P.


    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply–demand imbalances in

  9. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. (United States)

    Kang, Da-Cheng; Gao, Xue-Qin; Ge, Qing-Feng; Zhou, Guang-Hong; Zhang, Wan-Gang


    The objective of this study was to explore the mechanisms of power ultrasound (PUS, 150 and 300W) and treatment time (30 and 120min) on the water-holding capacity (WHC) and tenderness of beef during curing. Beef muscle at 48h post mortem was subjected to PUS treatment at a frequency of 20kHz. Analysis of compression loss and shear force showed that PUS-assisted curing significantly increased the WHC and the tenderness of beef compared to static brining (pwater-binding ability of beef muscle. SDS-PAGE and LC-ESI-MS/MS analysis suggested that PUS induced moderate oxidation of myosin causing polymerization, which may contribute to increased water retention. On the other hand, an increased tenderness of beef is suggested by the increased MFI values and proteolysis of desmin and troponin-T. Transmission electron microscopy (TEM) further supported the effects of PUS on WHC and tenderness changes due to the swelling and disruption of myofibrils. Thus, these results provide knowledge about the mechanism for improving WHC and tenderness of beef by PUS curing, which could be employed as an emerging technology for various meat curing processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Occurrence of Cryptosporidium oocysts and Giardia cysts in water supplies of San Pedro Sula, Honduras

    Directory of Open Access Journals (Sweden)

    Solo-Gabriele Helena María


    Full Text Available During June 1996, water supplies of the city of San Pedro Sula, Honduras, were sampled to obtain an assessment of Cryptosporidium oocyst and Giardia cyst concentrations. Each sample was concentrated and stained with an indirect immunofluorescent antibody, and parasites were counted through microscopic analysis. In three surface water supplies, Cryptosporidium oocyst concentrations ranged from 58 to 260 oocysts per 100 L, and Giardia cysts were present in concentrations ranging from 380 to 2100 cysts per 100 L. Unlike the surface water samples, groundwater had a higher concentration of Cryptosporidium oocysts (26/100 L than Giardia cysts (6/100 L, suggesting that the groundwater aquifer protects the water supply more effectively from larger Giardia cysts. Cryptosporidium oocyst concentrations are within the typical range for surface water supplies in North America whereas Giardia cyst concentrations are elevated. Efforts should be made to protect raw water from sources of contamination.

  11. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.


    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  12. Reactive power supply by distributed generators


    Braun, M.


    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  13. Water quality and supply on Cortina Rancheria, Colusa County, California (United States)

    Yates, E.B.


    Cortina Rancheria covers an area of 1 sq mi in Colusa County, California, near the western edge of the Sacramento Valley. Local sources of water for residents of the rancheria are of poor quality or limited availability. Domestic needs are presently met by water from a hand-dug well and from a drilled well with a potential yield of 15 gal/min. Water from both wells fails to meet California State drinking-water standards, primarily because of high concentrations of chloride and dissolved solids. High concentrations of sodium and boron pose additional problems for agricultural use of the water. The dissolved ions originate in Upper Cretaceous marine sediments of the Cortina Formation, which occurs at or near land surface throughout the rancheria. Small quantities of fresh groundwater may occur locally in the Tehama Formation which overlies the Cortina Formation in the eastern part of the rancheria. Canyon Creek, the largest stream on the rancheria, flows only during winter and spring. Water from one of the rancheria 's three springs meet drinking water standards, but it almost stops flowing in summer. The generally poor quality of ground and surface water on the rancheria is typical of areas along the west side of the Sacramento Valley. Additional hydrologic information could indicate more precisely the quantity and quality of surface and groundwater on Cortina Rancheria. Principal features of a possible data-collection program would include monitoring of discharge and water quality in three springs and in Canyon Creek, electromagntic terrain conductivity surveys, and monitoring of water levels and quality in two existing wells and several proposed test wells. (USGS)

  14. Electricity price and Southern California's water supply options

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry [Lawrence Berkeley National Laboratory, Camilla Dunham Whitehead, Andre Fargeix, Golden Gate Economics, 1 Cycltron Road, Berkeley, CA 94720 (United States)


    This paper evaluates the impact of fluctuating electricity prices on the cost of five options to increase the water supply to urban areas in Southern California-new surface storage, water purchases, desalination, wastewater recycling, and conservation.We show that the price of electricity required to produce and transport water influences the cost of water supply options and may alter the decision makers economic ranking of these options. When electricity prices are low, water purchase is the cost effective option. When prices exceed US$ 86/MWh, conservation of electricity and water through installation of high efficiency clothes washers is the most effective option.

  15. Reliability evaluation of power supply and distribution for special heat removal systems in nuclear power stations

    International Nuclear Information System (INIS)

    Jazbec, D.


    An example of the power supply and distribution of a Special Emergency Heat Removal System (SEHR) shows how an engineering organization may, with the aid of the analytical method of min-cut sets optimize the system reliability. Herein are given the necessary simple calculation methods. (Auth.)

  16. Influence of pycnocline topography and water-column structure on marine distributions of alcids (Aves: Alcidae) in Anadyr Strait, Northern Bering Sea, Alaska (United States)

    Haney, J. Christopher


    Systematic ship-board surveys were used to simultaneously record seabird abundances and resolve coarse-scale (3 to 10 km) horizontal and fine-scale (1 to 10 m) vertical variability in water-column structure and bathymetry for portions of the coastal zone in Anadyr Strait near western St. Lawrence Island, northern Bering Sea, Alaska, during August and September 1987. Three plankton-feeding alcids, parakeet (Cyclorrhynchus psittacula), crested (Aethia cristatella) and least (A. pusilla) auklets, each exhibited distinct associations for different pycnocline characteristics. Least auklets were more abundant in mixed water, but they also occurred within stratified water where the pycnocline and upper-mixed layer were shallow (≤8 m) and thin (≤10 m), respectively. Low body mass (85 g), high buoyancy, and relatively poor diving ability may have restricted this auklet to areas where water-column strata nearly intersected the surface, or to areas from which strata were absent altogether due to strong vertical mixing. Parakeet and crested auklets, which are larger-bodied (ca. 260 g) planktivores with presumably greater diving ability, were more abundant in stratified water, and both species exhibited less specific affinities for water-column characteristic at intermediate and shallow levels. All three auklets avoided locations with strong pycnocline gradients (≤0.22σtm−1), a crude index of the strong, subsurface shear in water velocities characteristic of this region. Auklet distributions in Anadyr Strait were consistent with: (1) strata accessibility, as estimated from relationships between body mass and relative diving ability, (2) possible avoidance of strong subsurface water motions, and (3) habits and distributions of plankton prey. In contrast, largebodied (>450 g) alcids [i.e., common (Uria aalge) and thick-billed (U. lomvia) murres, pigeon guillemots (Cephus columba), tufted (Fratercula cirrhata), and horned (F. corniculata) puffins feeding on fish or

  17. About economy of fuel and energy resources in the hot water supply system (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.


    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  18. Volatile organic compounds in the nation's ground water and drinking-water supply wells (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.


    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  19. Uranium removal from the water supply

    International Nuclear Information System (INIS)

    Miranzadeh, Mohammad Bagher.


    Uranium can be naturally occurring radionuclides that contaminate some potable water supplies. Uranium is found both in surface water and ground water supplies. The United States Environmental Protection Agency recently proposed a maximum contaminant of 20 micro gram/liter for uranium because of concerns about its association with kidney disease and cancer. uranium can be removed from the supply by strong base anion-resin. Exhausted resin is regenerated by sodium chloride solution. (Author)

  20. Polycentrism and Poverty: Experiences of Rural Water Supply Reform in Namibia

    Directory of Open Access Journals (Sweden)

    Thomas Falk


    This paper investigates how polycentric rural water supply reform impacts on natural resource management and water users’ livelihoods in three communal areas of Namibia. The analysis takes into account the effects of historic discriminative policies and the resulting low financial, human and social capital of rural communities. We conclude that the devolution of institutional and financial responsibility for water supply to users has had a positive impact on rural water management. However, the introduction of cost recovery principles conflicts with the objectives of the Namibian government to alleviate poverty and inequality. The high level of inequality within the country as a whole and also within communities impedes the development of fair fee systems. Polycentrism faces the major challenge of building on existing structures without replicating historic injustices. It allows, however, for the state to mitigate any negative impact on livelihoods. While the reform is in the process of full implementation, the government is discussing various options of how the poor can be guaranteed access to water without diminishing their development opportunities. The Namibian experience demonstrates the difficulties in developing effective incentive mechanisms without undermining major social objectives. Our analyses show that, compared to naive monocentric governance approaches, polycentrism offers much broader opportunities for achieving multidimensional objectives. Nonetheless, a reform does not become successful simply because it is polycentric.

  1. Potable water supply in owerri metropolis: a challenge to mdgs ...

    African Journals Online (AJOL)

    The results of the analysis were related directly to the affected MDG targets to reveal that the Otamiri Water Scheme that supplies water to Owerri urban is not functioning effectively. Also, the water distribution facilities are inadequate, overused and worn-out. They generally wear a poor state as evidenced from blockages, ...

  2. The main microelements and phosphorus content of sediments formed in a drinking water supply system


    Marina Valentukeviciene; Ramune Zurauskiene; Jonas Satkunas


    Groundwater is the only source for drinking water supply in Lithuania. Twenty water intakes exploiting Quaternary aquifers are operating in Vilnius City. The main aim of this study was to characterize the heavy metal content of internal pipeline sediments in the water supply network. It also provides a new insight into the accumulation of phosphorus and its variation in pipeline sediments in the study area. The results of this research reflect the level of heavy metals that accumulated during...

  3. Dealing with uncertainty in modeling intermittent water supply (United States)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.


    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  4. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley (United States)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.


    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  5. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami


    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  6. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei


    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  7. The dynamic relation between management control and governance structure in a supply chain context

    NARCIS (Netherlands)

    Veen, van P.M.G.; Verdaasdonk, P.J.A.


    Purpose – The purpose of this paper is to show that local management control systems within supply chain organisations and the governance of supply chains are intertwined and that local control systems and governance structure have an important effect on the functioning of the supply chain.

  8. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment (United States)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  9. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system. (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B


    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  10. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System (United States)

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.


    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  11. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  12. Creating hourly distributions at national level for various energy demands and renewable energy supplies

    DEFF Research Database (Denmark)

    Connolly, David; Drysdale, Dave; Hansen, Kenneth


    being recorded over longer time horizons, for example over one day. In this paper, a methodology is presented for creating hourly distributions for energy systems analysis tools. On the demand side, hourly distributions are developed for electricity, heating, cooling, and transport while the supply side...... includes wind, solar (photovoltaic and thermal), and wave power. Distributions are not created for dispatchable plants, such as coal, gas, and nuclear thermal plants, since their output is usually determined by the energy modelling tool rather than by a dependent resource. The methodologies are purposely...

  13. Exploring geophysical processes influencing U.S. West Coast precipitation and water supply (United States)

    Ralph, F.M.; Prather, K.; Cayan, D.


    CalWater Science Workshop; La Jolla, California, 8-10 June 2011 CalWater is a multiyear, multiagency research project with two primary research themes: the effects of changing climate on atmospheric rivers (ARs) and associated extreme events, and the potential role of aerosols in modulating cloud properties and precipitation, especially regarding orographic precipitation and water supply. Advances made in CalWater have implications for both water supply and flood control in California and other West Coast areas, both in the near term and in a changing climate.

  14. Public Health Practice Report: water supply and sanitation in Chukotka and Yakutia, Russian Arctic. (United States)

    Dudarev, Alexey A


    Information from 2013-2015 have been analysed on water accessibility, types of water service to households, use of water pretreatment, availability of sewerage, use of sewage treatment in Chukotka Autonomous Okrug and Yakutia Republic, based on evaluation information accessible in open sources, such as regional statistics and sanitary-epidemiologic reports. The main causes of the poor state of water supply and sanitation in the study regions include: very limited access to in-home running water (one-quarter of settlements in Chukotka and half of settlements in Yakutia have no regular water supply) and lack of centralised sewerage (78% and 94% of settlements correspondingly have no sewerage); lack of water pretreatment and sewage treatment, outdated technologies and systems; serious deterioration of facilities and networks, frequent accidents; secondary pollution of drinking water. Lack of open objective information on Russian Arctic water supply and sanitation in the materials of the regional and federal statistics hampers the assessment of the real state of affairs. The situation for water and sanitation supply in these Russian Arctic regions remains steadily unfavourable. A comprehensive intervention from national and regional governmental levels is urgently needed.

  15. The Spanish Food Industry on Global Supply Chains and Its Impact on Water Resources

    Directory of Open Access Journals (Sweden)

    Rosa Duarte


    Full Text Available The study of the impact of economic activities on natural resources through global supply chains is increasingly demanded in the context of the growing globalization of economies and product fragmentation. Taking Spain as a case study and a sector with significant economic and environmental impacts, the agri-food industry, the objective of this work is two-fold. First, we estimate the associated water impact, both from the production and consumption perspectives, paying special attention to the water embodied in production exchanges among countries and sectors. To that aim, we use an environmentally-extended multiregional input-output model (MRIO. Second, we assess the main driving factors behind changes in direct and embodied water consumption between the years 1995 and 2009 by means of a structural decomposition analysis. The MRIO model provides a comprehensive estimate of the economic linkages among regions and economic sectors and, therefore, allows calculating the environmental impacts over international value chains. The results indicate that the food industry exerts large impacts on global water resources, particularly given the remarkable interactions with the domestic and foreign agricultural sectors, These growing linkages show how consumption patterns, and, therefore, lifestyles, involve large environmental impacts through the whole and global supply chains.

  16. Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Hammer, Kathrine


    declined by the -0.36 power of cushion diameter, and were not significantly different from -0.50 for the square root function previously predicted for the increasing thickness of the boundary layer, with greater linear dimensions for smooth flat objects at low wind velocities. Size dependence vanished...... richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates......Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species...

  17. The main microelements and phosphorus content of sediments formed in a drinking water supply system

    Directory of Open Access Journals (Sweden)

    Marina Valentukeviciene


    Full Text Available Groundwater is the only source for drinking water supply in Lithuania. Twenty water intakes exploiting Quaternary aquifers are operating in Vilnius City. The main aim of this study was to characterize the heavy metal content of internal pipeline sediments in the water supply network. It also provides a new insight into the accumulation of phosphorus and its variation in pipeline sediments in the study area. The results of this research reflect the level of heavy metals that accumulated during the water supply process. The main microelements detected were lead, nickel, zinc and copper. The research results will be useful for conducting preliminary evaluations of possible microelement accumulation in other similar water supply systems. The evaluation of water supply sediments is considered as one of the most important activities associated with a water safety approach. The results of this research indicate the dependence between phosphorus accumulation and Pb, Cr, Zn, Ni and Cu quantities in the internal sediments of water supply pipelines.

  18. Water Purification, Distribution and Sewage Disposal. Appropriate Technologies for Development. Reprint R-29. (United States)


    This document, designed to serve as a training manual for technical instructors and as a field resource reference for Peace Corps volunteers, consists of nine units. Unit topics focus on: (1) water supply sources; (2) water treatment; (3) planning water distribution systems; (4) characteristics of an adequate system; (5) construction techniques;…

  19. Evaluation of Small-Scale Providers of Water Supply and Sanitation Services in Peru


    World Bank


    The Water and Sanitation Program (WSP), administered by the World Bank, helps countries find sustainable solutions to ensure efficient delivery of the quality water supply and sanitation services the population demands. The WSP is carrying out a systematic analysis in several countries to identify the role of small-scale providers (SSP) of water and sanitation services to poor populations ...

  20. Ensuring water supply for all towns and villages in the Eastern Cape ...

    African Journals Online (AJOL)

    In most instances water conservation and water-demand management and the development of local surface and groundwater resources are the most feasible options to meet any current or projected future water-supply shortfalls. Any intervention must be combined with a skills-development programme at the operational ...

  1. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.


    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  2. Assessment of scale formation and corrosion of drinking water supplies in Ilam city (Iran)


    Zabihollah Yousefi; Farzad Kazemi; Reza Ali Mohammadpour


    Background: Scaling and corrosion are the two most important indexes in water quality evaluation. Pollutants are released in water due to corrosion of pipelines. The aim of this study is to assess the scale formation and corrosion of drinking water supplies in Ilam city (Iran). Methods: This research is a descriptive and cross-sectional study which is based on the 20 drinking water sources in Ilam city. Experiments were carried out in accordance with the Water and Wastewater Co. ...

  3. Privatization by Other Means: Social Power, Tankers and Techno-Assemblages of Water Supply in Amman, Jordan. (United States)

    Mustafa, D.


    Combined piped and tanker based water supply systems have become a ubiquitous feature of urban waterscapes in the global South. Jordanian water sector, and Amman in particular has been a recipient of considerable international financial and technical assistance over the past decades. The international assistance has coupled with the Jordanian state's own pro-market ideological stance, and its political compulsions to spawn a techno-social assemblage of water supply that represents a hybrid state and commercial water supply system. I present the results of a field study in Amman, Jordan on water tankers and water users to understand the techno-political underpinnings of the hybrid system and its impact on differential access to water. I explore how Actor Network Theory (ANT) based analysis of tankers, suction pumps and piped water system and their materiality may explain differential access to water. But that exploration is inflected by a larger political ecological concern with questions of power and discourses about citizenship and claim making on the state. I find that ANT based focus on water technologies, while ontologically fertile, and epistemologically innovative, is nevertheless politically barren. Much richer political insights are to be gained from structural and post-structurally based investigations of the discursive and material drivers of the techno-social assemblages of water supply. The technologies don't just neutrally impact water access, but seem to almost intentionally favour the powerful over the powerless. Surely the political agency must not reside in inanimate technologies but in the social actors and structures that fashion those technologies, and configure them such to reinforce geographies of power. I call for a renewed focus on social power and how its impact on lived geographies is mediated by technology.

  4. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, A.C.; Jørgensen, T.M.; Albrechtsen, Hans-Jørgen


    from an initial attachment of single cells through the formation of independent microcolonies reaching 30 mum in thickness to a final looser structure with an average thickness of 14.1 mum and covering 76% of the surface. An analysis of the community composition by use of terminal restriction fragment...

  5. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  6. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply. (United States)

    Hutton, Guy


    Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.

  7. Water supply and tree growth. Part II. Flooding

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T.


    Continuous or periodic flooding of soil with fresh or salt water is a common occurrence. Although flooding rapidly depletes soil oxygen the problem of poor soil aeration also exists in extensive areas of unflooded, fine-textured soils. Compounds that may be phytotoxic and accumulate in flooded soils include ethanol, acetaldehyde, cyanogenic compounds, sulphides, CO/sub 2/, iron, manganese, ethane, propylene, fatty acids, hydroxy and dicarboxylic acids, unsaturated acids, aldehydes, ketones, mercaptans, and ethylene. Flooding affects seed germination, stomatal aperture, photosynthesis, permeability of roots, mineral relations, and growth and survival of trees. Although growth of most trees is reduced by flooding it is sometimes increased in a few flood-tolerant species. Flood tolerance of trees varies widely with species, age of trees, and periodicity, duration, and season of occurrence of flooding. Standing water is much more harmful than moving water. Physiological dysfunctions associated with flooding are complex and variously involve the influence of oxygen deficiency, excess CO/sub 2/, a variety of toxic compounds, and altered hormone metabolism. Flood tolerance involves both morphological and physiological adaptations. Important morphological adaptations include formation of lenticels and root regeneration. Physiological adaptations may reflect avoidance of accumulation of ethanol as well as capacity to oxidize the rhizosphere and to tolerate high CO/sub 2/ concentrations in the soil. Adaptations to flooding by salt water include mechanisms for both salt tolerance and avoidance.

  8. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand. (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens


    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  9. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978. Water-resources investigations

    International Nuclear Information System (INIS)

    Irwin, G.A.; Hull, R.W.


    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids, chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects

  10. Molybdenum distributions and variability in drinking water from England and Wales. (United States)

    Smedley, P L; Cooper, D M; Lapworth, D J


    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p  0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.

  11. Paleoclimate Signals and Age Distributions from 41 Public Water Works in the Netherlands (United States)

    Broers, H. P.; Weert, J. D.; Sültenfuß, J.; Aeschbach, W.; Vonhof, H.; Casteleijns, J.


    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed.The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially waters from this graben structure exhibit clear

  12. A literature analysis of Walmart’s supply chain excellence in term of integration, distribution and operations


    Jawad, Stevan


    This literature-based qualitative case study examines the world’s leading retailing company Walmart to investigate whether Walmart possesses supply chain excellence in terms of integration, distribution and operations and yet saves costs. Supply Chain Management efficiency is essential for most businesses and crucial to customer satisfaction and company success. The literature studied involves retail industry supply chain activities and certain retail supply chain transformation elements ...

  13. Influence of Japan's 2004 postgraduate training on ophthalmologist location choice, supply and distribution. (United States)

    Sakai-Bizmark, Rie; Goto, Rei; Hiragi, Shusuke; Tamura, Hiroshi


    Highly-competent patient care is paramount to medicine. Quality training and patient accessibility to physicians with a wide range of specializations is essential. Yet, poor quality of life for physicians cannot be ignored, being detrimental to patient care and leading to personnel leaving the medical profession. In 2004, the Japanese government reformed postgraduate training for medical graduates, adding a 2-year, hands-on rotation through different specialties before the specialization residency was begun. Residents could now choose practice location, but it sparked concerns that physician distribution disparities had been created. Japanese media reported that residents were choosing specialties deemed to offer a higher quality of life, like Ophthalmology or Dermatology, over underserved areas like Obstetrics or Cardiology. To explore the consequences of Japan's policy efforts, through the residency reform in 2004, to improve physician training, analyzing ophthalmologist supply and distribution in the context of providing the best possible patient care and access while maintaining physician quality of life. Using secondary data, we analyzed changes in ophthalmologist supply at the secondary tier of medical care (STM). We applied ordinary least-squares regression models to ophthalmologist density to reflect community factors such as residential quality and access to further professional development, to serve as predictors of ophthalmologist supply. Coefficient equality tests examined predictor differences before and after 2004. Similar analyses were conducted for all physicians excluding ophthalmologists (other physicians). Ophthalmologist coverage in top and bottom 10% of STMs revealed supply inequalities. Change in ophthalmologist supply was inversely associated with baseline ophthalmologist density before (P supply were not associated with baseline other physician density before 2004 (P = 0.5), but positively associated after 2004 (P supply in STMs were

  14. The IBNET Water Supply and Sanitation Blue Book 2014 : The International Benchmarking Network for Water and Sanitation Utilities Databook


    Danilenko, Alexander; van den Berg, Caroline; Macheve, Berta; Moffitt, L. Joe


    Well-run water utilities play an important role in ending poverty and boosting shared prosperity. Consumers need reliable access to high quality and affordable water and sanitation services. To deliver these basic services efficiently and effectively requires high-performing utilities that are able to respond to urban growth, to connect with the poor, and to improve wastewater disposal practices. The IBNET Water Supply and Sanitation Blue Book 2014 summarizes the water sector status from 2006...

  15. Localizing the strategy for achieving rural water supply and ...

    African Journals Online (AJOL)



    Dec 29, 2011 ... integration of theory and practice peculiar to our communities in .... (ii) UNICEF Assisted State Water and Sanitation Projects. (1981 to 2010); ... communities to take greater responsibility in the financial outlay for the ... for managing the project; ... public/private institutions in the rural areas of Nigeria. This is in ...

  16. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan (United States)

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed


    ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260

  17. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    Full Text Available ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65% were positive for Acanthamoeba spp., and one (5% was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.

  18. Drought and Water Supply. Implications of the Massachusetts Experience for Municipal Planning. (United States)

    Russell, Clifford S.; And Others

    This book uses the 1962-66 Massachusetts drought data as a base of information to build a planning model of water resources that is of interest to students and professionals involved with water management. Using a demand-supply ratio to measure the relative inadequacy of a given water system, the authors then project demand into the drought period…

  19. Water supply and use in Deaf Smith, Swisher, and nearby counties in the Texas Panhandle

    International Nuclear Information System (INIS)


    Irrigation for agriculture is the primary water use in the area of Deaf Smith and Swisher Counties, Texas, and the Ogallala Formation is the main water source. The availability of water in the 12-county area is projected to decrease markedly over the next 5 decades because of the steady depletion of ground water in recoverable storage. Water requirements in the 12-county area are projected to exceed available supplies from about 1990 through 2030. The shortage for the year 2030 is estimated to be approximately 4 million acre-feet under high-growth-rate conditions. Because of its semiarid climate, the area has little available surface water to augment the supply of the Ogallala Formation, which, despite its depletion, could be the principal source of water for the repository. There are, however, other potential sources of water: (1) Lake Mackenzie, on Tule Creek; (2) the Santa Rosa Formation, which underlies much of the Southern High Plains and locally yields moderate amounts of good-quality water; and (3) the Wolfcamp Series, which yields low amounts of highly saline water. The effluents of municipal wastewater treatment plants and municipal water systems may also be useful as supplements to the repository's primary water supply

  20. Water Distribution Lines, Includes water pipes (not connections to structures, fire hydrants and other features. Capture in Microstation and does not contain attribution. Has annotation and is converted to GIS semi-anually. Only available upon permission., Published in 2011, 1:2400 (1in=200ft) scale, Howard County Government. (United States)

    NSGIC Local Govt | GIS Inventory — Water Distribution Lines dataset current as of 2011. Includes water pipes (not connections to structures, fire hydrants and other features. Capture in Microstation...

  1. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply


    Ilaya-Ayza, Amilkar Ernesto; Campbell-Gonzalez, Enrique; Pérez García, Rafael; Izquierdo Sebastián, Joaquín


    [EN] Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how...

  2. Influence of radioactive fallout on water supply and sewerage in Finland; Radioaktiivisen laskeuman vaikutukset vesihuoltoon

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A; Saxen, R; Puhakainen, M [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Hatva, T; Ahosilta, P; Tenhunen, J [National Board of Waters and the Environment, Helsinki (Finland)


    The report reviews the practices and organization of water supply and sewerage in Finland and is related to their response to radioactive fallout situations. The contribution of drinking water to the internal radiation dose caused by radioactive fallout has earlier been small in Finland. However, in a wide-scale fallout situation, the decreasing of collective dose received from water may be justified, if the dose can be reduced at a reasonable cost, for instance by a temporary change of the raw water source. Efficient exchange of information between radiation protection and water supply experts is important for successful dose reduction measures. In Finland waterworks deliver tap water to 4.2 million people. Half of the water is ground water, and generally very well protected against fallout radioactivity. The other half is treated surface water. (6 figs., 5 tabs.).

  3. Improving food safety in the supply chain: Integrating traceability in production and distribution planning

    DEFF Research Database (Denmark)

    Grunow, Martin; Rong, Aiying; Akkerman, Renzo


    on production and distribution planning. Here, we develop a methodology for production and distribution planning in food supply chains which minimizes production and logistics costs and at the same time reduces food safety concerns, limits the size of potential recalls, and satisfies product quality...... with traceability from the viewpoint of information system development and technology development such as radio frequency identification (RFID) and DNA-based techniques. However, traceability and its implications for food safety are thus far not incorporated in the standard operations management literature...

  4. Computer simulation for risk management: Hydrogen refueling stations and water supply of a large region

    DEFF Research Database (Denmark)

    Markert, Frank; Kozine, Igor


    in applying DES models to the analysis of large infrastructures for refueling stations and water supply. Two case studies are described which are concerned with the inherently safer supply and storage of hydrogen at refueling stations and an established drinking water supply system of a large metropolitan...... area, respectively. For both, the simulation aims at identifying points of potential improvement from the reliability point of view. This allows setting up a list of activities and safety measures to reduce risk and possible losses and mitigate the consequences of accidents. Based on the cases...

  5. Managing hydroclimatological risk to water supply with option contracts and reservoir index insurance (United States)

    Brown, Casey; Carriquiry, Miguel


    This paper explores the performance of a system of economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on stakeholders of shared water supply. The system is composed of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows. The insurance is designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Insurance provides the irregularly needed funds for exercising the water options. The combined option contract - reservoir index insurance system creates risk sharing between sectors that is currently lacking in many shared water situations. Contracts are designed for a shared agriculture - urban water system in Metro Manila, Philippines, using optimization and Monte Carlo analysis. Observed reservoir inflows are used to simulate contract performance. Results indicate the option - insurance design effectively smooths water supply costs of hydrologic variability for both agriculture and urban water.

  6. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota


    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  7. Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Directory of Open Access Journals (Sweden)

    Joshua Rodewald


    Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.

  8. Tanzania - Water Supply & Expansion (United States)

    Millennium Challenge Corporation — Social Impact (SI) has been contracted by MCC to carry out an impact evaluation (IE) of the Tanzania Water Sector Project. This IE examines the effect of the WSP...

  9. Concerns in Water Supply and Pollution Control: Legal, Social, and Economic. (United States)

    Burke, D. Barlow, Jr.; And Others

    This bulletin contains three articles which focus on ground water's potential as a dependable supply source and some of the problems impeding the development of that potential. The authors' concerns are discussed from the vantage point of their areas of specialization: law, sociology, and economics. The first author states that water law abounds…

  10. Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California.

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    Full Text Available We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2 °C, 4 °C, and 6 °C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5-21 days. The integrated agricultural model responds with increased water demands 2 °C (1.4-2.0%, 4 °C (2.8-3.9%, and 6 °C (4.2-5.8%. In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84-0.90 under historical conditions to 0.75-0.79 under 6 °C warming scenario.

  11. Public-supply water use in Kansas, 1990-2012 (United States)

    Kenny, Joan F.


    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  12. Climate Change, Forests, and Water Supply: Managing to Reduce Vulnerability in Central Nova Scotia (United States)

    Steenberg, J.; Duinker, P.


    Global climate change is increasingly relevant in managing Canada’s forests sustainably. Forest managers are faced with the necessity of incorporating climate change into forest management plans. The formulation and evaluation of potential management strategies to contend with expected impacts of climate change will be necessary to reduce forest sector vulnerability. The Halifax Regional Water Commission manages forest watersheds for the purpose of supplying clean water to much of the Halifax Regional Municipality. The purpose of this study is to characterize the future forest structure of the two principal watersheds supplying the Halifax Regional Municipality using simulation modelling and to develop a framework of adaptive forest management. A combination of uncertainty analysis, sensitivity analysis, and field data collection are used to refine, calibrate, and validate the spatially dynamic landscape disturbance model LANDIS-II prior to the incorporation of climate change scenarios into model simulations. Final model-based analysis will inform framework development dedicated to improving watershed resilience in the face of future climate change. This study is applicable to forest management under a changing climate, but also has further significance to water security, as watershed management and point-source protection are tightly linked to forest management.

  13. Modeling Integrated Water-User Decisions with Intermittent Supplies (United States)

    Lund, J. R.; Rosenberg, D.


    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  14. Evolution of Water Supply, Sanitation, Wastewater, and Stormwater Technologies Globally

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis


    Full Text Available This paper provides an outline of history of hydro-technologies in the west and the east. It is an overview of the special issue on “the evolution of hydro-technologies globally”, in which the key topics regarding the history of water and sanitation worldwide, and its importance to future cities are presented and discussed. It covers a wide range of relevant historical issues, and is presented in three categories: productivity assessment, institutional framework and mechanisms, and governance aspects. This paper concludes by discussing the challenges on future research in this field of study.

  15. New nuclear projects: structure, supply chain and financing

    International Nuclear Information System (INIS)

    Keppler, J.H.; Cometto, M.


    In 2015 there were 68 reactors being constructed throughout the world and 159 projects were planned. The projects for the construction of nuclear reactors face challenging issues like financing and management. The NEA (Nuclear Energy Agency) has analysed the feedback experience on a sample of reactor projects and of reactors recently commissioned in order to draw lessons on 3 issues: financing, long-term electricity price, and project management including the supply chain. It is already known that technologies requiring high initial capital like nuclear power or renewable energies, are very sensitive to the long-term price of electricity. The study shows that for a debt ratio below 60%, the risk for the investor is low even if the long-term electricity price drops by 30 %. Because of the complexity of the construction of a nuclear power plant there are mainly 3 types of project management: the turnkey project, the split package approach (a relatively low number of suppliers) and the multi-contract approach. The turnkey approach is favoured by the new entrants in the nuclear world. The harmonization of regulations and the convergence of the safety requirements are necessary to build an efficient and competitive supply chain. (A.C.)

  16. Drinking Water Distribution Systems (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  17. Mitigating Corporate Water Risk: Financial Market Tools and Supply Management Strategies

    Directory of Open Access Journals (Sweden)

    Wendy M. Larson


    Full Text Available A decision framework for business water-risk response is proposed that considers financial instruments and supply management strategies. Based on available and emergent programmes, companies in the agricultural, commodities, and energy sectors may choose to hedge against financial risks by purchasing futures contracts or insurance products. These strategies address financial impacts such as revenue protection due to scarcity and disruption of direct operations or in the supply chain, but they do not directly serve to maintain available supplies to continue production. In contrast, companies can undertake actions in the watershed to enhance supply reliability and/or they can reduce demand to mitigate risk. Intermediate strategies such as purchasing of water rights or water trading involving financial transactions change the allocation of water but do not reduce overall watershed demand or increase water supply. The financial services industry is playing an increasingly important role, by considering how water risks impact decision making on corporate growth and market valuation, corporate creditworthiness, and bond rating. Risk assessment informed by Conditional Value-at-Risk (CVaR measures is described, and the role of the financial services industry is characterised. A corporate decision framework is discussed in the context of water resources management strategies under complex uncertainties.

  18. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)


    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  19. Policy and network regulation for the integration of distribution generation and renewables for electricity supply

    International Nuclear Information System (INIS)

    Ten Donkelaar, M.; Van Oostvoorn, F.


    This study has analysed the existing policy and regulation aimed at the integration of an increased share of Distributed Generation (DG) in electricity supply systems in the European Union. It illustrates the state of the art and progress in the development of support mechanisms and network regulation for large-scale integration of DG. Through a benchmark study a systematic comparison has been made of different DG support schemes and distribution network regulation in EU Member States to a predefined standard, the level playing field. This level playing field has been defined as the situation where energy markets, policy and regulation provide neutral incentives to central versus distributed generation, which results in an economically more efficient electricity supply to the consumer. In current regulation and policy a certain discrepancy can be noticed between the actual regulation and policy support systems in a number of countries, the medium to long term targets and the ideal situation described according to the level playing field objective. Policies towards DG and RES are now mainly aimed at removing short-term barriers, increasing the production share of DG/RES, but often ignoring the more complex barriers of integrating DG/RES that is created by the economic network regulation in current electricity markets

  20. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin


    Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...... studies are available on the removal efficiencies of NPs by advanced water treatment processes with a majority of the identified studies focusing on removal efficiencies in wastewater treatment plants and fate in surface waters. The NP removal efficiency of several treatment processes is unknown...

  1. Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. (United States)

    Valster, Rinske M; Wullings, Bart A; van den Berg, Riemsdijk; van der Kooij, Dick


    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).

  2. Relationships between Free-Living Protozoa, Cultivable Legionella spp., and Water Quality Characteristics in Three Drinking Water Supplies in the Caribbean▿† (United States)

    Valster, Rinske M.; Wullings, Bart A.; van den Berg, Riemsdijk; van der Kooij, Dick


    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter−1. PMID:21873489

  3. Structure and development of the natural gas supply in Bavaria: chances and risks

    International Nuclear Information System (INIS)

    Bozem, K.


    Despite its structural handicap of being a large state, the gas supply in Bavaria has developed very favourabley. Strategies have been worked out for a successful future. What the gas economy needs above all are clear and reliable energy-political framework conditions. Experiments endangering the current security of supply must be dismissed. (orig.) [de

  4. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)


    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  5. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan


    of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization

  6. Ensuring water supply for all towns and villages in the Eastern Cape ...

    African Journals Online (AJOL)

    Eastern Cape and Western Cape Provinces of South Africa. ER Hay1, K .... The current water balance (see Fig. 1) and the .... in selected towns in the Eastern and Western Cape. Town .... work in order to reduce the risk of failure in the water supply to the town. .... Asset management, to prolong the life of the infrastructure.

  7. Future Drinking Water Supply, Spatial Analysis and Vulnerability of the City of San Luis Potosi, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos Contreras Servín


    Full Text Available This paper discusses and presents the physical, social and economic circumstances that affect the overall picture and the current issues that involve the drinking water supply for the metropolitan area of San Luis Potosi. The relationship between water availability and increasing population, as well as the evolution of the groundwater extraction, are among the topics addressed here. Additionally, this research shows a diagnosis of the current situation of the drinking water supply in San Luis Potosi and the surrounding areas, as well as the likely scenario in the near future.

  8. Customer system efficiency improvement assessment: Supply curves for transmission and distribution conservation options

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Callaway, J.W.; De Steese, J.G.


    This report documents the results of Task 6 in the Customer System Efficiency Improvement (CSEI) Assessment Project. A principal objective of this project is to assess the potential for energy conservation in the transmission and distribution (TandD) systems of electric utilities in the BPA service area. The scope of this assessment covers BPA customers in the Pacific Northwest region and all non-federal TandD systems, including those that currently place no load on the BPA system. Supply curves were developed to describe the conservation resource potentially available from TandD-system efficiency improvements. These supply curves relate the levelized cost of upgrading existing equipment to the estimated amount of energy saved. Stated in this form, the resource represented by TandD loss reductions can be compared with other conservation options and regional electrical generation resources to determine the most cost-effective method of supplying power to the Pacific Northwest. The development of the supply curves required data acquisition and methodology development that are also described in this report. 11 refs., 11 figs., 16 tabs.

  9. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang


    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  10. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health. (United States)

    Kravitz, J D; Nyaphisi, M; Mandel, R; Petersen, E


    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning.

  11. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Horton, T. R.


    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  12. A Potential Approach for Low Flow Selection in Water Resource Supply and Management (United States)

    Ying Ouyang


    Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...

  13. About opportunities of the sharing of city infrastructure centralized warmly - and water supply (United States)

    Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.


    It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.

  14. Intermittent Domestic Water Supply: A Critical Review and Analysis of Causal-Consequential Pathways

    Directory of Open Access Journals (Sweden)

    S. E. Galaitsi


    Full Text Available Communities in many parts of the world, especially in developing countries, face obstacles in supplying continuous water to household consumers. Authorities often cite water scarcity as the cause, but we demonstrate that environmental constraints constitute only one aspect of a multi-dimensional problem. By asking what causes intermittent domestic water supply, this literature review (129 articles identifies 47 conditions of intermittent systems and the causal-consequential pathways between them that can reinforce intermittency. These pathways span several disciplines including engineering, government administration and anthropology, and when viewed together they (1 emphasize the human drivers of intermittency; (2 suggest generalized interventions; and (3 reveal a gap in the literature in terms of meaningful categorizations of the reliability of intermittent supplies. Based on the reliability of consumers’ water access, we propose three categories of intermittency—predictable, irregular, and unreliable—to facilitate comparisons between case studies and transfers of solutions.

  15. Water supply at Los Alamos during 1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.


    The Los Alamos water supply for 1977 consisted of 1474 x 10 6 gal from wells in three fields and 57 x 10 6 gal from the gallery in Water Canyon. The production from the well fields was at its lowest volume since 1970. Water-level trends were as anticipated under current production practices. Well rehabilitation should be continued to ensure an adequate and reliable supply from wells that are 10 to over 25 yr old

  16. Analysis And Assessment Of The Security Method Against Incidental Contamination In The Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid


    Full Text Available The paper presents the main types of surface water incidental contaminations and the security method against incidental contamination in water sources. Analysis and assessment the collective water supply system (CWSS protection against incidental contamination was conducted. Failure Mode and Effects Analysis (FMEA was used. The FMEA method allow to use the product or process analysis, identification of weak points, and implementation the corrections and new solutions for eliminating the source of undesirable events. The developed methodology was shown in application case. It was found that the risk of water contamination in water-pipe network of the analyzed CWSS caused by water source incidental contamination is at controlled level.

  17. Structure of the phytoplankton in a water supply system in the State of Pernambuco - Brazil

    Directory of Open Access Journals (Sweden)

    Ariadne do Nascimento Moura


    Full Text Available The aim of this work was to study the phytoplankton community composition at limnetic environment in Pernambuco, Brazil. Samplings were carried out from April/2001 to March/2002. Samples to analyses the biotic variables were taken using a recipient with a large overture, at the subsurface and with a Van Dorn bottle at the bottom. The rainfall data were recorded and the water transparency was used to calculate the light attenuation coefficient, photic zone and the determination of trophic state index. The concentrations of total phosphorus and total nitrogen were determined in a typical dry and rainy month. Equitability, also the, similarity and diversity indexes and the densities and correlation of total densities among depths were calculated. Forty-five taxa were identified in Chlorophyta (21spp, Cyanophyta (17spp and Bacillariophyta (7spp, while flagellates were quantified in groups without identification. Cyanophyta presented highest diversity at both the depths and Planktothrix agardhii was the highest density species. Significant differences were not observed between subsurface and bottom densities. Results showed that the reservoir was eutrophicated and presented high densities of Cyanophyta.O objetivo deste trabalho foi o estudo da comunidade fitoplanctônica em ambiente limnético de Pernambuco, Brasil. As amostras foram coletadas de abril/2001 a março/2002. As amostras para análises abióticas foram coletadas na superfície da água e destinadas às análises bióticas foram coletadas na subsuperfície e no fundo, sendo fixadas com solução de lugol e quantificadas usando microscópio invertido. Equitatividade, índices de similaridade e diversidade foram calculados, bem como correlação entre as profundidades. 45 táxons foram identificados, pertencentes as Chlorophyta (21spp, Cyanophyta (17spp e Bacillariophyta (7spp. Os flagelados foram apenas quantificados, mas não foram identificados. Cyanophyta apresentou a mais alta

  18. How Do Households Respond to Unreliable Water Supplies? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Batsirai Majuru


    Full Text Available Although the Millennium Development Goal (MDG target for drinking water was met, in many developing countries water supplies are unreliable. This paper reviews how households in developing countries cope with unreliable water supplies, including coping costs, the distribution of coping costs across socio-economic groups, and effectiveness of coping strategies in meeting household water needs. Structured searches were conducted in peer-reviewed and grey literature in electronic databases and search engines, and 28 studies were selected for review, out of 1643 potentially relevant references. Studies were included if they reported on strategies to cope with unreliable household water supplies and were based on empirical research in developing countries. Common coping strategies include drilling wells, storing water, and collecting water from alternative sources. The choice of coping strategies is influenced by income, level of education, land tenure and extent of unreliability. The findings of this review highlight that low-income households bear a disproportionate coping burden, as they often engage in coping strategies such as collecting water from alternative sources, which is labour and time-intensive, and yields smaller quantities of water. Such alternative sources may be of lower water quality, and pose health risks. In the absence of dramatic improvements in the reliability of water supplies, a point of critical avenue of enquiry should be what coping strategies are effective and can be readily adopted by low income households.

  19. PFAS - A threat for groundwater and drinking water supply in Sweden? (United States)

    Lewis, Jeffrey; Banzhaf, Stefan; Ahlkrona, Malva; Arnheimer, Berit; Barthel, Roland; Bergvall, Martin; Blomquist, Niklas; Jacks, Gunnar; Jansson, Cecilia; Lissel, Patrik; Marklund, Lars; Olofsson, Bo; Persson, Kenneth M.; Sjöström, Jan; Sparrenbom, Charlotte


    Perfluoroalkyl substances (PFAS) are a group of anthropogenic environmental pollutants that are widely distributed in the global environment. They have multiple industrial uses, including water repellents in clothing, paper coatings and firefighting foam. According to a study released by the Environmental Directorate of the OECD, they are persistent, bioaccumulative and toxic to mammalian species (OECD, 2002). In some municipal drinking water wells in Sweden, measured concentrations of PFAS found to be several hundred times higher than the allowed threshold values. This has created a huge public concern and has recently attracted much media attention in Sweden (e.g. Afzelius et al., 2014; Bergman et al., 2014; Lewis et al., 2014). PFAS findings raised questions such as "What can we do to solve the problem?" When it comes to drinking water, there are a number of techniques that can ensure that PFAS levels are reduced to acceptable levels. This may be a costly challenge, but from a technical point of view it is possible. To ensure the safety of drinking water from a public health perspective is obviously a top priority. However, international experience shows that the cost of cleaning up PFAS in groundwater may be significantly higher than continuously treat drinking water in water works. Approximately fifty percent of Sweden's drinking water comes from groundwater. As a result, there are several ongoing and planned PFAS-related environmental and drinking-water investigations in Sweden. Many aquifers that supply municipal water plants are located in areas of sand and gravel deposits. Such soils have relatively high permeabilities, which permits extraction of large volumes of water. However, the downside to high permeabilities is that they also allow dissolved contaminants as PFAS to spread over large areas. If one disregards the health risks linked to its presence in drinking water, PFAS have an impact on three of Sweden's national environmental quality objectives

  20. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate (United States)

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.


    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even

  1. Comparison of Three Supply Distribution Systems for Medical and Surgical Supplies in the Veterans Administration Sierra Pacific Network (United States)


    supplies are checked for expiration dates and inspected to ensure the packaging is not damaged, wet, or soiled . The type and quantity of items is...creating value in a global business enviroment . (9th ed.). New York, NY: McGraw-Hill/Irwin. Nathan, J., & Trinkaus, J. (1996). Improving health care

  2. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems (United States)

    Slocum, Alexander H.; Whittle, Andrew J.


    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462

  3. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems. (United States)

    Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J


    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.

  4. [The primary medical sanitary care and characteristics of drinking water supply of population]. (United States)

    Nechaev, V S; Saurina, O S


    The article considers characteristics of organization ofprimary medical sanitary care on territory with carcinogenic risks related to drinking water supply as exemplified by the Orlovskaia oblast. The importance of registration by local health authorities the sources of permanent chemical pollution of drinking water. The analysis of the State program of the Orlovskaia oblast “The development of health care in the Orlovskaia oblast in 2013-2020". The necessity of additional inclusion of issue related to healthy drinking water supply of population to prevent development of malignant neoplasms and prevalence of oncologic morbidity on oblast territory.

  5. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen


    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  6. Optimization and coordination of South-to-North Water Diversion supply chain with strategic customer behavior

    Directory of Open Access Journals (Sweden)

    Zhi-song Chen


    Full Text Available The South-to-North Water Diversion (SNWD Project is a significant engineering project meant to solve water shortage problems in North China. Faced with market operations management of the water diversion system, this study defined the supply chain system for the SNWD Project, considering the actual project conditions, built a decentralized decision model and a centralized decision model with strategic customer behavior (SCB using a floating pricing mechanism (FPM, and constructed a coordination mechanism via a revenue-sharing contract. The results suggest the following: (1 owing to water shortage supplements and the excess water sale policy provided by the FPM, the optimal ordering quantity of water resources is less than that without the FPM, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without the FPM; (2 wholesale pricing and supplementary wholesale pricing with SCB are higher than those without SCB, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without SCB; and (3 considering SCB and introducing the FPM help increase the optimal profits of the whole supply chain, supplier, and external distributor, and improve the efficiency of water resources usage.

  7. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.


    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  8. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach (United States)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta


    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  9. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji


    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  10. Water Supply Interruptions and Suspected Cholera Incidence: A Time-Series Regression in the Democratic Republic of the Congo (United States)

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H. J.


    Background The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Methods and Findings Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54–4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile—4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%–33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91–7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%–42.5%). The analysis did not suggest any

  11. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.


    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  12. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.


    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  13. Water supply interruptions and suspected cholera incidence: a time-series regression in the Democratic Republic of the Congo. (United States)

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H J


    The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54-4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile-4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%-33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91-7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%-42.5%). The analysis did not suggest any association between levels of residual

  14. Designing Decentralized Water and Electricity Supply System for Small Recreational Facilities in the South of Russia (United States)

    Kasharin, D. V.


    The article tackles the issues of designing seasonal water and power supply systems for small recreational facilities in the south of Russia based on intelligent decision support systems. The paper proposes modular prefabricated shell water and power supply works (MPSW&PW) along with energy-efficient standalone water-treatment plants as the principal facilities compliant with the environmental and infrastructural requirements applied to specially protected areas and ensuring the least possible damage to the environment due to a maximum possible use of local construction materials characterized by impressive safety margins in highly seismic environments. The task of designing water and power supply systems requires the consideration of issues pertaining to the development of an intelligent GIS-based system for the selection of water intake sites that facilitate automation of data-processing systems using a priori scanning methods with a variable step and random directions. The paper duly addresses such issues and develops parameterized optimization algorithms for MPSW&PW shell facilities. It equally provides the substantiation of water-treatment plants intelligent design based on energy recovery reverse osmosis and nanofiltration plants that enhance the energy efficiency of such plants serving as the optimum solution for the decentralized water supply of small recreational facilities from renewable energy sources.

  15. Private sector embedded water risk: Merging the corn supply chain network and regional watershed depletion (United States)

    Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.


    Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.

  16. The influence of supply and sewerage area characteristics on water and sewerage companies responses to the Water Framework Directive. (United States)

    Spiller, M; McIntosh, B S; Seaton, R A F


    Using the example of raw water quality this paper examines the relationship between different spatial characteristics (geographical and physical properties) of Water and Sewerage Companies (WaSCs) supply and sewage areas and response to the Water Framework Directive. Results were obtained from thematic analysis and content analysis of 14 interviews with WaSCs representatives. Principal component analysis and cluster analysis of 51 WaSCs business function characteristics was employed to derive groups of similar WaSCs. Results indicate that there is difference in how WaSCs approach raw water quality issues. It appears that small WaSCs with relatively large agricultural areas in their supply catchments are more likely to seek managerial solutions to raw water quality problems.

  17. The evaluation of supply chain performance in the Oil Products Distribution Company, using information technology indicators and fuzzy TOPSIS technique

    Directory of Open Access Journals (Sweden)

    Daryosh Mohamadi Janaki


    Full Text Available Information Technology (IT plays an essential role on development of effective supply chain planning and it can improve the supply chain performance, either directly or indirectly. As a national industry, the National Iranian Oil Products Distribution Company involves a large number of organizations within its supply chain. Therefore, this descriptive-survey uses information sharing indicators, fuzzy TOPSIS technique based on managers and expert opinions to evaluate and to rank some oil products distribution companies. Data are analyzed and the results show that Oil Products Distribution Company of Chaharmahal and Bakhtiari received the highest rank and Farsan maintained the lowest rank compared with other regional companies.

  18. Combining scientific and societal challenges: a water supply case study from the Koster Islands, Sweden (United States)

    Barthel, Roland; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Banzhaf, Stefan


    Until now, groundwater in coastal areas has not received much attention in Sweden, neither from water authorities nor the research community. Extractable volumes from bedrock aquifers are too small for the public water supply of larger permanent settlements. However, of the 450,000 private wells in Sweden, many are located in attractive coastal areas or on islands, creating pressure on groundwater resources during the summer months as periods with low or no natural groundwater recharge. This situation is exacerbated as municipalities receive increasing applications to build summerhouses, or to convert existing ones into permanent residencies. In view of such rising demands, as well as the growing awareness of potential environmental impacts and climate change, Swedish municipalities recognize groundwater usage in coastal areas is a major concern. However, the responsibility for private wells is left almost exclusively to their owners, and obligations in the water sector are distributed over a wide range of authorities which operate on local, regional, and national scales (1). Therefore, it remains unclear how to deal with and administer the related challenging questions which are of varying legal, social, economic, environmental, and hydrological natures. Here, we present intermediate results of an ongoing investigation on the "Koster" archipelago which forms an "in-a-nutshell" example of a coastal zone with such groundwater use. With around 300 annual permanent residents, but up to 6000 summer overnight guests in peak season, water supply, largely based on 800 private wells, is at its limit. Water availability forms an obstacle to future development and even the current operation is considered unsustainable, leaving the municipality to decide how to secure future supply. The municipality favors a "large scale technical solution" (either a pipeline from the mainland or a large desalination plant) while many locals prefer to keep the existing private wells. While


    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy


    Full Text Available The method of calculation of economic efficiency that can be universal and is suitable for feasibility study of modernization of irrigation and water distribution system of cooling towers has been developed. The method takes into account the effect of lower pressure exhaust steam in the condenser by lowering the temperature of the cooling water outlet of a cooling tower that aims at improvement of technical and economic indicators of heat power plants. The practical results of the modernization of irrigation and water distribution system of a cooling tower are presented. As a result, the application of new irrigation and water distribution systems of cooling towers will make it possible to increase the cooling efficiency by more than 4 оС and, therefore, to obtain the fuel savings by improving the vacuum in the turbine condensers. In addition, the available capacity of CHP in the summer period is increased. The results of the work, the experience of modernization of irrigation and water distribution systems of the Gomel CHP-2 cooling towers system, as well as the and methods of calculating of its efficiency can be disseminated for upgrading similar facilities at the power plants of the Belarusian energy system. Some measures are prosed to improve recycling systems, cooling towers and their structures; such measures might significantly improve the reliability and efficiency of technical water supply systems of heat power plants.

  20. The Effects of Intermittent Drinking Water Supply in Arraiján, Panama


    Erickson, John Joseph


    Over three hundred million people throughout the world receive supply from piped drinking water distribution networks that operate intermittently. This dissertation evaluates the effects of intermittent supply on water quality, pipe damage and service reliability in four study zones (one continuous and three intermittent) in a peri-urban drinking water distribution network in Arraiján, Panama. Normal water quality in all zones was good, with 97% of routine water quality grab samples from the ...

  1. Artificial intelligence in diagnosis and supply restoration for a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Teo, C.Y.; Gooi, H.B. [Nanyang Technological University (Singapore). School of Electrical and Electronic Engineering


    The development of a PC-based integrated system, to illustrate the application of artificial intelligence in the fault diagnosis and supply restoration for an interconnected distribution network is described. The intelligent process utilises the post-fault network status, a list of the tripped breakers, main protection alarm, and the conventional event log. The fault diagnostic system is implemented by three independent mechanisms, namely the generic core rule, specific post-fault network matching, and generic relay inference rules. The intelligent restoration process is implemented by the switching check, the dynamic restoration algorithm and the mechanism for restoration by record matching and learning. By linking to a PC-based distribution simulator it has been demonstrated that the developed mechanisms enable the correct deduction of fault under different network configurations. The appropriate restoration plan can also be generated to restore supply to the entire restorable load for various post-fault networks. This system is currently used for undergraduate teaching and will be ideal for the training of network operation engineers. As the system developed is generic and can be used for a general network, it can be further developed for practical operation in a subtransmission system or an urban distribution system operated in any configuration. (author)

  2. 46 CFR 108.467 - Water supply. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  3. Landscaping the structures of GAVI country vaccine supply chains and testing the effects of radical redesign. (United States)

    Lee, Bruce Y; Connor, Diana L; Wateska, Angela R; Norman, Bryan A; Rajgopal, Jayant; Cakouros, Brigid E; Chen, Sheng-I; Claypool, Erin G; Haidari, Leila A; Karir, Veena; Leonard, Jim; Mueller, Leslie E; Paul, Proma; Schmitz, Michelle M; Welling, Joel S; Weng, Yu-Ting; Brown, Shawn T


    Many of the world's vaccine supply chains do not adequately provide vaccines, prompting several questions: how are vaccine supply chains currently structured, are these structures closely tailored to individual countries, and should these supply chains be radically redesigned? We segmented the 57 GAVI-eligible countries' vaccine supply chains based on their structure/morphology, analyzed whether these segments correlated with differences in country characteristics, and then utilized HERMES to develop a detailed simulation model of three sample countries' supply chains and explore the cost and impact of various alternative structures. The majority of supply chains (34 of 57) consist of four levels, despite serving a wide diversity of geographical areas and population sizes. These four-level supply chains loosely fall into three clusters [(1) 18 countries relatively more bottom-heavy, i.e., many more storage locations lower in the supply chain, (2) seven with relatively more storage locations in both top and lower levels, and (3) nine comparatively more top-heavy] which do not correlate closely with any of the country characteristics considered. For all three cluster types, our HERMES modeling found that simplified systems (a central location shipping directly to immunization locations with a limited number of Hubs in between) resulted in lower operating costs. A standard four-tier design template may have been followed for most countries and raises the possibility that simpler and more tailored designs may be warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change (United States)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.


    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  5. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos


    Full Text Available This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources. A model of multi-criteria optimization for energy efficiency based on water and environmental management policies, including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution, was developed and applied to a water supply system. The methodology developed includes three solutions: (1 the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed, (2 the optimization of pumping operation according to the electricity tariff and water demand, and (3 the use of other renewable energy sources, including a wind turbine, to supply energy to the pumping station, with the remaining energy being sold to the national electric grid. The use of an integrated solution (water and energy proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power, and the use of a wind source allows for the reduction of energy consumption in pumping stations, as well as of the CO2 emission to the atmosphere.

  6. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS


    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  7. [Relationship of the quality of drinking water to its use regimens and the types of water supply pipes]. (United States)

    Mysiakin, A E; Korolik, V V


    Drinking water running along the pipes made from different materials was investigated. Two experiments could determine the material that assured at least of all the quality of drinking water in accordance with SanPin The mechanism for worsening the quality of water supplied to a user was revealed in relation to the water use regimen. Short-term flow stoppage of water was found to result in its lower oxygen levels, a larger number of different groups of iron- and manganese-reducing bacteria and an enhanced bacterial reduction of oxides. The latter was accompanied by the dissolution of heavy metals, which induced secondary water contamination.

  8. Delivering Sustainability Through Supply Chain Distribution Network Redesign

    Directory of Open Access Journals (Sweden)

    Denise Ravet


    Full Text Available Purpose - Companies could gain (cost, service, green/sustainable competitive advantage through the supply chain network. The goal of this article is to study how to deliver sustainability through the supply chain distribution network redesign.Design/methodology/approach - A literature review is conducted to examine research relating to sustainable supply chain strategies and supply chain distribution network redesign.Findings - A study of the supply chain literature reveals the importance to rethink the supply chain distribution network design and to treat sustainability as integral to operations.


    African Journals Online (AJOL)

    address the problems of water supply and management. These include: ..... total replacement of under-laid water pipes has not been done, and there is no modern way .... If the present trend continues, the vast majority of these people will be living ... maintenance and management of water facilities and other logistics.

  10. Charaxteristics and malfunctions of the drinking water supply and sewerage network in Satu Mare.

    Directory of Open Access Journals (Sweden)

    C. O. MAREŞ


    Full Text Available The beginnings of centralized drinking water supply in the metropolitan area date back to the beginning of the 20th century when a project is being developed focusing on the underground sources afferent to Somes' alluvial cone at the expense of other sources. The source raises the issue of water deferring and demanganizing due to its high Fe and Mn content. The age of the adduction network causes defects that require rehabilitation of the old supply chain trunks. The sewage capacity - the discharge of meteoric and domestic water is outweighed by heavy rainfall resulting in outbreaks in certain urban areas with floods in inland waters. The phenomenon is favored by the flatness of the relief, the clogging of the evacuation network and the inconsistency between the urban dynamics and the existing sewerage network.

  11. Game theory competition analysis of reservoir water supply and hydropower generation (United States)

    Lee, T.


    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  12. Supply chain solutions to improve the distribution of antiretroviral ...

    African Journals Online (AJOL)

    Recommendations to address the problems include: Implementing a supply chain planning and design process; improving inventory management and warehousing practices; implementing more effective and reliable distribution and transportation processes; as well as improving supply chain coordination and overall ...

  13. Irregular water supply, household usage and dengue: a bio-social study in the Brazilian Northeast. (United States)

    Caprara, Andrea; Lima, José Wellington de Oliveira; Marinho, Alice Correia Pequeno; Calvasina, Paola Gondim; Landim, Lucyla Paes; Sommerfeld, Johannes


    Despite increased vector control efforts, dengue fever remains endemic in Fortaleza, Northeast Brazil, where sporadic epidemic outbreaks have occurred since 1986. Multiple factors affect vector ecology such as social policy, migration, urbanization, city water supply, garbage disposal and housing conditions, as well as community level understanding of the disease and related practices. This descriptive study used a multi-disciplinary approach that bridged anthropology and entomology. A multiple case study design was adopted to include research in six study areas, defined as blocks. The water supply is irregular in households from both under-privileged and privileged areas, however, clear differences exist. In the more privileged blocks, several homes are not connected to the public water system, but have a well and pump system and therefore irregularity of supply does not affect them. In households from under-privileged blocks, where the water supply is irregular, the frequent use of water containers such as water tanks, cisterns, barrels and pots, creates environmental conditions with a greater number of breeding areas. In under-privileged homes, there are more possible breeding areas and environmental conditions that may improve the chances of Aedes aegypti survival.

  14. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.


    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  15. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.


    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  16. Neighbourhood effects and household responses to water supply problems in Nigerian cities

    Directory of Open Access Journals (Sweden)

    Charisma Acey


    Full Text Available Between 1990 and 2004, Nigeria’s urban population jumped to nearly half the national population, while access to improved sources of water in urban areas dropped by nearly 15 per cent during the same period. This paper presents preliminary results on the relationship between water supply, neighbourhood characteristics, and household strategies in response to dissatisfaction with water provision as reported by 389 respondents in 10 neighbourhoods in Lagos and Benin City, Nigeria between October 2007 and February 2008. In this paper, a conceptual model of consumer demand for water is used, based upon Hirschman’s exit, voice and loyalty (EVL framework. The model explicitly factors in the quality of water provision and variables at the household and neighbourhood levels that could affect perceptions about quality and the strategies that households use to cope with inadequate public services. Preliminary results show that reported household strategies to secure water are affected by community-level factors such as the range, cost, and quality of water supply alternatives, as well as neighbourhood composition. Furthermore, the percentage of urban migrants and households that live in rented flats in a neighbourhood seems to be associated with the use of exit strategies (as opposed to voice in response to problems with their primary water supply.

  17. Water quality effects of intermittent water supply in Arraiján, Panama. (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L


    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of Waterloss Impacts on Water Distribution and Accessibility in Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya


    Full Text Available Safe drinking water is a necessity for life. Providing quality drinking water is a critical service that generates revenues for water utilities to sustain their operations. Population growth put an additional strain on the limited resources. The annual volume of water lost is an important indicator of water distribution efficiency, both in individual years, and as a trend over a period of years. Application of deterministic simulation model on public water supply variables reveals the volume of nonrevenue water (NRW and its cost effects have further created a complex system for the availability, distribution and affordability of the utility. Gradual annual increase in public water supply (AWS from 9.0 *106m 3 to 14.4 * 106m 3 had negative effect on annual water accessed (AWA with R 2 = 0.096; and highly significant with annual water loss (AWL with R 2 = 0.99. This development indicates that water loss mainly through leakages and bursts is a function of public water supply. Hence, estimated volume and cost annual revenue water (NRW in Akure is 6 million m3 and 15.6 million USD respectively. Critical analysis shows that the lost annual revenue could be used to provide education and health services for a period of 6-month in the region.

  19. Public supply and domestic water use in the United States, 2015 (United States)

    Dieter, Cheryl A.; Maupin, Molly A.


    IntroductionThe U.S. Geological Survey (USGS) National Water Use Science Project (NWUSP), part of the USGS Water Availability and Use Science Program (WAUSP), has estimated water use in the United States every 5 years since 1950. This report provides an overview of total population, public-supply use, including the population that is served by public-supply systems and the domestic deliveries to those users, and self-supplied domestic water use in the United States for 2015, continuing the task of estimating water use in the United States every 5 years. In this report, estimates for the United States include the 50 States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands (hereafter referred to as “states” for brevity).County-level data for total population, public-supply withdrawals and the population served by public-supply systems, and domestic withdrawals for 2015 were published in a data release in an effort to provide data to the public in a timely manner. Data in the current version (1.0) of Dieter and others (2017) contains county-level total withdrawals from groundwater and surface-water sources (both fresh and saline) for public-water supply, the deliveries from those suppliers to domestic users, and the quantities of water from groundwater and surface-water sources for self-supplied domestic users, and total population. Methods used to estimate the various data elements for the public-supply and domestic use categories at the county level are described by Bradley (2017).This Open-File Report is an interim report summarizing the data published in Dieter and others (2017) at the state and national level. This report includes discussions on the total population, totals for public-supply withdrawals and population served, total domestic withdrawals, and provides comparisons of the 2015 estimates to 2010 estimates (Maupin and others, 2014). Total domestic water use, as described in this report, represents the summation of deliveries from

  20. Analysis of Aluminum Resource Supply Structure and Guarantee Degree in China Based on Sustainable Perspective

    Directory of Open Access Journals (Sweden)

    Shaoli Liu


    Full Text Available Aluminum is a strategic mineral resource, and China’s aluminum production and consumption is fairly large. However, its supply guarantee is uncertain because of a high dependency on external raw materials. This uncertainty may expand, so finding a way to reduce the uncertainty of aluminum resource supply is especially important. This paper applies the SFA method to analyze the aluminum flows in mainland China from 1996 to 2014, and establishes a supply structure model to measure its supply guarantee degree. The results claim that: (1 China’s aluminum production can satisfy demand and even create a surplus; (2 Domestic self-productive primary and secondary aluminum increased at an annual rate of 12% and 24%; (3 The proportion of self-productive secondary aluminum in the supply structure increased from 7.7% in 1996 to 12.8% in 2014, while that of primary aluminum decreased from 79.6% to 42.8%; (4 The total supply guarantee degree decreased from 87.3% to 55.6% in this period. These results provide a feasible way to solve this plight: the proportion of secondary aluminum in the supply structure should be enhanced, and an efficient aluminum resource recycling system needs to be established as soon as possible to ensure its sustainable supply.

  1. Integration of water footprint accounting and costs for optimal pulp supply mix in paper industry

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Piantella, Antonio


    studies have focused on these aspects, but there have been no previous reports on the integrated application of raw material water footprint accounting and costs in the definition of the optimal supply mix of chemical pulps from different countries. The current models that have been applied specifically...... that minimizes the water footprint accounting results and costs of chemical pulp, thereby facilitating the assessment of the water footprint by accounting for different chemical pulps purchased from various suppliers, with a focus on the efficiency of the production process. Water footprint accounting...... was adapted to better represent the efficiency of pulp and paper production. A multi-objective model for supply mix optimization was also developed using multi-criteria decision analysis (MCDA). Water footprint accounting confirmed the importance of the production efficiency of chemical pulp, which affected...

  2. Chemical and physical quality of selected public water supplies in Florida, August-September 1976 (United States)

    Irwin, G.A.; Healy, Henry G.


    Results of a 1976 water-quality reconnaissance made by the U.S. Geological Survey indicated that, with few exceptions, all public water supplies in Florida are of high quality and meet the standards set forth in the National Interim Primary Drinking Water Regulations. Occasionally the concentrations of fluoride, turbidity, cadmium, chromium, and lead approximated, equaled, or exceeded maximum contaminant levels with exceedences occurring very infrequently. The pesticides 2,4-D and silvex, were detected in some public supplies throughout the State mainly in surface water. Although pesticides were not detected in concentrations approaching the maximum levels established in the regulations, their presence does signal that the activities of man are beginning to affect some water resources. (Woodard-USGS)

  3. Evaluation the concentration of mercury, zinc, arsenic, lead and cobalt in the Ilam city water supply network and resources

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh


    Full Text Available Background: The presence of heavy metals in water resources above threshold levels can be toxic and carcinogenic for consumers. This study determined the concentrations of heavy metals in the drinking water distribution network and resources of the city of Ilam in Iran. Methods: In this cross-sectional study from 6 sources of water supply and also, different parts of the water supply system of Ilam city, samples were collected based on standard sampling methods. The samples were tested with a BRAIC atomic absorption spectrophotometer. The data was analyzed using nonparametric Mann-Whitney test. Results: The concentration of zinc in all water sources of the city of Ilam was higher than WHO guidelines and Iranian standard 1053. Contamination by cobalt, arsenic and lead from Ilam dam, Pich-e Ashoori well and Haft Cheshmeh well was higher than national and international standards. The amount of cobalt and mercury at Ilam dam was significantly different from the levels at other sources (P < 0.05. Conclusion: The use of pesticides in the agricultural sector, contamination of water by human waste and aged and worn water pipes are the likely sources of the increased concentrations of heavy metals, especially lead and arsenic. Because there is a cumulative effect from these metals, appropriate measures are necessary by the relevant agencies to address this problem.

  4. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez


    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.



    Tomasz Cichoń; Jadwiga Królikowska


    A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing ar...

  6. Using Water Transfers to Manage Supply Risk (United States)

    Characklis, G. W.


    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  7. Vulnerability of water supply systems to cyber-physical attacks (United States)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi


    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  8. Water Treatment Technology - Distribution Systems. (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  9. Structure Design and Analysis of High-Voltage Power Supply for ECRH

    International Nuclear Information System (INIS)

    Wang Lei; Huang Yiyun; Zhao Yanping; Zhang Jian; Yang Lei; Guo Wenjun


    In order to develop a high-voltage power supply (HVPS) with high quality parameters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electrical field and potential simulations of its main devices are analyzed. Finally, relevant calculations and conclusions are given. (fusion engineering)

  10. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.


    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  11. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E


    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  12. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy. (United States)

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto


    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  13. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.


    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  14. Assessment of the school drinking water supply and the water quality in Pingtung County, Taiwan. (United States)

    Chung, Pei-Ling; Chung, Chung-Yi; Liao, Shao-Wei; Miaw, Chang-Ling


    In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.

  15. Integration of environmental aspects in modelling and optimisation of water supply chains. (United States)

    Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G


    Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.

  16. Water Distribution in the Continental and Oceanic Upper Mantle (United States)

    Peslier, Anne H.


    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  17. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.


    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  18. True Nature of Supply Network Communication Structure

    Directory of Open Access Journals (Sweden)

    Lokhman Hakim bin Osman


    Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.

  19. Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization

    Directory of Open Access Journals (Sweden)

    Zhisong Chen


    Full Text Available The inter-basin water transfer (IBWT projects have quasi-public-welfare characteristics, whose operations should take into account the water green level (WGL and social welfare maximization (SWM. This paper explores the interactions between multiple stakeholders of an IBWT green supply chain through the game-theoretic and coordination research approaches considering the government’s subsidy to the WGL improvement under the SWM. The study and its findings complement the IBWT literature in the area of the green supply chain and social welfare maximization modeling. The analytical modeling results with and without considering the SWM are compared. A numerical analysis for a hypothetical IBWT green supply chain is conducted to draw strategic insights from this study. The research results indicate that (1 If the SWM is not considered, coordination strategy could effectively improve the operations performances of the IBWT supply chain and its members, the consumers’ surplus, and the social welfare when compared with the equilibrium strategy; (2 If the SWM is considered, the IBWT green supply chain and its members have a strong intention to adopt the equilibrium strategy to gain more profits, while the government has a strong intention to encourage the IBWT green supply chain and its members to adopt the coordination strategy to maximize social welfare with a smaller public subsidy; (3 The government’s subsidy policy should be designed and provided to encourage the IBWT green supply chain and its members to improve WGL and pursue the SWM, and a subsidy threshold policy can be designed to maximize social welfare with a lower subsidy budget: only when the IBWT green supply chain and its members adopt the coordination strategy can they get a subsidy from the government.

  20. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico


    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  1. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru


    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)



    Badyuk, N. S.


    Badyuk N. S. WATER SUPPLY OF TRANSPORT OBJECTS. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 3 (17), 2009 г. P. 96-104 DOI WATER SUPPLY OF TRANSPORT OBJECTS Badyuk N. S. Ukrainian Research Institute for Medicine of Transport, Odessa, Ukraine Summary In the work presented they discuss several peculiarities of wa...

  3. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water. (United States)

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D


    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.


    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń


    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  5. Climate change impacts on municipal, mining, and agricultural water supplies in Chile (United States)

    Daniel G. Neary; Pablo Garcia-Chevesich


    Agricultural and municipal water supply interests in Chile rely heavily on streams which flow from the Andes Mountains. The highly productive Copiapo agricultural region, on the southern edge of the Atacama Desert, is a major supplier of fruit and other crops for the Northern American market during winter. This region relies entirely on snow and icemelt streams to...

  6. Potential of hybrid PV systems for rural South Africa: addressing income activities and water supply

    CSIR Research Space (South Africa)

    Ortiz, B


    Full Text Available " player to develop sustainable solutions and to scale-up hybrid PV systems for supplying energy and water to rural areas and to other African countries. The challenge to scale-up new renewable energy technologies in the next years is that they have...

  7. Water Supply Deficiency and Implications for Rural Development in the Niger-Delta Region of Nigeria (United States)

    Nkwocha, E. E.


    There is a growing concern about the marginalization of the Niger Delta region of Nigeria in terms of infrastructural and social services provision. This study examined the water supply deficiency and its general implications for rural development within the region. Data and other study characteristics were extracted from 501 subjects drawn from…

  8. Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements (United States)

    Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.


    During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.

  9. Supply of clean water to the bearings and mechanical seals of the backup pumps

    International Nuclear Information System (INIS)

    Jolas, C.


    The purpose of the backup pumps is to cool the primary circuit and pressurised water reactor containment in the case of a primary cooler loss accident. The water taken in by these pumps in the case of accident is loaded with solid particles. In order to ensure correct operation of the bearings and mechanical seals of these machines, they must be supplied with clean water. In other words, the solid particles must be removed from the water intake. Manufacturers generally use cyclonic separators to achieve this. (author)

  10. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. (United States)

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q


    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Implementing a Healthy Food Distribution Program: A Supply Chain Strategy to Increase Fruit and Vegetable Access in Underserved Areas. (United States)

    DeFosset, Amelia R; Kwan, Allison; Rizik-Baer, Daniel; Gutierrez, Luis; Gase, Lauren N; Kuo, Tony


    Increasing access to fresh produce in small retail venues could improve the diet of people in underserved communities. However, small retailers face barriers to stocking fresh produce. In 2014, an innovative distribution program, Community Markets Purchasing Real and Affordable Foods (COMPRA), was launched in Los Angeles with the aim of making it more convenient and profitable for small retailers to stock fresh produce. Our case study describes the key processes and lessons learned in the first 2 years of implementing COMPRA. Considerable investments in staff capacity and infrastructure were needed to launch COMPRA. Early successes included significant week-to-week increases in the volume of produce distributed. Leveraging partnerships, maintaining a flexible operational and funding structure, and broadly addressing store owners' needs contributed to initial gains. We describe key challenges and next steps to scaling the program. Lessons learned from implementing COMPRA could inform other jurisdictions considering supply-side approaches to increase access to healthy food.

  12. Pipe replacement in a water supply network: coordinated versus uncoordinated replacement and budget effects

    NARCIS (Netherlands)

    Dijk, van D.; Hendrix, E.M.T.


    Operators of underground water supply networks are challenged with pipe replacement
    decisions, because pipes are subject to increased failure rates as they age and financial resources
    are often limited.We study the optimal replacement time and optimal number of pipe replacements

  13. Fiduciary Systems Assessment : Maharashtra Rural Water Supply and Sanitation Program


    World Bank


    A fiduciary systems assessment (FSA) was carried out to evaluate the arrangements relevant to the program and to determine whether they provide reasonable assurance that the program funds will be used for their intended purpose. Taking into account the improvements required and the agreement on the actions required to strengthen the systems (which are reflected in the program action plan (...

  14. Open-ocean convection process: A driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea (United States)

    Severin, Tatiana; Kessouri, Faycal; Rembauville, Mathieu; Sánchez-Pérez, Elvia Denisse; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Ghiglione, Jean-François; D'Ortenzio, Fabrizio; Taillandier, Vincent; Mayot, Nicolas; Durrieu De Madron, Xavier; Ulses, Caroline; Estournel, Claude; Conan, Pascal


    This study was a part of the DeWEX project (Deep Water formation Experiment), designed to better understand the impact of dense water formation on the marine biogeochemical cycles. Here, nutrient and phytoplankton vertical and horizontal distributions were investigated during a deep open-ocean convection event and during the following spring bloom in the Northwestern Mediterranean Sea (NWM). In February 2013, the deep convection event established a surface nutrient gradient from the center of the deep convection patch to the surrounding mixed and stratified areas. In the center of the convection area, a slight but significant difference of nitrate, phosphate and silicate concentrations was observed possibly due to the different volume of deep waters included in the mixing or to the sediment resuspension occurring where the mixing reached the bottom. One of this process, or a combination of both, enriched the water column in silicate and phosphate, and altered significantly the stoichiometry in the center of the deep convection area. This alteration favored the local development of microphytoplankton in spring, while nanophytoplankton dominated neighboring locations where the convection reached the deep layer but not the bottom. This study shows that the convection process influences both winter nutrients distribution and spring phytoplankton distribution and community structure. Modifications of the convection's spatial scale and intensity (i.e., convective mixing depth) are likely to have strong consequences on phytoplankton community structure and distribution in the NWM, and thus on the marine food web.Plain Language SummaryThe deep open-ocean convection in the Northwestern Mediterranean Sea is an important process for the formation and the circulation of the deep waters of the entire Mediterranean Sea, but also for the local spring phytoplankton bloom. In this study, we showed that variations of the convective mixing depth induced different supply in nitrate

  15. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel


    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay coeff...... of experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks.......This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing...

  16. Water supply, sanitation and health risks in Yaounde, Cameroon ...

    African Journals Online (AJOL)

    Population growth and rapid urbanization in Cameroon have led to major demographic changes in the urban centres, potentially resulting in serious environmental problems in the most populated cities such as Yaounde. In order to better understand the impacts on the hygiene conditions in certain quarters of this political ...

  17. Cooling water distribution system (United States)

    Orr, Richard


    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  18. Burst failures of water cooling rubber pipes of TRISTAN MR magnet power supplies and magnets

    International Nuclear Information System (INIS)

    Kubo, Tadashi


    In 1992, from June to September, the rubber pipes of magnet and magnet power supply for water cooling burst in succession. All the rubber pipes to be dangerous to leave as those were had been replaced to new rubber pipes before the end of the summer accelerator shutdown. (author)

  19. Emergency management in the gas and water supply; Notfallmanagement in der Gas- und Wasserversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Boy, Stephan [KKI GmbH, Kompetenzzentrum Kritische Infrastrukturen GmbH, Berlin (Germany)


    Gas and water pipes belong to the critical infrastructure in Germany. Their protection requires a holistic risk analysis, which also keep an eye on the dependence of the power supply. [German] Gas- und Wasserleitungen gehoeren zu den kritischen Infrastrukturen in Deutschland. Ihr Schutz erfordert eine ganzheitliche Risikoanalyse, die auch die Abhaengigkeit von der Stromversorgung im Blick hat.

  20. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza


    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  1. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council


    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  2. The Potential for Snow to Supply Human Water Demand in the Present and Future (United States)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.


    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  3. Decision-making under surprise and uncertainty: Arsenic contamination of water supplies (United States)

    Randhir, Timothy O.; Mozumder, Pallab; Halim, Nafisa


    With ignorance and potential surprise dominating decision making in water resources, a framework for dealing with such uncertainty is a critical need in hydrology. We operationalize the 'potential surprise' criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive decision rules to manage water resources under uncertainty and ignorance. We apply this framework to managing water supply systems in Bangladesh that face severe, naturally occurring arsenic contamination. The uncertainty involved with arsenic in water supplies makes the application of conventional analysis of decision-making ineffective. Given the uncertainty and surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid irreversible outcomes instead of conventional cost-effective actions. We observe that a diversification of the water supply system also emerges as a robust strategy to avert unintended outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) compare to deep wells and surface treatment which had allocation levels of roughly 32% under each. The approach can be applied in a variety of other cases that involve decision making under uncertainty and surprise, a frequent situation in natural resources management.

  4. Pickering NGS emergency water supply system emergency start flow simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, E.; Misra, A. [Ontario Power Generation Inc., Nuclear Safety Analysis & Technology Department, Toronto, Ontario (Canada)


    A proposed modification to the OPG Pickering Nuclear Generation Station Emergency Water Supply (EWS) system was analyzed using the Industry Standard Toolset code GOTHIC to determine the acceptability of the proposed system configuration during pump start-up. The new configuration of the system included a vertical dead-ended pipe, initially filled with air. The simulation demonstrated that no significant water hammer effects were predicted and tests performed with the new configuration confirmed the analysis results. (author)

  5. Polychaete response to fresh food supply at organically enriched coastal sites: Repercussion on bioturbation potential and trophic structure (United States)

    Venturini, N.; Pires-Vanin, A. M. S.; Salhi, M.; Bessonart, M.; Muniz, P.


    We investigated the vertical distribution, abundance, specific and functional structure of polychaete assemblages at four organically enriched sites. The effects of fresh organic matter input from the water column driving by upwelling were evaluated. Temperature and salinity values indicate the intrusion of South Atlantic Central Water (SACW) in spring, a nutrient-rich water mass. The dominance of the conveyor belt transport (CONV) in the station influenced by SACW, in the spring survey, is associated with fresh organic matter input as indicated by higher amounts of polyunsaturated fatty acids. Conversely, the predominance of the diffusive mixing (DIFF) bioturbation category, in the sites without SACW influence is related to the preferential accumulation of more refractive food resources as indicated by higher concentrations of short chain saturated fatty acids. At the site influenced by SACW, the changes in polychaete assemblages were not all evident during proceeding upwelling conditions, but may persist at the end of the upwelling. Polychaetes in the study area seemed to be limited by the quality but not the quantity of food. The delay in polychaete response to fresh food supply may be related to the organic enrichment and the prevalence of refractory material in the sediments.

  6. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems. (United States)

    Delaunois, F; Tosar, F; Vitry, V


    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John


    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  8. Distributed Multimedia Technologies and Value Chain Structuring

    DEFF Research Database (Denmark)

    Hjarup, Søren


    to an altered knowledge-formation on markets and demand-situations, as well as on suppliers' provisions and optimised value chain structuring. These socio-economic impacts have been analysed from an economic theoretical perspective, where a communication model has been introduced emphasising knowledge...... for product presentations and alterations. Present impacts and future implications from applied DMM-technologies have been analysed within the realm of the Danish textile and clothing industry. Businesses within this industry have specialised and become dependent on extensive levels of communication with both...... national and international contractors. DMM-technologies have become widely applied within production-processes and impact the international distribution of labour. In addition, the case shows that there are evident potentials in impacting the businesses and their decision taking. Potentials relate...

  9. Analysis of historic bursts and burst detection in water supply areas of different size

    NARCIS (Netherlands)

    Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C.


    Pipe bursts in water distribution networks lead to water losses and a risk of damaging the urban environment. We studied hydraulic data and customer contact records of 44 real bursts for a better understanding of the phenomena. We found that most bursts were reported to the water company shortly

  10. Contracts and Information Structure in a Supply Chain with Operations and Marketing Interaction

    DEFF Research Database (Denmark)

    El Ouardighi, F.; Erickson, G.; Grass, D.


    and the consumer price. The state of the game is summarized in the firms' backlogs and the manufacturer's advertising goodwill. Depending on whether the supply chain members have and share state information, they may either make decisions contingent on the current state of the game (feedback Nash strategy......The objective of the paper is to study how wholesale price and revenue sharing contracts affect operations and marketing decisions in a supply chain under different dynamic informational structures. We suggest a differential game model of a supply chain consisting of a manufacturer and a single...... retailer that agree on the contract parameters at the outset of the game. The model includes key operational and marketing activities related to a single product in the supply chain. The manufacturer sets a production rate and the rate of advertising efforts while the retailer chooses a purchase rate...

  11. Location sites for nuclear power plants and the public drinking water supplies

    International Nuclear Information System (INIS)


    This report presents the results of a study by the Dutch RIWA- Working Group Nuclear Power Plants, of the possible effects of a nuclear-reactor melt-down accident upon the drinking-water supply in the Netherlands which is dependent on surface waters. The aim of this report is to contribute to the 're-consideration with regard to siting of nuclear power plants' of the Dutch government. In the case of a nuclear-reactor melt-down accident in the Netherlands or directly adjacent countries, surface waters destined for drinking-water production may be contaminated severely. The amount of contamination depends, among other things, upon the distance, wind direction, dry as well as wet deposition and the features of the place yielding drinking water. From calculations of contamination of surface waters in the case of open- supply build up it appears that the derived norm of the radionuclide cocktail may be exceeded for a period of weeks up to several months or even years. There are reasons to draw the same conclusion for supply build up in the dunes by means of surface infiltration in the dunes. A melt-down accident can cause very severe contamination. Also here it can be stated that, in the case of a calamity in the Netherlands or directly adjacent countries, a norm transgression may occur for weeks up to years. In view of the risks which nuclear power plants can hold for the drinking-water supply which depends upon surface-waters as basis element. Severe objections should be made with respect to the siting of nuclear power plants in the Netherlands unless the occurrence of melt-down accidents could be excluded. 11 refs.; 4 figs.; 7 tabs

  12. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.


    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  13. Robust Water Supply Infrastructure Development Pathways: What, When and Where Matters the Most? (INVITED) (United States)

    Reed, Patrick; Zeff, Harrison; Characklis, Gregory


    Water supply adaptation frameworks that seek robustness must adaptively trigger actions that are contextually appropriate to emerging system observations and avoid long term high regret lock-ins. As an example, emerging water scarcity concerns in southeastern United States are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify regionally coordinated, scarcity-mitigating infrastructure development pathways that trigger time appropriate actions. Mistakes can lead to water shortages, overbuilt stranded assets and possibly financial failures. This presentation uses the Research Triangle area of North Carolina to illustrate the key concerns and challenges that emerged when helping Raleigh, Durham, Cary and Chapel Hill develop their long term water supply infrastructure pathways through 2060. This example shows how the region's water utilities' long term infrastructure pathways are strongly shaped by their short term conservation policies (i.e., reacting to evolving demands) and their ability to consider regional water transfers (i.e., reacting to supply imbalances). Cooperatively developed, shared investments across the four municipalities expand their capacity to use short term transfers to better manage severe droughts with fewer investments in irreversible infrastructure options. Cooperative pathways are also important for avoiding regional robustness conflicts, where one party benefits strongly at the expense of one or more the others. A significant innovation of this work is the exploitation of weekly and annual dynamic risk-of-failure action triggers that exploit evolving feedbacks between co-evolving human demands and regional supplies. These dynamic action triggers provide high levels of adaptivity, tailor actions to their specific context

  14. Climate and water resource change impacts and adaptation potential for US power supply (United States)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs


    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  15. Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    NARCIS (Netherlands)

    Ward, P.J.; Strzepek, K.; Pauw, W.P.; Brander, L.M.; Hughes, G.; Aerts, J.C.J.M.


    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a

  16. Higher energy efficiency and better water quality by using model predictive flow control at water supply systems

    NARCIS (Netherlands)

    Bakker, M.; Verberk, J.Q.J.C.; Palmen, L.J.; Sperber, V.; Bakker, G.


    Half of all water supply systems in the Netherlands are controlled by model predictive flow control; the other half are controlled by conventional level based control. The differences between conventional level based control and model predictive control were investigated in experiments at five full

  17. The Canadian heavy water supply program

    International Nuclear Information System (INIS)

    Dahlinger, A.; McNally, P.J.


    The performance to date of individual Canadian heavy water plants is described in detail as are the current plant construction plans. These data, when related to the long-term electricity demand indicate that heavy water supply and demand are in reasonable balance and that the CANDU program will not be inhibited because of shortages of the commodity. (author)

  18. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul


    Yalçıntaş, Murat; Bulu, Melih; Küçükvar, Murat; Samadi, Hamidreza


    Yayın, Endüstri Mühendisliği Bölümü ile ortak hazırlanmıştır; ancak tekrara düşmemek için ilk yazarın bölümü alınmıştır. The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, usi...

  19. The financing of hydropower, irrigation and water supply infrastructure in developing countries

    International Nuclear Information System (INIS)

    Briscoe, J.


    A companion paper in the previous issue of this journal (Briscoe, 1999) describes the changing face of infrastructure financing in developing countries. This paper deals with the financing of major infrastructure in the water-related sectors - hydropower, water supply, and sanitation, irrigation, and overall water resources management (including the environment). The overall level of investment in water-related infrastructure in developing countries is estimated to be of the order of $65 billion annually, with the respective shares about $15 billion for hydro, $25 billion for water and sanitation and $25 billion for irrigation and drainage. About 90% of this investment comes from domestic sources, primarily from the public sector. Water-related infrastructure accounts for a large chunk - about 15% - of all government spending. This heavy dependence on the public sector means that the 'winds of change' in the respective roles of government and the private sector have major implications for the financing and structure of the water economy. The paper describes how each of the 'subsectors' is adapting to these winds of change. First, in recent years, competition and private sector provision have emerged as the characteristics of the new electricity industry. This change poses a fundamental challenge to hydro which, to a much greater degree than thermal, has risks (hydrological, geological, social and environmental) which are better assumed by the public than the private sector. The future of private hydro, and thus of hydo itself, depends heavily on the ability of the public sector to both share risks with the private sector, and to provide predictable social and environmental rules of the game. Second, the urban water supply sector is in the early stages of equally profound change. In recent years, there has been a dramatic shift towards the private sector, in developed and developing countries alike. An outline of the future shape of the a competitive urban water

  20. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang


    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.


    Directory of Open Access Journals (Sweden)

    Nikitina Irina Nikolaevna


    Full Text Available The article focuses on the work of the laboratories of the Department of Water Supply of MGSU. The laboratory of pipe-lines, pumping equipment and sanitary equipment operates in MGSU affiliated to the department of water supply. A hydraulic stand for testing and defining the the hydraulic characteristics of pressure and free-flow pipelines of water supply and sewerage systems is installed there. There are also stands for investigating the sanitary equipment of the buildings, the fire and hot water supply systems. The main research directions of the department of water supply are diverse: hydraulics of water supply systems, recon-struction of pipelines using trenchless technologies, reliable water supply and distribution systems, purification of natural water for drinking and industrial water supply, post-treatment of natural water for domestic water supply, resource conservation in domes-tic water supply systems, etc. The laboratory also has a computer lab, able to simultane-ously hold up to 30 students. In collaboration with the laboratory there operates a scien-tific circle for students and Master students, which provides a lot of interesting and useful information on the latest developments.

  2. Extreme levels of 222Rn and U in a private water supply

    International Nuclear Information System (INIS)

    Lowry, J.D.; Hoxie, D.C.; Moreau, E.


    In 1985, the Maine Department of Human Services discovered a private water supply in Leeds, ME, that contains over 40,700 BqL -1 (1.1 x 10 +6 pCil -1 ) of 222 Rn on average, and ranges between 13,300 and 59,200 Bql -1 . The well water also contains a gross alpha concentration of approximately 10.0 BqL -1 (270 pCiL -1 ), of which more than 95 percent is U (403 ugL -1 ). The ratio of 234 U to 238 U averages 1.17, which compares closely to the sea water at 1.14. The Ra content comprises less than 2 percent of the gross alpha. The levels of 222 Rn and U are considered to be extremely high, with the 222 Rn being the highest known level the authors are aware of for a drinking water supply. This area of Maine has geologic features characteristic of those shown by others to have a high potential for elevated levels of 222 Rn and other radioisotopes. The purpose of this paper is to update the information presented previously about this site, in particular to the ramifications on treatment alternatives associated with the presence of both 222 Rn and U in a water supply

  3. Sustainability Analysis of the Water Resources and Supply of the Vieux Fort Region of Saint Lucia (United States)

    Coles, D.; Johnson, B.; Morgan, F.


    In the Vieux Fort region of the Caribbean island of St. Lucia, water needs are becoming acute. The water supply shortfalls during the dry season will continue to grow as population and development increase, unless action is taken. Actions to address the problem should include measures to optimize the present water delivery system and the development of a new supply, through new intakes, groundwater, or reservoir construction. An investigation into the potential for groundwater resources using electrical resistivity soundings indicated a likely pervasive, shallow aquitard of clay materials below the water table; the shallowness of this aquitard virtually precludes the existence of productive perched aquifers. Consequently, a model of Grande Riviere du Vieux Fort (Big Vieux Fort River) seasonal surface-water flow was developed, based on a digital elevation model and rainfall data, allowing us to analyze the possible productivity of any new intakes placed along the river. A specific site downstream of the present intake was recommended for potential development. Recommendations were given for short, medium and long-term development of the resources and supply of the Vieux Fort region of southern St. Lucia.

  4. Water Loss Reduction as the Basis of Good Water Supply Companies’ Management

    Directory of Open Access Journals (Sweden)

    Ociepa-Kubicka Agnieszka


    Full Text Available Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK. The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI, as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  5. Water Loss Reduction as the Basis of Good Water Supply Companies' Management (United States)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof


    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  6. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. (United States)

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J


    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  7. Improving regulatory effectiveness in federal/state siting actions: water supplies and the nuclear licensing process

    International Nuclear Information System (INIS)

    Davenport, F.S.


    The Interstate Conference on Water Problems (ICWP) is a national association of State, intrastate, and interstate officials concerned with water resources administration and related matters. The Conference was established in 1959 as an outgrowth of regional conferences on water problems as recognized in the same year by action of the General Assembly of the States. This report was produced by the Interstate Conference on Water Problems in an effort to provide a compilation and summary of the views of selected States regarding relationships of water supplies to the nuclear power plant licensing process. This publication does not represent the official position of the U.S Water Resources Council, or the U.S. Nuclear Regulatory Commission, nor does it represent the position of any single state or the ICWP

  8. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.


    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  9. Distributed Structure Searchable Toxicity (United States)

    U.S. Environmental Protection Agency — The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data....

  10. Endocrine disrupting compounds in drinking water supply system and human health risk implication. (United States)

    Wee, Sze Yee; Aris, Ahmad Zaharin


    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis. (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie


    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  12. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine


    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  13. Hybrid solution and pump-storage optimization in water supply system efficiency: A case study

    International Nuclear Information System (INIS)

    Vieira, F.; Ramos, H.M.


    Environmental targets and saving energy have become ones of the world main concerns over the last years and it will increase and become more important in a near future. The world population growth rate is the major factor contributing for the increase in global pollution and energy and water consumption. In 2005, the world population was approximately 6.5 billion and this number is expected to reach 9 billion by 2050 [United Nations, 2008. (, accessed on July]. Water supply