WorldWideScience

Sample records for water stress-response mechanisms

  1. Molecular mechanisms in plant abiotic stress response

    Directory of Open Access Journals (Sweden)

    Poltronieri Palmiro

    2011-01-01

    Full Text Available Improved crop varieties are needed to sustain the food supply, to fight climate changes, water scarcity, temperature increase and a high variability of rainfalls. Variability of drought and increase in soil salinity have negative effects on plant growth and abiotic stresses seriously threaten sustainable agricultural production. To overcome the influence of abiotic stresses, new tolerant plant varieties and breeding techniques using assisted selection are sought. A deep understanding of the mechanisms that respond to stress and sustain stress resistance is required. Here is presented an overview of several mechanisms that interact in the stress response. Localised synthesis of plant hormones, second messengers and local effectors of abiotic stress response and survival, the signaling pathways regulated by plant hormones are today better understood. Metabolic networks in drought stress responses, long distance signaling, cross-talk between plant organs finalised to tissue-specific expression of abiotic stress relieving genes have been at the centre of most recent studies.

  2. Molecular mechanisms in plant abiotic stress response

    OpenAIRE

    Poltronieri Palmiro; Bonsegna Stefania; De Domenico Stefania; Santino Angelo

    2011-01-01

    Improved crop varieties are needed to sustain the food supply, to fight climate changes, water scarcity, temperature increase and a high variability of rainfalls. Variability of drought and increase in soil salinity have negative effects on plant growth and abiotic stresses seriously threaten sustainable agricultural production. To overcome the influence of abiotic stresses, new tolerant plant varieties and breeding techniques using assisted selection are sought. A deep understanding of the m...

  3. Do brassinosteroids mediate the water stress response?

    Science.gov (United States)

    Jager, Corinne E; Symons, Gregory M; Ross, John J; Reid, James B

    2008-06-01

    Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea (Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.

  4. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses

    National Research Council Canada - National Science Library

    Feng, Wei; Lindner, Heike; Robbins, 2nd, Neil E; Dinneny, José R

    2016-01-01

    .... While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal...

  5. Role of chromatin in water stress responses in plants.

    Science.gov (United States)

    Han, Soon-Ki; Wagner, Doris

    2014-06-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  7. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  8. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.

    Science.gov (United States)

    Liu, Ning; Avramova, Zoya

    2016-01-01

    Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue

  9. The stress response to surgery: release mechanisms and the modifying effect of pain relief

    DEFF Research Database (Denmark)

    Kehlet, H

    1989-01-01

    This short review updates information on the release mechanisms of the systemic response to surgical injury and the modifying effect of pain relief. Initiation of the response is primarily due to afferent nerve impulses combined with release of humoral substances (such as prostaglandins, kinins......, leukotrienes, interleukin-1, and tumor necrosis factor), while amplification factors include semi-starvation, infection, and hemorrhage. The relative role of the various signals in producing the complex injury response has not been finally determined, but the neural pathway is probably most important...... in releasing the classical endocrine catabolic response, while humoral factors are important for the hyperthermic response, changes in coagulation and fibrinolysis immunofunction, and capillary permeability. The modifying effect of pain relief on the surgical stress response is dependent upon the technique...

  10. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  11. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks

    Science.gov (United States)

    Harrison, F.E.; Hosseini, A.H.; McDonald, M.P.

    2009-01-01

    The effects of abnormally high or low stress on learning are well established. The Barnes maze and Morris water maze are two commonly-used tests of spatial memory, of which the water maze is considered more stressful; however, until now this has not been demonstrated empirically. In the present study, mice matched for performance on commonly-used anxiety tasks were trained on either the Barnes maze or water maze or received no cognitive testing. Water-maze training induced greater increases in plasma corticosterone than did Barnes maze training, assessed 30 min. after the final session. Importantly, spatial learning was inversely correlated with corticosterone levels in the water maze but not the Barnes maze, suggesting that performance on the water maze may be more affected by test-induced stress even within wild-type subjects of the same age and gender. These findings are important when considering the appropriate cognitive tasks for any experiment in which stress responses may differ systematically across groups. PMID:18996418

  12. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  13. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses.

    Science.gov (United States)

    Xu, Zhao-Shi; Li, Zhi-Yong; Chen, Yang; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2012-11-23

    The heat shock protein 90 (Hsp90) family mediates stress signal transduction, and plays important roles in the control of normal growth of human cells and in promoting development of tumor cells. Hsp90s have become a currently important subject in cellular immunity, signal transduction, and anti-cancer research. Studies on the physiological functions of Hsp90s began much later in plants than in animals and fungi. Significant progress has been made in understanding complex mechanisms of HSP90s in plants, including ATPase-coupled conformational changes and interactions with cochaperone proteins. A wide range of signaling proteins interact with HSP90s. Recent studies revealed that plant Hsp90s are important in plant development, environmental stress response, and disease and pest resistance. In this study, the plant HSP90 family was classified into three clusters on the basis of phylogenetic relationships, gene structure, and biological functions. We discuss the molecular functions of Hsp90s, and systematically review recent progress of Hsp90 research in plants.

  14. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Sun

    2017-07-01

    Full Text Available To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  15. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.)

    Science.gov (United States)

    Sun, Xiaochuan; Wang, Yan; Xu, Liang; Li, Chao; Zhang, Wei; Luo, Xiaobo; Jiang, Haiyan; Liu, Liwang

    2017-01-01

    To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops. PMID:28769938

  16. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L. Plants

    Directory of Open Access Journals (Sweden)

    Afsana Islam

    2017-10-01

    Full Text Available The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L. Kunitz Proteinase Inhibitor (Tr-KPI gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  17. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  18. Oxidative stress response in an endangered goodeid fish (Girardinichthys viviparus) by exposure to water from its extant localities.

    Science.gov (United States)

    Vega-López, Armando; Jiménez-Orozco, Fausto Alejandro; García-Latorre, Ethel; Domínguez-López, Maria Lilia

    2008-09-01

    The oxidative stress response in Girardinichthys viviparus after exposure to water from its extant habitants was evaluated. The distribution range of this endangered species is currently restricted to a single lake, which receives domestic and industrial wastewater treated to a secondary level, but this is also contaminated with PCBs. Fish were exposed to water from Lake Texcoco, its extant habitat or another one, the Lake Zumpango proposed as a candidate to re-introduction. To predict the damage induced by sublethal increases in PCBs, assessment is also made of fish response to water from these localities enriched with PCB mixtures. Adult fish born in the laboratory were exposed to filtered surface water or to the PCB-enriched water for 1, 2, 4, 8 and 16 days. An assessment of the oxidative stress response in G. viviparus revealed four characteristic response patterns that were frequently observed: (1) increased lipid-peroxidation (LPOX), depressed SOD and increased CAT; (2) an increase in all three biomarkers; (3) reduced LPOX, unchanged SOD and increased CAT; (4) increased LPOX and depressed SOD and CAT. Our results demonstrate the complexity stress response of this endangered species while indicating that preventive measures are urgent to control the discharge of pro-oxidants in its environment.

  19. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    Science.gov (United States)

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  20. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    Directory of Open Access Journals (Sweden)

    Srikanta Dash

    2016-05-01

    Full Text Available Hepatitis C virus (HCV infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC. The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER, resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR, an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression.

  1. Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    Science.gov (United States)

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH2O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH2O (PEEP 5 group) or 10cmH2O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (Pmean). Pmean, compliance and PaO2; pH values were higher in 'PEEP 10 group'. Also, PaCO2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH2O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. [Effects of different levels of end-expiratory pressure on hemodynamic, respiratory mechanics and systemic stress response during laparoscopic cholecystectomy].

    Science.gov (United States)

    Sen, Oznur; Erdogan Doventas, Yasemin

    General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH2O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH2O (PEEP 5 group) or 10cmH2O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (Pmean). Pmean, compliance and PaO2; pH values were higher in 'PEEP 10 group'. Also, PaCO2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH2O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway.

    Science.gov (United States)

    Miao, Zhenyan; Xu, Wei; Li, Daofeng; Hu, Xiaona; Liu, Jiaxing; Zhang, Rongxue; Tong, Zongyong; Dong, Jiangli; Su, Zhen; Zhang, Liwei; Sun, Min; Li, Wenjie; Du, Zhenglin; Hu, Songnian; Wang, Tao

    2015-10-19

    The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils. We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR. We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family. M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the

  4. Effect of sequential mechanical ventilation on cardiac function, endothelial injury and oxidative stress response in patients with cor pulmonale

    Directory of Open Access Journals (Sweden)

    Yuan-Zeng He

    2017-08-01

    Full Text Available Objective: To study the effect of sequential mechanical ventilation on cardiac function, endothelial injury and oxidative stress response in patients with cor pulmonale (CCP. Methods: Patients with cor pulmonale complicated by respiratory failure who were treated in Dongfeng People’s Hospital between May 2014 and February 2017 were selected and randomly divided into the sequential group who received sequential mechanical ventilation combined with conventional therapy and the control group who received invasive positive pressure ventilation combined with conventional therapy. The serum levels of cardiac functionrelated neurohumoral indicators, endothelial injury indicators and oxidative stress response indicators were detected before treatment as well as 3 d and 7 d after treatment. Results: 3 d and 7 d after treatment, serum NT-proBNP, Copeptin, Ang-II, ALD, ET-1, vWF, sST2 levels of both groups of patients were significantly lower than those before treatment while NO, SOD, GSH-Px and T-AOC levels were significantly higher than those before treatment; serum NTproBNP, Copeptin, Ang-II, ALD, ET-1, vWF, sST2, NO, 8-iso-PGF2a, MDA, SOD, GSH-Px and T-AOC levels of sequential group 3 d after treatment were not significantly different from those of control group; serum NT-proBNP, Copeptin, Ang-II, ALDET-1, vWF, sST2, 8-iso- PGF2a and MDA levels of sequential group 7 d after treatment were significantly lower than those of control group while NO, SOD, GSH-Px and T-AOC levels were significantly higher than those of control group. Conclusion: Sequential mechanical ventilation for cor pulmonale can improve the cardiac function and reduce the degree of endothelial injury and oxidative stress response.

  5. LOW WATER TEMPERATURE AND ITS EFFECTS ON STRESS RESPONSE OF GREY MULLETS Mugil cephalus ACCLIMATED IN FRESHWATER

    Directory of Open Access Journals (Sweden)

    Vitas Atmadi Prakoso

    2015-06-01

    Full Text Available Grey mullet (Mugil cephalus can adapt to saline and freshwater. Although belonged to euryhaline species, but information regarding their stress response on low temperature. Environmental disturbance such as low water temperature may effect their physiological condition. These information can be useful for aquaculture development of this species in freshwater. Therefore, the purpose of study was to investigate the effects of low water temperature on the stress response of grey mullets Mugil cephalus acclimated in freshwater. The blood samples of experimental fish (TL: 28.2±1.1 cm, BW: 198.6±25.9 g were collected during winter season when the water temperature of controlled rearing system was stable at 25°C and uncontrolled rearing system slowly dropped until 12°C. Their stress response on both rearing systems was observed. The results showed that low temperature affected to lower the behavior activity and increase the stress response of grey mullets. The breath frequency of grey mullet regarding their opercular movement at 12°C was 74-97 breath/min., while at 25°C it was 95-114 breath/min. Hematocrit (Ht and hemoglobin (Hb were shown higher values of 43.5% and 9.5 g/dL, respectively at 25°C than 12°C (28.0% and 7.1 g/dL, respectively. The tendencies of cortisol and glucose level increased with the lowering temperature, showing higher value of 264.8 ng/mL and 35.5 mg/dL in 12°C than 5.5 ng/mL and 32.7 mg/dL in 25°C. The chemical properties of blood in grey mullets showed same tendency comparing between 12°C and 25°C, there was no significant different between each temperature, except for chloride (P<0.05. Chloride value was higher at 25°C, while other blood components such as osmolality, sodium, potassium, and magnesium were showing no significant differences. However, the results showed lower values at 12°C in every blood components, except for chloride. In conclusion, lowering water temperature to 12°C had impact

  6. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses.

    Science.gov (United States)

    Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C

    2011-10-01

    The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the

  7. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response.

    Directory of Open Access Journals (Sweden)

    Choonkeun Kim

    Full Text Available All methicillin resistant S. aureus (MRSA strains carry an acquired genetic determinant--mecA or mecC--which encode for a low affinity penicillin binding protein -PBP2A or PBP2A'--that can continue the catalysis of peptidoglycan transpeptidation in the presence of high concentrations of beta-lactam antibiotics which would inhibit the native PBPs normally involved with the synthesis of staphylococcal cell wall peptidoglycan. In contrast to this common genetic and biochemical mechanism carried by all MRSA strains, the level of beta-lactam antibiotic resistance shows a very wide strain to strain variation, the mechanism of which has remained poorly understood. The overwhelming majority of MRSA strains produce a unique--heterogeneous--phenotype in which the great majority of the bacteria exhibit very poor resistance often close to the MIC value of susceptible S. aureus strains. However, cultures of such heterogeneously resistant MRSA strains also contain subpopulations of bacteria with extremely high beta-lactam MIC values and the resistance level and frequency of the highly resistant cells in such strain is a characteristic of the particular MRSA clone. In the study described in this communication, we used a variety of experimental models to understand the mechanism of heterogeneous beta-lactam resistance. Methicillin-susceptible S. aureus (MSSA that received the mecA determinant in the laboratory either on a plasmid or in the form of a chromosomal SCCmec cassette, generated heterogeneously resistant cultures and the highly resistant subpopulations that emerged in these models had increased levels of PBP2A and were composed of bacteria in which the stringent stress response was induced. Each of the major heterogeneously resistant clones of MRSA clinical isolates could be converted to express high level and homogeneous resistance if the growth medium contained an inducer of the stringent stress response.

  8. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Shruti Nagaraja

    2018-02-01

    Full Text Available During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences. These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.

  9. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    Science.gov (United States)

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  10. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    OpenAIRE

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler gr...

  11. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    OpenAIRE

    Prateek eTripathi; Rabara, Roel C.; Vladimir eShulaev; Shen, Qingxi J; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler g...

  12. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective

    National Research Council Canada - National Science Library

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    .... However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled...

  13. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  14. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  15. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Prateek eTripathi

    2015-12-01

    Full Text Available The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us towards the right candidates, if not completely help us to resolve the issue.

  16. The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background

    Directory of Open Access Journals (Sweden)

    Mercurio Vecchio

    2017-01-01

    Full Text Available Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT −844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs, as well as lactic dehydrogenase (LDH activity, creatine kinase (CK activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT −844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.

  17. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativusL.).

    Science.gov (United States)

    Sun, Xiaochuan; Wang, Yan; Xu, Liang; Li, Chao; Zhang, Wei; Luo, Xiaobo; Jiang, Haiyan; Liu, Liwang

    2017-01-01

    To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  18. In vivo mutational analysis of YtvA from Bacillus subtilis: Mechanism of light activation of the general stress response

    NARCIS (Netherlands)

    Avila-Pérez, M.; Vreede, J.; Tang, Y.; Bende, O.; Losi, A.; Gärtner, W.; Hellingwerf, K.

    2009-01-01

    The general stress response of Bacillus subtilis can be activated by stimuli such as the addition of salt or ethanol and with blue light. In the latter response, YtvA activates sigma(B) through a cascade of Rsb proteins, organized in stressosomes. YtvA is composed of an N-terminal LOV (light,

  19. Effects of music intervention on physiological stress response and anxiety level of mechanically ventilated patients in China: a randomised controlled trial.

    Science.gov (United States)

    Han, Lin; Li, Ji P; Sit, Janet W H; Chung, Loretta; Jiao, Zuo Y; Ma, Wei G

    2010-04-01

    To examine the effects of music intervention on the physiological stress response and the anxiety level among mechanically ventilated patients in intensive care unit. Despite the fact that previous studies have found music interventions to be effective in stress and anxiety reduction, effects of music on the Chinese population are inconclusive and warranted systematic study to evaluate its effect fully for a different Asian culture. A randomised placebo-controlled trial. A total of 137 patients receiving mechanical ventilation were randomly assigned to either music listening group, headphone group or control group. Outcome measures included the Chinese version of Spielberger State-Trait Anxiety Scale and physiological parameters (heart rate, respiratory rate, saturation of oxygen and blood pressure). Comparison of mean differences (pretest score-posttest score) showed significant differences in heart rate, respiratory rate, systolic blood pressure and diastolic blood pressure as well as the Chinese version of Spielberger State-Trait Anxiety Scale, but not in SaO(2) among the three groups (ranging from p music listening group. A significant reduction in physiological stress response (heart rate and respiratory rate) over time was found in music listening group (p music listening group (p music listening results in substantial reduction in physiological stress responses arising from anxiety in mechanically ventilated patients. Music as a non-pharmacological nursing intervention can be used as complementary adjunct in the care of patients with low-energy states who tire easily, such as those requiring mechanical ventilator support.

  20. Effects of pressure-controlled and volume-controlled ventilation on respiratory mechanics and systemic stress response during prone position.

    Science.gov (United States)

    Sen, Oznur; Bakan, Mefkur; Umutoglu, Tarik; Aydın, Nurdan; Toptas, Mehmet; Akkoc, Ibrahim

    2016-01-01

    Prone position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen. The optimum ventilation mode for anesthetized patients on prone position was not described and studies comparing volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) during prone position are limited. We hypothesized that PCV instead of VCV during prone position could achieve lower airway pressures and reduce the systemic stress response. In this study, we aimed to compare the effects of PCV and VCV modes during prone position on respiratory mechanics, oxygenation, and hemodynamics, as well as blood cortisol and insulin levels, which has not been investigated before. Fifty-four ASA I-II patients, 18-70 years of age, who underwent percutaneous nephrolithotomy on prone position, were randomly selected to receive either the PCV (Group PC, n = 27) or VCV (Group VC, n = 27) under general anesthesia with sevoflurane and fentanyl. Blood sampling was made for baseline arterial blood gases (ABG), cortisol, insulin, and glucose levels. After anesthesia induction and endotracheal intubation, patients in Group PC were given pressure support to form 8 mL/kg tidal volume and patients in Group VC was maintained at 8 mL/kg tidal volume calculated using predicted body weight. All patients were maintained with 5 cmH2O PEEP. Respiratory parameters were recorded during supine and prone position. Assessment of ABG and sampling for cortisol, insulin and glucose levels were repeated during surgery and 60 min after extubation. P-peak and P-plateau levels during supine and prone positions were significantly higher and P-mean and compliance levels during prone position were significantly lower in Group VC when compared with Group PC. Postoperative PaO2 level was significantly higher in Group PC compared with Group

  1. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish.

    Science.gov (United States)

    Chadwick, Joseph G; Nislow, Keith H; McCormick, Stephen D

    2015-01-01

    Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.

  2. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    Science.gov (United States)

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  3. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows

    DEFF Research Database (Denmark)

    Damgaard, B M; Malmkvist, J; Pedersen, L J

    2009-01-01

    The aim of the present study was to study whether floor heating from 12 h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n = 23......). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked...

  4. Effects of pressure-controlled and volume-controlled ventilation on respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    Science.gov (United States)

    Sen, Oznur; Umutoglu, Tarik; Aydın, Nurdan; Toptas, Mehmet; Tutuncu, Ayse Cigdem; Bakan, Mefkur

    2016-01-01

    Pressure-controlled ventilation (PCV) is less frequently employed in general anesthesia. With its high and decelerating inspiratory flow, PCV has faster tidal volume delivery and different gas distribution. The same tidal volume setting, delivered by PCV versus volume-controlled ventilation (VCV), will result in a lower peak airway pressure and reduced risk of barotrauma. We hypothesized that PCV instead of VCV during laparoscopic surgery could achieve lower airway pressures and reduce the systemic stress response. Forty ASA I-II patients were randomly selected to receive either the PCV (Group PC, n = 20) or VCV (Group VC, n = 20) during laparoscopic cholecystectomy. Blood sampling was made for baseline arterial blood gases (ABG), cortisol, insulin, and glucose levels. General anesthesia with sevoflurane and fentanyl was employed to all patients. After anesthesia induction and endotracheal intubation, patients in Group PC were given pressure support to form 8 mL/kg tidal volume and patients in Group VC was maintained at 8 mL/kg tidal volume calculated using predicted body weight. All patients were maintained with 5 cmH2O positive-end expiratory pressure (PEEP). Respiratory parameters were recorded before and 30 min after pneumoperitonium. Assessment of ABG and sampling for cortisol, insulin and glucose levels were repeated 30 min after pneumoperitonium and 60 min after extubation. The P-peak levels observed before (18.9 ± 3.8 versus 15 ± 2.2 cmH2O) and during (23.3 ± 3.8 versus 20.1 ± 2.9 cmH2O) pneumoperitoneum in Group VC were significantly higher. Postoperative partial arterial oxygen pressure (PaO2) values are higher (98 ± 12 versus 86 ± 11 mmHg) in Group PC. Arterial carbon dioxide pressure (PaCO2) values (41.8 ± 5.4 versus 36.7 ± 3.5 mmHg) during pneumoperitonium and post-operative mean cortisol and insulin levels were higher in Group VC. When compared to VCV mode, PCV mode may improve compliance during pneumoperitoneum

  5. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus).

    Science.gov (United States)

    Feidantsis, Konstantinos; Anestis, Andreas; Vasara, Eleni; Kyriakopoulou-Sklavounou, Pasqualina; Michaelidis, Basile

    2012-08-01

    The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Identification of genes involved in a water stress response in timothy and mapping of orthologous loci in perennial ryegrass

    DEFF Research Database (Denmark)

    Jonavičienė, Kristina; Studer, Bruno; Asp, Torben

    2012-01-01

    In order to characterize the response of selected grasses to water stress, relative water content (RWC) in leaves and quantum efficiency of photosystem 2 (Fv/Fm) were measured in Phleum pratense L., P. bertolonii DC. and P. phleoides H. Karst. during 6 d of water stress. The results indicated...... differential responses to water stress among the three Phleum species with higher water deficit sensitivity of P. pratense and P. bertolonii than that of P. phleoides. The cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied to identify differentially expressed genes responding...... to water stress in P. pratense. Cloned and sequenced differentially expressed fragments (DEFs) were used for primer design in order to identify orthologous genes in Lolium perenne L. Twelve genes orthologous to P. pratense DEFs were mapped in the L. perenne mapping population VrnA based on a high...

  7. Central noradrenergic mechanisms underlying acute stress responses of the Hypothalamo-pituitary-adrenal axis: adaptations through pregnancy and lactation.

    Science.gov (United States)

    Douglas, Alison J

    2005-03-01

    Hypothalamo-pituitary-adrenal axis responses to stress are attenuated perinatally, and may contribute towards conservation of energy stores and/or prevention of overexposure to glucocorticoid and its adverse effects in the developing fetus/neonate. Previous work has shown that reduced central drive to the hypothalamo-pituitary-adrenal axis is responsible, since parvocellular paraventricular nucleus neurone responses are reduced. One of the main input pathways to the paraventricular nucleus that is activated by the majority of stressors is the brainstem noradrenergic system. This review outlines key noradrenergic mechanisms that mediate hypothalamo-pituitary-adrenal axis responses to acute stress, and addresses aspects of their adaptation in pregnancy and lactation that can explain the stress hyporesponsiveness at that time. In summary, reduced noradrenaline release and adrenergic receptor expression in the paraventricular nucleus may lead to reduced sensitivity of the hypothalamo-pituitary-adrenal axis to adrenergic antagonists and agonists and its responses to stress. While there are subtle differences in these changes between pregnancy and lactation, it would appear that reduced effectiveness of the noradrenergic input can at least partly account for the reduced hypothalamo-pituitary-adrenal axis responses both pre- and post-natally.

  8. The integrated stress response.

    Science.gov (United States)

    Pakos-Zebrucka, Karolina; Koryga, Izabela; Mnich, Katarzyna; Ljujic, Mila; Samali, Afshin; Gorman, Adrienne M

    2016-10-01

    In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress. © 2016 The Authors.

  9. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Hingston, Patricia; Chen, Jessica; Allen, Kevin

    2017-01-01

    -supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more...... required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up...... provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response....

  10. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, pmonocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response. PMID:28662112

  11. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  12. Regulation of Stress Responses and Translational Control by Coronavirus.

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-07-04

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  13. Identifying salt stress-responsive transcripts from Roselle ( Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa L.). Identifying the potentially novel transcripts responsible for salt stress tolerance in roselle will increase knowledge of the molecular mechanism underlying salt stress responses. In this study, differential display reverse ...

  14. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  15. General Stress Responses in the Honey Bee

    Science.gov (United States)

    Even, Naïla; Devaud, Jean-Marc; Barron, Andrew B.

    2012-01-01

    The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA) axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine), neuropeptides (allatostatin, corazonin) and metabolic hormones (adipokinetic hormone, diuretic hormone). Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop). We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress. PMID:26466739

  16. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions.

    Science.gov (United States)

    Aguilar-Valles, Argel; Sánchez, Edith; de Gortari, Patricia; Balderas, Israela; Ramírez-Amaya, Víctor; Bermúdez-Rattoni, Federico; Joseph-Bravo, Patricia

    2005-01-01

    Glucocorticoids and corticotropin-releasing hormone (CRH) are key regulators of stress responses. Different types of stress activate the CRH system; in hypothalamus, CRH expression and release are increased by physical or psychological stressors while in amygdala, preferentially by psychological stress. Learning and memory processes are modulated by glucocorticoids and stress at different levels. To characterize the kind of stress provoked by a hippocampal-dependent task such as spatial learning, we compared the expression profile of glucocorticoid receptor (GR), pro-CRH and CRH-R1 mRNAs (analyzed by RT-PCR), in amygdala, hippocampus and hypothalamus and quantified serum corticosterone levels by radioimmunoassay at different stages of training. mRNA levels of brain-derived neurotrophic factor (BDNF) were also quantified due to its prominent role in learning and memory processes. Male Wistar rats trained for 1, 3 or 5 days in the Morris water-maze (10 trials/day) were sacrificed 5-60 min the after last trial. A strong stress response occurred at day one in both yoked and trained animals (increased corticosterone and hypothalamic pro-CRH and CRH-R1 mRNA levels); changes gradually diminished as the test progressed. In amygdala, pro-CRH mRNA levels decreased while those of BDNF augmented when stress was highest, in yoked and trained animals. Hippocampi, of both yoked and trained groups, had decreased levels of GR mRNA on days 1 and 3, normalizing by day 5, while those of pro-CRH and CRH-R1 increased after the 3rd day. Increased gene expression, specifically due to spatial learning, occurred only for hippocampal BDNF since day 3. These results show that the Morris water-maze paradigm induces a strong stress response that is gradually attenuated. Inhibition of CRH expression in amygdala suggests that the stress inflicted is of physical but not of psychological nature and could lead to reduced fear or anxiety.

  17. Response mechanisms of Brachiaria brizantha cultivars to water deficit stress

    Directory of Open Access Journals (Sweden)

    Patricia Menezes Santos

    2013-11-01

    Full Text Available Two cultivars of Brachiaria brizantha (Hochst ex. A. Rich Stapf. (Syn. Urochloa were evaluated for their adaptation to water deficit and the stress response mechanisms in a greenhouse experiment. The experimental design was in completely randomized blocks with a 2 × 2 × 4 factorial arrangement. The Marandu and BRS Piatã cultivars were evaluated under two water availability conditions, with or without water restriction. The harvests were carried out 0, 7, 14 and 28 days after the start of water restriction. For both cultivars, the water deficit stress caused a reduction in shoot biomass and leaf area and an increase in the percentage of roots in the deeper soil layers. The B. brizantha cv. Marandu reached critical levels of leaf water potential in a shorter period of water restriction than did the B. brizantha cv. BRS Piatã. The osmoregulation and deepening of the root system are mechanisms of adaptation to water stress observed in both Marandu and BRS Piatã cultivars. Besides that, the Marandu cultivar also increases its leaf senescence and, consequentially, decreases its leaf area, as a response to water deficit.

  18. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  19. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model.

    Science.gov (United States)

    Aristoteles, Luciana R C R B; Righetti, Renato F; Pinheiro, Nathalia Montouro; Franco, Rosana B; Starling, Claudia M; da Silva, Julie C P; Pigati, Patrícia Angeli; Caperuto, Luciana C; Prado, Carla M; Dolhnikoff, Marisa; Martins, Milton A; Leick, Edna A; Tibério, Iolanda F L C

    2013-08-15

    The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due

  20. Stress Response of Granular Systems

    Science.gov (United States)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  1. Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome.

    Science.gov (United States)

    Morris, J P; Thatje, S; Ravaux, J; Shillito, B; Fernando, D; Hauton, C

    2015-03-01

    Little is known about the ecological and physiological processes governing depth distribution limits in species. Temperature and hydrostatic pressure are considered to be two dominant factors. Research has shown that some marine ectotherms are shifting their bathymetric distributions in response to rapid anthropogenic ocean surface warming. Shallow-water species unable to undergo latitudinal range shifts may depend on bathymetric range shifts to seek refuge from warming surface waters. As a first step in constraining the molecular basis of pressure tolerance in shallow water crustaceans, we examined differential gene expression in response to acute pressure and temperature exposures in juveniles of the shallow-water shrimp Palaemonetes varians. Significant increases in the transcription of genes coding for an NMDA receptor-regulated protein, an ADP ribosylation factor, β-actin, two heat shock protein 70 kDa isoforms (HSP70), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were found in response to elevated pressure. NMDA receptors have been implicated in pathways of excitotoxic damage to neurons and the onset of high pressure neurological syndrome (HPNS) in mammals. These data indicate that the sub-lethal effects of acute barotrauma are associated with transcriptional disturbances within the nervous tissue of crustaceans, and cellular macromolecular damage. Such transcriptional changes lead to the onset of symptoms similar to that described as HPNS in mammals, and may act as a limit to shallow water organisms' prolonged survival at depth. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis.

    Science.gov (United States)

    Quach, Truyen N; Tran, Lam-Son Phan; Valliyodan, Babu; Nguyen, Hanh Tm; Kumar, Rajesh; Neelakandan, Anjanasree K; Guttikonda, Satish Kumar; Sharp, Robert E; Nguyen, Henry T

    2014-01-01

    In Arabidopsis, NAC (NAM, ATAF and CUC) transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA). They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D). The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT), while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA), lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.

  3. Stress Response, Brain Noradrenergic System and Cognition.

    Science.gov (United States)

    Winklewski, Pawel J; Radkowski, Marek; Wszedybyl-Winklewska, Magdalena; Demkow, Urszula

    2017-01-01

    Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.

  4. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  5. The general stress response of Bacillus subtilis

    NARCIS (Netherlands)

    van der Steen, J.B.

    2013-01-01

    The soil bacterium Bacillus subtilis responds to fluctuating conditions in its environment with a wide variety of stress responses. Apart from a series of specific responses and a series of large-scale developmental changes, B. subtilis also has a general stress response (GSR). The GSR is activated

  6. Oxidative stress response in sugarcane

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Soares Netto

    2001-12-01

    Full Text Available Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.A resposta ao estresse oxidativo não é bem conhecida em plantas como em bactérias, leveduras e humanos. Por exemplo, assume-se que óxido nítrico tem várias fun

  7. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging

    NARCIS (Netherlands)

    Rodriguez Sanchez, M.; Snoek, L.B.; Bono, de M.; Kammenga, J.E.

    2013-01-01

    Many organisms have stress response pathways, components of which share homology with players in complex human disease pathways. Research on stress response in the nematode worm Caenorhabditis elegans has provided detailed insights into the genetic and molecular mechanisms underlying complex human

  8. The Contribution of Deficits in Emotional Clarity to Stress Responses and Depression

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2010-01-01

    This research investigated the contribution of deficits in emotional clarity to children's socioemotional adjustment. Specifically, this study examined the proposal that deficits in emotional clarity are associated with maladaptive interpersonal stress responses, and that maladaptive interpersonal stress responses act as a mechanism linking…

  9. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  10. Proteomics studies on stress responses in diatoms.

    Science.gov (United States)

    Muhseen, Ziyad Tariq; Xiong, Qian; Chen, Zhuo; Ge, Feng

    2015-12-01

    Diatoms are a highly diverse group of eukaryotic phytoplankton that are distributed throughout marine and freshwater environments and are believed to be responsible for approximately 40% of the total marine primary productivity. The ecological success of diatoms suggests that they have developed a range of strategies to cope with various biotic and abiotic stress factors. It is of great interest to understand the adaptive responses of diatoms to different stresses in the marine environment. Proteomic technologies have been applied to the adaptive responses of marine diatoms under different growth conditions in recent years such as nitrogen starvation, iron limitation and phosphorus deficiency. These studies have provided clues to elucidate the sophisticated sensing mechanisms that control their adaptive responses. Although only a very limited number of proteomic studies were conducted in diatoms, the obtained data have led to a better understanding of the biochemical processes that contribute to their ecological success. This review presents the current status of proteomic studies of diatom stress responses and discusses the novel developments and applications for the analysis of protein post-translational modification in diatoms. The potential future application of proteomics could contribute to a better understanding of the physiological mechanisms underlying diatom acclimation to a given stress and the acquisition of an enhanced diatom stress tolerance. Future challenges and research opportunities in the proteomics studies of diatoms are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanisms and assessment of water eutrophication*

    OpenAIRE

    Yang, Xiao-e; Wu, Xiang; Hao, Hu-lin; He, Zhen-li

    2008-01-01

    Water eutrophication has become a worldwide environmental problem in recent years, and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication. In this paper, recent advances in current status and major mechanisms of water eutrophication, assessment and evaluation criteria, and the influencing factors were reviewed. Water eutrophication in lakes, reservoirs, estuaries and rivers is widespread all over the world and the severity is ...

  12. Integrated Stress Responses in Salmonella

    Science.gov (United States)

    Shen, Shu; Fang, Ferric C.

    2011-01-01

    The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions. PMID:21570144

  13. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  14. Investigating the improver mechanisms of agricultural water ...

    African Journals Online (AJOL)

    The findings revealed that increase of efficient monitoring of government on surface water resources and also implementation of watershed projects are the main mechanisms of surface water and underground water management in utilization and about the management of agricultural water transmission, covering the ...

  15. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...

  16. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  17. Social interaction decreases stress responsiveness during adolescence.

    Science.gov (United States)

    Lürzel, Stephanie; Kaiser, Sylvia; Sachser, Norbert

    2011-10-01

    Adolescence is the transition from infancy to adulthood and encompasses major changes in the brain, the endocrine systems, and behavior. During late adolescence, male guinea pigs living in mixed-sex colonies exhibit a lower cortisol (C) response to novelty compared with animals in other ages and housing conditions. It was hypothesized that this reduction in stress responsiveness is induced by a high amount of social interactions in the colonies. In a previous study (Lürzel et al., 2010), late adolescent colony-housed males (CM) were compared with similarly aged males that were housed in heterosexual pairs (PM) as well as with males that were also housed in pairs, but regularly received additional social stimulation by allowing them ten times to interact with unfamiliar adult animals of both sexes for 10 min (SM). CM had a significantly lower stress response than PM, with SM being intermediate and not significantly different from either of the other groups. We assumed that the amount of social stimulation in SM was insufficient in order to achieve a significant reduction of stress responsiveness compared with PM. For the present study, we hypothesized that with a higher amount of social stimulation, a significant difference in stress responsiveness between PM and SM becomes apparent during late adolescence. Thus, PM were again compared with SM that, this time, had received twice as much social stimulation as in the previous study. As a result, stress responsiveness was indeed significantly lower in SM than in PM during late adolescence. Thus, a high amount of social interactions during the course of adolescence leads to a decreased stress responsiveness. Furthermore, SM showed an increase in testosterone (T) levels caused by social stimulation. We hypothesize that the reduction in stress responsiveness is brought about by high T levels that organize central neural structures over the course of adolescence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  19. Water Pollution (Causes, Mechanisms, Solution).

    Science.gov (United States)

    Strandberg, Carl

    Written for the general public, this book illustrates the causes, status, problem areas, and prediction and control of water pollution. Water pollution is one of the most pressing issues of our time and the author communicates the complexities of this problem to the reader in common language. The purpose of the introductory chapter is to show what…

  20. Mechanisms and assessment of water eutrophication*

    Science.gov (United States)

    Yang, Xiao-e; Wu, Xiang; Hao, Hu-lin; He, Zhen-li

    2008-01-01

    Water eutrophication has become a worldwide environmental problem in recent years, and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication. In this paper, recent advances in current status and major mechanisms of water eutrophication, assessment and evaluation criteria, and the influencing factors were reviewed. Water eutrophication in lakes, reservoirs, estuaries and rivers is widespread all over the world and the severity is increasing, especially in the developing countries like China. The assessment of water eutrophication has been advanced from simple individual parameters like total phosphorus, total nitrogen, etc., to comprehensive indexes like total nutrient status index. The major influencing factors on water eutrophication include nutrient enrichment, hydrodynamics, environmental factors such as temperature, salinity, carbon dioxide, element balance, etc., and microbial and biodiversity. The occurrence of water eutrophication is actually a complex function of all the possible influencing factors. The mechanisms of algal blooming are not fully understood and need to be further investigated. PMID:18357622

  1. Mechanisms and assessment of water eutrophication.

    Science.gov (United States)

    Yang, Xiao-e; Wu, Xiang; Hao, Hu-lin; He, Zhen-li

    2008-03-01

    Water eutrophication has become a worldwide environmental problem in recent years, and understanding the mechanisms of water eutrophication will help for prevention and remediation of water eutrophication. In this paper, recent advances in current status and major mechanisms of water eutrophication, assessment and evaluation criteria, and the influencing factors were reviewed. Water eutrophication in lakes, reservoirs, estuaries and rivers is widespread all over the world and the severity is increasing, especially in the developing countries like China. The assessment of water eutrophication has been advanced from simple individual parameters like total phosphorus, total nitrogen, etc., to comprehensive indexes like total nutrient status index. The major influencing factors on water eutrophication include nutrient enrichment, hydrodynamics, environmental factors such as temperature, salinity, carbon dioxide, element balance, etc., and microbial and biodiversity. The occurrence of water eutrophication is actually a complex function of all the possible influencing factors. The mechanisms of algal blooming are not fully understood and need to be further investigated.

  2. Process Control Minitoring by Stress Response

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  3. Tonic immobility differentiates stress responses in PTSD

    NARCIS (Netherlands)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A.; Hagenaars, M.A.

    2016-01-01

    Background: Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a

  4. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis.

    Science.gov (United States)

    Osakabe, Yuriko; Arinaga, Naoko; Umezawa, Taishi; Katsura, Shogo; Nagamachi, Keita; Tanaka, Hidenori; Ohiraki, Haruka; Yamada, Kohji; Seo, So-Uk; Abo, Mitsuru; Yoshimura, Etsuro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-02-01

    Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K(+) uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K(+) channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using (86)radioactive rubidium ion ((86)Rb(+)) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.

  5. Biotechnological impact of stress response on wine yeast.

    Science.gov (United States)

    Matallana, E; Aranda, A

    2017-02-01

    Wine yeast deals with many stress conditions during its biotechnological use. Biomass production and its dehydration produce major oxidative stress, while hyperosmotic shock, ethanol toxicity and starvation are relevant during grape juice fermentation. Most stress response mechanisms described in laboratory strains of Saccharomyces cerevisiae are useful for understanding the molecular machinery devoted to deal with harsh conditions during industrial wine yeast uses. However, the particularities of these strains themselves, and the media and conditions employed, need to be specifically looked at when studying protection mechanisms. © 2016 The Society for Applied Microbiology.

  6. Elucidating the Role of Toxin-Induced Microbial Stress Responses in Biological Wastewater Treatment Process Upset

    OpenAIRE

    Bott, Charles Briddell

    2001-01-01

    The overall hypothesis of this work is that the physiological microbial stress response could serve as a rapid, sensitive, and mechanistically-based indicator of process upset in biological wastewater treatment systems that receive sporadic shock loads of toxic chemicals. The microbial stress response is a set of conserved and unique biochemical mechanisms that an organism activates or induces under adverse conditions, specifically for the protection of cellular components or the repair of d...

  7. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome

    OpenAIRE

    Lin Teng; Xian Wang; Xiaojun Wang; Honglei Gou; Lihui Ren; Tingting Wang; Yun Wang; Yuetong Ji; Huang, Wei E.; Jian Xu

    2016-01-01

    Rapid profiling of stress-response at single-cell resolution yet in a label-free, non-disruptive and mechanism-specific manner can lead to many new applications. We propose a single-cell-level biochemical fingerprinting approach named "ramanome", which is the collection of Single-cell Raman Spectra (SCRS) from a number of cells randomly selected from an isogenic population at a given time and condition, to rapidly and quantitatively detect and characterize stress responses of cellular populat...

  8. The Stress Response of Escherichia coli under Microgravity.

    Science.gov (United States)

    Lynch, S.; Matin, A.

    At the onset of adverse environmental conditions, bacteria induce a controlled stress response to enable survival. Escherichia coli induces stress-specific reactions in response to a variety of environmental strains. A family of proteins termed sigma (s) factors is pivotal to the regulation of stress responses in bacteria. In particular Sigma S (ss) regulates several stress responses in E. coli and serves as an important global stress regulatory protein. Under optimal growth conditions, levels of ss are maintained at low cellular concentrations primarily via a proteolytic regulatory mechanism. At the onset of stress, ss levels increase due to increased stability of the molecule, facilitating transcriptional initiation and up regulation of specific stress related proteins. Concentrations of ss can therefore be indicative of cellular stress levels. Recent work by Kendrick et al demonstrated that Salmonella species grown under conditions of simulated microgravity display increased virulence - a stress-related phenotype. Using E. coli as a model system we aim to investigate the stress response elicited by the organism under conditions of simulated microgravity (SMG). SMG is generated in specially constructed rotary cell culture systems termed HARVs (High Aspect Ratio Vessels- Synthecon Inc.). By rotating at constant velocity around a vertical axis an environment is produced in which the gravitational vectors are randomized over the surface of the cell, resulting in an overall-time-averaged gravitational vector of 10-2 x g (4). E. coli cultures grown in HARVs under conditions of normal gravity (NG) and SMG repeatedly display slower growth kinetics under SMG. Western analysis of cells at exponential and stationary phase of growth from both cultures reveal similar levels of ss exist in exponential phase under both SMG and NG conditions. However, during stationary phase, levels of ss are at least 2-fold higher under conditions of SMG as compared to NG. Translational fusion

  9. The effect of music on the human stress response.

    Science.gov (United States)

    Thoma, Myriam V; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M

    2013-01-01

    Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music ('Miserere', Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the beneficial effects of music on the human body.

  10. The effect of music on the human stress response.

    Directory of Open Access Journals (Sweden)

    Myriam V Thoma

    Full Text Available BACKGROUND: Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor. It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. METHODS: Sixty healthy female volunteers (mean age = 25 years were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1 relaxing music ('Miserere', Allegri (RM, 2 sound of rippling water (SW, and 3 rest without acoustic stimulation (R. Salivary cortisol and salivary alpha-amylase (sAA, heart rate (HR, respiratory sinus arrhythmia (RSA, subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. RESULTS: The three conditions significantly differed regarding cortisol response (p = 0.025 to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026 baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. CONCLUSION: Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery, and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  11. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  12. 2016 Microbial Stress Response GRC/GRS

    Science.gov (United States)

    2016-09-13

    Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota " 11:30 am - 11:40 am Discussion 11:40 am - 12:05 pm Patricia Casino (University of...feedback collected from the meeting was extremely positive. Evaluations included numerous positive remarks regarding the diversity of speakers, the...00 pm Dinner 7:30 pm - 9:30 pm A Diversity in Bacterial Stress Responses Discussion Leader: Joan Slonczewski (Kenyon College, USA) 7:30 pm - 7:55

  13. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  14. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  15. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.

    Science.gov (United States)

    Liu, Yukun; He, Chengzhong

    2016-05-01

    Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.

  16. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  17. Interactions between cytokinin signalling and abiotic stress responses.

    Science.gov (United States)

    Zwack, Paul J; Rashotte, Aaron M

    2015-08-01

    Plants have evolved elaborate mechanisms for sensing and responding to sub-optimal environmental conditions. Abiotic stresses caused by these conditions trigger a wide range of local and long-distance signals which must be co-ordinated and integrated into whole-plant processes, such as development, in order for the plant to respond properly and survive. Several hormones function as key regulators of stress tolerance, connecting local stimuli to systemic responses. Cytokinin is a hormone well known for its role in numerous aspects of growth and development, although abundant evidence also indicates that cytokinin functions in stress responses as well. At present, a full understanding of the effects of cytokinin on plant resistance to stress is lacking, possibly as a result of the complex interactions between cytokinin and stress signalling. Current knowledge of the physiological relationship between cytokinin and abiotic stress, based on measurements of cytokinin levels under stress conditions and the effects of cytokinin treatment on stress tolerance, has been examined here. A pattern of transcriptional regulation of stress-related genes by cytokinin in different plant species has also been identified. In addition, research regarding the role of specific cytokinin signalling components in a variety of stress responses is presented. We discuss what this body of research collectively implies with regard to cross-talk between cytokinin and abiotic stress tolerance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Abiotic stress responses in plant roots: a proteomics perspective

    Directory of Open Access Journals (Sweden)

    Dipanjana eGhosh

    2014-01-01

    Full Text Available Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.

  19. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  20. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  3. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  4. Stress Response and Translation Control in Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  5. Surgical stress response: does endoscopic surgery confer an advantage?

    DEFF Research Database (Denmark)

    Kehlet, H

    1999-01-01

    "Open" surgical procedures are followed by profound changes in endocrine metabolic function and various host defense mechanisms, impaired pulmonary function, and hypoxemia. These physiologic changes are supposed to be involved in the pathogenesis of postoperative morbidity. Endoscopic surgery...... of postoperative pulmonary function and less hypoxemia with endoscopic operation. The slight modification of surgical stress responses by endoscopic surgery is in contrast to the common, though not universal, demonstration of less pain, shorter hospital stay, and less morbidity after endoscopic surgery....... In conclusion, endoscopic surgery has so far not been demonstrated to have important modifying effects on classic endocrine metabolic responses and only a slight inhibitory effect on various inflammatory responses, but with improved pulmonary function and less hypoxemia. More data are needed from major...

  6. 2012 Gordon Research Conference on Microbial Stress Response, Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Timothy J. [Univ. of Wisconsin, Madison, WI (United States)

    2012-07-20

    The Gordon Research Conference on Microbial Stress Response was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Attached is a copy of the formal schedule and speaker program and the poster program.

  7. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome.

    Science.gov (United States)

    Teng, Lin; Wang, Xian; Wang, Xiaojun; Gou, Honglei; Ren, Lihui; Wang, Tingting; Wang, Yun; Ji, Yuetong; Huang, Wei E; Xu, Jian

    2016-10-19

    Rapid profiling of stress-response at single-cell resolution yet in a label-free, non-disruptive and mechanism-specific manner can lead to many new applications. We propose a single-cell-level biochemical fingerprinting approach named "ramanome", which is the collection of Single-cell Raman Spectra (SCRS) from a number of cells randomly selected from an isogenic population at a given time and condition, to rapidly and quantitatively detect and characterize stress responses of cellular population. SCRS of Escherichia coli cells are sensitive to both exposure time (eight time points) and dosage (six doses) of ethanol, with detection time as early as 5 min and discrimination rate of either factor over 80%. Moreover, the ramanomes upon six chemical compounds from three categories, including antibiotics of ampicillin and kanamycin, alcohols of ethanol and n-butanol and heavy metals of Cu(2+) and Cr(6+), were analyzed and 31 marker Raman bands were revealed which distinguish stress-responses via cytotoxicity mechanism and variation of inter-cellular heterogeneity. Furthermore, specificity, reproducibility and mechanistic basis of ramanome were validated by tracking stress-induced dynamics of metabolites and by contrasting between cells with and without genes that convey stress resistance. Thus ramanome enables rapid prediction and mechanism-based screening of cytotoxicity and stress-response programs at single-cell resolution.

  8. Ultrasound-induced stress responses of Panax ginseng cells: enzymatic browning and phenolics production.

    Science.gov (United States)

    Wu, Jianyong; Lin, Lidong

    2002-01-01

    The stress metabolic activities of Panax ginseng (P. ginseng) cells induced by low-energy ultrasound (US) were examined. P. ginseng cells in suspension cultures were exposed to 38.5 kHz US at two power levels (power density 13.7 and 61 mW/cm(3)) for 2 min. The US treatment caused rapid increase in the intracellular levels of polyphenol oxidase (PPO), peroxidase (PO), and phenylalanine ammonia lyase (PAL) and the production of polyphenols (PP) and phenolic compounds. The US-induced enzyme activities and phenolics production are part of plant stress responses to a mechanical stimulus. The much higher PPO activity and rate of PP production in the sonicated cultures are correlated to enzymatic browning, suggestive of physical damage and membrane permeabilization of the cells by US. The cells after sonication also showed decreased water content and cell volume, which may also be attributed to US-induced cell membrane permeabilization and water release. High-pressure shock and fluid shear stress arising from acoustic cavitation were regarded as the major causes of the responses. Nevertheless, the US exposure caused only temporary cell growth depression but no net loss of biomass yield of the culture.

  9. The Role of Canonical and Noncanonical Pre-mRNA Splicing in Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    A. S. Dubrovina

    2013-01-01

    Full Text Available Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants.

  10. Everyday stress response targets in the science of behavior change.

    Science.gov (United States)

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2017-09-28

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stressors, Resources, and Stress Responses in Pregnant African American Women

    Science.gov (United States)

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low stress responses (4 women). Patterns of stress responses were seen in psychological stress and cervical remodeling (attenuation or cervical length). All women in the high stress responses group had high depression and/or low psychological well-being and abnormal cervical remodeling at one or both data collection times. All but 1 woman had at least 3 sources of stress (racial, neighborhood, financial, or network). In contrast, 3 of the 4 women in the low stress responses group had only 2 sources of stress (racial, neighborhood, financial, or network) and 1 had none; these women also reported higher perceived support. The findings demonstrate the importance of periodically assessing stress in African American women during pregnancy, particularly related to their support network as well as the positive supports they receive. PMID:23360946

  12. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    Science.gov (United States)

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  13. Expression Profiling of Ribosomal Protein Gene Family in Dehydration Stress Responses and Characterization of Transgenic Rice Plants Overexpressing RPL23A for Water-Use Efficiency and Tolerance to Drought and Salt Stresses

    Directory of Open Access Journals (Sweden)

    Mazahar Moin

    2017-11-01

    Full Text Available Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a. In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP gene family including both small (RPS and large (RPL subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24, and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt

  14. Stress responses and replication of plasmids in bacterial cells

    Directory of Open Access Journals (Sweden)

    Wegrzyn Alicja

    2002-05-01

    Full Text Available Abstract Plasmids, DNA (or rarely RNA molecules which replicate in cells autonomously (independently of chromosomes as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage λ that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.

  15. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  16. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses.

    Science.gov (United States)

    Sajjanar, Basavaraj; Deb, Rajib; Raina, Susheel Kumar; Pawar, Sachin; Brahmane, Manoj P; Nirmale, Avinash V; Kurade, Nitin P; Manjunathareddy, Gundallahalli B; Bal, Santanu Kumar; Singh, Narendra Pratap

    2017-04-01

    Stress is the result of an organism's interaction with environmental challenges. Regulations of gene expression including translation modulations are critical for adaptation and survival under stress. Untranslated regions (UTRs) of the transcripts play significant roles in translation regulation and continue to raise many intriguing questions in our understanding of cellular stress physiology. IRES (Internal ribosome entry site) and uORF (upstream open reading frame) mediated alternative translation initiations are emerging as unique mechanisms. Recent studies have revealed novel means of mRNAs stabilization in stress granules and their reversible modifications. Differential regulation of select transcripts is possible by the interplay between the adenine/uridine-rich elements (AREs) in 3'UTR with their binding proteins (AUBP) and by microRNA-mediated effects. Coordination of these various mechanisms control translation and thereby enables appropriate responses to environmental stress. In this review, we focus on the role of sequence signatures both at 5' and 3'UTRs in translation reprogramming during cellular stress responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanism of water transport in graphene oxide laminates.

    Science.gov (United States)

    Deng, Junjiao; You, Yi; Bustamante, Heriberto; Sahajwalla, Veena; Joshi, Rakesh K

    2017-03-01

    It is understood that nano-channels of graphene oxide membranes have a water flow mechanism which is similar to the water flow inside carbon nanotube pores. The water transport mechanisms recently proposed by various researchers suggest that membranes composed of graphene oxide laminates could be regarded as an assembly of many tiny carbon nanotubes stacked together with attached functional groups as spacers.

  18. Adaptive translation as a mechanism of stress response and adaptation

    OpenAIRE

    Pan, Tao

    2013-01-01

    The composition of the cellular proteome is commonly thought to strictly adhere to the genetic code. However, accumulating evidence indicates that cells also regulate the synthesis of mutant protein molecules that deviate from the genetic code. Production of mutant proteins varies in amounts and specificity and generally occurs when cells are stressed or undergo environmental adaptation. The deliberate synthesis of protein mutants suggests that some of these proteins can be useful in cellular...

  19. Autonomic stress responses in adolescents with autism spectrum disorders

    OpenAIRE

    Vanrusselt, Neel; Santermans, Lien

    2017-01-01

    This study investigated whether there is a difference in stress response between typically developing adolescents and adolescents with autism spectrum disorders during different tasks.Important factors that have to be taken into account are anxiety, temperament and sex.

  20. The surgical stress response: should it be prevented?

    DEFF Research Database (Denmark)

    Kehlet, H

    1991-01-01

    Postoperative complications such as myocardial infarction, pulmonary infection, thromboembolism and fatigue are probably related to increased demands, hypermetabolism, catabolism and other physiologic changes included in the global "surgical stress response." Strategies have been developed to sup...

  1. Autonomic stress responses in adolescents with autism spectrum disorders

    OpenAIRE

    Vanrusselt, Neel; Santermans, Lien

    2017-01-01

    This study investigated whether there is a difference in stress response between typically developing adolescents and adolescents with autism spectrum disorders during different tasks. Important factors that have to be taken into account are anxiety, temperament and sex.

  2. The effect of music on the human stress response

    National Research Council Canada - National Science Library

    Thoma, Myriam V; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M

    2013-01-01

    ... domains of the human stress response. Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test...

  3. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens

    Directory of Open Access Journals (Sweden)

    Jason A. Rosenzweig

    2013-11-01

    Full Text Available Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The 3 pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica are all psychrotropic bacteria capable of growth at 4˚C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase. PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae (where it typically influences the type three secretion system. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease, RhlB (RNA helicase, and enolase (glycolytic enzyme in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome- dependent and -independent roles played by PNPase in yersiniae stress responses.

  4. Energetic Stress: The Reciprocal Relationship between Energy Availability and the Stress Response

    Science.gov (United States)

    Harrell, C.S.; Gillespie, C.F.; Neigh, G.N.

    2015-01-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in “energetic stress” that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. PMID:26454211

  5. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  6. Role of shame and body esteem in cortisol stress responses.

    Science.gov (United States)

    Lupis, Sarah B; Sabik, Natalie J; Wolf, Jutta M

    2016-04-01

    Studies assessing the role of shame in HPA axis reactivity report mixed findings. Discrepancies may be due to methodological difficulties and inter-individual differences in the propensity to experience shame in a stressful situation. Hence, the current study combined self-report of shame and facial coding of shame expressions and assessed the role of body esteem as a moderator of the shame-stress link. For this, 44 healthy students (24F, age 20.5 ± 2.1 years) were exposed to an acute psychosocial stress paradigm (Trier Social Stress Test: TSST). Salivary cortisol levels were measured throughout the protocol. Trait shame was measured before the stress test, and state shame immediately afterwards. Video recordings of the TSST were coded to determine emotion expressions. State shame was neither associated with cortisol stress responses nor with body esteem (self-report: all ps ≥ .24; expression: all ps ≥ .31). In contrast, higher trait shame was associated with both negative body esteem (p = .049) and stronger cortisol stress responses (p = .013). Lastly, having lower body esteem predicted stronger cortisol stress responses (p = .022); however, it did not significantly moderate the association between shame indices and cortisol stress responses (all ps ≥ .94). These findings suggest that body esteem and trait shame independently contribute to strength of cortisol stress responses. Thus, in addition to trait shame, body esteem emerged as an important predictor of cortisol stress responses and as such, a potential contributor to stress-related negative health outcomes.

  7. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  8. Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns.

    Science.gov (United States)

    Wang, Linhai; Li, Donghua; Zhang, Yanxin; Gao, Yuan; Yu, Jingyin; Wei, Xin; Zhang, Xiurong

    2016-01-01

    Waterlogging is a common adverse environmental condition that limits plant growth. Sesame (Sesamum indicum) is considered a drought-tolerant oil crop but is typically susceptible to harmful effects from waterlogging. The present study used comparative analysis to explore the waterlogging stress response associated with two sesame genotypes. The RNA-seq dataset generated during a time course of 0, 3, 9 and 15 h of waterlogging as well as 20 h post-drainage indicated that stress gradually suppressed the expression of sesame genes, with 9 h as the critical time point for the response of sesame to waterlogging stress. Of the 19,316 genes expressed during waterlogging, 72.1% were affected significantly. Sesame of both tolerant and susceptible genotypes showed decreased numbers of upregulated differentially expressed genes (DEGs) but increased numbers of downregulated DEGs at the onset of waterlogging. However, the tolerant-genotype sesame exhibited 25.5% more upregulated DEGs and 29.7% fewer downregulated DEGs than those of the susceptible-genotype strain between 3 and 15 h. The results indicated that the tolerant sesame displayed a more positive gene response to waterlogging. A total of 1,379 genes were significantly induced and commonly expressed in sesame under waterlogging conditions from 3 to 15 h regardless of tolerance level; of these genes, 98 are known homologous stress responsive genes, while the remaining 1,281 are newly reported here. This gene set may represent the core genes that function in response to waterlogging, including those related mainly to energy metabolism and phenylpropanoid biosynthesis. Furthermore, a set of 3,016 genes functioning in energy supply and cell repair or formation was activated in sesame recovery from waterlogging stress. A comparative analysis between sesame of the tolerant and susceptible genotypes revealed 66 genes that may be candidates for improving sesame tolerance to waterlogging. This study provided a comprehensive

  9. Study on mechanism for water pricing

    NARCIS (Netherlands)

    Van Beek, E.; Huisman, P.; Verhaeghe, R.; Van Duivendijk, J.; Wang, X.W.; Gao, F.L.; Zhang, X.M.; Ruan, B.Q.

    2002-01-01

    Water resources contribute greatly to human well being, both directly and indirectly. Water resources are irreplaceable natural resources, and are limited. However, due to a growing population and related economic development, the water demand from urban, industry and agriculture has increased

  10. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    Science.gov (United States)

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-09-23

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.

  11. Stress responses of Acinetobacter strain Y during phenol degradation.

    Science.gov (United States)

    Lin, Johnson

    2017-03-01

    Quantification of gene expression of Acinetobacter strain Y under 1000 mg/l of phenol was investigated using qPCR and proteomic analyses. The results show that Acinetobacter strain Y utilized 100 % of phenol within 18 h of exposure. The results of qPCR and proteomic analyses demonstrate a sequential expression of phenol-degrading genes of Acinetobacter strain Y via the ortho-pathway followed by the β-ketoadipate pathway. Many stress-responsive proteins such as chaperones, chaperonins, porins and the enzymes involved in the signal transduction pathway were upregulated especially in the early stage. The stressed bacteria produced more ABC-type transporters, membrane receptors and efflux pumps to mitigate the impacts of phenol stress. The functions of TCA/glyoxylate cycle and oxidative phosphorylation processes were negatively affected. Many enzymes in the gluconeogenesis pathway were upregulated. This study demonstrates bacterial strategies of Acinetobacter strain Y via the energy saving mechanisms and the coordinated control between carbon (C)- and nitrogen (N)-limitations in coping with the stress by scavenging the reactive oxygen species.

  12. Particle shape effects on the stress response of granular packings.

    Science.gov (United States)

    Athanassiadis, Athanasios G; Miskin, Marc Z; Kaplan, Paul; Rodenberg, Nicholas; Lee, Seung Hwan; Merritt, Jason; Brown, Eric; Amend, John; Lipson, Hod; Jaeger, Heinrich M

    2014-01-07

    We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

  13. Environmental stress responses in Lactococcus lactis

    NARCIS (Netherlands)

    Sanders, JW; Venema, G; Kok, J

    Bacteria can encounter a variety of physical conditions during their life, Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese.

  14. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster.

    Science.gov (United States)

    Sørensen, Jesper G; Nielsen, Morten M; Kruhøffer, Mogens; Justesen, Just; Loeschcke, Volker

    2005-01-01

    The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36 degrees C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early-upregulated, early-downregulated, and late-upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock

  15. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Water Uptake Mechanism in Crispy Bread Crust

    NARCIS (Netherlands)

    Nieuwenhuijzen, van N.H.; Meinders, M.B.J.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2008-01-01

    Crispness is an important quality characteristic of dry solid food products such as crispy rolls. Its retention is directly related to the kinetics of water uptake by the crust. In this study, a method for the evaluation of the water sorption kinetics in bread crust is proposed. Two different

  17. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  18. Chilling stress response of postemergent cotton seedlings.

    Science.gov (United States)

    DeRidder, Benjamin P; Crafts-Brandner, Steven J

    2008-11-01

    Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to postemergent 13-day-old cotton (Gossypium hirsutum L. cv. Coker 100A-glandless) seedlings. Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. For some chilled plants, the soil temperature was maintained at control level. Plant growth, water relations and net photosynthesis (P(n)) were analyzed after one or three chilling cycles and after 3 days of recovery. Three chilling cycles led to lower relative growth rate (RGR) compared with controls during the recovery period, especially for plants with chilled shoots and roots. Treatment differences in RGR were associated with net assimilation rate rather than specific leaf area. Both chilling treatments led to loss of leaf turgor during the night-to-day transition; this effect was greater for plants with chilled compared with warm roots. Chilling-induced water stress was associated with accumulation of the osmolyte glycine betaine to the same extent for both chilling treatments. Inhibition of P(n) during chilling was related to both stomatal and non-stomatal effects. P(n) fully recovered after seedlings were returned to control conditions for 3 days. We conclude that leaf expansion during the night-to-day transition was a significant factor determining the magnitude of the chilling response of postemergent cotton seedlings.

  19. The organisation of the stress response, and its relevance to chiropractors: a commentary

    Directory of Open Access Journals (Sweden)

    Hardy Katie

    2006-10-01

    Full Text Available Abstract The stress response is a natural reaction by the body, against potentially harmful stimuli to enhance the chance for survival. Persistent activation of the stress response can cause changes to homeostatic mechanisms. The study of stress neurophysiology, in the evaluation of the manifestation of disease in the body, suggests that these chronic changes have detrimental effects on sub cortical structures. Furthermore, there is much scientific support for the notion that chronic activation of supraspinal systems will lead to maladaptation of homeostatic mechanisms, causing the impairment of processes within the body, and ultimately leading to visceral disorders. The chiropractic profession for many years has alluded to chronic change of neurophysiological pathways as a potential explanation of visceral disorders, but the profession has typically described these in terms of somatovisceral or viscerosomatic reflex activity. Change in supraspinal neurophysiological efferent activity is increasingly being used to explain "stress" related disease. The chiropractic profession should consider investigating such stress responses by conducting spinal manipulative therapy trials that evaluate supraspinal effects of manipulation. Such research may help elucidate key mechanisms associated with the change of visceral disorders noted by some chiropractors following manipulative therapy.

  20. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University.......The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University....

  1. Water and Salt: from renal mechanisms to clinical disorders

    NARCIS (Netherlands)

    E.J. Hoorn (Ewout)

    2007-01-01

    textabstractChapter 1 is a brief introduction to the renal mechanisms and clinical disorders of water and sodium balance. The aims of the thesis are presented. The thesis is divided into two parts. Part A (Chapters 2 – 6) presents studies investigating the renal mechanisms of water and sodium

  2. Shiga Toxins: Intracellular Trafficking to the ER Leading to Activation of Host Cell Stress Responses

    Directory of Open Access Journals (Sweden)

    Moo-Seung Lee

    2010-06-01

    Full Text Available Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.

  3. Identification of drought, cadmium and root-lesion nematode infection stress-responsive transcription factors in ramie

    Directory of Open Access Journals (Sweden)

    Zheng Xia

    2016-01-01

    Full Text Available Drought, cadmium (Cd stress, and root lesion nematode (RLN infection are three of the most important stresses affecting ramie growth and development; therefore, ramie breeding programs focus on their management more than on any other abiotic or biotic stresses. The fact that only a small number of stress-responsive transcription factors (TFs have been identified so far is a major obstacle in the elucidation of mechanisms regulating the response to these three stresses in ramie. In this study, in order to uncover more stress-responsive TFs, a total of 179 nonredundant genes with full-length open reading frames from the MYB, AP2/ERF, bZIP, HD-ZIP, and COL families were obtained by searching for against the ramie transcriptome. Expression pattern analysis demonstrated that most of these genes showed relatively higher expression in the stem xylem and bast than in other tissues. Among these genes, 96 genes were found to be involved in responses to drought, Cd exposure, or RLN-infection. The expression of 54 of these genes was regulated by at least two stresses. These stress-responsive TFs probably have roles in the regulation of stress tolerance. The discovery of these stress-responsive TFs will be helpful for furthering our understanding of the mechanisms that regulate stress responses in ramie.

  4. Monochloramine Loss Mechanisms in Tap Water.

    Science.gov (United States)

    Zhang, Qianyi; Davies, Evan G R; Bolton, James; Liu, Yang

    2017-11-01

      Chloramination has been widely applied for drinking water disinfection, with monochloramine (NH2Cl) the dominant chloramine species. However, under neutral pH, NH2Cl can autodecompose and react with chemical components in drinking water, thus decreasing disinfection efficiency. In tap water, the NH2Cl loss rate can be influenced by temperature, pH, Cl/N molar ratio, the initial NH2Cl concentration, and the natural organic matter (NOM) concentration. A good prediction of NH2Cl loss can assist in the operation of drinking water treatment plants. In this research, a kinetic rate constant )and a reactive site fraction (S = 0.43 ± 0.06) for the reaction between free chlorine released from NH2Cl autodecoposition and tap water NOM were derived from a kinetic model to predict the NH2Cl loss under various conditions. A temperature-dependent model was also developed. The model predictions match well with the experimental results, which demonstrates the validity of the model and provides a convenient and accurate method for NH2Cl loss calculations.

  5. Epidemic spreading on networks based on stress response

    Science.gov (United States)

    Nian, Fuzhong; Yao, Shuanglong

    2017-06-01

    Based on the stress responses of individuals, the susceptible-infected-susceptible epidemic model was improved on the small-world networks and BA scale-free networks and the simulations were implemented and analyzed. Results indicate that the behaviors of individual’s stress responses could induce the epidemic spreading resistance and adaptation at the network level. This phenomenon showed that networks were learning how to adapt to the disease and the evolution process could improve their immunization to future infectious diseases and would effectively prevent the spreading of infectious diseases.

  6. Stress Response Pathways in Ameloblasts: Implications for Amelogenesis and Dental Fluorosis

    Directory of Open Access Journals (Sweden)

    John D. Bartlett

    2012-08-01

    Full Text Available Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.

  7. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum.

    Science.gov (United States)

    Kore-eda, Shin; Cushman, Mary Ann; Akselrod, Inna; Bufford, Davina; Fredrickson, Monica; Clark, Elizabeth; Cushman, John C

    2004-10-27

    The common ice plant, Mesembryanthemum crystallinum, is a halophytic (salt-loving) member of the Aizoaceae, which switches from C3 photosynthesis to Crassulacean acid metabolism (CAM) when exposed to salinity or water-deficit stress. CAM is a metabolic adaptation of photosynthetic carbon fixation that improves water use efficiency by shifting net CO2 uptake to the night, thereby reducing transpirational water loss. To improve our understanding of the molecular genetic underpinnings and control mechanisms for Crassulacean acid metabolism (CAM) and other salinity stress response adaptations, a total of 9733 expressed sequence tags (ESTs) from cDNAs derived from leaf tissues of well-watered and salinity-stressed (0.5 M NaCl for 30 and 48 h) were characterized. Clustering and assembly of these ESTs resulted in the identification of a total of 3676 tentative unique gene sequences (1249 tentative consensus sequences and 2427 singleton ESTs) expressed in leaves of ice plant under unstressed and salinity stressed conditions. The same number (2782) of ESTs from each library (total=8346 ESTs) were randomly selected and analyzed to compare expression profiles among the control and salt stressed leaf tissues. EST frequencies for transcripts encoding CAM-related enzymes, pathogenesis-related, senescence-associated, cell death-related, and stress-related proteins such as heat shock proteins (HSPs), chaperones, early light-inducible proteins, ion homeostasis, antioxidative stress, detoxification, and biosynthetic enzymes for osmoprotectants increased 2-12-fold in cDNA libraries constructed from salt stressed plants. In contrast, the frequency of ESTs encoding light-harvesting and photosystem complexes and C3 photosynthetic enzymes decreased 4-fold overall following salinity stress with transcripts for ribulose bisphosphate carboxylase/oxygenase (RuBisCO) subunits decreasing 7-fold. Moreover, stressed plants contained a higher percentage of ESTs encoding novel and/or functionally

  8. Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response1[W][OPEN

    Science.gov (United States)

    E. Stecker, Kelly; Minkoff, Benjamin B.; Sussman, Michael R.

    2014-01-01

    Elucidating how plants sense and respond to water loss is important for identifying genetic and chemical interventions that may help sustain crop yields in water-limiting environments. Currently, the molecular mechanisms involved in the initial perception and response to dehydration are not well understood. Modern mass spectrometric methods for quantifying changes in the phosphoproteome provide an opportunity to identify key phosphorylation events involved in this process. Here, we have used both untargeted and targeted isotope-assisted mass spectrometric methods of phosphopeptide quantitation to characterize proteins in Arabidopsis (Arabidopsis thaliana) whose degree of phosphorylation is rapidly altered by hyperosmotic treatment. Thus, protein phosphorylation events responsive to 5 min of 0.3 m mannitol treatment were first identified using 15N metabolic labeling and untargeted mass spectrometry with a high-resolution ion-trap instrument. The results from these discovery experiments were then validated using targeted Selected Reaction Monitoring mass spectrometry with a triple quadrupole. Targeted Selected Reaction Monitoring experiments were conducted with plants treated under nine different environmental perturbations to determine whether the phosphorylation changes were specific for osmosignaling or involved cross talk with other signaling pathways. The results indicate that regulatory proteins such as members of the mitogen-activated protein kinase family are specifically phosphorylated in response to osmotic stress. Proteins involved in 5′ messenger RNA decapping and phosphatidylinositol 3,5-bisphosphate synthesis were also identified as targets of dehydration-induced phosphoregulation. The results of these experiments demonstrate the utility of targeted phosphoproteomic analysis in understanding protein regulation networks and provide new insight into cellular processes involved in the osmotic stress response. PMID:24808101

  9. The stress response to sensory contact in mice: genotype effect of the stimulus animal.

    Science.gov (United States)

    Veenema, Alexa H; Sijtsma, Betty; Koolhaas, Jaap M; de Kloet, E Ronald

    2005-07-01

    Male wild house mice selectively bred for long and short attack latency (LAL and SAL, respectively) were previously shown to respond differently to chronic sensory contact stress with another SAL male. In the present study, it was investigated whether the genotype of the opponent played a role in the differential stress response of LAL and SAL mice. To this end, a LAL or SAL male was housed either under standard conditions (i.e. with a female), single, or in sensory contact with another LAL or SAL male for a period of 5 days. This period was chosen in order to study stress response adaptations. Although social isolation (singly housed) already induced changes in some physiological markers, in particular in LAL mice, the highest number of stress-induced changes was observed in LAL and SAL males living opposite a male of the other genotype. This was indicated in LAL mice by higher corticosterone levels, adrenal hypertrophy, and reduced seminal vesicle weight, and in SAL mice by higher ACTH levels and adrenal hypertrophy. Some mechanisms through which LAL and SAL mice could perceive each other as being different are proposed in the discussion, but it remains unclear why these mice show a differential stress response depending on the genotype of the opponent. In conclusion, it was demonstrated that a psychosocial stressor triggered line-specific changes in LAL and SAL mice, which were shown to be determined by the genotype of the stressor. These results open a new avenue to investigate mechanisms underlying genotypic-dependent stress responses.

  10. The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Wook Han

    2017-04-01

    Full Text Available Drought stress from soil or air limits plant growth and development, leading to a reduction in crop productivity. Several E3 ligases positively or negatively regulate the drought stress response. In the present study, we show that the pepper (Capsicum annuum Drought Induced RING type E3 ligase 1, CaDIR1, regulates the drought stress response via abscisic acid (ABA-mediated signaling. CaDIR1 contains a C3HC4-type RING finger domain in the N-terminal region; this domain functions during protein degradation via attachment of ubiquitins to the substrate target proteins. The expression levels of the CaDIR1 gene were suppressed and induced by ABA and drought treatments, respectively. We conducted loss-of-function and gain-of function genetic studies to examine the in vivo function of CaDIR1 in response to ABA and drought stress. CaDIR1-silenced pepper plants displayed a drought-tolerant phenotype characterized by a low level of transpirational water loss via increased stomatal closure and elevated leaf temperatures. CaDIR1-overexpressing (OX Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germination stage, but an ABA-hyposensitive phenotype—characterized by decreased stomatal closure and reduced leaf temperatures—at the adult stage. Moreover, adult CaDIR1-OX plants exhibited a drought-sensitive phenotype characterized by high levels of transpirational water loss. Our results indicate that CaDIR1 functions as a negative regulator of the drought stress response via ABA-mediated signaling. Our findings provide a valuable insight into the plant defense mechanism that operates during drought stress.

  11. Using Thermodynamic Degradation Approach to Quantify Human Stress Response

    Directory of Open Access Journals (Sweden)

    Satish Boregowda

    2017-01-01

    Full Text Available The present study provides a thermodynamic degradation approach to model human stress response. Finger skin temperature was used as an indicator of stress response to a stressor (or stressful event followed by a recovery. The entropy change (ΔS is calculated using heat transfer (δQ from the peripheral skin and finger skin temperature (Tf. It was hypothesized that the human stress response, as evidenced by finger skin temperature change, is a quasi-static process. The entropy approach is demonstrated using data from a medical school experimental study. The finger skin temperature was measured under three conditions (relaxation, stressor task, and recovery during the physiological test profile. The entropy change (ΔS is postulated as entropy damage (ΔSD, which is a metric for measuring the aging or system degradation. The aging-ratio, Aaging-ratio, that is, the ratio of entropy change due to stressor to that of recovery, is presented for both male and female subjects. The statistical t-tests demonstrate statistical significance in human stress response to stressor and recovery states within and between male and female subjects. This novel approach could be valuable to medical researchers, particularly in the field of occupational health to evaluate human exposure to stressful environments.

  12. The endoplasmic reticulum stress response and diabetic kidney disease

    Science.gov (United States)

    Sharma, Kumar

    2011-01-01

    The endoplasmic reticulum (ER) folds and modifies proteins; however, during conditions of cellular stress, unfolded proteins accumulate in the ER and activate the unfolded protein response (UPR). The UPR, also referred to as the ER stress response, activates three distinct signaling cascades that are designed to globally reduce transcription and translation. The three major arms of the mammalian UPR include 1) protein kinase RNA (PKR)-like ER kinase (PERK), 2) inositol-requiring protein-1 (IRE1α), and 3) activating transcription factor-6 (ATF6) pathways. The PERK pathway rapidly attenuates protein translation, whereas the ATF6 and IRE1α cascades transcriptionally upregulate ER chaperone genes that promote proper folding and ER-associated degradation (ERAD) of proteins. This integrated response in turn allows the folding machinery of the ER to catch up with the backlog of unfolded proteins. The ER stress response plays a role in a number of pathophysiological processes, including pancreatic β-cell failure and apoptosis. The goals of the current review are to familiarize investigators with cellular and tissue activation of this response in the rodent and human diabetic kidney. Additionally, we will review therapeutic modulators of the ER stress response and discuss their efficacy in models of diabetic kidney disease. The ER stress response has both protective and deleterious features. A better understanding of the molecular pathways regulated during this process in a cell- and disease-specific manner could reveal novel therapeutic strategies in chronic renal diseases, including diabetic kidney disease. PMID:21345978

  13. Cortisol stress responses and children's behavioral functioning at school

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    The present study investigated whether cortisol stress responses of 6-year-olds were associated with their behavioral functioning at school. Additionally, the moderating role of stress in the family environment was examined. To this end, 149 healthy children (Mage = 6.09 years; 70 girls)

  14. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Science.gov (United States)

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  15. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  16. Basal transcription machinery: role in regulation of stress response ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... ... logic behind the suggestion that like in prokaryotes, eukaryotes also have a common functional unit in the transcription machinery through which the stress specific transcription factors regulate rapid and highly controlled induction of gene expression associated with generalized stress response and point ...

  17. Proteomics-based dissection of biotic stress responsive proteins in ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... digestion, MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are ... identified as biotic stress responses proteins directly coupled to disease and pathogen infection on wheat. Nevertheless ... and animals (McMullen et al., 1997). Host resistance is.

  18. Towards establishment of a rice stress response interactome.

    Directory of Open Access Journals (Sweden)

    Young-Su Seo

    2011-04-01

    Full Text Available Rice (Oryza sativa is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.

  19. Towards establishment of a rice stress response interactome.

    Science.gov (United States)

    Seo, Young-Su; Chern, Mawsheng; Bartley, Laura E; Han, Muho; Jung, Ki-Hong; Lee, Insuk; Walia, Harkamal; Richter, Todd; Xu, Xia; Cao, Peijian; Bai, Wei; Ramanan, Rajeshwari; Amonpant, Fawn; Arul, Loganathan; Canlas, Patrick E; Ruan, Randy; Park, Chang-Jin; Chen, Xuewei; Hwang, Sohyun; Jeon, Jong-Seong; Ronald, Pamela C

    2011-04-01

    Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.

  20. Stress response signaling and virulence: insights from entomopathogenic fungi.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2015-08-01

    The Ascomycete fungal insect pathogens, Beauveria and Metarhizium spp. have emerged as model systems with which to probe diverse aspects of fungal growth, stress response, and pathogenesis. Due to the availability of genomic resources and the development of robust methods for genetic manipulation, the last 5 years have witnessed a rapid increase in the molecular characterization of genes and their pathways involved in stress response and signal transduction in these fungi. These studies have been performed mainly via characterization of gene deletion/knockout mutants and have included the targeting of general proteins involved in stress response and/or virulence, e.g. catalases, superoxide dismutases, and osmolyte balance maintenance enzymes, membrane proteins and signaling pathways including GPI anchored proteins and G-protein coupled membrane receptors, MAPK pathways, e.g. (i) the pheromone/nutrient sensing, Fus3/Kss1, (ii) the cell wall integrity, Mpk1, and (iii) the high osmolarity, Hog1, the PKA/adenyl cyclase pathway, and various downstream transcription factors, e.g. Msn2, CreA and Pac1. Here, we will discuss current research that strongly suggests extensive underlying contributions of these biochemical and signaling pathways to both abiotic stress response and virulence.

  1. Basal transcription machinery: role in regulation of stress response ...

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-29

    Mar 29, 2007 ... Stress can be broadly defined as any unfavourable condition. A given condition may or may not be stressful to an organism hence the stress response elicited by a given condition is dependent on the organism as well as the stressor. The stresses in general can be categorized into different groups.

  2. Early life experience shapes the functional organization of stress-responsive visceral circuits.

    Science.gov (United States)

    Rinaman, Linda; Banihashemi, Layla; Koehnle, Thomas J

    2011-09-26

    Emotions are closely tied to changes in autonomic (i.e., visceral motor) function, and interoceptive sensory feedback from body to brain exerts powerful modulatory control over motivation, affect, and stress responsiveness. This manuscript reviews evidence that early life experience can shape the structure and function of central visceral circuits that underlie behavioral and physiological responses to emotive and stressful events. The review begins with a general discussion of descending autonomic and ascending visceral sensory pathways within the brain, and then summarizes what is known about the postnatal development of these central visceral circuits in rats. Evidence is then presented to support the view that early life experience, particularly maternal care, can modify the developmental assembly and structure of these circuits in a way that impacts later stress responsiveness and emotional behavior. The review concludes by presenting a working hypothesis that endogenous cholecystokinin signaling and subsequent recruitment of gastric vagal sensory inputs to the caudal brainstem may be an important mechanism by which maternal care influences visceral circuit development in rat pups. Early life experience may contribute to meaningful individual differences in emotionality and stress responsiveness by shaping the postnatal developmental trajectory of central visceral circuits. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Measuring stress responses in postpartum mothers: perspectives from studies in human and animal populations.

    Science.gov (United States)

    Tu, Mai Thanh; Lupien, Sonia J; Walker, Claire-Dominique

    2005-03-01

    Reduced hypothalamic-pituitary-adrenal (HPA) responses to stress during the last week of pregnancy and lactation have been consistently observed in rat studies. Several contributing factors have been proposed for this phenomenon in lactation, including the suckling stimulus from the pups, hormones (oxytocin and prolactin) and opioids, a decrease in the ability of noradrenaline to potentiate hypothalamic responses and changes in pituitary responsiveness to ACTH secretagogues (AVP and CRF). In contrast to this vast literature using the rat model, only few studies have addressed this issue in the human population. The consensus is that women engaging in breastfeeding activities exhibit reduced anxiety, although the reductions in neuroendocrine and autonomic responses to stressors are variable, in part because of the different nature of the stressors used. Further work is required to investigate how additional factors, such as maternal parity or emotional salience of the stressor can affect stress responsiveness in postpartum women. Here, we review first the findings regarding stress responsiveness during lactation in both rat and human studies, and then discuss potential research avenues and methodological issues that could be the lead to future research protocols in human subjects. Knowing the reciprocal relationship in the mother-infant dyad, it is clear that investigation of the mechanisms regulating stress responses and mental health in postpartum mothers can only be beneficial to the development of the infant.

  4. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  5. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress.

    Directory of Open Access Journals (Sweden)

    Erika Shor

    Full Text Available Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.

  6. Genome wide analysis of common and specific stress responses in adult drosophila melanogaster

    Science.gov (United States)

    Girardot, Fabrice; Monnier, Véronique; Tricoire, Hervé

    2004-01-01

    Background During their life, multicellular organisms are challenged with oxidative stress. It is generated by several reactive oxygen species (ROS), may limit lifespan and has been related to several human diseases. ROS can generate a wide variety of defects in many cellular components and thus the response of the organism challenged with oxidative stress may share some features with other stress responses. Conversely, in spite of recent progress, a complete functional analysis of the transcriptional responses to different oxidative stresses in model organisms is still missing. In addition, the functional significance of observed transcriptional changes is still elusive. Results We used oligonucleotide microarrays to address the specificities of transcriptional responses of adult Drosophila to different stresses induced by paraquat and H2O2, two oxidative stressors, and by tunicamycin which induces an endoplasmic reticulum (ER) stress. Both specific and common responses to the three stressors were observed and whole genome functional analysis identified several important classes of stress responsive genes. Within some functional classes, we observed that isozymes do not all behave similarly, which may reflect unsuspected functional specificities. Moreover, genetic experiments performed on a subset of lines bearing mutations in genes identified in microarray experiments showed that a significant number of these mutations may affect resistance of adult Drosophila to oxidative stress. Conclusions A long term common stress response to paraquat- or H2O2-induced oxidative stresses and ER stress is observed for a significant number of genes. Besides this common response, the unexpected complexity of the stress responses to oxidative and ER stresses in Drosophila, suggest significant specificities in protective properties between genes associated to the same functional classes. According to our functional analysis, a large part of the genome may play a role in protective

  7. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  8. Redox homeostasis and cellular stress response in aging and neurodegeneration.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Lentile, Riccardo; Stella, A M Giuffrida; Butterfield, D Allan

    2010-01-01

    pharmacological agents capable of inducing HSR. L: -Acetylcarnitine (LAC) is proposed as a therapeutic agent for several neurodegenerative disorders and also current evidence suggests that the compound may play a critical role in the modulation of cellular stress response in health and disease conditions. Here, we review the emerging salient concepts highlighting the pathways of neurodegeneration and the role of LAC in modulating the redox-dependent mechanisms responsible for the upregulation of vitagenes in brain that leads to the enhancement of stress tolerance in brain.

  9. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  10. How age, sex and genotype shape the stress response

    Directory of Open Access Journals (Sweden)

    Ashley Novais

    2017-02-01

    Full Text Available Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

  11. A transcription factor hierarchy defines an environmental stress response network.

    Science.gov (United States)

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  12. The integrated stress response system in cardiovascular disease.

    Science.gov (United States)

    Santos-Ribeiro, Diana; Godinas, Laurent; Pilette, Charles; Perros, Frédéric

    2018-02-27

    The integrated stress response system represents an ancillary, extremely conserved signalling pathway present in virtually all eukaryotic cells, which plays an important part in the pathophysiology of several disorders such as cancer and neurodegeneration. However, its role in the cardiovascular system remains largely elusive. Hence, this review aims to acknowledge recent findings regarding the action of the eIF2α kinases in the cardiovascular system and their role in the pathophysiology of related disorders. Copyright © 2018. Published by Elsevier Ltd.

  13. Endocrine stress responses and risk of type 2 diabetes mellitus.

    Science.gov (United States)

    Siddiqui, Azaz; Madhu, S V; Sharma, S B; Desai, N G

    2015-08-13

    This study was carried to ascertain whether stress responses are associated with abnormalities in glucose tolerance, insulin sensitivity and pancreatic beta cell function and risk of type 2 Diabetes Mellitus. Salivary cortisol, a marker of hypothalamic-pituitary-adrenal (HPA) axis and salivary α-amylase, a marker of sympathetic nervous system (SNS) were compared in 125 subjects of newly detected diabetes mellitus (NDDM) and normal glucose tolerance (NGT) subjects who were diagnosed on the basis of oral glucose tolerance test (OGTT). Assessment of stress in them was done through stress scales - presumptive stressful life events scale (PSLES), perceived stress scale (PSS) and sense of coherence (SOC) and correlated with these and other stress response markers. Significantly higher 10 pm salivary cortisol and post dexamethasone salivary cortisol were found in NDDM subjects as compared to NGT. 10 pm salivary cortisol correlated significantly with fasting plasma glucose (FPG), 2 h plasma glucose (2h PG) and glycated hemoglobin (HbA1c) while post dex salivary cortisol correlated with 2h PG, HbA1c and salivary α-amylase with 2h PG. Stepwise logistic regression analysis showed that body mass index (OR: 1.840), SOC (OR: 0.688) and 10 pm salivary cortisol (OR: 1.427) were the strongest predictors of NDDM. The results of the present study indicate that NDDM subjects display significantly higher chronic stress and stress responses when compared to subjects with NGT. Chronic stress and endocrine stress responses are significantly associated with glucose intolerance, insulin resistance and diabetes mellitus.

  14. Endocrine stress responses and risk of type 2 diabetes mellitus.

    Science.gov (United States)

    Siddiqui, Azaz; Madhu, S V; Sharma, S B; Desai, N G

    2015-01-01

    This study was carried to ascertain whether stress responses are associated with abnormalities in glucose tolerance, insulin sensitivity and pancreatic beta cell function and risk of type 2 Diabetes Mellitus. Salivary cortisol, a marker of hypothalamic-pituitary-adrenal (HPA) axis and salivary α-amylase, a marker of sympathetic nervous system (SNS) were compared in 125 subjects of newly detected diabetes mellitus (NDDM) and normal glucose tolerance (NGT) subjects who were diagnosed on the basis of oral glucose tolerance test (OGTT). Assessment of stress in them was done through stress scales - presumptive stressful life events scale (PSLES), perceived stress scale (PSS) and sense of coherence (SOC) and correlated with these and other stress response markers. Significantly higher 10 pm salivary cortisol and post dexamethasone salivary cortisol were found in NDDM subjects as compared to NGT. 10 pm salivary cortisol correlated significantly with fasting plasma glucose (FPG), 2 h plasma glucose (2h PG) and glycated hemoglobin (HbA1c) while post dex salivary cortisol correlated with 2h PG, HbA1c and salivary α-amylase with 2h PG. Stepwise logistic regression analysis showed that body mass index (OR: 1.840), SOC (OR: 0.688) and 10 pm salivary cortisol (OR: 1.427) were the strongest predictors of NDDM. The results of the present study indicate that NDDM subjects display significantly higher chronic stress and stress responses when compared to subjects with NGT. Chronic stress and endocrine stress responses are significantly associated with glucose intolerance, insulin resistance and diabetes mellitus.

  15. Cortisol stress responses and children's behavioral functioning at school.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-03-01

    The present study investigated whether cortisol stress responses of 6-year-olds were associated with their behavioral functioning at school. Additionally, the moderating role of stress in the family environment was examined. To this end, 149 healthy children (Mage  = 6.09 years; 70 girls) participated in an age-appropriate innovative social evaluative stress test. Saliva cortisol samples were collected six times during the stress test to calculate two indices of the cortisol stress response: cortisol stress reactivity and total stress cortisol. Teachers assessed children's internalizing, externalizing, and prosocial behaviors. Stress in the family environment was operationalized as maternally reported parenting stress. Results indicated a significant increase in cortisol concentrations in response to the stressor. No significant associations were found between cortisol stress responses and behavioral functioning at school and there was no evidence for moderation by maternal parenting stress. Potential theoretical and methodological explanations for these results are discussed. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  16. Nuclear RNA export and its importance in abiotic stress responses of plants.

    Science.gov (United States)

    Chinnusamy, V; Gong, Z; Zhu, J-K

    2008-01-01

    Transduction of developmental and environmental cues into the nucleus to induce transcription and the export of RNAs to the cytoplasm through the nuclear pore complex (NPC) play pivotal roles in regulation of gene expression. The process of bulk export of mRNAs from nucleus to cytoplasm is highly conserved across eukaryotes. Assembly of export-competent mRNA ribonucleoprotein (mRNP) is coupled with both transcription and mRNA processing. The export-competent mRNP consists of mRNAs and a dozen nucleocytoplasmic shuttling nuclear proteins, including RNA export factors (Mex67-Mtr2 heterodimer, Npl3), poly(A)-binding proteins, DEAD-box protein 5 (Dbp5), and nucleoporins (NUPs) in yeast. Mobile NUPs help docking of mRNP to the NPC nuclear basket. A partially unfolded mRNP complex appears to be pulled through the NPC by using energy from Dbp5-catalyzed ATP hydrolysis. Dbp5 probably catalyzes the release of mRNA from mRNP in the cytoplasm. In contrast to bulk export of mRNAs by a Mex67-Mtr2/Npl3-dependent pathway, a specific subset of mRNA export under stress and export of microRNAs are mediated through the karyopherin (importin beta) family of proteins in a Ran-GTPase-dependent pathway. Our knowledge of mRNA export mechanisms in flowering plants is in its infancy. Some proteins of the NUP107-160 complex, NUPs and DEAD-box proteins (DBPs), have been studied in flowering plants. Arabidopsis NUP160/SAR1 plays a critical role in mRNA export, regulation of flowering, and hormone and abiotic stress responses, whereas NUP96/ SAR3/MOS3 is required for mRNA export to modulate hormonal and biotic stress responses. DEAD-box proteins have been implicated in mRNA export and abiotic stress response of yeast and higher plants. Arabidopsis DBP CRYOPHYTE/LOS4 plays an important role in mRNA export, abiotic stress response, germination, and plant development. Further studies on various components of nuclear mRNA export in plants during nonstress and stress conditions will be necessary to

  17. Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response.

    Directory of Open Access Journals (Sweden)

    Dezhou Cui

    Full Text Available Salinity is a major abiotic stress that limits plant productivity and quality throughout the world. Roots are the sites of salt uptake. To better understand salt stress responses in maize, we performed a comparative proteomic analysis of seedling roots from the salt-tolerant genotype F63 and the salt-sensitive genotype F35 under 160 mM NaCl treatment for 2 days. Under salinity conditions, the shoot fresh weight and relative water content were significantly higher in F63 than in F35, while the osmotic potential was significantly lower and the reduction of the K+/Na+ ratio was significantly less pronounced in F63 than in F35. Using an iTRAQ approach, twenty-eight proteins showed more than 2.0- fold changes in abundance and were regarded as salt-responsive proteins. Among them, twenty-two were specifically regulated in F63 but remained constant in F35. These proteins were mainly involved in signal processing, water conservation, protein synthesis and biotic cross-tolerance, and could be the major contributors to the tolerant genotype of F63. Functional analysis of a salt-responsive protein was performed in yeast as a case study to confirm the salt-related functions of detected proteins. Taken together, the results of this study may be helpful for further elucidating salt tolerance mechanisms in maize.

  18. Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup.

    Science.gov (United States)

    Uren Webster, Tamsyn M; Santos, Eduarda M

    2015-01-31

    Glyphosate, the active ingredient in Roundup formulations, is the most widely used herbicide worldwide, and as a result contaminates surface waters and has been detected in food residues, drinking water and human urine, raising concerns for potential environmental and human health impacts. Research has shown that glyphosate and Roundup can induce a broad range of biological effects in exposed organisms, particularly via generation of oxidative stress. However, there has been no comprehensive investigation of the global molecular mechanisms of toxicity of glyphosate and Roundup for any species. We aimed to characterise and compare the global mechanisms of toxicity of glyphosate and Roundup in the liver of brown trout (Salmo trutta), an ecologically and economically important vertebrate species, using RNA-seq on an Illumina HiSeq 2500 platform. To do this, we exposed juvenile female brown trout to 0, 0.01, 0.5 and 10 mg/L of glyphosate and Roundup (glyphosate acid equivalent) for 14 days, and sequenced 6 replicate liver samples from each treatment. We assembled the brown trout transcriptome using an optimised de novo approach, and subsequent differential expression analysis identified a total of 1020 differentially-regulated transcripts across all treatments. These included transcripts encoding components of the antioxidant system, a number of stress-response proteins and pro-apoptotic signalling molecules. Functional analysis also revealed over-representation of pathways involved in regulating of cell-proliferation and turnover, and up-regulation of energy metabolism and other metabolic processes. These transcriptional changes are consistent with generation of oxidative stress and the widespread induction of compensatory cellular stress response pathways. The mechanisms of toxicity identified were similar across both glyphosate and Roundup treatments, including for environmentally relevant concentrations. The significant alterations in transcript expression observed

  19. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  20. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.

  1. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again.

    Science.gov (United States)

    Mills, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Ross, R Paul

    2011-08-30

    Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.

  2. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.)

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408

  3. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  4. Temperature Insensitivity and Behavioural Reduction of the Physiological Stress Response to Longline Capture by the Gummy Shark, Mustelus antarcticus.

    Directory of Open Access Journals (Sweden)

    Leonardo Guida

    Full Text Available Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32-241 min as measured by hook timers or time depth recorders (TDR in SSTs ranging 12-20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals' landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies.

  5. Systems microscopy to unravel cellular stress response signalling in drug induced liver injury

    NARCIS (Netherlands)

    Wink, Steven

    2015-01-01

    Toxicological insults are met by cellular adaptive stress response pathway activation. We find that activation of adaptive stress responses occur well before the typical ultimate outcome of chemical cell injury. To increase our understanding of chemically-induced adaptive stress response pathway

  6. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  7. ROS regulation during abiotic stress responses in crop plants

    Directory of Open Access Journals (Sweden)

    Jun eYou

    2015-12-01

    Full Text Available Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS including hydrogen peroxide (H2O2, superoxide anions (O2•‾, hydroxyl radical (OH• and singlet oxygen (1O2 are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

  8. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  9. Negative affectivity moderated by BDNF and stress response.

    Science.gov (United States)

    Perea, C S; Paternina, A C; Gomez, Y; Lattig, M C

    2012-02-01

    Gene×environment (G×E) interactions are known to predict susceptibility to disorders such as depression and anxiety. Adverse experiences in childhood and number of stressful life events (SLEs) have been widely studied as environmental risk factors; however, SLE response has not yet been studied. Here we present a first attempt at the analysis of the interaction between the response to personal and academic stressful events during different life stages and the gene polymorphisms 5-HTTLPR, 5-HTTVNTR (STin2), HTR1A C(-1019)G, and BDNF Val66Met in the prediction of negative affectivity (NA). Standardized questionnaires (ST-DEP and STAI) were used to measure negative affectivity derived from depression and anxiety in a sample of 303 undergraduate students. Response to stressful events during childhood, high school and college years was evaluated together with a self-report personal history form. Multiple logistic regression analysis was used to perform association and G×E analysis. Negative affectivity is strongly associated with childhood maltreatment and stress response. Gene associations were observed between 5-HTTVNTR allele 12 and the S_12 haplotype with NA derived from high scores in both depression and anxiety. The BDNF gene variant was not associated with NA derived from depression or anxiety alone, but it was associated with the comorbid presentation. A significant G×E interaction was observed between the BDNF Val66Met and stress response during childhood and college years although the risk for negative affectivity conferred by stress response during childhood was only significant among the Met allele carriers, while stress response during college years was a significant risk factor regardless of the BDNF Val66Met genotype. A significant G×E interaction was also found between the HTR1A C(-1019)G variant and childhood maltreatment. The study has two main limitations, sample size is low and retrospective recognition of SLEs is a concern. Altogether, our

  10. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  11. Mechanical and conformational aspects of protein layers on water

    NARCIS (Netherlands)

    Martin, A.H.

    2003-01-01

    Keywords: protein film, protein conformation, air/water interface, network formation, foam formation, foam stability, interfacial rheology, fracture behaviour.The aim of this thesis was to obtain systematic information on the importance of mechanical and conformational aspects for the

  12. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  13. De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment.

    Science.gov (United States)

    Luria, Neta; Sela, Noa; Yaari, Mor; Feygenberg, Oleg; Kobiler, Ilana; Lers, Amnon; Prusky, Dov

    2014-11-05

    The mango belongs to the genus Mangifera, consisting of numerous tropical fruiting trees in the flowering plant family, Anacardiaceae. Postharvest treatment by hot water brushing (HWB) for 15-20 s was introduced commercially to improve fruit quality and reduce postharvest disease. This treatment enabled successful storage for 3-4 weeks at 12°C, with improved color and reduced disease development, but it enhanced lenticel discoloration on the fruit peel. We investigated global gene expression induced in fruit peel by HWB treatment, and identified key genes involved in mechanisms potentially associated with fruit resistance to pathogens, peel color improvement, and development of lenticel discoloration; this might explain the fruit's phenotypic responses. The mango transcriptome assembly was created and characterized by application of RNA-seq to fruit-peel samples. RNA-seq-based gene-expression profiling identified three main groups of genes associated with HWB treatment: 1) genes involved with biotic and abiotic stress responses and pathogen-defense mechanisms, which were highly expressed; 2) genes associated with chlorophyll degradation and photosynthesis, which showed transient and low expression; and 3) genes involved with sugar and flavonoid metabolism, which were highly expressed. We describe a new transcriptome of mango fruit peel of cultivar Shelly. The existence of three main groups of genes that were differentially expressed following HWB treatment suggests a molecular basis for the biochemical and physiological consequences of the postharvest HWB treatment, including resistance to pathogens, improved color development, and occurrence of lenticel discoloration.

  14. FoxO and stress responses in the cnidarian Hydra vulgaris.

    Directory of Open Access Journals (Sweden)

    Diane Bridge

    Full Text Available BACKGROUND: In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. METHODS/PRINCIPAL FINDINGS: We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. CONCLUSIONS: These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals.

  15. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  16. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  17. Stress responses and conditioning effects in mesothelial cells exposed to peritoneal dialysis fluid.

    Science.gov (United States)

    Kratochwill, Klaus; Lechner, Michael; Siehs, Christian; Lederhuber, Hans C; Rehulka, Pavel; Endemann, Michaela; Kasper, David C; Herkner, Kurt R; Mayer, Bernd; Rizzi, Andreas; Aufricht, Christoph

    2009-04-01

    Renal replacement therapy by peritoneal dialysis is frequently complicated by technical failure. Peritoneal dialysis fluids (PDF) cause injury to the peritoneal mesothelial cell layer due to their cytotoxicity. As only isolated elements of the involved cellular processes have been studied before, we aimed at a global assessment of the mesothelial stress response to PDF. Following single or repeated exposure to PDF or control medium, proteomics and bioinformatics techniques were combined to study effects in mesothelial cells (MeT-5A). Protein expression was assessed by two-dimensional gel electrophoresis, and significantly altered spots were identified by MALDI-TOF MS and MS2 techniques. The lists of experimentally derived candidate proteins were expanded by a next neighbor approach and analyzed for significantly enriched biological processes. To address the problem of an unknown portion of false positive spots in 2DGE, only proteins showing significant p-values on both levels were further interpreted. Single PDF exposure resulted in reduction of biological processes in favor of reparative responses, including protein metabolism, modification and folding, with chaperones as a major subgroup. The observed biological processes triggered by this acute PDF exposure mainly contained functionally interwoven multitasking proteins contributing as well to cytoskeletal reorganization and defense mechanisms. Repeated PDF exposure resulted in attenuated protein regulation, reflecting inhibition of stress responses by high levels of preinduced chaperones. The identified proteins were less attributable to acute cellular injury but rather to specialized functions with a reduced number of involved multitasking proteins. This finding agrees well with the concept of conditioning effects and cytoprotection. In conclusion, this study describes the reprogrammed proteome of mesothelial cells during recovery from PDF exposure and adaption to repetitive stress. A broad stress response with

  18. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    Science.gov (United States)

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.

  19. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.

    Science.gov (United States)

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2008-03-19

    This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of

  20. Quantifying the Stress Responses of Brassica Rapa Genotypes, With Experimental Drought in Two Nitrogen Treatments

    Science.gov (United States)

    Hickerson, J. L.; Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Weinig, C.

    2014-12-01

    In a greenhouse study designed to quantify and compare stress responses of four genotypes of Brassica rapa, broccolette (bro), cabbage (cab), turnip (tur), and oil, leaf water potential and net CO2 assimilations were measured. Individuals from each genotype, grown either with high or low nitrogen, were exposed to experimental drought of the same duration. One hypothesis was that the genotypes would differ significantly in their responses to periodic drought. The other hypothesis was that the nitrogen treatment versus no nitrogen treatment would play a significant role in the stress responses during drought. It would be expected that the nitrogen treated would have greater dry leaf mass. A LI-6400 XT portable photosynthesis system was used to obtain A/Ci curves (net CO2 assimilation rate versus substomatal CO2) for each treatment group. Predawn and midday water potentials were obtained throughout the hydrated and drought periods using a Model 670 pressure chamber. The dry leaf mass was significantly greater among the high nitrogen group versus the low nitrogen group for each genotype. Nitrogen and genotype were both determinants in variation of water potentials and net CO2 assimilation. Bro and cab genotypes with high nitrogen showed the highest net CO2 assimilation rates during hydration, but the assimilation rates dropped to the lowest during droughts. The water potentials for bro and cab were lower than values for tur and oil. Nitrogen treated genotypes had lower water potentials, but higher net CO2 assimilation rates. Bayesian ecophysiological modeling with the TREES model showed significant differences in trait expression, quantified in terms of differences in model parameter posteriors, among the four genotypes.

  1. Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels.

    Science.gov (United States)

    Burraco, Pablo; Gomez-Mestre, Ivan

    Natural and anthropogenic disturbances cause profound alterations in organisms, inducing physiological adjustments to avoid, reduce, or remedy the impact of disturbances. In vertebrates, the stress response is regulated via neuroendocrine pathways, including the hypothalamic-pituitary-interrenal axis that regulates the secretion of glucocorticoids. Glucocorticoids have cascading effects on multiple physiological pathways, affecting the metabolic rate, reactive oxygen species production, or immune system. Determining the extent to which natural and anthropogenic environmental factors induce stress responses in vertebrates is of great importance in ecology and conservation biology. Here we study the physiological stress response in spadefoot toad tadpoles (Pelobates cultripes) against three levels of a series of natural and anthropogenic stressors common to many aquatic systems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5), predators (absent, native, and invasive), and temperature (21°, 25°, and 29°C). The physiological stress response was assessed examining corticosterone levels, standard metabolic rate, activity of antioxidant enzymes, oxidative cellular damage in lipids, and immunological status. We found that common stressors substantially altered the physiological state of tadpoles. In particular, salinity and herbicides cause dramatic physiological changes in tadpoles. Moreover, tadpoles reduced corticosterone levels in the presence of natural predators but did not do so against invasive predators, indicating a lack of innate recognition. Corticosterone and the antioxidant enzyme glutathione reductase were the most sensitive parameters to stress in this study. Anthropogenic perturbations of aquatic systems pose serious threats to larval amphibians even at nonlethal concentrations, judging from the marked physiological stress responses generated, and reveal the importance of

  2. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. MOF maintains transcriptional programs regulating cellular stress response.

    Science.gov (United States)

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  4. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  5. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  6. Engineering abiotic stress response in plants for biomass production.

    Science.gov (United States)

    Joshi, Rohit; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2018-01-16

    One of the major challenges in today's agriculture is to achieve enhanced plant growth and biomass even under adverse environmental conditions. Recent advancements in genetics and molecular biology have enabled identification of a complex signaling network contributing towards plant growth and development on the one hand and abiotic stress response on the other. As an outcome of these studies, three major approaches have been identified having a potential to improve biomass production in plants under abiotic stress conditions. These approaches deal with having changes in (i) plant-microbe interactions, (ii) cell wall biosynthesis, and (iii) phytohormone levels. In addition, and at the same time, employing functional genomics and genetics-based approaches, a very large number of genes have been identified which play a key role in abiotic stress tolerance. Our review is an attempt to unveil the crosstalk between the transcriptional circuitries for biomass production and abiotic stress response that has just started emerging. This knowledge may serve as a valuable resource to eventually custom design the crop plants for higher biomass production in a more sustainable manner, in marginal lands under variable climatic conditions. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    Science.gov (United States)

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Performance test of Mechanical Sodium Pump with Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang [SAM JIN Industrial Co. LTD., Chunan (Korea, Republic of)

    2015-10-15

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  9. Comparative proteomics exploring the molecular mechanism of eutrophic water purification using water hyacinth (Eichhornia crassipes).

    Science.gov (United States)

    Li, Xiong; Xi, Houcheng; Sun, Xudong; Yang, Yunqiang; Yang, Shihai; Zhou, Yanli; Zhou, Xinmao; Yang, Yongping

    2015-06-01

    Eutrophication is a serious threat to ecosystem stability and use of water resources worldwide. Accordingly, physical, chemical, and biological technologies have been developed to treat eutrophic water. Phytoremediation has attracted a great deal of attention, and water hyacinth (Eichhornia crassipes) is regarded as one of the best plants for purification of eutrophic water. Previous studies have shown that water hyacinths remove nitrogen (N) and phosphorus (P) via diverse processes and that they can inhibit the growth of algae. However, the molecular mechanisms responsible for these processes, especially the role of proteins, are unknown. In this study, we applied a proteomics approach to investigate the protein dynamics of water hyacinth under three eutrophication levels. The results suggested that proteins with various functions, including response to stress, N and P metabolic pathways, synthesis and secretion, photosynthesis, biosynthesis, and energy metabolism, were involved in regulating water hyacinth to endure the excess-nutrient environment, remove N and P, and inhibit algal growth. The results help us understand the mechanism of purification of eutrophic water by water hyacinth and supply a theoretical basis for improving techniques for phytoremediation of polluted water.

  10. Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans.

    Science.gov (United States)

    Igual Gil, Carla; Jarius, Mirko; von Kries, Jens P; Rohlfing, Anne-Katrin

    2017-01-01

    Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species.

  11. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. The role of ER stress response on ionizing radiation-induced apoptosis in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Kim, Kwang Seok; Woo, Sang Keun; Lee, Yong Jin; Jeong, Jae Hoon; Lee, Yoon Jin; Kang, Seong Man; Lim, Young Bin [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-04-15

    Apoptosis in the intestinal epithelium is the primary pathologic factor that initiates radiation-induced intestinal injury. However, mechanism involved in ionizing radiation (IR)-induced apoptosis in the intestinal epithelium is not clearly understood. The endoplasmic reticulum (ER) stress is triggered by perturbation of the ER functions, leading to the activation of the unfolded protein response (UPR), an adaptive signaling cascade aimed at restoring ER homeostasis by facilitating the degradation of misfolded proteins and expanding the protein folding capacity of the cell. Recently, IR has also been shown to induce ER stress, thereby activating the UPR signaling pathway in intestinal epithelial cells. In this study, we report the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhance IR-induced caspase3 activation. Knockdown of xbp1 or atf6 with siRNA leads to inhibition of IR-induced caspase3 activation. Taken together, our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Our findings could contribute to the development of new strategies based on modulating ER stress responses to prevent IR-induced intestinal injury.

  13. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  14. Role of sodium in the RprY-dependent stress response in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Karthik Krishnan

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe which is strongly associated with periodontal disease. Environmental changes in the gingival sulcus trigger the growth of P. gingivalis and a concurrent shift from periodontal health to disease. Bacteria adjust their physiology in response to environmental changes and gene regulation by two-component phospho-relay systems is one mechanism by which such adjustments are effected. In P. gingivalis RprY is an orphan response regulator and previously we showed that the RprY regulon included genes associated with oxidative stress and sodium metabolism. The goals of the present study were to identify environmental signals that induce rprY and clarify the role of the regulator in the stress response. In Escherichia coli an RprY-LacZ fusion protein was induced in sodium- depleted medium and a P. gingivalis rprY mutant was unable to grow in similar medium. By several approaches we established that sodium depletion induced up-regulation of genes involved in oxidative stress. In addition, we demonstrated that RprY interacted directly with the promoters of several molecular chaperones. Further, both genetic and transcription data suggest that the regulator acts as a repressor. We conclude that RprY is one of the regulators that controls stress responses in P. gingivalis, possibly by acting as a repressor since an rprY mutant showed a superstress reponse in sodium-depleted medium which we propose inhibited growth.

  15. Carnosinase levels in aging brain: redox state induction and cellular stress response.

    Science.gov (United States)

    Bellia, Francesco; Calabrese, Vittorio; Guarino, Francesca; Cavallaro, Monia; Cornelius, Carolin; De Pinto, Vito; Rizzarelli, Enrico

    2009-11-01

    Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.

  16. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems

    Science.gov (United States)

    Tang, Huibin; Lee, Myung; Sharpe, Orr; Salamone, Louis; Noonan, Emily J.; Hoang, Chuong D.; Levine, Sanford; Robinson, William H.; Shrager, Joseph B.

    2012-01-01

    Glycolysis is the initial step of glucose catabolism and is up-regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we observed increased glycolysis in disused human diaphragm muscle. In disused muscle, lung cancer, and H2O2-treated myotubes, we show up-regulation of the rate-limiting glycolytic enzyme muscle-type phosphofructokinase (PFKm, >2 fold, P150%, Pglycolysis in response to H2O2 treatment. We show that this microRNA-mediated regulation occurs through PFKm's 3′ untranslated region and that Ets proteins are involved in the regulation of PFKm via miR-320a. These findings suggest that oxidative stress-responsive microRNA-320a may regulate glycolysis broadly within nature.—Tang, H., Lee, M., Sharpe, O., Salamone, L., Noonan, E. J., Hoang, C. D., Levine, S., Robinson, W. H., Shrager, J. B. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. PMID:22767230

  17. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment.

    Science.gov (United States)

    Pang, Terence Y; Hannan, Anthony J; Lawrence, Andrew J

    2018-02-22

    Relapse remains the most prominent hurdle to successful rehabilitation from alcoholism. The neural mechanisms underlying relapse are complex, but our understanding of the brain regions involved, the anatomical circuitry and the modulation of specific nuclei in the context of stress and cue-induced relapse have improved significantly in recent years. In particular, stress is now recognised as a significant trigger for relapse, adding to the well-established impact of chronic stress to escalate alcohol consumption. It is therefore unsurprising that the stress-responsive regions of the brain have also been implicated in alcohol relapse, such as the nucleus accumbens, amygdala and the hypothalamus. Environmental enrichment is a robust experimental paradigm which provides a non-pharmacological tool to alter stress response and, separately, alcohol-seeking behaviour and symptoms of withdrawal. In this review, we examine and consolidate the preclinical evidence that alcohol seeking behaviour and stress-induced relapse are modulated by environmental enrichment, and these are primarily mediated by modification of neural activity within the key nodes of the addiction circuitry. Finally, we discuss the limited clinical evidence that stress-reducing approaches such as mindfulness could potentially serve as adjunctive therapy in the treatment of alcoholism. Copyright © 2018. Published by Elsevier Ltd.

  19. E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses.

    Science.gov (United States)

    Shu, Kai; Yang, Wenyu

    2017-09-01

    Understanding the precise regulatory mechanisms of plant development and stress responses at the post-translational level is currently a topic of intensive research. Protein ubiquitination, including the sequential performances of ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes, is a refined post-translational modification ubiquitous in all eukaryotes. Plants are an integral part of our ecosystem and, as sessile organisms, the ability to perceive internal and external signals and to adapt well to various environmental challenges is crucial for their survival. Over recent decades, extensive studies have demonstrated that protein ubiquitination plays key roles in multiple plant developmental stages (e.g. seed dormancy and germination, root growth, flowering time control, self-incompatibility and chloroplast development) and several abiotic stress responses (e.g. drought and high salinity), by regulating the abundance, activities or subcellular localizations of a variety of regulatory polypeptides and enzymes. Importantly, diverse E3 ligases are involved in these regulatory pathways by mediating phytohormone and light signaling or other pathways. In this updated review, we mainly summarize recent advances in our understanding of the regulatory roles of protein ubiquitination in plant development and plant-environment interactions, and primarily focus on different types of E3 ligases because they play critical roles in determining substrate specificity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Reese, R Neil; Rushton, Deena L; Alexander, Danny; Timko, Michael P; Shen, Qingxi J; Rushton, Paul J

    2015-06-30

    The Solanaceae are an economically important family of plants that include tobacco (Nicotiana tabacum L.), tomato, and potato. Drought is a major cause of crop losses. We have identified major changes in physiology, metabolites, mRNA levels, and promoter activities during the tobacco response to drought. We have classified these as potential components of core responses that may be common to many plant species or responses that may be family/species-specific features of the drought stress response in tobacco or the Solanaceae. In tobacco the largest increase in any metabolite was a striking 70-fold increase in 4-hydroxy-2-oxoglutaric acid (KHG) in roots that appears to be tobacco/Solanaceae specific. KHG is poorly characterized in plants but is broken down to pyruvate and glyoxylate after the E. coli SOS response to facilitate the resumption of respiration. A similar process in tobacco would represent a mechanism to restart respiration upon water availability after drought. At the mRNA level, transcription factor gene induction by drought also showed both core and species/family specific responses. Many Group IX Subgroup 3 AP2/ERF transcription factors in tobacco appear to play roles in nicotine biosynthesis as a response to herbivory, whereas their counterparts in legume species appear to play roles in drought responses. We observed apparent Solanaceae-specific drought induction of several Group IId WRKY genes. One of these, NtWRKY69, showed ABA-independent drought stress-inducible promoter activity that moved into the leaf through the vascular tissue and then eventually into the surrounding leaf cells. We propose components of a core metabolic response to drought stress in plants and also show that some major responses to drought stress at the metabolome and transcriptome levels are family specific. We therefore propose that the observed family-specific changes in metabolism are regulated, at least in part, by family-specific changes in transcription factor

  1. Dinoflagellate bioluminescence in response to mechanical stimuli in water flows

    Directory of Open Access Journals (Sweden)

    A. S. Cussatlegras

    2005-01-01

    Full Text Available Bioluminescence of plankton organisms induced by water movements has long been observed and is still under investigations because of its great complexity. In particular, the exact mechanism occurring at the level of the cell has not been yet fully understood. This work is devoted to the study of the bioluminescence of the dinoflagellates plankton species Pyrocystis noctiluca in response to mechanical stimuli generated by water flows. Several experiments were performed with different types of flows in a Couette shearing apparatus. All of them converge to the conclusion that stationary homogeneous laminar shear does not trigger massive bioluminescence, but that acceleration and shear are both necessary to stimulate together an intense bioluminescence response. The distribution of the experimental bioluminescence thresholds is finally calculated from the light emission response for the Pyrocystis noctiluca species.

  2. End-tidal carbon dioxide as a measure of stress response to clustered nursing interventions in neurologic patients.

    Science.gov (United States)

    Genzler, Laura; Johnson, Pamela Jo; Ghildayal, Neha; Pangarakis, Sarah; Sendelbach, Sue

    2013-05-01

    Guidelines recommend rest periods between nursing interventions for patients with a neurologic diagnosis but do not specify a safe number of interventions. To examine the physiological stress response to clustered nursing interventions in neurologic patients receiving mechanical ventilation. Prospective, comparative, descriptive design to examine effects of clustered interventions (≥6 interventions in a single nursing interaction) versus nonclustered interventions on patients' stress. Stress response was defined as a 10% change in end-tidal carbon dioxide from before the interaction to (1) 5 and 10 minutes after the start of the interaction, (2) at the end of the interaction, and (3) 15 minutes after the interaction. The mean percent change in end-tidal carbon dioxide at 5 minutes differed significantly between patients with clustered interventions and patients with nonclustered interventions (6.7% vs -0.2%; P = .001). Patients with clustered interventions were significantly more likely than patients with low clustering to exhibit a stress response at 5 minutes (24.3% vs 0%; P = .01). Neurologic patients receiving mechanical ventilation who experienced 6 or more clustered nursing interventions showed a higher mean change in end-tidal carbon dioxide than did patients who received fewer than 6 clustered interventions. These findings suggest that providing fewer interventions during 1 nursing interaction may minimize induced stress in neurologic patients receiving mechanical ventilation.

  3. The behavioral and endocrinological development of stress response in dogs.

    Science.gov (United States)

    Nagasawa, Miho; Shibata, Yoh; Yonezawa, Akiko; Morita, Tomoko; Kanai, Masanori; Mogi, Kazutaka; Kikusui, Takefumi

    2014-05-01

    Endocrinological stress response has been shown to be absent in a specific period of the early life of rodents; this is named the stress-hyporesponsive period (SHRP). The SHRP is a significant period for the appropriate development of infants. In this study, the presence of SHRP in dogs was identified by conducting a 5-min separation test in 142 Labrador retriever puppies in their early socialization period and measuring the changes in urinary cortisol levels. An increase in cortisol after separation was found after 5 weeks of age, suggesting that the SHRP persists until 4 weeks of age in dogs. The distress vocalization during separation changed and the lactating behavior decreased rapidly around 5 weeks of age, suggesting that the endocrinological and emotional aspects of development change at approximately 5 weeks of age and maternal inhibition of cortisol might occur in dogs as well as rodents. © 2013 Wiley Periodicals, Inc.

  4. Thermodynamic Modeling and Analysis of Human Stress Response

    Science.gov (United States)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  5. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  6. Overexpression of agouti protein and stress responsiveness in mice.

    Science.gov (United States)

    Harris, R B; Zhou, J; Shi, M; Redmann, S; Mynatt, R L; Ryan, D H

    2001-07-01

    Ectopic overexpression of agouti protein, an endogenous antagonist of melanocortin receptors' linked to the beta-actin promoter (BAPa) in mice, produces a phenotype of yellow coat color, Type II diabetes, obesity and increased somatic growth. Spontaneous overexpression of agouti increases stress-induced weight loss. In these experiments, other aspects of stress responsiveness were tested in 12-week-old male wild-type mice and BAPa mice. Two hours of restraint on three consecutive days produced greater increases in corticosterone and post-stress weight loss in BAPa than wild-type mice. In Experiment 2, anxiety-type behavior was measured immediately after 12 min of restraint. This mild stress did not produce many changes indicative of anxiety, but BAPa mice spent more time in the dark side of a light-dark box and less time in the open arms of an elevated plus maze than restrained wild-type mice. In a defensive withdrawal test, grooming was increased by restraint in all mice, but the duration of each event was substantially shorter in BAPa mice, possibly due to direct antagonism of the MC4-R by agouti protein. Thus, BAPa mice showed exaggerated endocrine and energetic responses to restraint stress with small differences in anxiety-type behavior compared with wild-type mice. These results are consistent with observations in other transgenic mice in which the melanocortin system is disrupted, but contrast with reports that acute blockade of central melanocortin receptors inhibits stress-induced hypophagia. Thus, the increased stress responsiveness in BAPa mice may be a developmental compensation for chronic inhibition of melanocortin receptors.

  7. The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage.

    Directory of Open Access Journals (Sweden)

    Christoffer Nyberg

    Full Text Available In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH, a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems.A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH, cortisol, aldosterone, catecholamines and chromogranin-A were performed.Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased.The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.

  8. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans.

    Science.gov (United States)

    Morton, James P; Kayani, Anna C; McArdle, Anne; Drust, Barry

    2009-01-01

    Skeletal muscle adapts to the stress of contractile activity via changes in gene expression to yield an increased content of a family of highly conserved cytoprotective proteins known as heat shock proteins (HSPs). These proteins function to maintain homeostasis, facilitate repair from injury and provide protection against future insults. The study of the exercise-induced production of HSPs in skeletal muscle is important for the exercise scientist as it may provide a valuable insight into the molecular mechanisms by which regular exercise can provide increased protection against related and non-related stressors. As molecular chaperones, HSPs are also fundamental in facilitating the cellular remodelling processes inherent to the training response. Whilst the exercise-induced stress response of rodent skeletal muscle is relatively well characterized, data from humans are more infrequent and less insightful. Data indicate that acute endurance- and resistance-type exercise protocols increase the muscle content of ubiquitin, alphaB-crystallin, HSP27, HSP60, HSC70 and HSP70. Although increased HSP transcription occurs during exercise, immediately post-exercise or several hours following exercise, time-course studies using western blotting techniques have typically demonstrated a significant increase in protein content is only detectable within 1-2 days following the exercise stress. However, comparison amongst studies is complicated by variations in exercise protocol (mode, intensity, duration, damaging, non-damaging), muscle group examined, predominant HSP measured and, perhaps most importantly, differences in subject characteristics both within and between studies (training status, recent activity levels, nutritional status, age, sex, etc.). Following 'non-damaging' endurance-type activities (exercise that induces no overt structural and functional damage to the muscle), the stress response is thought to be mediated by redox signalling (transient and reversible

  9. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).

    Science.gov (United States)

    Sun, Xiaochuan; Xu, Liang; Wang, Yan; Luo, Xiaobo; Zhu, Xianwen; Kinuthia, Karanja Benard; Nie, Shanshan; Feng, Haiyang; Li, Chao; Liu, Liwang

    2016-02-01

    Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA-mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs.

  10. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture.

    Science.gov (United States)

    Fanouraki, E; Mylonas, C C; Papandroulakis, N; Pavlidis, M

    2011-09-01

    The aim of the present study was to examine the species-specific stress response for seven Mediterranean fishes in culture. Also, to evaluate the method of measuring free cortisol concentration in the rearing water as a non-invasive and reliable indicator of stress in marine species, of aquaculture importance. Gilthead sea bream, Sparus aurata (Sparidae); common dentex, Dentex dentex (Sparidae); common Pandora, Pagellus erythrinus (Sparidae); sharpsnout sea bream, Diplodus puntazzo (Sparidae); dusky grouper, Epinephelus marginatus (Serranidae); meagre, Argyrosomus regius (Sciaenidae) and European sea bass, Dicentrarchus labrax (Moronidae) were subjected to identical acute stress (5-6 min chasing and 1-1.5 min air exposure) under the same environmental conditions and samples were analyzed by the same procedures. Results indicated that there was a clear species-specificity in the magnitude, timing and duration of the stress response in terms of cortisol, glucose and lactate. European sea bass showed a very high response and dusky grouper and meagre a very low response, except plasma glucose concentrations of dusky grouper which was constantly high, while sharpsnout sea bream presented a protracted stress response, up to 8h. The present study confirmed that free cortisol release rate into the water can be used as a reliable stress indicator. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Dongxiang wild rice (Oryza rufipogon Griff. is the progenitor of cultivated rice (Oryza sativa L., and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated. Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  12. A comparison of adrenergic stress responses in three tropical teleosts exposed to acute hypoxia.

    Science.gov (United States)

    Perry, S F; Reid, S G; Gilmour, K M; Boijink, C L; Lopes, J M; Milsom, W K; Rantin, F T

    2004-07-01

    Experiments were performed to assess the afferent and efferent limbs of the hypoxia-mediated humoral adrenergic stress response in selected hypoxia-tolerant tropical fishes that routinely experience environmental O(2) depletion. Plasma catecholamine (Cat) levels and blood respiratory status were measured during acute aquatic hypoxia [water Po(2) (Pw(O(2))) = 10-60 mmHg] in three teleost species, the obligate water breathers Hoplias malabaricus (traira) and Piaractus mesopotamicus (pacu) and the facultative air breather Hoplerythrinus unitaeniatus (jeju). Traira displayed a significant increase in plasma Cat levels (from 1.3 +/- 0.4 to 23.3 +/- 15.1 nmol/l) at Pw(O(2)) levels below 20 mmHg, whereas circulating Cat levels were unaltered in pacu at all levels of hypoxia. In jeju denied access to air, plasma Cat levels were increased markedly to a maximum mean value of 53.6 +/- 19.1 nmol/l as Pw(O(2)) was lowered below 40 mmHg. In traira and jeju, Cat release into the circulation occurred at abrupt thresholds corresponding to arterial Po(2) (Pa(O(2))) values of approximately 8.5-12.5 mmHg. A comparison of in vivo blood O(2) equilibration curves revealed low and similar P(50) values (i.e., Pa(O(2)) at 50% Hb-O(2) saturation) among the three species (7.7-11.3 mmHg). Thus Cat release in traira and jeju occurred as blood O(2) concentration was reduced to approximately 50-60% of the normoxic value. Intravascular injections of nicotine (600 nmol/kg) elicited pronounced increases in plasma Cat levels in traira and jeju but not in pacu. Thus the lack of Cat release during hypoxia in pacu may reflect an inoperative or absent humoral adrenergic stress response in this species. When allowed access to air, jeju did not release Cats into the circulation at any level of aquatic hypoxia. The likeliest explanation for the absence of Cat release in these fish was that air breathing, initiated by aquatic hypoxia, prevented Pa(O(2)) values from falling to the critical threshold required

  13. Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity

    Science.gov (United States)

    Dato, Serena; Crocco, Paolina; D’Aquila, Patrizia; de Rango, Francesco; Bellizzi, Dina; Rose, Giuseppina; Passarino, Giuseppe

    2013-01-01

    Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life. PMID:23965963

  14. Identification of sources and mechanisms of salt-water pollution ground-water quality

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes.

  15. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Xu, Liang; Wang, Yan; Zhang, Fei; Tang, Mingjia; Chen, Yinglong; Wang, Jin; Karanja, Bernard Kinuthia; Luo, Xiaobo; Zhang, Wei; Liu, Liwang

    2017-11-01

    Cadmium (Cd) is a widespread heavy metal of particular concern with respect to the environment and human health. Although intensive studies have been conducted on Cd-exposed transcriptome profiling, little systematic proteome information is available on the molecular mechanism of Cd stress response in radish. In this study, the radish root proteome under Cd stress was investigated using a quantitative multiplexed proteomics approach. Seedlings were grown in nutrient solution without Cd (control) or with 10 or 50 μM CdCl2 for 12 h (Cd10 and Cd50, respectively). In total, 91 up- and 66 down-regulated proteins were identified in the control vs Cd10 comparison, while 340 up- and 286 down-regulated proteins were identified in the control vs Cd50 comparison. Functional annotation indicated that these differentially expressed proteins (DEPs) were mainly involved in carbohydrate and energy metabolism, stress and defense and signal transduction processes. Correlation analysis showed that 33 DEPs matched with their transcripts, indicating a relatively low correlation between transcript and protein levels under Cd stress. Quantitative real-time PCR evidenced the expression patterns of 12 genes encoding their corresponding DEPs. In particular, several pivotal proteins associated with carbohydrate metabolism, ROS scavenging, cell transport and signal transduction were involved in the coordinated regulatory network of the Cd stress response in radish. Root exposure to Cd2+ activated several key signaling molecules and metal-containing transcription factors, and subsequently some Cd-responsive functional genes were mediated to reduce Cd toxicity and re-establish redox homeostasis in radish. This is a first report on comprehensive proteomic characterization of Cd-exposed root proteomes in radish. These findings could facilitate unraveling of the molecular mechanism underlying the Cd stress response in radish and provide fundamental insights into the development of genetically

  16. Possible Role of Nutritional Priming for Early Salt and Drought Stress Responses in Medicago truncatula.

    Science.gov (United States)

    Staudinger, Christiana; Mehmeti, Vlora; Turetschek, Reinhard; Lyon, David; Egelhofer, Volker; Wienkoop, Stefanie

    2012-01-01

    Most legume species establish a symbiotic association with soil bacteria. The plant accommodates the differentiated rhizobia in specialized organs, the root nodules. In this environment, the microsymbiont reduces atmospheric nitrogen (N) making it available for plant metabolism. Symbiotic N-fixation is driven by the respiration of the host photosynthates and thus constitutes an additional carbon sink for the plant. Molecular phenotypes of symbiotic and non-symbiotic Medicago truncatula are identified. The implication of nodule symbiosis on plant abiotic stress response mechanisms is not well understood. In this study, we exposed nodulated and non-symbiotic N-fertilized plants to salt and drought conditions. We assessed the stress effects with proteomic and metabolomic methods and found a nutritionally regulated phenotypic plasticity pivotal for a differential stress adjustment strategy.

  17. Possible role of nutritional priming for early salt and drought stress responses in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christiana eStaudinger

    2012-12-01

    Full Text Available Most legume species establish a symbiotic association with soil bacteria. The plant accommodates the differentiated rhizobia in specialized organs, the root nodules. In this environment, the microsymbiont reduces atmospheric nitrogen (N making it available for plant metabolism. Symbiotic N fixation is driven by the respiration of the host photosynthates and thus constitutes an additional carbon sink for the plant. Molecular phenotypes of symbiotic and non-symbiotic M. truncatula are identified. The implication of nodule symbiosis on plant abiotic stress response mechanisms is not well understood. In this study, we exposed nodulated and non-symbiotic N fertilized plants to salt and drought conditions. We assessed the stress effects with proteomic and metabolomic methods and found a nutritionally regulated phenotypic plasticity pivotal for a differential stress adjustment strategy.

  18. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders.

    Science.gov (United States)

    Su, Kuo-Hui; Dai, Chengkai

    2016-11-01

    Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.

  19. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  20. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship...... Particle velocities and accelerations. • Particle paths, pressure variation, deep and shallow water waves, wave energy and group velocity. • Shoaling, refraction, diffraction and wave breaking. The last part of the course is on analysis of irregular waves and was included in the first two editions...

  1. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle...... paths, velocities, accelerations, pressure variation, deep and shallow water waves, wave energy and group velocity. 3. Shoaling, refraction, diffraction and wave breaking. 4. Irregular waves. Time domain analysis of waves. 5. Wave spectra. Frequency domain analysis of waves. The present notes are based...

  2. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction

    National Research Council Canada - National Science Library

    Ricardo Beldade; Agathe Blandin; Rory O’Donnell; Suzanne C Mills

    2017-01-01

    .... However, despite climate change impacts on population declines and diversity loss, few studies have attributed hormonal stress responses, or their regulatory effects, to climate change in the wild...

  3. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    Directory of Open Access Journals (Sweden)

    Peizhou eJiang

    2014-10-01

    Full Text Available Abnormal accumulation of filamentous α-synuclein (α-syn in neurons, regarded as Lewy bodies(LBs, are a hallmark of Parkinson disease (PD. Although the exact mechanism(s underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicited by nutrient deprivation, since this approach was reported to effectively clear cellular polyglutamine aggregates. We found that nutrient deprivation of non-induced cells did not affect cell viability, but significantly activated autophagy reflected by increasing the level of autophagy marker LC3-II and autophagic flux and decrease of endogenous α-syn. Cells with induced α-syn expression alone displayed autophagy activation in an α-syn dose-dependent manner to reach a level comparable to that found in non-induced, nutrient deprived counterparts. Nutrient deprivation also activated autophagy further in α-syn induced cells, but the extent was decreased with increase of α-syn dose, indicating α-syn overexpression reduces the responsiveness of cells to nutrient deprivation. Moreover, the nutrient deprivation enhanced α-syn aggregations concomitant with significant increase of apoptosis as well as ER stress response, SREBP2 activation and cholesterolgenesis. Importantly, α-syn aggregate accumulation and other effects caused by nutrient deprivation were counteracted by knockdown of SREBP2, treatment with cholesterol lowering agent—lovastatin, or by GRP78 overexpression, which also caused decrease of SREBP2 activity. Similar results were obtained from studies of primary neurons with α-syn overexpression under nutrient deprivation. Together our findings suggested that down-regulation of SREBP2 activity might be a means to prevent α-syn aggregation in PD

  4. Contribution of Stress Responses to Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms

    Science.gov (United States)

    Franklin, Michael J.; Williamson, Kerry S.; Folsom, James P.; Boegli, Laura; James, Garth A.

    2015-01-01

    Enhanced tolerance of biofilm-associated bacteria to antibiotic treatments is likely due to a combination of factors, including changes in cell physiology as bacteria adapt to biofilm growth and the inherent physiological heterogeneity of biofilm bacteria. In this study, a transcriptomics approach was used to identify genes differentially expressed during biofilm growth of Pseudomonas aeruginosa. These genes were tested for statistically significant overlap, with independently compiled gene lists corresponding to stress responses and other putative antibiotic-protective mechanisms. Among the gene groups tested were those associated with biofilm response to tobramycin or ciprofloxacin, drug efflux pumps, acyl homoserine lactone quorum sensing, osmotic shock, heat shock, hypoxia stress, and stationary-phase growth. Regulons associated with Anr-mediated hypoxia stress, RpoS-regulated stationary-phase growth, and osmotic stress were significantly enriched in the set of genes induced in the biofilm. Mutant strains deficient in rpoS, relA and spoT, or anr were cultured in biofilms and challenged with ciprofloxacin and tobramycin. When challenged with ciprofloxacin, the mutant strain biofilms had 2.4- to 2.9-log reductions in viable cells compared to a 0.9-log reduction of the wild-type strain. Interestingly, none of the mutants exhibited a statistically significant alteration in tobramycin susceptibility compared to that with the wild-type biofilm. These results are consistent with a model in which multiple genes controlled by overlapping starvation or stress responses contribute to the protection of a P. aeruginosa biofilm from ciprofloxacin. A distinct and as yet undiscovered mechanism protects the biofilm bacteria from tobramycin. PMID:25870065

  5. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    Science.gov (United States)

    Jiang, Peizhou; Gan, Ming; Lin, Wen-Lang; Yen, Shu-Hui C.

    2014-01-01

    Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies (LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicited by nutrient deprivation (ND), since this approach was reported to effectively clear cellular polyglutamine aggregates. We found that nutrient deprivation of non-induced cells did not affect cell viability, but significantly activated autophagy reflected by increasing the level of autophagy marker LC3-II and autophagic flux and decrease of endogenous α-syn. Cells with induced α-syn expression alone displayed autophagy activation in an α-syn dose-dependent manner to reach a level comparable to that found in non-induced, nutrient deprived counterparts. Nutrient deprivation also activated autophagy further in α-syn induced cells, but the extent was decreased with increase of α-syn dose, indicating α-syn overexpression reduces the responsiveness of cells to nutrient deprivation. Moreover, the nutrient deprivation enhanced α-syn aggregations concomitant with significant increase of apoptosis as well as ER stress response, SREBP2 activation and cholesterolgenesis. Importantly, α-syn aggregate accumulation and other effects caused by nutrient deprivation were counteracted by knockdown of SREBP2, treatment with cholesterol lowering agent—lovastatin, or by GRP78 overexpression, which also caused decrease of SREBP2 activity. Similar results were obtained from studies of primary neurons with α-syn overexpression under nutrient deprivation. Together our findings suggested that down-regulation of SREBP2 activity might be a means to prevent α-syn aggregation in PD via

  6. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond

  7. United polarizable multipole water model for molecular mechanics simulation

    Science.gov (United States)

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  8. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    Directory of Open Access Journals (Sweden)

    Ujjal J Phukan

    2016-06-01

    Full Text Available Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research.

  9. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  10. Cortico-amygdala circuits: role in the conditioned stress response.

    Science.gov (United States)

    Berretta, Sabina

    2005-12-01

    The amygdala plays a crucial role in the orchestration and modulation of the organism response to aversive, stressful events. This response could be conceived as the result of two interdependent components. The first is represented by sets of visceral and motor responses aimed at helping the organism to cope with the present event. The second is the acquisition and modulation of memories relative to the stressful stimulus and its context. This latter component contributes to the instatement of conditioned stress responses that are essential to the capability of the organism to predict future exposures to similar stimuli in order to avoid them or counteract them effectively. In the amygdala, these two components become fully integrated. Massive networks link the amygdala to the hypothalamus, midbrain and brainstem. These networks convey visceral, humoral and nociceptive information to the amygdala and mediate its effects on the hypothalamic-pituitary-adrenal axis as well on autonomic and motor centers. On the other hand, interactions between the amygdala and interconnected cortical networks play a crucial role in acquisition, consolidation and extinction of learning relative to the stressful stimulus. Within the scope of this review, current evidence relative to the interaction between the amygdala and cortical networks will be considered in relationship to the integration of the conditioned response to stress.

  11. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  13. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Science.gov (United States)

    Shaik, Rafi; Ramakrishna, Wusirika

    2013-01-01

    Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic), bacterial (biotic) stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214) and 28.7% (272) DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  14. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    Directory of Open Access Journals (Sweden)

    Rebecca Schroeter

    Full Text Available The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl, and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes, the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  16. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  17. Aging-related changes in oxidative stress response of human endothelial cells.

    Science.gov (United States)

    Conti, Valeria; Corbi, Graziamaria; Simeon, Vittorio; Russomanno, Giusy; Manzo, Valentina; Ferrara, Nicola; Filippelli, Amelia

    2015-08-01

    Oxidative stress is strongly associated with aging and age-related diseases and plays a crucial role in endothelial dysfunction development. To better understand the molecular mechanisms of aging and stress response in humans, we examined changes to young and older human endothelial cells over time (72, 96 and 120 h), before and after H2O2-induced stress. We measured the expression of the deacetylase Sirtuin 1 (Sirt1) and its transcriptional target Forkhead box O3a (Foxo3a); TBARS, a well-known marker of overall oxidative stress, and catalase activity as index of antioxidation. Moreover, we quantified levels of cellular senescence by senescence-associated β galactosidase (SA-βgal) assay. Under oxidative stress induction older cells showed a progressive decrease of Sirt1 and Foxo3a expression, persistently high TBARS levels with high, but ineffective Cat activity to counteract such levels. In addition cellular senescence drastically increased in older cells compared with Young cells both in presence and in the absence of oxidative stress. By following the cell behavior during the time course, we can hypothesize that while in young cells an oxidative stress induction stimulated an adequate response through activation of molecular factor crucial to counteract oxidative stress, the older cells are not able to adequately adapt themselves to external stress stimuli. During their life, endothelial cells impair the ability to defend themselves from oxidative stress stimuli. This dysfunction involves the pathway of Sirt1 a critical regulator of oxidative stress response and cellular lifespan, underlining its crucial role in endothelial homeostasis control during aging and age-associated diseases.

  18. ER stress response plays an important role in aggregation of α-synuclein.

    Science.gov (United States)

    Jiang, Peizhou; Gan, Ming; Ebrahim, Abdul Shukkur; Lin, Wen-Lang; Melrose, Heather L; Yen, Shu-Hui C

    2010-12-13

    Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5) that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and biochemical characteristics of Lewy bodies. In the present study, we evaluated the effects of several histone deacetylase inhibitors on α-synuclein aggregation in 3D5 cells and primary neuronal cultures. These drugs have been demonstrated to protect cells transiently overexpressing α-synuclein from its toxicity. Contrary to transient transfectants, the drug treatment did not benefit 3D5 cells and primary cultures. The treated were less viable and contained more α-synuclein oligomers, active caspases 3 and 9, as well as ER stress markers than non-treated counterparts. The drug-treated, induced-3D5 cells, or primary cultures from transgenic mice overexpressing (<2 fold) α-synuclein, displayed more α-synuclein oligomers and ER stress markers than non-induced or non-transgenic counterparts. Similar effects were demonstrated in cultures treated with tunicamycin, an ER stressor. These effects were blocked by co-treatment with salubrinal, an ER stress inhibitor. In comparison, co-treatment with a pan caspase inhibitor protected cells from demise but did not reduce α-synuclein oligomer accumulation. Our results indicate that an increase of wild-type α-synuclein can elicit ER stress response and sensitize cells to further insults. Most importantly, an increase of ER stress response can promote the aggregation of wild type α-synuclein.

  19. Infants, Mothers, and Dyadic Contributions to Stability and Prediction of Social Stress Response at 6 Months

    Science.gov (United States)

    Provenzi, Livio; Olson, Karen L.; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social…

  20. Effects of d-amphetamine upon psychosocial stress responses.

    Science.gov (United States)

    Childs, Emma; Bershad, Anya K; de Wit, Harriet

    2016-07-01

    Psychostimulant drugs alter the salience of stimuli in both laboratory animals and humans. In animals, stimulants increase rates of responding to conditioned incentive stimuli, and in humans, amphetamine increases positive ratings of emotional images. However, the effects of stimulants on real-life emotional events have not been studied in humans. In this study, we examined the effect of d-amphetamine on responses to acute psychosocial stress using a public speaking task. Healthy volunteers (N=56) participated in two experimental sessions, one with a psychosocial stressor (the Trier Social Stress Test) and one with a non-stressful control task. They were randomly assigned to receive d-amphetamine (5 mg n=18, 10 mg n=20) or placebo (n=18) on both sessions under double blind conditions. Salivary cortisol, subjective mood, and vital signs were measured at regular intervals during the session. Subjects also provided cognitive appraisals of the tasks before and after their performances. Amphetamine produced its expected mood and physiological effects, and the Trier Social Stress Test produced its expected effects on cortisol and mood. Although neither dose of amphetamine altered cardiovascular or hormonal responses to stress, amphetamine (10 mg) increased participants' pre-task appraisals of how challenging the task would be, and it increased post-task ratings of self-efficacy. Paradoxically, it also increased ratings of how stressful the task was, and prolonged aversive emotional responses. These findings suggest that amphetamine differentially affects stress response components: it may increase participants' appraisals of self-efficacy without dampening the direct emotional or physiological responses to the stress. © The Author(s) 2016.

  1. Alcohol stress response dampening during imminent versus distal, uncertain threat.

    Science.gov (United States)

    Hefner, Kathryn R; Moberg, Christine A; Hachiya, Laura Y; Curtin, John J

    2013-08-01

    Research indicates that fear and anxiety are distinct processes with separable neurobiological substrates. Predictable versus unpredictable shock administration has been used to elicit fear versus anxiety, respectively. Recent research has demonstrated that alcohol may reduce anxiety but not fear. However, previous manipulations of predictability have varied both probability and temporal uncertainty of shock threat, leaving unresolved questions regarding which stimulus characteristics elicit anxiety and are sensitive to alcohol stress-response dampening (SRD). We developed a novel paradigm to closely parallel basic research in animals that systematically varied temporal uncertainty of threat while holding threat probability constant. Intoxicated (0.08% target blood alcohol concentration), placebo, and no-alcohol control participants viewed a series of visual threat cues. Certain cue duration (5 s) blocks were equivalent to predictable shock blocks eliciting fear in earlier research. Uncertain cue duration (5, 20, 50, or 80 s, intermixed) blocks introduced temporal uncertainty regarding impending shock to elicit anxiety. Startle potentiation relative to matched cue periods in no-shock blocks provided the primary measure of affective response. All threat cues produced robust startle potentiation. Alcohol reduced startle potentiation during the first 5 s of threat cue presentation in uncertain but not certain duration blocks. Alcohol also reduced startle potentiation at later times among longer uncertain duration cues, suggesting that alcohol SRD persisted. Trait negative emotionality and binge drinking status moderated alcohol SRD magnitude during uncertain threat. These translational findings corroborate previous reports regarding distinct substrates of fear versus anxiety and have implications for both alcoholism etiology and comorbidity with anxiety disorders. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Keratin 8 modulates β-cell stress responses and normoglycaemia.

    Science.gov (United States)

    Alam, Catharina M; Silvander, Jonas S G; Daniel, Ebot N; Tao, Guo-Zhong; Kvarnström, Sofie M; Alam, Parvez; Omary, M Bishr; Hänninen, Arno; Toivola, Diana M

    2013-12-15

    Keratin intermediate filament (IF) proteins are epithelial cell cytoskeletal components that provide structural stability and protection from cell stress, among other cellular and tissue-specific functions. Numerous human diseases are associated with IF gene mutations, but the function of keratins in the endocrine pancreas and their potential significance for glycaemic control are unknown. The impact of keratins on β-cell organisation and systemic glucose control was assessed using keratin 8 (K8) wild-type (K8(+/+)) and K8 knockout (K8(-/-)) mice. Islet β-cell keratins were characterised under basal conditions, in streptozotocin (STZ)-induced diabetes and in non-obese diabetic (NOD) mice. STZ-induced diabetes incidence and islet damage was assessed in K8(+/+) and K8(-/-) mice. K8 and K18 were the predominant keratins in islet β-cells and K8(-/-) mice expressed only remnant K18 and K7. K8 deletion resulted in lower fasting glucose levels, increased glucose tolerance and insulin sensitivity, reduced glucose-stimulated insulin secretion and decreased pancreatic insulin content. GLUT2 localisation and insulin vesicle morphology were disrupted in K8(-/-) β-cells. The increased levels of cytoplasmic GLUT2 correlated with resistance to high-dose STZ-induced injury in K8(-/-) mice. However, K8 deletion conferred no long-term protection from STZ-induced diabetes and prolonged STZ-induced stress caused increased exocrine damage in K8(-/-) mice. β-cell keratin upregulation occurred 2 weeks after treatments with low-dose STZ in K8(+/+) mice and in diabetic NOD mice, suggesting a role for keratins, particularly in non-acute islet stress responses. These results demonstrate previously unrecognised functions for keratins in β-cell intracellular organisation, as well as for systemic blood glucose control under basal conditions and in diabetes-induced stress.

  3. Increasing correlations between personality traits and cortisol stress responses obtained by data aggregation.

    Science.gov (United States)

    Pruessner, J C; Gaab, J; Hellhammer, D H; Lintz, D; Schommer, N; Kirschbaum, C

    1997-11-01

    Attempts to link personality traits and cortisol stress responses have often been inconclusive. The aim of this paper was to investigate this association by aggregating cortisol stress responses. Therefore, 20 healthy men were exposed to a task consisting of public speaking and mental arithmetics in front of an audience on five days. Six cortisol levels were measured in relation to the stressful task obtained at 10-min intervals on each day. Psychological assessment included the Questionnaire for Competence and Control (FKK) and the Giessen-Test (G-T). These questionnaires focus on assessing personality traits, i.e. locus of control and self-concept. Areas under the response curve (AUC) of the six cortisol samples were computed to obtain an index of the individual's cortisol stress response on each day. Since novelty is a random situational factor likely to mask individual differences in the stress response, the AUC cortisol stress responses of days two to five were consecutively aggregated, excluding the first day. Scales of the two questionnaires employed did not correlate with the AUC cortisol stress response of the first stress trial. The correlation pattern of the AUC cortisol measures of days two to five with the questionnaire scales was inconclusive. However, significant correlations emerged with an increasing number of cortisol stress responses aggregated. Correlations between the measure of social dominance and aggregated AUC cortisol stress responses rose from r = -.47 on day two of the experimental session to r = -.70 after aggregating days two to five. Similarly, measures of locus of control and cortisol stress responses became increasingly correlated with aggregation of several stress exposures. These data provide preliminary evidence for a relationship between questionnaire scales aiming at assessing personality traits and cortisol stress responses uncovered by repeated stress exposure and data aggregation. While novelty may mask the impact of

  4. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome.

    Science.gov (United States)

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; Gulliver, Djuna

    2017-03-16

    We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water. Copyright © 2017 Lipus et al.

  5. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma

    OpenAIRE

    Yong Wan; Ruixia Cui; Jingxian Gu; Xing Zhang; Xiaohong Xiang; Chang Liu; Kai Qu; Ting Lin

    2017-01-01

    Increasing evidence suggests that oxidative stress plays an essential role during carcinogenesis. However, the underlying mechanism between oxidative stress and carcinogenesis remains unknown. Recently, microRNAs (miRNAs) are revealed to be involved in oxidative stress response and carcinogenesis. This study aims to identify miRNAs in hepatocellular carcinoma (HCC) cells which might involve in oxidative stress response. An integrated analysis of miRNA expression signature was performed by emp...

  6. Mechanisms of thermal interaction of corium with coolants (sodium, water)

    Energy Technology Data Exchange (ETDEWEB)

    Yuri I Zagorulko; Viktor G Zhmurin; Andrey N Volov; Michail V Kashcheev; Yuri P Kovalev [SSC RF-IPPE named after A.I. Leypunsky, Bondarenko sq. 1, Obninsk, 249033, Kaluga region (Russian Federation)

    2005-07-01

    Full text of publication follows: Experimental assessments of corium thermal-energy-to-mechanical-work conversion factors at thermal interaction (TI) with coolants (sodium, water) and the effects of material transport (coolant, its vapor, corium fragments) caused by this interaction provide a basis for testing the physical and computational TI models. It is evident that the physical TI model should provide an adequate description of all parameters to be measured experimentally (pressure history in the system, amplitude-frequency characteristics of vibrational spectra, rate and acceleration of material transport, final corium fragments size distribution and their morphology) in terms of initial conditions of interaction, inertia and geometrical constraints imposed on the system. The paper presents a generalized analysis of experimental results of TI study in systems 'coolant (sodium, water)/corium (melts of thermit mixtures U+MoO{sub 3}, Zr+Fe{sub 2}O{sub 3})' as to possible mechanisms of thermal interaction in these systems. The study was performed with free channels and those encumbered by rod bundles of hexagonal geometry. In all tests, the sodium temperature was {approx} 823 K, that of water {approx} 293 K, at mass ratios M{sub corium}/M{sub coolant} {approx_equal} 0.3-0.6. The corium outflow conditions were set with regard to modeling of fission gas presence (argon in sodium experiments, air in tests with water) at melt temperatures of {approx} 3000 K and gas pressures up to 0.6-1 MPa. The rate of melt outflow amounted to 20 m/s. The kinematic parameters of material transport and impact loads caused by this transport were determined by means of two independent techniques. The first technique was based on measuring residual deformations of bend of calibrated plate elements (copper, steel). The assemblies of these elements were located at a specified distance above the coolant level in the plane perpendicular to the axis of the channel (the interaction

  7. Arsenate adsorption mechanisms at the allophane-water interface.

    Science.gov (United States)

    Arai, Yuji; Sparks, D L; Davis, J A

    2005-04-15

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As-(V)]0 from 50 to 1000 microM (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline Al-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As-(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO4(2-)) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The inner-sphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments.

  8. Arsenate adsorption mechanisms at the allophane - Water interface

    Science.gov (United States)

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  9. Molecular mechanism for cavitation in water under tension

    Science.gov (United States)

    Menzl, Georg; Gonzalez, Miguel A.; Geiger, Philipp; Caupin, Frédéric; Abascal, José L. F.; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments. PMID:27803329

  10. Mechanism for negative water balance during weightlessness An hypothesis

    Science.gov (United States)

    Greenleaf, J. E.

    1986-01-01

    The mechanism for the apparent decrease in body fluid volume in astronauts during spaceflight remains obscure. The widespread postulate that the hypohydration is the result of the Henry-Gauer reflex, a diuresis caused by inhibition of vasopressin secretion resulting from increased left and perhaps right atrial (central) venous pressure, has not been established with direct measurements on astronauts. An hypothesis is proposed to account for fluid-electrolyte shifts during weightlessness. A moderate but transient increase in central venous pressure occurs when orbit is entered that is insufficient to activate the Henry-Gauer reflex but sufficient to stimulate the release of atrial natriuretic peptides. Increased sodium excretion would facilitate some increased urinary water loss. The resulting relatively dilute plasma and interstitial fluids would cause fluid to shift into the cellular space, resulting in edema in the head and trunk and inhibition of thirst and drinking. Thus, the negative water balance in astronauts would be caused by a gradual natriuresis and diuresis coupled with reduced fluid intake.

  11. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint

    2014-12-01

    The impact of secondary effluent wastewater from the Eastern Treatment Plant (ETP), Melbourne, Australia, before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, on hydrophobic polypropylene (PP) and hydrophilic polyvinylidene fluoride (PVDF) membrane fouling was studied. Laboratory fouling tests were operated over 3-5 days with regular, intermittent backwash. During the filtration with PP membranes, organic rejection data indicated that humic adsorption on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished and biopolymers that contribute to cake layer development became more prominent in their contribution to the fouling rate. For PVDF membranes, the per cent removal of humic substances from both raw wastewater and pre-treated wastewaters was very small as indicated by no change in UV254 from the feed to the permeate over the filtration period, even during the early stages of filtration. This suggested that the hydrophobic PP membrane adsorbed humic substances while the hydrophilic PVDF membrane did not. The highest mass of biopolymer removal by each PVDF membrane was from ETP water followed by PACl and IX treated water respectively. This was possibly due to differences in the backwashing efficiency linked to the filter cake contributed by biopolymers. Hydraulic backwashing was more effective during the later stages of filtration for the ETP water compared to IX and PACl treated waters, indicating that the filter cake contributed by ETP biopolymers was more extensively removed by hydraulic backwashing. It was proposed that humic substances may act to stabilise biopolymers in solution and that removing humics substances by coagulation or IX results in greater adhesive forces between the biopolymers and membrane/filter cake

  12. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Cuzzocrea, Salvatore; Iavicoli, Ivo; Rizzarelli, Enrico; Calabrese, Edward J

    2011-08-01

    Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date

  13. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

    Directory of Open Access Journals (Sweden)

    Filomena Giorno

    2013-07-01

    Full Text Available Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.

  14. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Science.gov (United States)

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  15. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  16. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiao [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Whitten, Douglas A. [Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Wu, Ming [Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Chan, Christina [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Wilkerson, Curtis G. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Pestka, James J., E-mail: pestka@msu.edu [Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States)

    2013-04-15

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤ 30 min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250 ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at both known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment. - Highlights: ► Mycotoxin deoxynivalenol (DON) induces immunotoxicity via ribotoxic stress response. ► SILAC phosphoproteomics using

  17. Collapse arresters for deep water pipelines: identification of crossover mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, Rita G.; Mantovano, Luciano; Assanelli, Andrea; Amenta, Pablo; Johnson, Daniel; Charreau, Roberto; Dvorkin, Eduardo [Tenaris Center for industrial Research (CINI), Siderca, Campana (Argentina)

    2005-07-01

    Deep water pipelines, normally subjected to external pressure and bending, fail due to structural collapse when the external loading exceeds the pipes collapse limit surface. For steel pipes, the influence on this limit surface of manufacturing imperfections has been thoroughly studied by CINI using finite element models that have been validated via laboratory full-scale tests. After a steel pipeline collapses, the collapse is restrained to the collapse initiation section or it propagates along the pipeline, being this second alternative the most detrimental one for the pipeline integrity. Therefore, it is necessary to build in the pipeline periodic reinforcements, to act as arresters for the collapse propagation. Using finite element models, we study the crossover of collapse arresters by the propagating collapse. The occurrence of different crossover mechanisms is determined by the geometry of the pipes and of the arresters. Laboratory tests were carried out at CINI in order to obtain experimental results that could be used to validate the numerical models. In this paper, we compare the numerical and experimental results for external pressure lo (author)

  18. Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water.

    Science.gov (United States)

    Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F

    2009-03-01

    The photocatalytic ozonation of sulfamethoxazole (SMT) has been studied in water under different experimental conditions. The effect of gas flow rate, initial concentration of ozone, SMT and TiO2 has been investigated to establish the importance of mass transfer and chemical reaction. Under the conditions investigated the process is chemically controlled. Both, SMT and TOC kinetics have been considered. Fast and slow kinetic regime of ozone reactions have been observed for SMT and TOC oxidation, respectively. Application of different inhibitors allows for the establishment of reaction mechanism involving direct ozonation, direct photolysis, hydroxyl radical reactions and photocatalytic reactions. Rate constants of the direct reaction between ozone and protonated, non-protonated and anionic SMT species have been determined to be 1.71 x 10(5), 3.24 x 10(5) and 4.18 x 10(5) M(-1) s(-1), respectively. SMT quantum yield at 313 nm was found to be 0.012 moles per Einstein at pH 5 and 0.003 moles per Einstein at pHs 7 and 9. Main contributions to SMT removal were direct ozone reaction, positive hole oxidation and hydroxyl radical reactions. For TOC removal, main contributions were due to positive hole oxidation and hydroxyl radical reactions.

  19. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  20. The reciprocal relations between experiential avoidance, school stressor, and psychological stress response among Japanese adolescents.

    Science.gov (United States)

    Ishizu, Kenichiro; Shimoda, Yoshiyuki; Ohtsuki, Tomu

    2017-01-01

    The present study aimed to investigate the reciprocal relations between experiential avoidance, stressor, and psychological stress response (which consist of anger, depression, anxiety, helplessness, and physical complaints). In this study, 688 Japanese junior high school students (353 boys, 334 girls, 1 unidentified; mean age 13.28 years) completed three waves of questionnaires on experiential avoidance, stressor, and psychological stress response, with one-week intervals between measurement waves. Results from cross-lagged panel analyses showed that experiential avoidance predicted subsequent stressor and psychological stress response. Furthermore, the stressor and psychological stress response influenced by prior experiential avoidance affected subsequent occurrence of experiential avoidance. The findings suggest that reciprocal relations exist among the variables, and that the interaction between experiential avoidance and psychological stress was possible in adolescents.

  1. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...

  2. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activ...

  3. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    DEFF Research Database (Denmark)

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stre......, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.......Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress...... axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma...

  4. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  5. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

    OpenAIRE

    Höglund, Erik; Øverli, Øyvind; Åberg Andersson, Madelene; Silva, Patricia Isabel da Mota E.; Laursen, Danielle Caroline; Moltesen, Maria M; Krogdahl, Åshild; Schjolden, Joachim; Winberg, Svante; Vindas, Marco A; Mayer, Ian; Hillestad, Marie

    2017-01-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary T...

  6. Feeling of Course Understanding and Stress Responses of Junior High School Students

    OpenAIRE

    玉瀬, 耕治; 松田, 由美

    2002-01-01

    The purpose of this study was to clarify the influence of students' cognition about schoolwork upon school stress in junior high school. On the basis of the results of our previous study (Matsuda & Tamase, 2002) it was predicted that there would be some meaningful relationship between the students' subjective feeling of course understanding and their stress responses. Fifty male and sixty-five female students were used as raters and they rated school stressors, stress responses in school, and...

  7. Contingent self-worth moderates the relationship between school stressors and psychological stress responses.

    Science.gov (United States)

    Ishizu, Kenichiro

    2017-04-01

    This study examined the moderating role of contingent self-worth on the relationships between school stressors and psychological stress responses among Japanese adolescents. A total of 371 Japanese junior high school students (184 boys and 187 girls, Mage = 12.79 years, SD = 0.71) completed the Japanese version of the Self-Worth Contingency Questionnaire and a mental health checklist at two points separated by a two-month interval. Hierarchical multiple regression analyses were then used to determine whether contingent self-worth moderated the relationship between school stressors and psychological stress responses. The results indicated that, when psychological stress responses were controlled for at Time 1, contingent self-worth did not predict the psychological stress responses at Time 2. However, a two-way interaction between contingent self-worth and stressors was found to significantly influence psychological stress responses, thus indicating that stressors had a stronger impact on psychological stress responses among those with high contingent self-worth compared to those with low contingent self-worth. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  8. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving.

    Science.gov (United States)

    Debusschere, Elisabeth; Hostens, Kris; Adriaens, Dominique; Ampe, Bart; Botteldooren, Dick; De Boeck, Gudrun; De Muynck, Amelie; Sinha, Amit Kumar; Vandendriessche, Sofie; Van Hoorebeke, Luc; Vincx, Magda; Degraer, Steven

    2016-01-01

    Underwater sound generated by pile driving during construction of offshore wind farms is a major concern in many countries. This paper reports on the acoustic stress responses in young European sea bass Dicentrarchus labrax (68 and 115 days old), based on four in situ experiments as close as 45 m from a pile driving activity. As a primary stress response, whole-body cortisol seemed to be too sensitive to 'handling' bias. On the other hand, measured secondary stress responses to pile driving showed significant reductions in oxygen consumption rate and low whole-body lactate concentrations. Furthermore, repeated exposure to impulsive sound significantly affected both primary and secondary stress responses. Under laboratory conditions, no tertiary stress responses (no changes in specific growth rate or Fulton's condition factor) were noted in young sea bass 30 days after the treatment. Still, the demonstrated acute stress responses and potentially repeated exposure to impulsive sound in the field will inevitably lead to less fit fish in the wild. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy.

    Science.gov (United States)

    Pettersen, Kristine; Monsen, Vivi Talstad; Hakvåg Pettersen, Caroline Hild; Overland, Hilde Bremseth; Pettersen, Grete; Samdal, Helle; Tesfahun, Almaz Nigatu; Lundemo, Anne Gøril; Bjørkøy, Geir; Schønberg, Svanhild A

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are important constituents of the diet and health benefits of omega-3/n-3 PUFAs, especially eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) have been well documented in relation to several diseases. Increasing evidence suggests that n-3 PUFAs may have anticancer activity and improve the effect of conventional cancer therapy. The mechanisms behind these effects are still unclear and need to be elucidated. We have examined the DHA-induced stress response in two human colon cancer cell lines, SW620 and Caco-2. SW620 cells are growth-inhibited at early time points by DHA, while the growth of Caco-2 cells almost remains unaffected by the same treatment. Gene expression analysis of SW620 cells treated with DHA revealed changes at early time points; transcripts involved in oxidative stress and autophagy were among the first to be differentially expressed. We find that oxidative stress is induced in both cell lines, although at different time points and to different extent. DHA induced nuclear translocation of the oxidative stress sensor NFE2L2 in both cell lines, indicating an induction of an anti-oxidative response. However, vitamin E did not counteract ROS-production or the translocation of NFE2L2 to the nucleus. Neither vitamin E nor the antioxidants butylated hydoxyanisole (BHA) and butylated hydoxytoluene (BHT) did affect the growth inhibition in SW620 cells after DHA-treatment. Also, siRNA-mediated down-regulation of NFE2L2 did not sensitize SW620 and Caco-2 cells to DHA. These results indicate that oxidative stress response is not the cause of DHA-induced cytotoxicity in SW620 cells. Using biochemical and imaging based functional assays, we found a low basal level of autophagy and no increase in autophagic flux after adding DHA to the SW620 cells. However, Caco-2 cells displayed a higher level of autophagy, both in the absence and presence of DHA. Inhibition of autophagy by siRNA mediated knock down

  10. Identification of potential internal control genes for real-time PCR analysis during stress response in Pyropia haitanensis

    Science.gov (United States)

    Wang, Xia; Feng, Jianhua; Huang, Aiyou; He, Linwen; Niu, Jianfeng; Wang, Guangce

    2017-11-01

    Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the intertidal Rhodophyta. Here, the effects of salinity and light intensity on the quantum yield of photosystem II in Py. haitanensis were investigated using pulse-amplitude-modulation fluorometry. Total RNA and genomic DNA of the samples under different stress conditions were isolated. By normalizing to the genomic DNA quantity, the RNA content in each sample was evaluated. The cDNA was synthesized and the expression levels of seven potential internal control genes were evaluated using qRT-PCR method. Then, we used geNorm, a common statistical algorithm, to analyze the qRT-PCR data of seven reference genes. Potential genes that may constantly be expressed under different conditions were selected, and these genes showed stable expression levels in samples under a salinity treatment, while tubulin, glyceraldehyde-3-phosphate dehydrogenase and actin showed stability in samples stressed by strong light. Based on the results of the pulse amplitude-modulation fluorometry, an absolute quantification was performed to obtain gene copy numbers in certain stress-treated samples. The stably expressed genes as determined by the absolute quantification in certain samples conformed to the results of the geNorm screening. Based on the results of the software analysis and absolute quantification, we proposed that elongation factor 3 and 18S ribosomal RNA could be used as internal control genes when the Py. haitanensis blades were subjected to salinity stress, and that α-tubulin and 18S ribosomal RNA could be used as the internal control genes when the stress was from strong light. In general, our findings provide a convenient reference for the selection of internal control genes when designing experiments related to stress responses in Py. haitanensis.

  11. Identification of potential internal control genes for real-time PCR analysis during stress response in Pyropia haitanensis

    Science.gov (United States)

    Wang, Xia; Feng, Jianhua; Huang, Aiyou; He, Linwen; Niu, Jianfeng; Wang, Guangce

    2017-01-01

    Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the intertidal Rhodophyta. Here, the effects of salinity and light intensity on the quantum yield of photosystem II in Py. haitanensis were investigated using pulse-amplitude-modulation fluorometry. Total RNA and genomic DNA of the samples under different stress conditions were isolated. By normalizing to the genomic DNA quantity, the RNA content in each sample was evaluated. The cDNA was synthesized and the expression levels of seven potential internal control genes were evaluated using qRT-PCR method. Then, we used geNorm, a common statistical algorithm, to analyze the qRT-PCR data of seven reference genes. Potential genes that may constantly be expressed under different conditions were selected, and these genes showed stable expression levels in samples under a salinity treatment, while tubulin, glyceraldehyde-3-phosphate dehydrogenase and actin showed stability in samples stressed by strong light. Based on the results of the pulse amplitude-modulation fluorometry, an absolute quantification was performed to obtain gene copy numbers in certain stress-treated samples. The stably expressed genes as determined by the absolute quantification in certain samples conformed to the results of the geNorm screening. Based on the results of the software analysis and absolute quantification, we proposed that elongation factor 3 and 18S ribosomal RNA could be used as internal control genes when the Py. haitanensis blades were subjected to salinity stress, and that α-tubulin and 18S ribosomal RNA could be used as the internal control genes when the stress was from strong light. In general, our findings provide a convenient reference for the selection of internal control genes when designing experiments related to stress responses in Py. haitanensis.

  12. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    Full Text Available Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic, bacterial (biotic stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214 and 28.7% (272 DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  13. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    Science.gov (United States)

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  14. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis.

    Science.gov (United States)

    Turk, Romana; Piras, Cristian; Kovačić, Mislav; Samardžija, Marko; Ahmed, Hany; De Canio, Michele; Urbani, Andrea; Meštrić, Zlata Flegar; Soggiu, Alessio; Bonizzi, Luigi; Roncada, Paola

    2012-07-19

    Cow serum proteome was evaluated by three different complementary approaches in the control group, subclinical and clinical mastitis in order to possibly find differential protein expression useful for a better understanding of the pathophysiology of mastitis as well as for an early diagnosis of the disease. The systemic inflammatory and oxidative stress response in cows with subclinical and clinical mastitis were observed. The collected evidence shows a differential protein expression of serpin A3-1, vitronectin-like protein and complement factor H in subclinical mastitis in comparison with the control. It was also found a differential protein expression of inter-alpha-trypsin inhibitor heavy chain H4, serpin A3-1, C4b-binding protein alpha chain, haptoglobin and apolipoprotein A-I in clinical mastitis compared to the control. Among the inflammatory proteins up-regulated in clinical mastitis, vitronectin is over-expressed in both subclinical and clinical mastitis indicating a strong bacterial infection. This suggests vitronectin as an important mediator in the pathogenesis of the onset of mastitis as well as a valuable marker for diagnosis of the subclinical form of the disease. Obtained data could be useful for the detection of mastitis during the subclinical phase and for a better comprehension of the pathophysiological mechanisms involved in the onset of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  16. How a retrotransposon exploits the plant's heat stress response for its activation.

    Science.gov (United States)

    Cavrak, Vladimir V; Lettner, Nicole; Jamge, Suraj; Kosarewicz, Agata; Bayer, Laura Maria; Mittelsten Scheid, Ortrun

    2014-01-01

    Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  17. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies.

    Science.gov (United States)

    Ngara, Rudo; Ndimba, Bongani K

    2014-03-01

    Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Auxin-related gene families in abiotic stress response in Sorghum bicolor.

    Science.gov (United States)

    Wang, SuiKang; Bai, YouHuang; Shen, ChenJia; Wu, YunRong; Zhang, SaiNa; Jiang, DeAn; Guilfoyle, Tom J; Chen, Ming; Qi, YanHua

    2010-11-01

    Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.

  19. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response.

    Science.gov (United States)

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.

  20. Cross talk between H2O2 and interacting signal molecules under plant stress response

    Directory of Open Access Journals (Sweden)

    Ina eSaxena

    2016-04-01

    Full Text Available It is well established that oxidative stress is an important cause of cellular damage. During stress condition plants have evolved regulatory mechanism to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of ROS, which is subsequently converted to H2O2. H2O2 is continuously produced as the by-product of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 acts as a key regulator of many biological processes because H2O2 has been identified as an important second messenger in signal transduction networks. In this review we discuss potential roles of H2O2 and other signaling molecule during various stress responses.

  1. Antifungal compound honokiol triggers oxidative stress responsive signalling pathway and modulates central carbon metabolism

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2016-07-01

    Full Text Available The fast growing evidences have shown that the plant-derived compound honokiol is a promising candidate for treating multiple human diseases, such as inflammation and cancer. However, the mode-of-action (MoA of honokiol remains largely unclear. Here, we studied the antifungal activity of honokiol in fission yeast model, with the goal of understanding the honokiol’s mechanism of action from the molecular level. We found that honokiol can inhibit the yeast growth at a dose-dependent way. Microarray analysis showed that honokiol has wide impacts on the fission yeast transcription levels (in total, 512 genes are up-regulated, and 42 genes are down-regulated. Gene set enrichment analysis indicated that over 45% up-regulated genes belong to the core environmental stress responses category. Moreover, network analysis suggested that there are extensive gene–gene interactions amongst the co-expression gene lists, which can assemble several biofunctionally important modules. It is noteworthy that several key components of central carbon metabolism, such as glucose transporters and metabolic enzymes of glycolysis, are involved in honokiol’s MoA. The complexity of the honokiol’s MoA displayed in previous studies and this work demonstrates that multiple omics approaches and bioinformatics tools should be applied together to achieve the complete scenario of honokiol’s antifungal function.

  2. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Variability salt stress response analysis of Tunisian natural ...

    African Journals Online (AJOL)

    We evaluated the responses to salt stress of 106 Medicago truncatula lines from 11 Tunisian natural populations collected from areas that varied in soil composition, salinity and water availability. Five references lines were also included in this study. Plants were cultivated in two treatments (0 and 50 mM of NaCl) during a ...

  4. Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Eric J Nestler

    2016-03-01

    Full Text Available There has been increasing interest in the possibility that behavioral experience--in particular, exposure to stress--can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility--and the experimental evidence for and against the existence of such mechanisms--and outlines steps required for future investigations.

  5. Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings.

    Science.gov (United States)

    Zhang, Wei; Zhang, Huilin; Ning, Luyun; Li, Bei; Bao, Manzhu

    2016-01-01

    Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5 days. Of the 2430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO) enrichment analyses, seven common GO terms were found of which "oxidation-reduction process" was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation. The data have been deposited to the ProteomeXchange with identifier PXD002189.

  6. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets.

    Science.gov (United States)

    Xu, Hong-Xia; Li, Xiao-Ying; Chen, Jun-Wei

    2017-09-01

    Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.

  7. cyclooxygenase inhibitors and the exercise-induced stress response

    African Journals Online (AJOL)

    pain, trauma and exercise, stimulate prostaglandin synthesis. The mechanisms underlying this stimulation usually ... sor-induced prostaglandin synthesis, in turn, initiates and modulates many aspects of the stress .... known.9 The best known is aspirin, synthesised from salicylic acid, which inhibits the activity of COX-1 by ...

  8. Does short-term fasting lead to stressed-out parents? A study of incubation commitment and the hormonal stress responses and recoveries in snow petrels.

    Science.gov (United States)

    Angelier, Frédéric; Wingfield, John C; Parenteau, Charline; Pellé, Marie; Chastel, Olivier

    2015-01-01

    The hormonal stress response is flexible and can be modulated by individuals according to its costs and benefits. Therefore, it is predicted that parents in poor body condition should modify their hormonal stress response, and thus, redirect energy allocation processes from parental care to self-maintenance when stressors occur. To test this prediction, most studies on free-living vertebrates have only focused on the stress response while the stress recovery - how quickly hormonal levels return to baseline values - has been neglected. Moreover, most studies have only focused on corticosterone - the primary mediator of allostasis - without paying attention to prolactin despite its major role in mediating parental behaviors. Here, we examined the effect of a short-term fasting event on the corticosterone and prolactin stress responses and recoveries, and we subsequently explored their relationships with parental decision in the snow petrel (Pagodroma nivea). By comparing the hormonal profiles of fasting and non-fasting snow petrels, we showed that parents modulate their corticosterone (but not prolactin) stress response according to their energetic status. We also described for the first time the hormonal stress recoveries in wild birds and found that they did not differ between fasting and non-fasting birds. Importantly, egg neglect was negatively correlated with circulating prolactin but not corticosterone levels in this species, demonstrating therefore a complex link between body condition, parental behavior and circulating corticosterone and prolactin levels. We suggest that both corticosterone and prolactin play a major role in the way parents adjust to stressors. This multiple signaling may allow parents to fine-tune their response to stressors, and especially, to activate specific allostasis-related mechanisms in a timely manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl-+ CH3I Reaction in Water.

    Science.gov (United States)

    Liu, Peng; Li, Chen; Wang, Dunyou

    2017-10-19

    The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.

  10. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  11. The effects of acute waterborne exposure to sublethal concentrations of molybdenum on the stress response in rainbow trout, Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Chelsea D Ricketts

    Full Text Available To determine if molybdenum (Mo is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo and components of the physiological (plasma cortisol, blood glucose, and hematocrit and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73, hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l(-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout.

  12. Effects of different rearing temperatures on muscle development and stress response in the early larval stages of Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Lucia Aidos

    2017-11-01

    Full Text Available The present study aims at investigating muscle development and stress response in early stages of Siberian sturgeon when subjected to different rearing temperatures, by analysing growth and development of the muscle and by assessing the stress response of yolk-sac larvae. Siberian sturgeon larvae were reared at 16°C, 19°C and 22°C until the yolk-sac was completely absorbed. Sampling timepoints were: hatching, schooling and complete yolk-sac absorption stage. Histometrical, histochemical and immunohistochemical analyses were performed in order to characterize muscle growth (total muscle area, TMA; slow muscle area, SMA; fast muscle area, FMA, development (anti-proliferating cell nuclear antigen -PCNA or anticaspase as well as stress conditions by specific stress biomarkers (heat shock protein 70 or 90, HSP70 or HSP90. Larvae subjected to the highest water temperature showed a faster yolk-sac absorption. Histometry revealed that both TMA and FMA were larger in the schooling stage at 19°C while no differences were observed in the SMA at any of the tested rearing temperatures. PCNA quantification revealed a significantly higher number of proliferating cells in the yolk-sac absorption phase at 22°C than at 16°C. HSP90 immunopositivity seems to be particularly evident at 19°C. HPS70 immunopositivity was never observed in the developing lateral muscle.

  13. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.

    Science.gov (United States)

    Meena, Kamlesh K; Sorty, Ajay M; Bitla, Utkarsh M; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P; Prabha, Ratna; Sahu, Pramod K; Gupta, Vijai K; Singh, Harikesh B; Krishanani, Kishor K; Minhas, Paramjit S

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  14. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies

    Science.gov (United States)

    Meena, Kamlesh K.; Sorty, Ajay M.; Bitla, Utkarsh M.; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P.; Prabha, Ratna; Sahu, Pramod K.; Gupta, Vijai K.; Singh, Harikesh B.; Krishanani, Kishor K.; Minhas, Paramjit S.

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  15. A marker of biological age explains individual variation in the strength of the adult stress response.

    Science.gov (United States)

    Andrews, Clare; Nettle, Daniel; Larriva, Maria; Gillespie, Robert; Reichert, Sophie; Brilot, Ben O; Bedford, Thomas; Monaghan, Pat; Spencer, Karen A; Bateson, Melissa

    2017-09-01

    The acute stress response functions to prioritize behavioural and physiological processes that maximize survival in the face of immediate threat. There is variation between individuals in the strength of the adult stress response that is of interest in both evolutionary biology and medicine. Age is an established source of this variation-stress responsiveness diminishes with increasing age in a range of species-but unexplained variation remains. Since individuals of the same chronological age may differ markedly in their pace of biological ageing, we asked whether biological age-measured here via erythrocyte telomere length-predicts variation in stress responsiveness in adult animals of the same chronological age. We studied two cohorts of European starlings in which we had previously manipulated the rate of biological ageing by experimentally altering the competition experienced by chicks in the fortnight following hatching. We predicted that individuals with greater developmental telomere attrition, and hence greater biological age, would show an attenuated corticosterone (CORT) response to an acute stressor when tested as adults. In both cohorts, we found that birds with greater developmental telomere attrition had lower peak CORT levels and a more negative change in CORT levels between 15 and 30 min following stress exposure. Our results, therefore, provide strong evidence that a measure of biological age explains individual variation in stress responsiveness: birds that were biologically older were less stress responsive. Our results provide a novel explanation for the phenomenon of developmental programming of the stress response: observed changes in stress physiology as a result of exposure to early-life adversity may reflect changes in ageing.

  16. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    OpenAIRE

    Glacy Jaqueline da Silva; Antonio Costa de Oliveira

    2014-01-01

    Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural...

  17. Assay development and high-throughput screening for small molecule inhibitors of a Vibrio cholerae stress response pathway

    Directory of Open Access Journals (Sweden)

    Stanbery L

    2017-09-01

    Full Text Available Laura Stanbery, Jyl S Matson Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA Abstract: Antibiotics are important adjuncts to oral rehydration therapy in cholera disease management. However, due to the rapid emergence of resistance to the antibiotics used to treat cholera, therapeutic options are becoming limited. Therefore, there is a critical need to develop additional therapeutics to aid in the treatment of cholera. Previous studies showed that the extracytoplasmic stress response (σE pathway of Vibrio cholerae is required for full virulence of the organism. The pathway is also required for bacterial growth in the presence of ethanol. Therefore, we exploited this ethanol sensitivity phenotype in order to develop a screen for inhibitors of the pathway, with the aim of also inhibiting virulence of the pathogen. Here we describe the optimization and implementation of our high-throughput screening strategy. From a primary screen of over 100,000 compounds, we have identified seven compounds that validated the growth phenotypes from the primary and counterscreens. These compounds have the potential to be developed into therapeutic agents for cholera and will also be valuable probes for uncovering basic molecular mechanisms of an important cause of diarrheal disease. Keywords: Vibrio cholerae, stress response, σE, high-throughput screening

  18. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Liuqiang Wang

    2015-11-01

    Full Text Available WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein–protein interactions is still fragmentary, and such protein–protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA. Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.

  19. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-06-01

    Full Text Available Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture.

  20. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease.

    Science.gov (United States)

    Seveso, Davide; Montano, Simone; Reggente, Melissa Amanda Ljubica; Maggioni, Davide; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2017-03-01

    Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.

  1. Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis.

    Science.gov (United States)

    Calderini, Elia; Celebioglu, Hasan Ufuk; Villarroel, Julia; Jacobsen, Susanne; Svensson, Birte; Pessione, Enrica

    2017-03-01

    Probiotic cultures encounter oxidative conditions during manufacturing, yet protein abundance changes induced by such stress have not been characterized for some of the most common probiotics and starters. This comparative proteomics investigation focuses on the response by Lactobacillus acidophilus NCFM to H2 O2, simulating an oxidative environment. Bacterial growth was monitored by BioScreen and batch cultures were harvested at exponential phase for protein profiling of stress responses by 2D gel based comparative proteomics. Proteins identified in 19 of 21 spots changing in abundance due to H2 O2 were typically related to carbohydrate and energy metabolism, cysteine biosynthesis, and stress. In particular, increased cysteine synthase activity may accumulate a cysteine pool relevant for protein stability, enzyme catalysis, and the disulfide-reducing pathway. The stress response further included elevated abundance of biomolecules reducing damage such as enzymes from DNA repair pathways and metabolic enzymes with active site cysteine residues. By contrast, a protein-refolding chaperone showed reduced abundance, possibly reflecting severe oxidative protein destruction that was not overcome by refolding. The proteome analysis provides novel insight into resistance mechanisms in lactic acid bacteria against reactive oxygen species and constitutes a valuable starting point for improving industrial processes, food design, or strain engineering preserving microorganism viability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response.

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    Full Text Available The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes, detoxification (37 genes and oxidative stress response (16 genes were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments.

  3. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    Science.gov (United States)

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  4. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.

    Science.gov (United States)

    Nikonorova, Inna A; Al-Baghdadi, Rana J T; Mirek, Emily T; Wang, Yongping; Goudie, Michael P; Wetstein, Berish B; Dixon, Joseph L; Hine, Christopher; Mitchell, James R; Adams, Christopher M; Wek, Ronald C; Anthony, Tracy G

    2017-04-21

    Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 ( Atf4 ) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis.

    Science.gov (United States)

    Stroud, Laura R; Papandonatos, George D; Rodriguez, Daniel; McCallum, Meaghan; Salisbury, Amy L; Phipps, Maureen G; Lester, Barry; Huestis, Marilyn A; Niaura, Raymond; Padbury, James F; Marsit, Carmen J

    2014-10-01

    Maternal smoking during pregnancy (MSDP) is associated with early and long-term neurobehavioral deficits; however mechanisms remain unknown. We tested the hypothesis that MSDP programs the hypothalamic pituitary adrenocortical (HPA) axis of the offspring leading to adverse outcomes. In an intensive, prospective study, we investigated associations between MSDP and infant cortisol stress response and explored whether alterations in cortisol response were mediated by epigenetic modulation of the placental glucocorticoid receptor gene (NR3C1). Participants were 100 healthy mother-infant pairs (53% MSDP-exposed; 42% female) from a low income, racially/ethnically diverse sample (55% minorities). MSDP was assessed by timeline followback interview verified by saliva and meconium cotinine. Infant cortisol responses to a neurobehavioral exam were assessed seven times over the first postnatal month. Methylation of placental NR3C1 promoter exon 1F was assessed using bisulfite pyrosequencing in a subsample (n=45). MSDP-exposed infants showed significantly and persistently attenuated basal and reactive cortisol levels over the first postnatal month vs. unexposed infants. Exploratory analyses revealed that MSDP was associated with altered methylation of the placental NR3C1 promoter; degree of methylation of the placental NR3C1 was associated with infant basal and reactive cortisol over the first postnatal month and mediated effects of MSDP on infant basal cortisol. Results provide initial support for our hypothesis that MSDP programs offspring HPA (dys)regulation. Epigenetic regulation of placental GR may serve as a novel underlying mechanism. Results may have implications for delineating pathways to adverse outcomes from MSDP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  7. Oxidative stress response pathways: Fission yeast as archetype.

    Science.gov (United States)

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  8. Dealing with hunger: Metabolic stress responses in tumors

    Directory of Open Access Journals (Sweden)

    Michael A Reid

    2013-01-01

    Full Text Available Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.

  9. Dealing with hunger: Metabolic stress responses in tumors.

    Science.gov (United States)

    Reid, Michael A; Kong, Mei

    2013-09-30

    Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.

  10. Oxidative stress response and Nrf2 signaling in aging.

    Science.gov (United States)

    Zhang, Hongqiao; Davies, Kelvin J A; Forman, Henry Jay

    2015-11-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Oxidative stress response and Nrf2 signaling in aging

    Science.gov (United States)

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-related pathologies. In aging, oxidant production from several sources is increased while antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels including transcription, post-translation, and interaction with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the change of Nrf2 regulatory mechanisms with aging. PMID:26066302

  12. Molecular stress response pathways as the basis of hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; de Toda, Irene Martinez; Rattan, Suresh

    2014-01-01

    There is now a large amount of data available for human beings showing positive hormetic effects of mild stresses from physical, chemical, nutritional and mental sources. However, these data are dispersed in the literature and not always interpreted as hormetic effects, thus restricting their ful...... apprehension and application. A comprehensive discussion of the research, this book is composed of four sections: (1) History and terminology; (2) Evidence for hormesis in humans; (3) Molecular mechanisms of hormesis; and (4) Ethical and legal aspects, and risk assessment.......There is now a large amount of data available for human beings showing positive hormetic effects of mild stresses from physical, chemical, nutritional and mental sources. However, these data are dispersed in the literature and not always interpreted as hormetic effects, thus restricting their full...

  13. Complex regional pain syndrome as a stress response.

    Science.gov (United States)

    Grande, Lucinda A; Loeser, John D; Ozuna, Judy; Ashleigh, Alexandra; Samii, Ali

    2004-07-01

    A man in his 50's with a prior traumatic brain injury and multiple psychiatric disorders developed acute pain and swelling in his left leg distal to the mid shin. These symptoms arose during an exacerbation of his post-traumatic stress disorder (PTSD). Among his traumatic memories, he reported having witnessed the combat injury and death of a friend who had lost his left leg distal to the mid shin. A diagnosis of conversion disorder was technically excluded because the findings met criteria for Complex Regional Pain Syndrome (CRPS) type I. Based on recent research into the neurobiology of CRPS, PTSD and conversion disorder, we propose a supraspinal mechanism which could explain how emotional stress can produce both symptoms and signs.

  14. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  15. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta

    Science.gov (United States)

    Hajrah, Nahid H.; Obaid, Abdullah Y.; Atef, Ahmed; Ramadan, Ahmed M.; Arasappan, Dhivya; Nelson, Charllotte A.; Edris, Sherif; Mutwakil, Mohammed Z.; Alhebshi, Alawia; Gadalla, Nour O.; Makki, Rania M.; Al-Kordy, Madgy A.; El-Domyati, Fotouh M.; Sabir, Jamal S. M.; Khiyami, Mohammad A.; Hall, Neil; Bahieldin, Ahmed

    2017-01-01

    Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged. PMID:28520766

  16. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  17. Drought Stress Responses of Sunflower Germplasm Developed after Wide Hybridization

    Directory of Open Access Journals (Sweden)

    Roumiana Dimova Vassilevska-Ivanova

    2016-10-01

    Full Text Available Response of sunflower germplasms viz. cultivated sunflower H. annuus and two breeding lines H. annuus x T. rotundifolia and H. annuus x V. encelioides developed after wide hybridization were used for identification of drought tolerant sunflower genotypes at the seedling growth stage. Three water stress levels of zero (control, -0.4, and -0.8 MPa were developed using polyethyleneglycol-6000 (PEG-6000. Physiological and biochemical stress determining parameters such as root and shoots length, fresh weight, antioxidant enzyme activities (superoxide dismutase (SOD, catalase (CAT, guaiacol peroxidase (GPO, ascorbate peroxidase (APX and antioxidant metabolite content (total antioxidant capacity, total phenols and total flavonoids content were compared between seedlings of all three genotypes. Results revealed that sunflower genotypes have similar responses at two osmotic potentials for shoot and root length and fresh weight. The data also showed that drought stresss could induce oxidative stress, as indicated by the increase level of ascorbate peroxidase and guaiacol peroxidase at -04 MPa in H. annuus cv 1114. Although the activity of ascorbate peroxidase and guaiacol peroxidase was differentially influenced by drought, the changes of antioxidant enzyme activities such as catalase, superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase subjected to drought stress follow a similar pattern in both breeding lines, indicating that similar defense systems might be involved in the oxidative stress injury in sunflowers. Increase in content of phenols and flavonoids were detected for all three genotypes under stress, which showed that these were major antioxidant metabolites in scavenging cellular H2O2.

  18. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides.

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    Full Text Available In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a: Drosophila tachykinin (DTK, short neuropeptide F (sNPF and ion transport peptide (ITP. These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.

  19. Metabolic Stress Responses in Drosophila Are Modulated by Brain Neurosecretory Cells That Produce Multiple Neuropeptides

    Science.gov (United States)

    Kahsai, Lily; Kapan, Neval; Dircksen, Heinrich; Winther, Åsa M. E.; Nässel, Dick R.

    2010-01-01

    In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells. PMID:20628603

  20. Drought stress responses in maize are diminished by Piriformospora indica.

    Science.gov (United States)

    Zhang, Wenying; Wang, Jun; Xu, Le; Wang, Aiai; Huang, Lan; Du, Hewei; Qiu, Lijuan; Oelmüller, Ralf

    2018-01-02

    As an endophytic fungus of Sebacinales, Piriformospora indica promotes plant growth and resistance to abiotic stress, including drought. Colonization of maize roots promoted the leaf size, root length and number of tap roots. Under drought stress, the maize seedlings profited from the presence of the fungus and performed visibly better than the uncolonized controls. To identify genes and biological processes involved in growth promotion and drought tolerance conferred by P. indica, the root transcriptome of colonized and uncolonized seedlings was analyzed 0, 6 and 12 h after drought stress (20% polyethylene glycol 6000). The number of P. indica-responsive genes increased from 464 (no stress at 0 h) to 1337 (6 h drought) and 2037 (12 h drought). Gene Ontology analyses showed that the carbon and sulfur metabolisms are major targets of the fungus. Furthermore, the growth promoting effect of P. indica is reflected by higher transcript levels for microtubule associated processes. Under drought stress, the fungus improved the oxidative potential of the roots, and stimulated genes for hormone functions, including those which respond to abscisic acid, auxin, salicylic acid and cytokinins. The comparative analyses of our study provides systematic insight into the molecular mechanism how P. indica promotes plant performance under drought stress, and presents a collection of genes which are specifically targeted by the fungus under drought stress in maize roots.

  1. Gas block mechanism for water removal in fuel cells

    Science.gov (United States)

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  2. Influence of water on the anodic oxidation mechanism of ...

    African Journals Online (AJOL)

    The following successive scans showed a high decrease of the current intensity and that is due to the formation of an insulating coating layer on the electrode surface. When water is added to the non-aqueous electrolyte, a DETA oxidation wave appears on the voltammograms. That oxidation wave is observed on the ...

  3. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothe...

  4. UBC9 regulates the stability of XBP1, a key transcription factor controlling the ER stress response.

    Science.gov (United States)

    Uemura, Aya; Taniguchi, Mai; Matsuo, Yusaku; Oku, Masaya; Wakabayashi, Sadao; Yoshida, Hiderou

    2013-01-01

    XBP1 is a key transcription factor regulating the mammalian endoplasmic reticulum (ER) stress response, which is a cytoprotective mechanism for dealing with an accumulation of unfolded proteins in the ER (ER stress). The expression of XBP1 is regulated by two different mechanisms: mRNA splicing and protein stability. When ER stress occurs, unspliced XBP1 mRNA is converted to mature mRNA, from which an active transcription factor, pXBP1(S), is translated and activates the transcription of ER-related genes to dispose of unfolded proteins. In the absence of ER stress, pXBP1(U) is translated from unspliced XBP1 mRNA and enhances the degradation of pXBP1(S). Here, we analyzed the regulatory mechanism of pXBP1(S) stability, and found that a SUMO-conjugase, UBC9, specifically bound to the leucine zipper motif of pXBP1(S) and increased the stability of pXBP1(S). Suppression of UBC9 expression by RNA interference reduced both the expression of pXBP1(S) and ER stress-induced transcription by pXBP1(S). Interestingly, overexpression of a UBC9 mutant deficient in SUMO-conjugating activity was able to increase pXBP1(S) expression as well as wild-type UBC9, indicating that UBC9 stabilizes pXBP1(S) without conjugating SUMO moieties. From these observations, we concluded that UBC9 is a novel regulator of the mammalian ER stress response.

  5. Mechanisms of flow and water mass variability in Denmark Strait

    Science.gov (United States)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  6. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Surasri N Sahu

    Full Text Available Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03% exposure caused stronger global gene expression changes in comparison with low dose (0.003% exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  7. REP sequences: Mediators of the environmental stress response?

    Science.gov (United States)

    Liang, Wenxing; Deutscher, Murray P

    2016-01-01

    Repetitive Extragenic Palindromic (REP) sequences are highly conserved, structured, 35- to 40-nt elements located at ∼500 positions around the Escherichia coli chromosome. They are found in intergenic regions and are transcribed together with their upstream genes. Although their stable stem-loop structures protect messages against exoribonuclease digestion, their primary function has remained unknown. Recently, we found that about half of all REP sequences have the potential to stall ribosomes immediately upstream of the termination codon, leading to endonucleolytic cleavage of the mRNA, and induction of the trans-translation process. As a consequence, the mRNA and almost completed protein are degraded, and protein production from the affected gene is down-regulated. The process is critically dependent on the location of the REP element, with an effect only if it is within 15 nt of the termination codon. Using nrdAB as a model, we found that its down-regulation is affected by RNA helicases. Elimination of 6 helicases lowered NrdA production further, whereas overexpression of any RNA helicase partially reversed the downregulation. UV stress completely reversed down-regulation of NrdA production. Analysis of genes containing a REP sequence within 15 nt of the termination codon revealed that most, if not all, are up-regulated by environmental stress, as are RNA helicases. Based on these findings, we propose that REP-dependent downregulation serves as a mechanism to allow a rapid response to environmental stresses whereby RNA helicases partially open the REP elements enabling ribosomes to complete translation immediately increasing protein production from the affected genes.

  8. Key Role of CRF in the Skin Stress Response System

    Science.gov (United States)

    Zmijewski, Michal A.; Zbytek, Blazej; Tobin, Desmond J.; Theoharides, Theoharis C.; Rivier, Jean

    2013-01-01

    The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis. PMID:23939821

  9. Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata.

    Science.gov (United States)

    Bjornson, Marta; Balcke, Gerd Ulrich; Xiao, Yanmei; de Souza, Amancio; Wang, Jin-Zheng; Zhabinskaya, Dina; Tagkopoulos, Ilias; Tissier, Alain; Dehesh, Katayoon

    2017-07-01

    To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  11. Increased endoplasmic reticulum stress response is involved in clopidogrel-induced apoptosis of gastric epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hai-Lu Wu

    Full Text Available The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1 apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown.The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively.Gene microarray analysis identified 79 genes that were differentially expressed (P3 when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway - CHOP and TRIB3- were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel.Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation.

  12. Gene expression during different periods of the handling-stress response in Pampus argenteus

    Science.gov (United States)

    Sun, Peng; Tang, Baojun; Yin, Fei

    2017-11-01

    Common aquaculture practices subject fish to a variety of acute and chronic stressors. Such stressors are inherent in aquaculture production but can adversely affect survival, growth, immune response, reproductive capacity, and behavior. Understanding the biological mechanisms underlying stress responses helps with methods to alleviate the negative effects through better aquaculture practices, resulting in improved animal welfare and production efficiency. In the present study, transcriptome sequencing of liver and kidney was performed in silver pomfret (Pampus argenteus) subjected to handling stress versus controls. A total of 162.19 million clean reads were assembled to 30 339 unigenes. The quality of the assembly was high, with an N50 length of 2 472 bases. For function classification and pathway assignment, the unigenes were categorized into three GO (gene ontology) categories, twenty-six clusters of eggNOG (evolutionary genealogy of genes: non-supervised orthologous groups) function categories, and thirty-eight KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Stress affected different functional groups of genes in the tissues studied. Differentially expressed genes were mainly involved in metabolic pathways (carbohydrate metabolism, lipid metabolism, amino-acid metabolism, uptake of cofactors and vitamins, and biosynthesis of other secondary metabolites), environmental information processing (signaling molecules and their interactions), organismal systems (endocrine system, digestive system), and disease (immune, neurodegenerative, endocrine and metabolic diseases). This is the first reported analysis of genome-wide transcriptome in P. argenteus, and the findings expand our understanding of the silver pomfret genome and gene expression in association with stress. The results will be useful to future analyses of functional genes and studies of healthy artificial breeding in P. argenteus and other related fish species.

  13. Good and bad protons: genetic aspects of acidity stress responses in plants.

    Science.gov (United States)

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The cellular stress response of rat skeletal muscle following lengthening contractions.

    Science.gov (United States)

    Pollock-Tahiri, Evan; Locke, Marius

    2017-07-01

    The cellular stress response of the rat tibialis anterior (TA) muscle was investigated following 20, 40, or 60 lengthening contractions (LCs) using an in vivo model of electrical stimulation. Muscles were removed at 0, 1, 3, or 24 h after LCs and assessed for heat shock transcription factor (HSF) activation, heat shock protein (HSP) content, and/or morphological evidence of muscle fibre damage. When compared with the first muscle contraction, peak muscle torque was reduced by 26% (p < 0.05) after 20 LCs and further reduced to 56% and 60% (p < 0.001) after 40 and 60 LCs, respectively. Following 60 LCs, HSF activation was detected at 0, 1, and 3 h but was undetectable at 24 h. Hsp72 content was elevated at 24 h after 20 LCs (2.34 ± 0.37 fold, p < 0.05), 40 LCs (3.02 ± 0.31 fold, p < 0.01), and 60 LCs (3.37 ± 0.21 fold, p < 0.001). Hsp25 content increased after 40 (2.36 ± 0.24 fold, p < 0.01) and 60 LCs (2.80 ± 0.37 fold, p < 0.01). Morphological assessment of TA morphology revealed that very few fibres were damaged following 20 LCs while multiple sets of LCs (40 and 60) caused greater amounts of fibre damage. Electron microscopy showed disrupted Z-lines and sarcomeres were detectable in some muscles fibres following 20 LCs but were more prevalent and severe in muscles subjected to 40 or 60 LCs. These results suggest LCs elevate HSP content by an HSF-mediated mechanism (60 LC) and a single set of 20 LCs is capable of increasing muscle HSP content without causing significant muscle fibre damage.

  15. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R.; Zhang, Hao; Schwarz, Toni; Leung, Daisy W.; Basler, Christopher F.; Gross, Michael L.; Amarasinghe, Gaya K.

    2016-08-04

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  16. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating.

    Science.gov (United States)

    Clauss-Lendzian, Emanuel; Vaishampayan, Ankita; de Jong, Anne; Landau, Uwe; Meyer, Carsten; Kok, Jan; Grohmann, Elisabeth

    2018-03-01

    Emerging antibiotic resistance among pathogenic bacteria, paired with their ability to form biofilms on medical and technical devices, represents a serious problem for effective and long-term decontamination in health-care environments and gives rise to an urgent need for new antimicrobial materials. Here we present the impact of AGXX ® , a novel broad-spectrum antimicrobial surface coating consisting of micro-galvanic elements formed by silver and ruthenium, on the transcriptome of Enterococcus faecalis. A clinical E. faecalis isolate was subjected to metal stress by growing it for different periods in presence of the antimicrobial coating or silver-coated steel meshes. Subsequently, total RNA was isolated and next-generation RNA sequencing was performed to analyze variations in gene expression in presence of the antimicrobial materials with focus on known stress genes. Exposure to the antimicrobial coating had a large impact on the transcriptome of E. faecalis. After 24min almost 1/5 of the E. faecalis genome displayed differential expression. At each time-point the cop operon was strongly up-regulated, providing indirect evidence for the presence of free Ag + -ions. Moreover, exposure to the antimicrobial coating induced a broad general stress response in E. faecalis. Genes coding for the chaperones GroEL and GroES and the Clp proteases, ClpE and ClpB, were among the top up-regulated heat shock genes. Differential expression of thioredoxin, superoxide dismutase and glutathione synthetase genes indicates a high level of oxidative stress. We postulate a mechanism of action where the combination of Ag + -ions and reactive oxygen species generated by AGXX ® results in a synergistic antimicrobial effect, superior to that of conventional silver coatings. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  18. Transcriptomic Analysis of Drought Stress Responses in Ammopiptanthus mongolicus Leaves Using the RNA-Seq Technique.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available Ammopiptanthus mongolicus (Maxim. Ex Kom. Cheng f., a relic tree of the Tertiary period, plays a critical role in maintaining desert ecosystems in the Mid-Asia region. Genome-scale gene expression profiling studies will provide deep insight into the molecular mechanism underlying the drought tolerance of A. mongolicus. In the present study, we investigated the transcriptional changes induced by drought treatment in A. mongolicus leaves by establishing a comprehensive transcriptome database and then performing a Digital Gene Expression (DGE analysis using Solexa sequencing technology. A comprehensive transcriptome database was obtained by assembling the Illumina unigenes with expressed sequence tags (EST available publicly, and other high throughput sequencing data. To analyze the dynamic and complicated gene regulation network during PEG6000-induced drought treatment in leaves of A. mongolicus, a time-course gene expression analysis was performed using tag-based DGE technology, which identified 437, 1,247 and 802 differentially expressed transcripts in 1, 24 and 72 h drought stress libraries, respectively. GO and KEGG analyses revealed hormone signal transduction and phenylpropanoid biosynthesis were enriched during drought treatment. A batch of drought-regulated transcription factor transcripts were identified, including the subsets of HD-ZIP, bZIP, WRKY, AP2/ERF and bHLH family members, which may play roles in drought response in A. mongolicus. The sequence collection assembled in the present study represents one of the most comprehensive transcriptome databases for A. mongolicus currently. The differentially expressed transcripts identified in our study provide a good start for identifying the key genes in stress response and performing functional analysis to reveal their roles in stress adaptation in planta.

  19. F508del-CFTR rescue: a matter of cell stress response.

    Science.gov (United States)

    Nieddu, Erika; Pollarolo, Benedetta; Merello, Luisa; Schenone, Silvia; Mazzei, Mauro

    2013-01-01

    Cystic fibrosis (CF) is a common inherited fatal disease affecting 70,000 people worldwide, with a median predicted age of survival of approximately 38 years. The deletion of Phenylalanine in position 508 of the Cystic Fibrosis Transmembrane conductance Regulator (F508del-CFTR) is the most common mutation in CF patients: the deleted protein, not properly folded, is degraded. To date no commercial drugs are available. Low temperature, some osmolytes and conditions able to induce heat shock protein 70 (Hsp70) expression and heat shock cognate 70 (Hsc70) inhibition result in F508del-CFTR rescue, hence restoring its physiological function: this review sheds light on the correlation between these several evidences. Interestingly, all these approaches have a role in the cell stress response (CSR), a set of cell reactions to stress. In addition, unpredictably, F508del-CFTR rescue has to be considered in the frame of CSR: entities that induce - or are induced during - the CSR are, in general, also able to correct trafficking defect of CFTR. Specifically, the low temperature induces, by definition, a CSR; osmolytes, such as glycerol and trimethylamine N-oxide (TMAO), are products of the CSR; pharmacological correctors, such as Matrine and 4-phenylbutirric acid (4PBA), down-regulate the constitutive Hsc70 in favor of an up-regulation of the inducible chaperone Hsp70, another component of the CSR. The identification of a common mechanism of action for different types of correctors could drive the discovery of new active molecules in CF, overcoming methods clinically inapplicable, such as the low temperature.

  20. Increased Endoplasmic Reticulum Stress Response Is Involved in Clopidogrel-Induced Apoptosis of Gastric Epithelial Cells

    Science.gov (United States)

    Jiang, Zong-Dan; Cao, Wei-Jun; Wang, Zhi-Bing; Hu, Ke-Wei; Gao, Xin; Wang, Shu-Kui; He, Bang-Shun; Zhang, Zhen-Yu; Xie, Hong-Guang

    2013-01-01

    Background The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1) apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown. Methods The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively. Results Gene microarray analysis identified 79 genes that were differentially expressed (P3) when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway – CHOP and TRIB3– were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor) attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel. Conclusions Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation. PMID:24058556

  1. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    Science.gov (United States)

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  2. Influence of free water content on the compressive mechanical ...

    Indian Academy of Sciences (India)

    increases for wet concrete in the regime with moderate strain rate, where dry concrete has been ... effect could be detected in dry specimens under moderate strain rates (0.5–1/s) where a very remarkable strain rate ..... Radjy F and Richards C W 1973 Effect of curing and heat treatment history on the dynamic mechanical.

  3. `Snacking' causes long term attenuation of HPA axis stress responses and enhancement of brain FosB/delta FosB expression in rats

    Science.gov (United States)

    Christiansen, A.M.; DeKloet, A.D; Ulrich-Lai, Y.M.; Herman, J.P.

    2011-01-01

    A history of limited, intermittent intake of palatable food (sucrose drink) attenuates hypothalamic-pituitary-adrenal (HPA) axis stress responses and induces markers of neuronal plasticity in stress- and reward-regulatory brain regions. Synaptic plasticity could provide a mechanism for long-term changes in neuronal function, implying that sucrose stress-dampening may endure over long periods of time. The present study tests the persistence of HPA axis dampening and plasticity after cessation of palatable drinking. Adult, male Long-Evans rats (n = 10–13) with free access to water and chow were given additional twice-daily access to 4 ml sucrose (30%) or water for 14 days. Rats were subsequently tested for HPA responsiveness to an acute (20-minute) restraint stress at 1, 6 and 21 days after the cessation of sucrose. Brains were collected for immunohistochemical analysis of FosB/deltaFosB, a marker of long-term neuronal plasticity, in the basolateral amygdala and nucleus accumbens. Prior sucrose consumption significantly decreased the plasma corticosterone response to restraint at one day after the last palatable drink presentation, and also increased FosB/deltaFosB-positive cells in the basolateral amygdala and in the nucleus accumbens core. This HPA-dampening persisted through 21 days after the termination of the palatable drink, as did the increased FosB/deltaFosB immunoreactivity in both the BLA and the NuAc core. These data suggest that chronic palatable food intake causes lasting changes in stress/reward-modulatory circuitry and that the suppressed hormonal response to stress that can persist well beyond periods of palatable drink exposure. PMID:21262247

  4. THE EFFICACY OF PREGABALIN AS A PREMEDICANT IN ATTENUATING NEUROENDOCRINE STRESS RESPONSE DURING GENERAL ANAESTHESIA IN ELECTIVE SURGERIES: A PROSPECTIVE RANDOMISED PLACEBO CONTROLLED STUDY

    Directory of Open Access Journals (Sweden)

    Bhavani Muthukrishnan

    2016-06-01

    Full Text Available BACKGROUND The stress response to surgery is characterised by increased secretion of pituitary hormones and activation of the sympathetic nervous system. The changes triggered by the stress response are short-lived and well tolerated by normal healthy patients belonging to ASA 1 and 2. In patients with other comorbidities like myocardial ischaemia, renal insufficiency, uncontrolled diabetes, liver disease and cerebrovascular diseases, these changes can be life threatening. The recognition of the factors which initiate the stress response can be considered for modification in the preoperative period itself. Various anaesthetic techniques and pain management strategies have been put into use to control the stress response. AIM To study the rise in serum cortisol levels during surgery after administering oral pregabalin as a premedicant. SETTINGS AND DESIGN A Prospective Randomised Placebo Controlled Study. MATERIALS AND METHODS All consented patients were aged between 18 and 50 years belonging to ASA 1 & 2 undergoing elective surgical procedures under general anaesthesia of duration between 30 minutes and 180 minutes. Group A received oral placebo, Group B oral pregabalin 150 mg 60-90 minutes before surgery with sips of water. They were randomly allocated to a particular group using computer generated numbers. The ward staff nurse administered the drug kept in sealed envelopes. Both the patients and the person administering anaesthesia were unaware of the group. STATISTICAL ANALYSIS The results were analysed using SPSS Version 17 software with the help of the statistician. The students’ paired t-test was used to compare the mean change in the cortisol levels in the two groups. RESULTS There was a significant [p < 0.01] reduction in the intraoperative cortisol levels after premedication with pregabalin. There was an increase in serum cortisol levels after extubation in both the groups which was statistically significant (p < 0.01. CONCLUSION

  5. Transboundary water conflict resolution mechanisms: toward convergence between theory and practice

    Science.gov (United States)

    Tayia, Ahmed; Madani, Kaveh

    2016-04-01

    Transboundary waters are expected be one of the biggest challenges for human development over the next decades. The growing global water scarcity and interdependence among water-sharing countries have created tensions over shared water resources around the world. Therefore, interest in studying transboundary water conflict resolution has grown over the last decades. This research focuses on transboundary water resources conflict resolution mechanisms. A more a specific concern is to explore the mechanisms of allocating of transboundary water resources among riparian states. The literature of transboundary water resources conflict has brought various approaches for allocating of transboundary water resources among riparian countries. Some of these approaches have focused on the negotiation process, such the Alternative Dispute Resolution (ADR). Other approaches have analysed the economic dimension of transboundary water disputes, in an attempt to identify optimal economic criteria for water allocation, such as the "social planner" approach and the "water market" approach. A more comprehensive approach has been provided by game theory that has brought together the economic and political dimensions of the water dispute management. The study attempts to provide a map for the relation between theory and practice in the field of transboundary water conflict resolution. Therefore, it explores the approaches that have been used to analyse real transboundary water disputes management. Moreover, it examines the approaches that have been suggested in literature as mechanisms of transboundary water conflict resolution. Finally, it identifies the techniques that have been used in practice to solve transboundary water conflicts and attempts to evaluate the sustainability of the resulting regulatory institutional arrangements.

  6. The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Abbasi Isaloo, Mohsen

    2015-11-01

    Herein we consider the mechanism of water oxidation by nanolayered manganese oxide in the presence of cerium(IV) ammonium nitrate. Based on membrane-inlet mass spectrometry results, the rate of H2((18))O exchange of μ-O groups on the surface of the nanolayered Mn-K oxide, and studies on water oxidation in the presence of different ratios of acetonitrile/water we propose a mechanism for water oxidation by nanolayered Mn oxides in the presence of cerium(IV) ammonium nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts

    Science.gov (United States)

    Le, Phuong Thi; Makhalanyane, Thulani P.; Guerrero, Leandro D.; Vikram, Surendra; Van de Peer, Yves; Cowan, Don A.

    2016-01-01

    Abstract Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the two metagenomes were identified. The Antarctic hypolithic metagenome displayed a high number of sequences assigned to sigma factors, replication, recombination and repair, translation, ribosomal structure, and biogenesis. In contrast, the Namib Desert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significant divergence in the genetic determinants of amino acid and nucleotide metabolism between these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes. PMID:27503299

  8. The molecular mechanism of zinc and cadmium stress response in plants

    NARCIS (Netherlands)

    Lin, Y.F.; Aarts, M.G.M.

    2012-01-01

    When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and

  9. Stress Response in Lactococcus lactis : Cloning, Expression Analysis, and Mutation of the Lactococcal Superoxide Dismutase Gene

    NARCIS (Netherlands)

    Sanders, Jan Willem; Leenhouts, Kees J.; Haandrikman, Alfred J.; Venema, Gerard; Kok, Jan

    In an analysis of the stress response of Lactococcus lactis, three proteins that were induced under low pH culture conditions were detected. One of these was identified as the lactococcal superoxide dismutase (SodA) by N-terminal amino acid sequence analysis. The gene encoding this protein,

  10. The relationship between individual differences in feed efficiency and stress response in African catfish Clarias gariepinus

    NARCIS (Netherlands)

    Martins, C.I.; Schrama, J.W.; Verreth, J.A.J.

    2006-01-01

    Despite the importance of feed efficiency and stress response in fish production, the number of studies focusing on the relationship of their individual differences has never been investigated. This study tests whether individual differences in glucose and cortisol responsiveness after an acute

  11. The time dimension in stress responses : relevance for survival and health

    NARCIS (Netherlands)

    Eriksen, HR; Olff, M; Murison, R; Ursin, H

    1999-01-01

    Within the Cognitive Activation Theory of Stress (CATS), the stress response occurs whenever there is a discrepancy between what the organism is expecting, and what really exists. It affects the biochemistry of the brain, mobilizes resources, affects performance, and endocrine, vegetative, and

  12. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    Science.gov (United States)

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species, ...

  14. Pediatricians' affective communication behavior attenuates parents' stress response during the medical interview.

    Science.gov (United States)

    Gemmiti, Marco; Hamed, Selei; Lauber-Biason, Anna; Wildhaber, Johannes; Pharisa, Cosette; Klumb, Petra L

    2017-03-01

    To investigate whether the medical interview in the pediatric context generates a stressful response in parents in form of heightened cortisol activity, and whether pediatricians' empathetic communication is able to attenuate this stress response. 68 parents were recruited at pediatric out-patient and in-patient consultations. Salivary samples were collected between 60 and 30min prior to the consultation, shortly before the consultation, 20min as well as 45min after the consultation. 19 pediatricians participated in the study and effectuated the medical visit as usual. We videotaped the consultations and coded pediatricians' affective communication using the RIAS and the Four Habits Coding Scheme. Parents' cortisol increased during the medical visit with a peak at 20min after the medical encounter. Furthermore, multilevel analysis revealed a lesser increase in parents' cortisol response associated with pediatricians' levels in supportive communication behaviors. As indicated by their humoral stress responses, the medical encounter was stressful for the parents. Pediatricians' affective communication modulated this stress response in that more supportive communication was related to smaller cortisol increases. Pediatricians' affective communication behavior during the medical visit can alleviate parents' distress and anxiety, representing a source of social and emotional support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Anxious women do not show the expected decrease in cardiovascular stress responsiveness as pregnancy advances

    NARCIS (Netherlands)

    Braeken, M A K A; Jones, A; Otte, R A; Widjaja, D; Van Huffel, S; Monsieur, G J Y J; van Oirschot, C M; Van den Bergh, B R H

    2015-01-01

    Altered stress responsiveness is a risk factor for mental and physical illness. In non-pregnant populations, it is well-known that anxiety can alter the physiological regulation of stress reactivity. Characterization of corresponding risks for pregnant women and their offspring requires greater

  16. Association between subjective and cortisol stress response depends on the menstrual cycle phase.

    Science.gov (United States)

    Duchesne, Annie; Pruessner, Jens C

    2013-12-01

    The relation between the physiologic and subjective stress responses is inconsistently reported across studies. Menstrual cycle phases variations have been found to influence the psychophysiological stress response; however little is known about possible cycle phase differences in the relationship between physiological and subjective stress responses. This study examined the effect of menstrual cycle phase in the association between subjective stress and physiological response. Forty-five women in either the follicular (n=21) or the luteal phase of the menstrual cycle were exposed to a psychosocial stress task. Salivary cortisol, cardiovascular, and subjective stress were assessed throughout the experiment. Results revealed a significant group difference in the association between peak levels of cortisol and post task subjective stress. In women in the follicular phase a negative association was observed (r(2)=0.199, p=0.04), while this relation was positive in the group of women in the luteal phase (r(2)=0.227, p=0.02). These findings suggest a possible role of sex hormones in modulating the cortisol stress response function in emotion regulation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Rapid effects of melatonin on hormonal and behavioral stressful responses in ewes.

    Science.gov (United States)

    Guesdon, Vanessa; Malpaux, Benoît; Delagrange, Philippe; Spedding, Michael; Cornilleau, Fabien; Chesneau, Didier; Haller, József; Chaillou, Elodie

    2013-08-01

    Sheep are gregarious mammals with complex social interactions. As such, they are very sensitive to social isolation and constitute a relevant animal model to study specifically the biological consequences of social stress. We examined previously the behavioral and endocrine responses in ewes isolated socially in the familiar conspecific withdrawal model (FCW) and showed that stressful responses increased and maintenance behaviors decreased, confirming that social isolation is a strong stressor in sheep. Melatonin synchronizes seasonal and circadian rhythms; and several studies reported its implication in cognitive processes as emotion. Here we investigated its role in the modulation of social stressful responses. Firstly, we studied ewes in the FCW model during the day (characterized by low melatonin levels) and the night (characterized by high melatonin levels). We found lower stressful responses (significant lower levels of cortisol plasma, number of foot pawings, of circling attempts) during the night as compared to the day. To investigate whether these effects were due to melatonin or to darkness, we submitted ewes to FCW during the night with lights on, a condition that suppresses melatonin secretion. Ewes infused with melatonin under these conditions showed decreased stressful responses (significant lower levels cortisol plasma, number of vocalizations, time spent with the head out of the cage) as compared to ewes infused with saline. These findings demonstrate that melatonin diminishes the endocrine and behavioral impact of social isolation in ewes and support the idea that melatonin has a calming effect in socially stressful situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  19. Endocrinological and subjective stress responses in children with depressive, anxiety, or externalizing disorders.

    Science.gov (United States)

    Stadelmann, Stephanie; Jaeger, Sonia; Matuschek, Tina; Bae, Yoon Ju; von Klitzing, Kai; Klein, Annette Maria; Döhnert, Mirko

    2017-09-20

    In this study, we used a stress test to investigate endocrinological and subjective stress responses of 8- to 14-year-old children with internalizing or externalizing disorders and healthy controls. The sample (N = 170) consisted of clinical and community children. Parents were given a diagnostic interview to diagnose their children's psychiatric condition. We measured saliva cortisol and subjectively experienced arousal in children before and after the Trier Social Stress Test for Children. Children also rated their performance immediately after the stress test, and 1 hr later they rated their positive and negative thoughts about this stressful event. Children with internalizing or externalizing disorders exhibited a blunted cortisol response compared to healthy controls. Depressed children rated their test performance lower and reported more negative thoughts after the test in comparison to healthy controls, anxious children reported more arousal before and after the task, and children with externalizing disorders reported more positive thoughts. In regression analyses, cortisol and subjective stress responses were both predictive of psychiatric disorders. The study extends previous work on the relation between psychiatric disorders and children's stress responses to an experimentally induced stress task by including a broad range of psychiatric disorders and by integrating endocrinological and subjective stress responses.

  20. Modeling the functioning of YtvA in the general stress response in Bacillus subtilis

    NARCIS (Netherlands)

    van der Steen, J.B.; Nakasone, Y.; Hendriks, J.C.; Hellingwerf, K.J.

    2013-01-01

    The blue-light photoreceptor YtvA activates the general stress response (GSR) of Bacillus subtilis by activating a large protein complex (the stressosome). We have constructed a model for the YtvA's photocycle, and derived an equation for the fraction of YtvA in the light-induced signaling state at

  1. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired

  2. Effects of hyperflexion on acute stress responses in ridden dressage horses

    NARCIS (Netherlands)

    Christensen, J.W.; Beekmans, M; van Dalum, M; van Dierendonck, M.C.

    2014-01-01

    The effects of hyperflexion on the welfare of dressage horses have been debated. This study aimed to investigate acute stress responses of dressage horses ridden in three different Head-and-Neck-positions (HNPs). Fifteen dressage horses were ridden by their usual rider in a standardised 10-min

  3. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular ev...

  4. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  5. The time dimension in stress responses: relevance for survival and health

    NARCIS (Netherlands)

    Eriksen, H. R.; Olff, M.; Murison, R.; Ursin, H.

    1999-01-01

    Within the Cognitive Activation Theory of Stress (CATS), the stress response occurs whenever there is a discrepancy between what the organism is expecting, and what really exists. It affects the biochemistry of the brain, mobilizes resources, affects performance, and endocrine, vegetative, and

  6. Targeting the oxidative stress response system of fungi with safe, redox-potent chemosensitizing agents

    Science.gov (United States)

    One mode of action of the antimycotics amphotericin B (AMB) or itraconazole (ITZ) against filamentous fungi involves cellular oxidative stress response. Aspergillus fumigatus sakA', a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidation system, was more sensitive to AMB ...

  7. Catechol-o-methyltransferase polymorphism and susceptibility to major depressive disorder modulates psychological stress response

    NARCIS (Netherlands)

    Jabbi, Mbemba; Kema, Ido R.; van der Pompe, Gieta; Meerman, Gerard J. te; Ormel, Johan; den Boer, Johan A.

    Objectives The stress response is related to both physiological and psychological factors and is strongly marked by a neuroendocrine component. Genetic factors are believed to underlie individual differences in the degree of stress resilience and thereby contribute in determining susceptibility to

  8. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  9. [Epigenetic regulation of abiotic stress response in plants to improve the stress tolerance].

    Science.gov (United States)

    Pan, Li-Na

    2013-06-01

    Plants are constantly challenged by various stresses at all phases of development, and epigenetic modifications play a crucial role in the adaptive evolution to the changing environment. Recent studies have shown that genomic hypermethylation and locus-specific DNA demethylation induced by cold, salinity and other stimuli would inhibit the deleterious gene mutations and increase the expression of stress responsive genes. The mutants of histone acetyltransferase (GCN5) and histone deacetylase (HDA6 and HDA19) genes displayed hypersensitivity to ABA and salinity stresses. Histone acetylation and methylation exert a cumulative or synergistic effect on the expression of stress-responsive genes. The inter-actions between H2A.Z-containing nucleosomes and DNAs mediate the thermosensory responses in Arabidopsis. Further-more, there are reports that drought, high temperature and salinity stress responses can be modulate by chromatin remodel-ing complexes SWI/SNF. In this review, we summarized previously published researches on the epigenetic regulation of plant stress response.

  10. Stress response symptoms in adolescents during the first year after a parent's cancer diagnosis

    NARCIS (Netherlands)

    Huizinga, Gea A.; Visser, Annemieke; van der Graaf, Winette T. A.; Hoekstra, Harald J.; Gazendam-Donofrio, Stacey M.; Hoekstra-Weebers, Josette E. H. M.

    2010-01-01

    Purpose This work aims to prospectively study stress response symptoms (SRS) in adolescents during the first year after a parent's cancer diagnosis and factors associated with SRS. Additionally, SRS in these adolescents were compared to SRS in adolescents whose parents were diagnosed 1-5 years

  11. Dysfunction of stress responsive systems as a risk factor for functional somatic syndromes

    NARCIS (Netherlands)

    Tak, Lineke M.; Rosmalen, Judith G. M.

    The etiology of functional somatic syndromes or disorders (FSDs) is generally considered to be a multifactorial interplay between psychological, biological, and social factors. One of the most investigated biological factors is stress responsive system dysfunction Despite more than twenty years of

  12. Oxidative stress responses in the marine antarctic diatom Chaetoceros brevis (Bacillariophyceae) during photoacclimation

    NARCIS (Netherlands)

    Janknegt, P.J.; van de Poll, W.H.; Visser, R.J.W.; Rijstenbil, J.W.; Buma, A.G.J.

    2008-01-01

    The enzyme superoxide dismutase (SOD) holds a key position in the microalgal antioxidant network. The present research focused on oxidative stress responses in the Antarctic diatom Chaetoceros brevis F. Schütt during transition to excess (including ultraviolet radiation [UVR]) and limiting

  13. Studying stress responses in the post-genomic era: its ecological ...

    Indian Academy of Sciences (India)

    2007-03-26

    Mar 26, 2007 ... Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the ...

  14. Exogenous testosterone attenuates the integrated central stress response in healthy young women.

    NARCIS (Netherlands)

    Hermans, E.J.; Putman, P.L.J.; Baas, J.M.; Gecks, N.M.; Kenemans, J.L.; Honk, E.J. van

    2007-01-01

    Animal research has shown that the androgen steroid testosterone, the end product of the hypothalamic-pituitary-gonadal (HPG) axis, down regulates the integrated stress response at multiple levels. These effects have been demonstrated at the level of the amygdala and the bed nucleus of the stria

  15. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we...

  16. Preventive potentials of piperlongumine and a Piper longum extract against stress responses and pain

    Directory of Open Access Journals (Sweden)

    Vaishali Yadav

    2016-10-01

    Conclusion: Piperlongumine is another bioactive secondary metabolite of P. longum and other plants of piper species with stress response suppressing, analgesic, and anti-inflammatory activities. Its bactericidal activities can also contribute to its therapeutically interesting bio-activity profile.

  17. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    Science.gov (United States)

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  18. Ghrelin's Role in the Hypothalamic-Pituitary-Adrenal Axis Stress Response: Implications for Mood Disorders

    NARCIS (Netherlands)

    Spencer, S.J.; Emmerzaal, T.L.; Kozicz, L.T.; Andrews, Z.B.

    2015-01-01

    Ghrelin is a stomach hormone normally associated with feeding behavior and energy homeostasis. Recent studies highlight that ghrelin targets the brain to regulate a diverse number of functions, including learning, memory, motivation, stress responses, anxiety, and mood. In this review, we discuss

  19. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Cerdán M Esperanza

    2009-08-01

    Full Text Available Abstract A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.

  20. The stress response of frequently electroejaculated rams to electroejaculation: hormonal, physiological, biochemical, haematological and behavioural parameters.

    Science.gov (United States)

    Damián, J P; Ungerfeld, R

    2011-08-01

    Electroejaculation (EE) is a technique widely used to collect semen in ruminants, which produces a stress response with negative effects on animal welfare. The aim of this paper was to characterize the stress response during conventional EE in rams that have been frequently electroejaculated. Blood samples were collected since 20 min before and until 120 min after electroejaculating 10 rams. Electroejaculation affected hormone concentration, as cortisol increased, and testosterone decreased after EE. Heart and respiratory rate increased 10 min after EE. Several blood parameters, such as glycaemia, an increase in total protein and creatine kinase concentrations and a decrease in haematocrit, haemoglobin, red blood cell and alkaline phosphatase concentrations. The rams vocalized 13.8 ± 2.4 times, and the largest length of vocalizations during EE was associated with the numbers of pulses in which the rams ejaculated. In this paper, we provide a complete characterization of the stress response to EE in rams. We showed that although rams have been frequently electroejaculated, an important stress response including changes in respiratory rate, testosterone concentrations, haematological and biochemical parameters were observed, besides the changes in cortisol concentrations and heart rate, suggesting that rams were not habituated to EE. In addition, we described the main parameters of vocalizations and its relation with the moment of EE. The information displayed on the frequent use of EE in the rams should be considered in relation to the welfare implications. © 2010 Blackwell Verlag GmbH.

  1. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  2. The water exchange mechanism in thorium (IV) hydrates as studied by quantum chemical methods

    Science.gov (United States)

    Yang, Tianxiao; Tsushima, Satoru; Suzuki, Atsuyuki

    2003-02-01

    The water exchange mechanisms in [Th(H 2O) 10] 4+ and [Th(H 2O) 9] 4+ along dissociative ( D), associative ( A) and interchange ( I) pathways have been investigated using the ab initio quantum mechanical calculations. Water exchange in [Th(H 2O) 10] 4+ probably proceeds via the D mechanism, the activation energy is 3.06 kcal/mol. The water exchange in [Th(H 2O) 9] 4+ probably proceeds via the A pathway, the activation energy is 3.62 kcal/mol. Deprotonation of one coordinated water molecule of [Th(H 2O) 10] 4+ leads to the formation of hydroxo-aquo complex [Th(OH)(H 2O) 9] 3+, which has a more dissociative mechanism and lower activation energy.

  3. Effect of water absorption on the mechanical properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Marinho, Vithória A. D.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the effect of water absorption on the performance of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermoplastic obtained from renewable resources through low-impact biotechnological process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree.Water resistance is an important characteristic of structural composites, that may exposed to rain and humid environments. Both water absorption capacity (water solubility in the material) and the rate of water absorption (controlled by the diffusivity of water in the material) are important parameters. However, water absorption per se may not be the most important characteristic, insofar as the performance and applications of the compounds. It is the effect of the water content on the ultimate properties that determine the suitability of the material for applications that involve prolonged exposure to water.PHB/babassu composites with 0-20% load were prepared in an internal mixer. Two different types of babassu fibers having two different article size ranges were compounded with PHB and test specimens molded by compression. The water absorption capacity and the kinetic constant of water absorption were measured in triplicate. Mechanical properties under tension were measured for dry and moist specimens with different amounts of absorbed water.Results indicate that the performance of the composites is comparable to that of the pure matrix. Water absorption capacity increases from 0.7% (pure PHB) to 4% (PHB/20% babassu), but the water diffusivity (4.10□8 cm2/s) was found to be virtually independent of the water absorption level. Water absorption results in moderate drop in elastic modulus (10-30% at saturation, according to fiber content) but has little effect on tensile strength and elongation at break. Fiber type and initial particle size do not have a significant effect on water absorption or mechanical properties.

  4. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    viability and monolayer integrity were developed. The effect of simulated intestinal fluids on the absorption of the poorly water-soluble drug substances, estradiol and diazepam, was studied. The flux of both drug substances across the Caco-2 cells was decreased when simulated intestinal fluids containing...... micelles were applied in the apical compartment. The flux of diazepam was further decreased when pharmaceutical surfactants (Labrafil, fatty acid ester of polyethylene glycol, Cremophor RH40, polysorbate 80 and Pluronic L81) were added to the medium. This was most likely caused by partial incorporation...... of the drug substances in the micelles, and accordingly the drug substances need to be released from the micelles before being absorbed. However, the solubility of estradiol and diazepam was higher in the simulated intestinal fluids, indicating that the presence of bile salts, phospholipids and lipolysis...

  5. Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.

    Science.gov (United States)

    Samuel, Jitin; Sinha, Debarshi; Zhao, John Cong-Gui; Wang, Xiaodu

    2014-02-01

    Water may affect the mechanical behavior of bone by interacting with the mineral and organic phases through two major pathways: i.e. hydrogen bonding and polar interactions. In this study, dehydrated bone was soaked in several solvents (i.e. water, heavy water (D2O), ethylene glycol (EG), dimethylformamide (DMF), and carbon tetrachloride(CCl4)) that are chemically harmless to bone and different in polarity, hydrogen bonding capability and molecular size. The objective was to examine how replacing the original matrix water with the solvents would affect the mechanical behavior of bone. The mechanical properties of bone specimens soaked in these solvents were measured in tension in a progressive loading scheme. In addition, bone specimens without any treatments were tested as the baseline control whereas the dehydrated bone specimens served as the negative control. The experimental results indicated that 22.3±5.17vol% of original matrix water in bone could be replaced by CCl4, 71.8±3.77vol% by DMF, 85.5±5.15vol% by EG, and nearly 100% by D2O and H2O, respectively. CCl4 soaked specimens showed similar mechanical properties with the dehydrated ones. Despite of great differences in replacing water, only slight differences were observed in the mechanical behavior of EG and DMF soaked specimens compared with dehydrated bone samples. In contrast, D2O preserved the mechanical properties of bone comparable to water. The results of this study suggest that a limited portion of water (water) plays a pivotal role in the mechanical behavior of bone and it most likely resides in small matrix spaces, into which the solvent molecules larger than 4.0Å cannot infiltrate. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. EFFECT OF WATER ABSORPTION ON THE MECHANICAL PROPERTIES \\OF FLAX FIBER REINFORCED EPOXY COMPOSITES

    OpenAIRE

    Umit Huner

    2015-01-01

    Flax fiber reinforced epoxy composites were subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Epoxy composites specimens containing 0, 1, 5 and 10% fiber weight were prepared. Water absorption tests were conducted by immersing specimens in a de-ionized water bath at 25 ­°C and 90 °C for different time durations. The tensile and flexural properties of water immersed specimens subjected to both aging conditions were evaluated and ...

  7. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    Science.gov (United States)

    2012-01-01

    Background Single nucleotide polymorphism (SNP) validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure in rice. Results Of the 384 putative SNPs assayed, we successfully validated and genotyped 362 (94.3%). Of these 325 (84.6%) showed polymorphism among the 91 rice genotypes examined. Physical distribution, degree of allele sharing, admixtures and introgression, and amino acid replacement of SNPs in 263 abiotic and 62 biotic stress-responsive genes provided clues for identification and targeted mapping of trait-associated genomic regions. We assessed the functional and adaptive significance of validated SNPs in a set of contrasting drought tolerant upland and sensitive lowland rice genotypes by correlating their allelic variation with amino acid sequence alterations in catalytic domains and three-dimensional secondary protein structure encoded by stress-responsive genes. We found a strong genetic association among SNPs in the nine stress-responsive genes with upland and lowland ecological adaptation. Higher nucleotide diversity was observed in indica accessions compared with other rice sub-populations based on different population genetic parameters. The inferred ancestry of 16% among rice genotypes was derived from admixed populations with the maximum between upland aus and wild Oryza species. Conclusions SNPs validated in biotic and abiotic stress-responsive rice genes can be used in association analyses to identify candidate genes and develop functional markers for stress tolerance in rice. PMID:22921105

  8. Hemodynamic stress response during laparoscopic cholecystectomy: Effect of two different doses of intravenous clonidine premedication

    Directory of Open Access Journals (Sweden)

    Deepshikha C Tripathi

    2011-01-01

    Full Text Available Background : Clonidine has emerged as an attractive premedication desirable in laparoscopic surgery wherein significant hemodynamic stress response is seen. The minimum safe and effective dose of intravenous clonidine to attenuate the hemodynamic stress response during laparoscopic surgery has however not yet been determined. Materials and Methods : This prospective, randomized, double-blind controlled study was conducted on 90 adults of ASA physical status I and II, scheduled for laparoscopic cholecystectomy under general anesthesia. Patients were randomized to one of the three groups (n= 30. Group I received 100 ml of normal saline, while groups II and III received 1 μg/ kg and 2 μg/ kg of clonidine respectively, intravenous, in 100 ml of normal saline along. All patients received glycopyrrolate 0.004 mg/kg and tramadol 1.5 mg/kg intravenously, 30 min before induction. Hemodynamic variables (heart rate, systolic, diastolic, mean arterial pressure, SpO2, and sedation score were recorded at specific timings. MAP above 20% from baseline was considered significant and treated with nitroglycerine. Results : In group I, there was a significant increase in hemodynamic variables during intubation pneumoperitoneum and extubation (P<0.001. Clonidine given 1 μg/kg intravenous attenuated hemodynamic stress response to pneumoperitoneum (P<0.05, but not that associated with intubation and extubation. Clonidine 2 μg/kg intravenous prevented hemodynamic stress response to pneumoperitoneum and that associated with intubation and extubation (P<0.05. As against 14 and 2 patients in groups I and II respectively, no patient required nitroglycerine infusion in group III. Conclusions : Clonidine, 2 μg/ kg intravenously, 30 min before induction is safe and effective in preventing the hemodynamic stress response during laparoscopic cholecystectomy.

  9. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2017-12-11

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    Directory of Open Access Journals (Sweden)

    Parida Swarup K

    2012-08-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure in rice. Results Of the 384 putative SNPs assayed, we successfully validated and genotyped 362 (94.3%. Of these 325 (84.6% showed polymorphism among the 91 rice genotypes examined. Physical distribution, degree of allele sharing, admixtures and introgression, and amino acid replacement of SNPs in 263 abiotic and 62 biotic stress-responsive genes provided clues for identification and targeted mapping of trait-associated genomic regions. We assessed the functional and adaptive significance of validated SNPs in a set of contrasting drought tolerant upland and sensitive lowland rice genotypes by correlating their allelic variation with amino acid sequence alterations in catalytic domains and three-dimensional secondary protein structure encoded by stress-responsive genes. We found a strong genetic association among SNPs in the nine stress-responsive genes with upland and lowland ecological adaptation. Higher nucleotide diversity was observed in indica accessions compared with other rice sub-populations based on different population genetic parameters. The inferred ancestry of 16% among rice genotypes was derived from admixed populations with the maximum between upland aus and wild Oryza species. Conclusions SNPs validated in biotic and abiotic stress-responsive rice genes can be used in association analyses to identify candidate genes and develop functional markers for stress tolerance in rice.

  11. Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.

    Directory of Open Access Journals (Sweden)

    Cairns Michael T

    2010-03-01

    Full Text Available Abstract Background Selection programs for growth and stress traits in cultured fish are fundamental to the improvement of aquaculture production. The gilthead sea bream (Sparus aurata is the main aquacultured species in the Mediterranean area and there is considerable interest in the genetic improvement of this species. With the aim of increasing the genomic resources in gilthead sea bream and identifying genes and mechanisms underlying the physiology of the stress response, we developed a cDNA microarray for gilthead sea bream that is enriched by suppression substractive hybridization with stress and immunorelevant genes. This microarray is used to analyze the dynamics of gilthead sea bream liver expression profile after confinement exposure. Results Groups of confined and control juvenile fish were sampled at 6, 24, 72 and 120 h post exposure. GeneSpring analyses identified 202 annotated genes that appeared differentially expressed at least at one sampling time (P Conclusions Collectively, these findings show the complex nature of the adaptive stress response with a clear indication that the ER is an important control point for homeostatic adjustments. The study also identifies metabolic pathways which could be analyzed in greater detail to provide new insights regarding the transcriptional regulation of the stress response in fish.

  12. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS(Ntr)), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTS(Ntr) allows A. baumannii to integrate cellular metabolic status with external environmental cues.IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we

  13. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J

    2010-12-01

    -clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.

  14. Genetic and Targeted eQTL Mapping Reveals Strong Candidate Genes Modulating the Stress Response During Chicken Domestication

    Directory of Open Access Journals (Sweden)

    Amir Fallahsharoudi

    2017-02-01

    Full Text Available The stress response has been largely modified in all domesticated animals, offering a strong tool for genetic mapping. In chickens, ancestral Red Junglefowl react stronger both in terms of physiology and behavior to a brief restraint stress than domesticated White Leghorn, demonstrating modified functions of the hypothalamic–pituitary–adrenal (HPA axis. We mapped quantitative trait loci (QTL underlying variations in stress-induced hormone levels using 232 birds from the 12th generation of an advanced intercross between White Leghorn and Red Junglefowl, genotyped for 739 genetic markers. Plasma levels of corticosterone, dehydroepiandrosterone (DHEA, and pregnenolone (PREG were measured using LC-MS/MS in all genotyped birds. Transcription levels of the candidate genes were measured in the adrenal glands or hypothalamus of 88 out of the 232 birds used for hormone assessment. Genes were targeted for expression analysis when they were located in a hormone QTL region and were differentially expressed in the pure breed birds. One genome-wide significant QTL on chromosome 5 and two suggestive QTL together explained 20% of the variance in corticosterone response. Two significant QTL for aldosterone on chromosome 2 and 5 (explaining 19% of the variance, and one QTL for DHEA on chromosome 4 (explaining 5% of the variance, were detected. Orthologous DNA regions to the significant corticosterone QTL have been previously associated with the physiological stress response in other species but, to our knowledge, the underlying gene(s have not been identified. SERPINA10 had an expression QTL (eQTL colocalized with the corticosterone QTL on chromosome 5 and PDE1C had an eQTL colocalized with the aldosterone QTL on chromosome 2. Furthermore, in both cases, the expression levels of the genes were correlated with the plasma levels of the hormones. Hence, both these genes are strong putative candidates for the domestication-induced modifications of the stress

  15. Biological stress responses induced by alpha radiation exposure in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, A.; Horemans, N.; Van Hees, M.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Knapen, D.; Blust, R. [University of Antwerp (Belgium)

    2014-07-01

    To enhance the robustness of radiation protection criteria for biota, additional information on the biological impact of radionuclides on non-human biota is needed. In particular the effects of alpha emitting isotopes have been poorly studied within a radioecological contextual though they exhibit a high linear energy transfer which can cause significant biological damage when taken up by organisms. Therefore, it is not only essential to measure alpha radiation toxicity, but also try to understand the underlying mechanisms of this stressor. The current study aimed to contribute to a better knowledge of the fundamental processes regulating alpha radiation stress response mechanisms in higher plants. {sup 241}Am was primarily selected as it is an almost pure alpha emitter and, as a daughter nuclide of {sup 241}Pu, it will become one of the dominant pollutants in plutonium affected areas. The aquatic macrophyte Lemna minor has proven its value in eco-toxicological research as representative of higher aquatic plants (OECD guideline nr. 221) and will be used to analyze alpha radiation stress in plant systems. An individual growth inhibition test was set up by means of single dose-response curve in order to identify the Effective Dose Rates (EDR-values) for frond size and biomass. As the mean path length is small for alpha particles, the accumulation of the radionuclide inside species represents almost exclusively the dosimetry. Therefore, quantification of {sup 241}Am uptake and {sup 241}Am distribution were evaluated separately for roots and fronds taking the activity concentrations of growth medium into account. Taken together with the respective dose conversion coefficients from the ERICA tool, this allowed to construct an accurate dosimetric model to determine internal and external dose rates. Different standard media were tested on growth rate and biomass to analyse the amount of {sup 241}Am taken up by the plants exposed from 2.5 to 100 kBq/L. From these

  16. Epigenetic programming of the stress response in male and female rats by prenatal restraint stress.

    Science.gov (United States)

    Darnaudéry, Muriel; Maccari, Stefania

    2008-03-01

    Exposure to hostile conditions results in a series of coordinated responses aimed at enhancing the probability of survival. The activation of the hypothalamo-pituitary-adrenocortical (HPA) axis plays a pivotal role in the stress response. While the short-term activation of the HPA axis allows adaptive responses to the challenge, in the long run this can be devastating for the organism. In particular, life events occurring during the perinatal period have strong long-term effects on the behavioral and neuroendocrine response to stressors. In male and female rats exposed to prenatal restraint stress (PRS), these effects include a long-lasting hyperactivation of the HPA response associated with an altered circadian rhythm of corticosterone secretion. Furthermore, male animals exhibit sleep disturbances. In males, these HPA dysfunctions have been reported in infant, young, adult and aged animals, thus suggesting a permanent effect of early stress. Interestingly, after exposure to an intense inescapable footshock, female PRS rats durably exhibit a blunted corticosterone secretion response to stress. In male PRS rats exposed to an alcohol challenge, the HPA axis is similarly hyporesponsive. Rats exposed to PRS also show behavioral disturbances. Both male and female PRS rats show high anxiety levels and depression-like behavior during adulthood, although some studies suggest that female PRS rats present low anxiety levels. With ageing, male and female PRS rats exhibit memory impairments in hippocampus-dependent tasks, while female PRS rats improve their memory performance during adulthood. The gender effect on behavior seems to be related to a reduction in hippocampal plasticity in male PRS rats, and an increase in female PRS rats. Despite the permanent imprinting induced by early stress, the dysfunctions observed after PRS can be reversed by environmental or pharmacological strategies such as environmental enrichment or antidepressive and neurotrophic treatments

  17. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Directory of Open Access Journals (Sweden)

    D. Weichgrebe

    2008-03-01

    Full Text Available Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  18. The Functional and Regulatory Mechanisms of the Thellungiella salsuginea Ascorbate Peroxidase 6 (TsAPX6 in Response to Salinity and Water Deficit Stresses.

    Directory of Open Access Journals (Sweden)

    Zeqin Li

    Full Text Available Soil salinization is a resource and ecological problem in the world. Thellungiella salsuginea is becoming a new model plant because it resembles its relative species, Arabidopsis thaliana, in small genome and short life cycle. It is highly tolerant to salinity and drought stresses. Ascorbate peroxidase (APX is an enzyme that clears H2O2 in plants. The function and molecular and regulation mechanisms of APX in T. salsuginea have rarely been reported. In this study, an APX gene, TsApx6, was cloned from T. salsuginea and its responses to abiotic stresses in transgenic Arabidopsis were studied. Under high salinity treatment, the expression of TsApx6 was significantly induced. Under drought treatment, overexpression of TsApx6 increased the survival rate and reduced leaf water loss rate in Arabidopsis. Compared to the wild type plants, high salinity treatment reduced the concentrations of MDA, H2O2 and proline but elevated the activities of APX, GPX, CAT and SOD in the TsApx6-overexpressing plants. Meanwhile, germination rate, cotyledon greening, and root length were improved in the transgenic plants compared to the wild type plants under salt and water deficit conditions. Based on these findings, TsApx6 has an important function in the resistance of plants to certain abiotic stresses. The TsApx6 promoter sequence was obtained using Genome Walking technology. Bioinformatics analysis indicated that it contains some cis-acting elements related to stress response. The treatments of salt, dehydration, and ABA induced the expression of Gus gene under the regulation of the TsApx6 promoter. Mutation analysis showed that the MBS motif present in the TsApx6 promoter might be a key negative regulatory element which has an important effect on the growth and developmental process of plants.

  19. The Functional and Regulatory Mechanisms of the Thellungiella salsuginea Ascorbate Peroxidase 6 (TsAPX6) in Response to Salinity and Water Deficit Stresses.

    Science.gov (United States)

    Li, Zeqin; Zhang, Jilong; Li, Jingxiao; Li, Hongjie; Zhang, Genfa

    2016-01-01

    Soil salinization is a resource and ecological problem in the world. Thellungiella salsuginea is becoming a new model plant because it resembles its relative species, Arabidopsis thaliana, in small genome and short life cycle. It is highly tolerant to salinity and drought stresses. Ascorbate peroxidase (APX) is an enzyme that clears H2O2 in plants. The function and molecular and regulation mechanisms of APX in T. salsuginea have rarely been reported. In this study, an APX gene, TsApx6, was cloned from T. salsuginea and its responses to abiotic stresses in transgenic Arabidopsis were studied. Under high salinity treatment, the expression of TsApx6 was significantly induced. Under drought treatment, overexpression of TsApx6 increased the survival rate and reduced leaf water loss rate in Arabidopsis. Compared to the wild type plants, high salinity treatment reduced the concentrations of MDA, H2O2 and proline but elevated the activities of APX, GPX, CAT and SOD in the TsApx6-overexpressing plants. Meanwhile, germination rate, cotyledon greening, and root length were improved in the transgenic plants compared to the wild type plants under salt and water deficit conditions. Based on these findings, TsApx6 has an important function in the resistance of plants to certain abiotic stresses. The TsApx6 promoter sequence was obtained using Genome Walking technology. Bioinformatics analysis indicated that it contains some cis-acting elements related to stress response. The treatments of salt, dehydration, and ABA induced the expression of Gus gene under the regulation of the TsApx6 promoter. Mutation analysis showed that the MBS motif present in the TsApx6 promoter might be a key negative regulatory element which has an important effect on the growth and developmental process of plants.

  20. Longitudinal change in telomere length and the chronic stress response in a randomized pilot biobehavioral clinical study: implications for cancer prevention.

    Science.gov (United States)

    Biegler, Kelly A; Anderson, Amanda K L; Wenzel, Lari B; Osann, Kathryn; Nelson, Edward L

    2012-10-01

    Shortened telomere length is associated with increased cancer incidence and mortality. Populations experiencing chronic stress have accelerated telomere shortening. In this exploratory study, we examined associations between longitudinal changes in patient reported outcomes (PRO) of psychologic distress and peripheral blood mononuclear cell (PBMC) telomere length to test the hypothesis that modulation of the chronic stress response would also modulate telomere dynamics. Archived PBMC specimens (N = 22) were analyzed from a completed and reported randomized, longitudinal trial that showed a psychosocial telephone counseling intervention improved quality of life (QOL) and modulated stress-associated biomarkers in cervical cancer survivors. PROs and biospecimens were collected at baseline and 4 months postenrollment. Telomere length of archived PBMCs was evaluated using the flow-FISH assay. Longitudinal changes in psychologic distress, measured by the Brief Symptom Inventory-18, were significantly associated with increased telomere length within the CD14(+) (monocyte) population (r = -0.46, P = 0.043); a similar trend was observed for the CD14(-) population. Longitudinal changes in telomere length of the CD14(-) subset, primarily T lymphocytes, were associated with longitudinal increases in the naive T-cell population (r = 0.49, P = 0.052). Alterations in the chronic stress response were associated with modulation of telomere length in PBMCs, with evidence for mobilization of "younger" cells from progenitor populations. These data provide preliminary support for the (i) capacity to modulate the chronic stress response and the associated accelerated telomere shortening, (ii) inclusion of telomere length in the biobehavioral paradigm, and (iii) potential link between the chronic stress response and biologic mechanisms responsible for genomic integrity and carcinogenesis.

  1. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  2. The effect of water uptake on the mechanical properties of low-k organosilica glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; M.T. Nichols; S. Banna; Y. Nishi; J.L. Shohet

    2013-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-...

  3. Impacts of mechanical tree felling on development of water tupelo regeneration in the Mobile Delta, Alabama

    Science.gov (United States)

    Emile S. Gardiner; D. Ramsey Russell; John D. Hodges; T. Conner Fristoe

    2000-01-01

    Two water tupelo (Nyssa aquatica L.) stands in the Mobile Delta of Alabama were selected to test the hypothesis that mechanized felling does not reduce establishment and growth of natural water tupelo regeneration relative to traditional tree felling with chainsaws. To test the hypothesis, we established six 2 acre treatment plots in each of two...

  4. Signal of Acceleration and Physical Mechanism of Water Cycle in Xinjiang, China

    OpenAIRE

    Feng, Guo-Lin; Wu, Yong-Ping

    2016-01-01

    Global warming accelerates water cycle with features of regional difference. However, little is known about the physical mechanism behind the phenomenon. To reveal the links between water cycle and climatic environment, we analyzed the changes of water cycle elements and their relationships with climatic and environmental factors. We found that when global warming was significant during the period of 1986-2003, the precipitation in Tarim mountains as well as Xinjiang increased rapidly except ...

  5. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite.

    Science.gov (United States)

    Pottinger, Tom G

    2017-06-01

    Disruption of non-reproductive endocrine systems in wildlife by chemicals has received little attention but represents a potentially significant problem. Nitrate is a major anthropogenic contaminant in the freshwater aquatic environment and has been identified as a potential disrupter of endocrine function in aquatic animals. This study was conducted to investigate the relationship between the function of the neuroendocrine stress axis in fish and inorganic N loading along reaches of rivers receiving cumulative point source and diffuse chemical inputs. To accomplish this, the responsiveness of the stress axis, quantified as the rate of release of cortisol to water across the gills during exposure to a standardised stressor, was measured in three-spined sticklebacks (Gasterosteus aculeatus L.) resident at three sites on each of four rivers in north-west England. The magnitude of the stress response in fish captured at the sites furthest downstream on all rivers was more than twice that of fish captured at upstream sites. Site-specific variation in stress axis reactivity was better explained by between-site variation in concentrations of dissolved nitrate, nitrite, and ammonia than by the concentration of wastewater treatment works effluent. An increase in the magnitude of the stress response was seen among sticklebacks at sites where long-term averaged concentrations of NH3-N, NO3-N and NO2-N exceeded 0.6, 4.0 and 0.1 mg/L respectively. These data suggest that either (i) inorganic N is a better surrogate than wastewater effluent concentration for an unknown factor or factors affecting stress axis function in fish, or (ii) dissolved inorganic N directly exerts a disruptive influence on the function of the neuroendocrine stress axis in fish, supporting concerns that nitrate is an endocrine-modulating chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

    Science.gov (United States)

    Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción

    2015-10-24

    NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.

  7. On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans.

    Science.gov (United States)

    Bailey, D M; Lundby, C; Berg, R M G; Taudorf, S; Rahmouni, H; Gutowski, M; Mulholland, C W; Sullivan, J L; Swenson, E R; McEneny, J; Young, I S; Pedersen, B K; Møller, K; Pietri, S; Culcasi, M

    2014-10-01

    The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms. The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO˙), 2,2-diphenyl-1-picrylhydrazyl (DPPH˙) and peroxyl (ROO˙) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(˙-) ) and N-tert-butyl-α-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-). We found rHuEPO to be a potent scavenger of HO˙ (kr = 1.03-1.66 × 10(11) m(-1) s(-1) ) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH˙ and ROO˙ was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A˙(-) , PBN-OR, 3-NT and corresponding loss of NO2- (P < 0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r = -0.52 to 0.68, P < 0.05). These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses

    Directory of Open Access Journals (Sweden)

    Marina Borges Osorio

    2012-01-01

    Full Text Available Environmental stresses caused by either abiotic or biotic factors greatly affect agriculture. As for soybean [Glycine max (L. Merril], one of the most important crop species in the world, the situation is not different. In order to deal with these stresses, plants have evolved a variety of sophisticated molecular mechanisms, to which the transcriptional regulation of target-genes by transcription factors is crucial. Even though the involvement of several transcription factor families has been widely reported in stress response, there still is a lot to be uncovered, especially in soybean. Therefore, the objective of this study was to investigate the role of bHLH and trihelix-GT transcription factors in soybean responses to environmental stresses. Gene annotation, data mining for stress response, and phylogenetic analysis of members from both families are presented herein. At least 45 bHLH (from subgroup 25 and 63 trihelix-GT putative genes reside in the soybean genome. Among them, at least 14 bHLH and 11 trihelix-GT seem to be involved in responses to abiotic/biotic stresses. Phylogenetic analysis successfully clustered these with members from other plant species. Nevertheless, bHLH and trihelix-GT genes encompass almost three times more members in soybean than in Arabidopsis or rice, with many of these grouping into new clades with no apparent near orthologs in the other analyzed species. Our results represent an important step towards unraveling the functional roles of plant bHLH and trihelix-GT transcription factors in response to environmental cues.

  9. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals.

    Science.gov (United States)

    Cheng, Mei-Chun; Liao, Po-Ming; Kuo, Wei-Wen; Lin, Tsan-Piao

    2013-07-01

    ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals.

  10. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  11. Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes

    Directory of Open Access Journals (Sweden)

    Siré Christelle

    2008-03-01

    Full Text Available Abstract Background The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. Results The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica, and partially resistant Azucena (O. s. japonica. This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters were regulated throughout the kinetics of infection and differentiated susceptible and

  12. Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses.

    Science.gov (United States)

    Yuan, Lixia; Mao, Xue; Zhao, Kui; Ji, Xiajie; Ji, Chunli; Xue, Jinai; Li, Runzhi

    2017-07-15

    As an important oilseed worldwide, Camelina sativa is being increasingly explored for its use in production of food, feed, biofuel and industrial chemicals. However, detailed mechanisms of camelina oil biosynthesis and accumulation, particularly in vegetative tissues, are understood to a very small extent. Here, we present genome-wide identification, cloning and functional analysis of phospholipid diacylglycerol acyltransferase (PDAT) in C. sativa, which catalyses the final acylation step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl moiety from a phospholipid to diacylglycerol (DAG). We identified five genes (namely CsPDAT1-A, B, and C and CsPDAT2-A and B) encoding PDATs from the camelina genome. CsPDAT1-A is mainly expressed in seeds, whereas CsPDAT1-C preferentially accumulates in flower and leaf tissues. High expression of CsPDAT2-A and CsPDAT2-B was detected in stem and root tissues, respectively. Cold stress induced upregulation of CsPDAT1-A and CsPDAT1-C expression by 3.5- and 2.5-fold, respectively, compared to the control. Salt stress led to an increase in CsPDAT2-B transcripts by 5.1-fold. Drought treatment resulted in an enhancement of CsPDAT2-A mRNAs by twofold and a reduction of CsPDAT2-B expression. Osmotic stress upregulated the expression of CsPDAT1-C by 3.3-fold. Furthermore, the cDNA clones of these CsPDAT genes were isolated for transient expression in tobacco leaves. All five genes showed PDAT enzymatic activity and substantially increased TAG accumulation in the leaves, with CsPDAT1-A showing a higher preference for ɑ-linolenic acid (18:3 ω-3). Overall, this study demonstrated that different members of CsPDAT family contribute to TAG synthesis in different tissues. More importantly, they are involved in different types of stress responses in camelina seedlings, providing new evidence of their roles in oil biosynthesis and regulation in camelina vegetative tissue. The identified CsPDATs may have practical applications in

  13. Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs from Camelina sativa and their roles in stress responses

    Directory of Open Access Journals (Sweden)

    Lixia Yuan

    2017-07-01

    Full Text Available As an important oilseed worldwide, Camelina sativa is being increasingly explored for its use in production of food, feed, biofuel and industrial chemicals. However, detailed mechanisms of camelina oil biosynthesis and accumulation, particularly in vegetative tissues, are understood to a very small extent. Here, we present genome-wide identification, cloning and functional analysis of phospholipid diacylglycerol acyltransferase (PDAT in C. sativa, which catalyses the final acylation step in triacylglycerol (TAG biosynthesis by transferring a fatty acyl moiety from a phospholipid to diacylglycerol (DAG. We identified five genes (namely CsPDAT1-A, B, and C and CsPDAT2-A and B encoding PDATs from the camelina genome. CsPDAT1-A is mainly expressed in seeds, whereas CsPDAT1-C preferentially accumulates in flower and leaf tissues. High expression of CsPDAT2-A and CsPDAT2-B was detected in stem and root tissues, respectively. Cold stress induced upregulation of CsPDAT1-A and CsPDAT1-C expression by 3.5- and 2.5-fold, respectively, compared to the control. Salt stress led to an increase in CsPDAT2-B transcripts by 5.1-fold. Drought treatment resulted in an enhancement of CsPDAT2-A mRNAs by twofold and a reduction of CsPDAT2-B expression. Osmotic stress upregulated the expression of CsPDAT1-C by 3.3-fold. Furthermore, the cDNA clones of these CsPDAT genes were isolated for transient expression in tobacco leaves. All five genes showed PDAT enzymatic activity and substantially increased TAG accumulation in the leaves, with CsPDAT1-A showing a higher preference for ɑ-linolenic acid (18:3 ω-3. Overall, this study demonstrated that different members of CsPDAT family contribute to TAG synthesis in different tissues. More importantly, they are involved in different types of stress responses in camelina seedlings, providing new evidence of their roles in oil biosynthesis and regulation in camelina vegetative tissue. The identified CsPDATs may have practical

  14. Cortisol and subjective stress responses to acute psychosocial stress in fibromyalgia patients and control participants.

    Science.gov (United States)

    Coppens, Eline; Kempke, Stefan; Van Wambeke, Peter; Claes, Stephan; Morlion, Bart; Luyten, Patrick; Van Oudenhove, Lukas

    2017-12-11

    Hypothalamic-pituitary-adrenal (HPA) axis dysfunction may play a role in fibromyalgia (FM) pathogenesis, but remains understudied in this disorder. Furthermore, early childhood adversities (ECA) are common in FM, but whether they moderate stress reactivity is unknown. Hence, we investigated cortisol and subjective responses to acute psychosocial stress in FM and controls, while adjusting for ECA. Twenty-seven female FM patients and 24 age-matched female controls were recruited in a tertiary care center and through advertisements, respectively. The Childhood Trauma Questionnaire was used to measure ECA history. Salivary cortisol levels and subjective stress ratings were measured at multiple time points before and after the Trier Social Stress Test (TSST) was administered. Significant main effects of group [F(1,43)=7.04, p=0.011, lower in FM] and ECA [F(1,43)=5.18, p=0.028, higher in participants with ECA] were found for cortisol responses. When excluding controls with ECA (n=5), a significant group-by-time interaction was found [F(6,39)=2.60, p=0.032], driven by a blunted response to the stressor in FM compared with controls (p=0.037). For subjective stress responses, a significant main effect of group [F(1,45)=10.69, p=0.002, higher in FM] and a trend towards a group-by-time interaction effect [F(6,45)=2.05, p=0.078, higher in FM 30 minutes before and 30 and 75 minutes after the TSST, and impaired recovery (difference immediately after - 30 minutes after the TSST) in FM] were found. Blunted cortisol responsivity to the TSST was observed in FM patients compared with controls without ECA. FM patients had higher subjective stress levels compared with controls, particularly at baseline and during recovery from the TSST. In FM patients, ECA history was not associated with cortisol or subjective stress levels, or with responsivity to the TSST. Future research should investigate the mechanisms underlying HPA axis dysregulation in FM.

  15. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.

    Science.gov (United States)

    Zhou, Yuchan; Underhill, Steven J R

    2016-01-01

    Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. [Manufacture of hydroxyapatite as a defluoridator and the mechanism of defluoridation for drinking water].

    Science.gov (United States)

    Li, Xinyun; Zheng, Dawei; Ying, Bo

    2002-04-01

    Hydroxyapatite as a defluoridator for drinking water is characterized by a large capacity of defluoridation, and easy and simple operation in application. The quality of drinking water is not changed, the sorbent is easy to be regenerated, and the second pollution does not occur after the treatment of drinking water with the sorbent. Hydroxyapatite method has advantage over the methods such as actived alumina, bone char and electrodialysis commonly used in defluorination of drinking water. It is for this reason that the components, structural feature, synthesis and application of hydroxyapatite and its mechanism of defluoridation are summarized in this paper.

  17. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    the increase in FSD1 was more pronounced in the U-treated plants. In general, the combined exposure to Cd and U on pro- and anti-oxidative gene expression tended to coincide with the responses induced by U as a single stressor. No significant changes in the concentrations of the antioxidants ascorbate or glutathione were observed except with a small increase in the reduced pool of glutathione in both leaves and roots in Cd-exposed plants. Although, strong differences in gene expression were found, these did generally not result in a changed enzyme capacity. Only peroxidase activity was significantly different in the treated versus control plants. As such in roots of U-treated plants, ascorbate peroxidase capacity showed a two-fold increase. Whereas in leaves of the Cd-treated plants the activity of syringaldazine peroxidase and guaiacol peroxidase was increased. The tested enzyme activities did not differ from control in U+Cd-treated plants. It can be concluded from this research that although both U and Cd induce a rapid oxidative stress response visible as changes in gene expression 24 h after start of the exposure, the mechanisms underlying this process are rather different between both stressors. (authors)

  18. Dissecting the genetic architecture of the cardiovascular and renal stress response.

    Science.gov (United States)

    Snieder, Harold; Harshfield, Gregory A; Barbeau, Paule; Pollock, David M; Pollock, Jennifer S; Treiber, Frank A

    2002-10-01

    We review the evidence for a genetic basis of the cardiovascular and renal stress response. A bio-behavioral model of stress-induced hypertension is presented that explains how repeated exposure to stress in combination with genetic susceptibility might lead to the development of hypertension. In this model, we focus on three underlying physiological systems that mediate the stress response of the heart, vasculature and kidney: the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the endothelial system (ES). We then review the evidence for a genetic influence on cardiovascular reactivity to psychological stress and stress-induced sodium retention using data from twin and family studies and a limited number of candidate gene studies. Finally, by describing the underlying physiological systems of our model and their genetic underpinning we emphasize the importance of inclusion of genetic measurements in any future studies testing the reactivity hypothesis.

  19. Associations of objectively measured physical activity with daily mood ratings and psychophysiological stress responses in women.

    Science.gov (United States)

    Poole, Lydia; Steptoe, Andrew; Wawrzyniak, Andrew J; Bostock, Sophie; Mitchell, Ellen S; Hamer, Mark

    2011-08-01

    The aim of this study was to examine associations of objectively measured physical activity with daily mood ratings and psychophysiological stress responses. We recruited 40 healthy females (aged 28.7 ± 6.1 yrs) who completed a once-a-day mood rating scale for 7 days, along with a 7-day assessment of physical activity using accelerometers and psychophysiological stress testing. The findings suggest that levels of physical activity as measured using an accelerometer are associated with both depressive symptoms over the past 2 weeks (CES-D) (r = - .33, p = .038) and with daily positive emotional style (r = .49, p = .001). The relationship between physical activity and positive emotional style remained after controlling for age, body mass index, and negative emotional style (t = 3.31, p = .002). Physical activity was not related to any psychophysiological stress responses. Copyright © 2011 Society for Psychophysiological Research.

  20. [The effects of aromatherapy on stress and stress responses in adolescents].

    Science.gov (United States)

    Seo, Ji-Yeong

    2009-06-01

    This study was done to examine the effects of aromatherapy on stress and stress responses in adolescents. A two-group cross-over design was used for this study. The experimental treatment was aroma essential oil inhalation and the placebo treatment was carrier oil inhalation using a necklace. The sample included 36 female high school students. Fisher's exact test, t-test, and paired t-test using SPSS/WIN program were used to analyze the data. Stress levels were significantly lower when the students received the aroma treatment compared to when they received the placebo treatment. The stress responses except salivary IgA levels were significantly lower when the students received the aroma treatment. Aroma inhalation could be a very effective stress management method for high school students. Therefore, it is recommended that this program be used in clinical practice as an effective nursing intervention for high school students.

  1. OF SOME FIELD TRAITS OF WHEAT TO ABA UNDER EFFECT OF WATER STRESS RESPONSE

    National Research Council Canada - National Science Library

    E K Hashim; S A Ahmed

    2017-01-01

    ...هاشن واحود 7107/ 48 (4)971 :-957 –هجلة العلوم الزراعية العراقية 957 اإلجياد المائي بتأثير ABAلحامض استجابة بعض الصفات الحقمية في الحنطة شذى عبد الحسن احمد ىاشم...

  2. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  3. JNK at the crossroad of obesity, insulin resistance, and cell stress response

    Directory of Open Access Journals (Sweden)

    Giovanni Solinas

    2017-02-01

    Major conclusion: Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.

  4. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

    OpenAIRE

    Heckmann, L. H.; Sibly, R. M.; Connon, R.; Hooper, H. L.; Hutchinson, T. H.; Maund, S. J.; Hill, C. J.; Bouetard, A.; Callaghan, A.

    2008-01-01

    BACKGROUND: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. RESULTS: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and inv...

  5. Speeches, strangers, and alcohol use: the role of context in social stress response dampening.

    Science.gov (United States)

    Ham, Lindsay S; Casner, Hilary G; Bacon, Amy K; Shaver, Jennifer A

    2011-12-01

    According to the Stress Response Dampening model, problem drinking develops after learning that alcohol limits the stress response in anxiety-provoking situations. However, laboratory-based studies testing alcohol's effects on social anxiety have yielded mixed results. The current study was the first to examine stress response dampening across two contexts: a performance-based (a speech) and an interaction-based (a conversation) social situation. Undergraduates (N = 62; M(age) = 22.85; 31% women; 81% Caucasian) were randomly assigned to consume an alcoholic (target BAC = .08%; n = 22), placebo (n = 20), or nonalcoholic control (n = 20) beverage followed by the anxiety-inducing social tasks. Results revealed a 3 (alcohol condition) × 2 (social task condition) × 4 (measurement point) interaction, controlling for baseline subjective state anxiety and trait social anxiety. The pattern of scores over the course of the task varied across alcohol conditions for the speech, but not the conversation. Specifically, participants in the alcohol and placebo conditions evidenced increased subjective anxiety following the first measurement point prior to the speech and their anxiety remained elevated at all subsequent measurements. Participants in the nonalcoholic control condition evidenced stable subjective anxiety ratings for all speech measurement points. Results did not support stress response dampening for either type of social situation. Instead, the only between-group difference found was that the placebo group reported greater subjective anxiety than the nonalcoholic control group after the speech. Concerns about alcohol's negative effects on one's performance might have led to increased anxiety. Findings shed light on previous inconsistent findings and highlight the need to consider context and timing in understanding drinking to cope with social anxiety. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Physiological stress response to loss of social influence and threats to masculinity.

    Science.gov (United States)

    Taylor, Catherine J

    2014-02-01

    Social influence is an important component of contemporary conceptualizations of masculinity in the U.S. Men who fail to achieve masculinity by maintaining social influence in the presence of other men may be at risk of stigmatization. As such, men should be especially likely to exhibit a stress response to loss of social influence in the presence of other men. This study assesses whether men who lose social influence exhibit more of a stress response than men who gain social influence, using data collected in a laboratory setting where participants were randomly assigned into four-person groups of varying sex compositions. The groups were videotaped working on two problem-solving tasks. Independent raters assessed change in social influence using a well-validated measure borrowed from experimental work in the Status Characteristics Theory tradition. Cortisol is used as a measure of stress response because it is known to increase in response to loss of social esteem. Results show that young men who lose social influence while working with other young men exhibit cortisol response. In contrast women do not exhibit cortisol response to loss of social influence, nor do men working with women. Results are consistent with the hypothesis that loss of social influence in men may be associated with a physiological stress response because maintaining social influence is very important to men while in the presence of other men. This physiological response to loss of social influence underscores the importance to men of achieving masculinity through gaining and maintaining social influence, and avoiding the stigma associated with the failure to do so. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Infants, mothers, and dyadic contributions to stability and prediction of social stress response at 6 months.

    Science.gov (United States)

    Provenzi, Livio; Olson, Karen L; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social stress response has received scant attention in previous literature. In the present article, overtime stability of infant, maternal, and dyadic behaviors was measured across 2 social stress (i.e., Face-to-Face Still-Face, FFSF) exposures, separated by 15 days. Moreover, infant, maternal, and dyadic behaviors were simultaneously assessed as predictors of infants' social stress to both FFSF exposures. Eighty-one mother-infant dyads underwent the FFSF twice, at 6 months (Exposure 1: the first social stress) and at 6 months and 15 days (Exposure 2: repeated social stress). Infant and mother behavior and dyadic synchrony were microanalytically coded. Overall, individual behavioral stability emerged between FFSF exposures. Infants' response to the first stress was predicted by infant behavior during Exposure 1 Play. Infants' response to the repeated social stress was predicted by infants' response to the first exposure to the Still-Face and by infants' behavior and dyadic synchrony during Exposure 2 Play. Findings reveal stability for individual, but not for dyadic, behavior between 2 social stress exposures at 6 months. Infants' response to repeated social stress was predicted by infants' earlier stress response, infants' own behavior in play, and dyadic synchrony. No predictive effects of maternal behavior were found. Insights for research and clinical work are discussed. (c) 2015 APA, all rights reserved).

  8. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings

    DEFF Research Database (Denmark)

    Ngara, Rudo; Ndimba, Roya; Borch-Jensen, Jonas

    2012-01-01

    sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination...... with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p...

  9. Dietary l-tryptophan leaves a lasting impression on the brain and the stress response.

    Science.gov (United States)

    Höglund, Erik; Øverli, Øyvind; Andersson, Madelene Å; Silva, Patricia; Laursen, Danielle Caroline; Moltesen, Maria M; Krogdahl, Åshild; Schjolden, Joachim; Winberg, Svante; Vindas, Marco A; Mayer, Ian; Hillestad, Marie

    2017-05-01

    Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic salmon. Fish were fed diets containing one, two or three times the Trp content in normal feed for 1 week. Subsequently, fish were reintroduced to control feed and were exposed to acute crowding stress for 1 h, 8 and 21 d post Trp treatment. Generally, acute crowding resulted in lower plasma cortisol levels in fish treated with 3×Trp compared with 1×Trp- and 2×Trp-treated fish. The same general pattern was reflected in telencephalic 5-HTergic turnover, for which 3×Trp-treated fish showed decreased values compared with 2×Trp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.

  10. Ejaculation does not contribute to the stress response to electroejaculation in sheep.

    Science.gov (United States)

    Abril-Sánchez, S; Freitas-de-Melo, A; Damián, J P; Giriboni, J; Villagrá-García, A; Ungerfeld, R

    2017-06-01

    Electroejaculation procedures (EEPs) provoke stress; nevertheless, ejaculation produces physiological changes similar as those usually used to measure stress responses. The application of EEP to animals that cannot ejaculate-as ewes-may be useful to discriminate the responses induced by ejaculation from those provoked by EEP. The aim was to determine the stress response to EEP in rams and ewes. The EEPs were applied to 10 rams and 10 ewes during the non-breeding season, and the number of vocalizations, the heart rate, rectal temperature, serum cortisol concentration, biochemical and haematological parameters were measured. Overall, EEP provoked increases in cortisol concentration, glycaemia, rectal temperature and concentration of creatine kinase (all them: p < .0001) as well as relative concentration of granulocytes (p = .003) and absolute granulocyte concentration (p = .0002) in both, rams and ewes. Heart rate, relative concentration of lymphocytes (p = .001), haematocrit (p = .02) and haemoglobin (p = .045) decreased in animals from both genders after EEP. Besides, cortisol (p < .0001), rectal temperature (p = .002) and glycaemia (p = .001) were greater in ewes than rams, and creatine kinase also tended to be greater in ewes than rams (p = .054). On the other hand, the number of animals that vocalized (p = .006), white blood cells (p = .02) and absolute lymphocytes (p = .02) were greater in rams than ewes. The general trends show a similar pattern of stress responses in animals from both genders. Therefore, we concluded that ejaculation does not contribute to the stress response provoked by the EEP. This procedure also provokes muscular damage and probably pain. © 2017 Blackwell Verlag GmbH.

  11. Bioderived Rubber-Cellulose Nanocrystal Composites with Tunable Water-Responsive Adaptive Mechanical Behavior.

    Science.gov (United States)

    Tian, Ming; Zhen, Xiuchun; Wang, Zhifei; Zou, Hua; Zhang, Liqun; Ning, Nanying

    2017-02-22

    Adaptive mechanical behaviors in nature have inspired the development of synthetic adaptive composites, with those responsive to water particularly relevant for biomedical applications. Polymer nanocomposites containing cellulose nanocrystals (CNCs) are prime examples of water-responsive mechanically adaptive materials. Although CNCs are biobased, the matrixes of these composites are exclusively petroleum-based synthetic elastomers, in sharp contrast to their biological counterparts. In this work, we attempted to probe the possibility of using bioderived rubber(s) as the matrix to fabricate CNC-nanocomposite with water-responsive adaptive mechanical behaviors. Specifically, natural rubber (NR) and epoxidized natural rubber (ENR) were used as the composite matrixes. Our results show that the water-responsive sensitivity and reversibility of ENR composites is much more drastic than that of NR composites. This is attributed to the strong CNC-polymer interaction (hydrogen bonding) for ENR, which leads to better filler dispersion and the formation of an extra CNC-polymer network in addition to the CNC-CNC filler network present in the NR composite. The synergistic effect of the dual networks plays a key role in tuning the mechanical properties and water-responsive sensitivity for various potential biomedical applications. Our study further provides guidance to make use of renewable resources to produce high value added water-responsive nanocomposites.

  12. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    Science.gov (United States)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  13. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    Science.gov (United States)

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  14. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  15. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages.

    Science.gov (United States)

    Dichtl, Stefanie; Haschka, David; Nairz, Manfred; Seifert, Markus; Volani, Chiara; Lutz, Oliver; Weiss, Günter

    2017-12-02

    Iron is essential for many biological functions including neurotransmitter synthesis, where the metal is a co-factor of tyrosine hydroxylase, which converts tyrosine to dopamine and further to norepinephrine. As the shared chemical structure, called catechol, may potentially bind iron we questioned whether tyrosine derived hormones would impact on cellular iron homeostasis in macrophages, which are central for the maintenance of body iron homeostasis. Using murine bone marrow-derived macrophages (BMDMs), we investigated the effect of catecholamines and found that only dopamine but neither tyrosine, nor norepinephrine, affected cellular iron homeostasis. Exposure of macrophages to dopamine increased the uptake of non-transferrin bound iron into cells. The expansion of intracellular iron upon dopamine treatment resulted in oxidative stress responses as evidenced by increased expression of nuclear factor erythroid 2-related factor (Nrf2) and hypoxia inducible factor-1α. As a consequence, the transcriptional expression of stress response genes such as heme oxygenase-1 and the iron export protein ferroportin1 were significantly increased. Genetic deletion of Nrf2 abolished these effects of dopamine. Dopamine directly affects cellular iron homeostasis by increasing iron incorporation into macrophages and subsequently promoting intracellular oxidative stress responses. Our observations are of interest for disorders involving dopamine and iron dyshomeostasis such as Parkinson's disease and restless legs syndrome, partly enlightening the underlying pathology or the therapeutic efficacy of dopamine agonists to overcome neuronal iron deficiency. Copyright © 2017. Published by Elsevier Inc.

  16. The novel use of objective laboratory school tasks to measure stress responses in children with ADHD.

    Science.gov (United States)

    Wigal, Sharon B; Truong, Carmen; Stehli, Annamarie

    2012-09-01

    To pilot the novel use of 2 existing laboratory school measures--the Permanent Product Measure of Performance (PERMP) and the Grammar Task--as provoking stimuli of stress, and to observe the effects of medication and stress on children with attention-deficit/hyperactivity disorder (ADHD). Children received individually determined optimal doses of an oral methylphenidate stimulant medication on 1 of 2 consecutive modified laboratory school days, which is a setting that is known for being a reliable measure of the exact timing of treatment effects. Blood pressure and heart rate measurements collected after administration of the PERMP, an ability-adjusted math test, were presumed to be stress related when compared with baseline data. In addition, children ranked their stress levels on a stress rating scale and completed the Grammar Task as a measure of academic performance. Seven subjects enrolled in and completed the study. The results suggest that children with ADHD demonstrate a decreased stress response when medicated, as measured by blood pressure, heart rate, and academic performance. Completion of a more difficult PERMP was associated with an increased stress response. This study supports an expanded use of both the PERMP and Grammar Task. Future controlled studies should include larger samples and other indicants of stress responses, particularly peripherally circulating catecholamine levels.

  17. Effects of autogenic training on stress response and heart rate variability in nursing students.

    Science.gov (United States)

    Lim, Seung-Joo; Kim, Chunmi

    2014-12-01

    This study was undertaken to confirm the effects of autogenic training (AT) on stress response and heart rate variability in nursing school students experiencing stress related to clinical training. The study was carried out from September 2012 to April 2013 in a quasi-experimental nonequivalent control group using a pretest-posttest design. The participants were 40 nursing students in their third year at either of two nursing colleges. All consented to participate. Nineteen nursing students at one college were assigned to the experimental group and underwent the 8-week AT program, and the other 21 were assigned to the control group and did not undergo any training. Stress response was assessed by questionnaire and HRV was measured three times, that is, before the program, at the end of the program, and 6 months after the end of the AT program. A significant time/group interaction was found for stress response (F = 4.68, p = .012), a subjective indicator. However, no significant interaction was found for the objective indicators of heart rate variability, normalized low frequency (F = 2.59, p = .090), normalized high frequency (F = 2.59, p = .090), or low frequency to high frequency ratio (F = 1.38, p = .257). The results suggest that AT provides an acceptable approach to stress reduction in nursing students. Copyright © 2014. Published by Elsevier B.V.

  18. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Science.gov (United States)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J. K.; Nudurupati, Saibaba; Mahobia, G. S.; Santhi Srinivas, N. C.; Singh, Vakil

    2015-02-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10-2, 10-3, and 10-4 s-1. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  19. Stress response and the value of reproduction: are birds prudent parents?

    Science.gov (United States)

    Bókony, Veronika; Lendvai, Adám Z; Liker, András; Angelier, Frédéric; Wingfield, John C; Chastel, Olivier

    2009-05-01

    In vertebrates, stressors such as starvation or predator attacks stimulate the rapid elevation of circulating glucocorticoid hormones, triggering physiological and behavioral responses that aid immediate survival but simultaneously inhibit reproduction. This stress response has been proposed to serve as a physiological mediator of life-history trade-offs: when the value of current reproduction is high relative to the value of future reproduction and survival, a mitigated stress response is expected to enable successful breeding and maximize fitness. Using phylogenetic comparative analyses, we investigated baseline and peak stress-induced plasma corticosterone levels during parental care in 64 bird species. We found that (1) species with a higher value of the current brood relative to future breeding mounted weaker corticosterone responses during acute stress, and (2) females in species with more female-biased parental care had weaker corticosterone responses. These results support the brood value hypothesis, suggesting that the stress response evolves as an adaptive basis for life-history strategies. Further, we found that (3) baseline corticosterone correlated positively with brood value and negatively with body mass, and (4) peak corticosterone was greater in species breeding at higher latitudes. The latter findings suggest that circulating corticosterone concentrations might be matched to the anticipated demands and risks during nesting.

  20. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  1. [Factors related to the psychological stress response of nurses working in emergency and critical care centers].

    Science.gov (United States)

    Uda, Kazu; Morioka, Ikuharu

    2011-01-01

    This questionnaire survey was performed in order to reveal the characteristics of work-related stressors on nurses working in emergency and critical care centers (emergency nurses) and factors related to their stress responses. There were 347 subjects who replied to the survey: 199 emergency nurses and 148 nurses working in internal medicine departments (control group) in 11 hospitals in the Kinki and Tokai areas of Japan. The work-related stressor scores among the emergency nurses were significantly higher than those in the control group for 6 out of 8 factors: work difficulties, patient life-support duties, relationships with patients and their families, dealing with patient death, relationships with doctors and technical innovation. The work-related stressor score was significantly lower among the emergency nurses for one factor: lack of communication. Multiple logistic regression analysis was used to evaluate the relationship between the stress response and the other factors such as work-related stressors, individual and situational factors, non-work factors and social support. Risk factors related to the stress response of the emergency nurses were: perceived stress due to work difficulties, negative lifestyles and desiring a career change. Important aspects of mental health support for emergency nurses are: strengthening technical support, such as holding study sessions to reduce work difficulties, as well as adjusting the working environment to improve individual lifestyles.

  2. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  3. Alcohol: a stimulant activating brain stress responsive systems with persistent neuroadaptation.

    Science.gov (United States)

    Zhou, Yan; Kreek, Mary Jeanne

    2014-12-01

    Addictive diseases, including addiction to alcohol, opiates or cocaine, pose massive public health costs. Addictions are chronic relapsing brain diseases, caused by drug-induced direct effects and persistent neuroadaptations at the molecular, cellular and behavioral levels. These drug-type specific neuroadapations are mainly contributed by three factors: environment, including stress, the direct reinforcing effects of the drug on the CNS, and genetics. Results from animal models and basic clinical research (including human genetic study) have shown important interactions between the stress responsive systems and alcohol abuse. In this review we will discuss the involvement of the dysregulation of the stress responsive hypothalamic-pituitary-adrenal (HPA) axis in alcohol addiction (Section I). Addictions to specific drugs such as alcohol, psychostimulants and opiates (e.g., heroin) have some common direct or downstream effects on several brain stress-responsive systems, including vasopressin and its receptor system (Section II), POMC and mu opioid receptor system (Section III) and dynorphin and kappa opioid receptor systems (Section IV). Further understanding of these systems, through laboratory-based and translational studies, have the potential to optimize early interventions and to discover new treatment targets for the therapy of alcoholism. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014. Published by Elsevier Ltd.

  4. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Science.gov (United States)

    Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, Florian; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W.; Wanke, Dierk

    2013-01-01

    Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner. PMID:23567274

  5. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  6. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  7. Rapamycin increases oxidative stress response gene expression in adult stem cells

    Science.gov (United States)

    Kofman, Amber E.; McGraw, Margeaux R.; Payne, Christopher J.

    2012-01-01

    Balancing quiescence with proliferation is of paramount importance for adult stem cells in order to avoid hyperproliferation and cell depletion. In some models, stem cell exhaustion may be reversed with the drug rapamycin, which was shown can suppress cellular senescence in vitro and extend lifespan in animals. We hypothesized that rapamycin increases the expression of oxidative stress response genes in adult stem cells, and that these gene activities diminish with age. To test our hypothesis, we exposed mice to rapamycin and then examined the transcriptome of their spermatogonial stem cells (SSCs). Gene expression microarray analysis revealed that numerous oxidative stress response genes were upregulated upon rapamycin treatment, including superoxide dismutase 1, glutathione reductase, and delta-aminolevulinate dehydratase. When we examined the expression of these genes in 55-week-old wild type SSCs, their levels were significantly reduced compared to 3-week-old SSCs, suggesting that their downregulation is coincident with the aging process in adult stem cells. We conclude that rapamycin-induced stimulation of oxidative stress response genes may promote cellular longevity in SSCs, while a decline in gene expression in aged stem cells could reflect the SSCs' diminished potential to alleviate oxidative stress, a hallmark of aging. PMID:22529334

  8. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  9. Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite

    Directory of Open Access Journals (Sweden)

    L.A. Jr De Luca

    2007-05-01

    Full Text Available Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which p