WorldWideScience

Sample records for water stress index

  1. A Three-Dimensional Index for Characterizing Crop Water Stress

    Directory of Open Access Journals (Sweden)

    Jessica A. Torrion

    2014-05-01

    Full Text Available The application of remotely sensed estimates of canopy minus air temperature (Tc-Ta for detecting crop water stress can be limited in semi-arid regions, because of the lack of full ground cover (GC at water-critical crop stages. Thus, soil background may restrict water stress interpretation by thermal remote sensing. For partial GC, the combination of plant canopy temperature and surrounding soil temperature in an image pixel is expressed as surface temperature (Ts. Soil brightness (SB for an image scene varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a fusion approach to assess crop water stress. The study was conducted (2007 and 2008 on a commercial scale, center pivot irrigated research site in the Texas High Plains. High-resolution aircraft-based imagery (red, near-infrared and thermal was acquired on clear days. The GC and SB were derived using the Perpendicular Vegetation Index approach. The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, intensity method, respectively. Results showed that this method can be used to assess water stress in reference to the differential irrigation plots and corresponding yield without the use of additional energy balance calculation for water stress in partial GC conditions.

  2. A satellite based crop water stress index for irrigation scheduling in sugarcane fields

    NARCIS (Netherlands)

    Veysi, Shadman; Naseri, Abd Ali; Hamzeh, Saeid; Bartholomeus, Harm

    2017-01-01

    In this study, the capability of crop water stress index (CWSI) based on satellite thermal infrared data for estimating water stress and irrigation scheduling in sugarcane fields was evaluated. For this purpose, eight Landsat 8 satellite images were acquired during the sugarcane growing season

  3. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    Science.gov (United States)

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  4. The crop water stress index (CWSI) for drip irrigated cotton in a semi ...

    African Journals Online (AJOL)

    This study was carried out to determine the crop water stress index (CWSI) for drip irrigated cotton grown on a heavy clay texture soil (Palexerollic Chromoxerert) under semi-arid climatic condition of East Mediterranean region for three years (2005 to 2007) in Adana, Turkey. Four irrigation treatments designated as full ...

  5. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    Science.gov (United States)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  6. Leaf Temperature of Maize and Crop Water Stress Index with Variable Irrigation and Nitrogen Supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  7. Effect of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke

    Science.gov (United States)

    The objectives of this study were to determine the effect of drought on tuber yield, total biomass, harvest index, water use efficiency of tuber yield (WUEt) and water use efficiency of biomass (WUEb), and to evaluate the differential responses of Jerusalem artichoke (JA) varieties under drought str...

  8. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index

    Science.gov (United States)

    Precision irrigation management in wine grape production is hindered by the lack of a reliable method to easily quantify and monitor vine water status. Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality. A crop water stress ind...

  9. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Science.gov (United States)

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  10. Automated Water Extraction Index

    DEFF Research Database (Denmark)

    Feyisa, Gudina Legese; Meilby, Henrik; Fensholt, Rasmus

    2014-01-01

    . We tested the accuracy and robustness of the new method using Landsat 5 TM images of several water bodies in Denmark, Switzerland, Ethiopia, South Africa and New Zealand. Kappa coefficient, omission and commission errors were calculated to evaluate accuracies. The performance of the classifier...... of various sorts of environmental noise and at the same time offers a stable threshold value. Thus we introduced a new Automated Water Extraction Index (AWEI) improving classification accuracy in areas that include shadow and dark surfaces that other classification methods often fail to classify correctly...... and omission errors by 50% compared to those resulting from MNDWI and about 25% compared to ML classifiers. Besides, the new method was shown to have a fairly stable optimal threshold value. Therefore, AWEI can be used for extracting water with high accuracy, especially in mountainous areas where deep shadow...

  11. The use of composite water poverty index in assessing water ...

    African Journals Online (AJOL)

    ... to 47.89% in Atisbo LGA out of 100% maximum obtainable; indicating that these rural areas are water stressed. The paper recommends aggressive human development efforts and the need for massive improvement in water infrastructure in the state. Key words: Water Poverty Index (WPI), Water accessibility, Rural Areas.

  12. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  13. Simplifying the Water Poverty Index

    Science.gov (United States)

    Cho, Danny I.; Ogwang, Tomson; Opio, Christopher

    2010-01-01

    In this paper, principal components methodology is used to derive simplified and cost effective indexes of water poverty. Using a well known data set for 147 countries from which an earlier five-component water poverty index comprising of "Resources," "Access," "Capacity," "Use" and "Environment" was constructed, we find that a simplified…

  14. Autism Parenting Stress Index: Initial Psychometric Evidence

    Science.gov (United States)

    Silva, Louisa M. T.; Schalock, Mark

    2012-01-01

    Data validating the Autism Parenting Stress Index (APSI) is presented for 274 children under age six. Cronbach's alpha was 0.827. As a measure of parenting stress specific to core and co-morbid symptoms of autism, the APSI is unique. It is intended for use by clinicians to identify areas where parents need support with parenting skills, and to…

  15. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    evaluate the quality of a given water body in such a way that it is easily understood by managers. ... the problem of 'eclipsing' which arises during aggregation process. ... to improve the Water Quality index, mainly to stress on the importance of the ... Thus, since the water quality indexing method yields a single value, it is.

  16. Exploring the potential impact of implementing carbon capture technologies in fossil fuel power plants on regional European water stress index levels

    NARCIS (Netherlands)

    Schakel, W.B.; Pfister, Stephan; Ramirez, C.A.

    Equipping power plants with carbon capture technology can affect cooling demand and water use. This study has explored the potential impact of large scale deployment of power plants with carbon capture technologies on future regional water stress in Europe. A database including 458 of European

  17. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    Mycoflora and Water quality index assessment studies of hand-dug wells and a river in Oproama Community, Niger Delta were studied. Water samples was taken from the ten sampling stations (7 wells and 3 river points) and water quality index using water quality index calculator given by National Sanitation Foundation ...

  18. Potential Water Availability Index (PWAI): A New Water Vulnerability Index for Africa Based on GRACE Data

    Science.gov (United States)

    Hasan, E.; Tarhule, A.; Hong, Y.; Moore, B., III

    2016-12-01

    The critical role of water in enabling or constraining human wellbeing and socio-economic activities has led to interest in quantitatively establishing the status or index of water (in)sufficiency over time and space. Introduced in 1989, the first widely accepted index expressed the status of water resources availability in terms of vulnerability, stress, or scarcity. Since then, numerous refinements and modifications to the concept have been published but nearly all adopt the same basic formulation; water status is a function of available water resources and demand or use. However, accurately defining and assessing `available water' has proved problematic especially in data scarce regions, such as Africa. In this paper, we use Total Water Storage (TWS) estimated from NASA's Gravity Recovery and Climate Experiment (GRACE) in lieu of observational hydrologic data, to estimate the Water Scarcity Index (WSI) for Africa at country level. The monthly TWS Positive anomalies represent periods of net system recharge while negative anomalies represent net system loss due to evapotranspiration and anthropogenic withdrawals. The procedure is as follows. First, we calculated the long-term (2002-2014) Internal Water Storage (IWS) for each country using the monthly precipitation data from the Global Precipitation Climatology Centre (GPCC). Next, the yearly cumulative positive and negative anomalies were added to the long-term IWS to obtain volumetric Potential Water Storage (VPWS) per country. By dividing VPWS by population, we obtain estimates of per capita water availability which can be grouped into vulnerability classes using established thresholds. Our VPWS showed very high correlation (R2 =0.94, p=0.0001) with the values of Internal Renewable Water Resources (IRWR) estimated by AQUSTAT. Additionally, the GWSI is highly correlated (R2 =0.94, p=0.0001) with the existing WSI index from the world bank data center. The novelty and contribution of our approach is in using GRACE

  19. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard.

    Science.gov (United States)

    Poblete, Tomas; Ortega-Farías, Samuel; Ryu, Dongryeol

    2018-01-30

    Water stress caused by water scarcity has a negative impact on the wine industry. Several strategies have been implemented for optimizing water application in vineyards. In this regard, midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index (CWSI) have been used to assess plant water stress on a vine-by-vine basis without considering the spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy temperature variability within vineyards that can be related to the vine water status. Nevertheless, when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected, leading to mixed information that negatively impacts the relationship between CWSI and SWP. This study proposes a methodology for automatic coregistration of thermal and multispectral images (ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++ clustering. Our results indicate that our proposed methodology improves the relationship between CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon vineyard. In particular, the coefficient of determination (R²) increased from 0.64 to 0.77. In addition, values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy pixels was higher in those vines with water stress compared with well-watered vines.

  20. The Financial Stress Index: Identification of Systemic Risk Conditions

    Directory of Open Access Journals (Sweden)

    Mikhail V. Oet

    2015-09-01

    Full Text Available This paper develops a financial stress measure for the United States, the Cleveland Financial Stress Index (CFSI. The index is based on publicly available data describing a six-market partition of the financial system comprising credit, funding, real estate, securitization, foreign exchange, and equity markets. This paper improves upon existing stress measures by objectively selecting between several index weighting methodologies across a variety of monitoring frequencies through comparison against a volatility-based benchmark series. The resulting measure facilitates the decomposition of stress to identify disruptions in specific markets and provides insight into historical stress regimes.

  1. Water Quality Index Assessment of Pogradec Water- Supply, in Albania

    OpenAIRE

    , P. Icka; , R. Damo

    2016-01-01

    In this paper is applied for the first time in Albania Water Quality Index (WQI) of the Canadian Council of Ministries of the Environment (CCME) for assessment of water quality of water supply network on Pogradec city. CCME WQI, a technique of rating water quality, is an effective tool to assess spatial and temporal changes on the quality of any water body. Calculations of the index are based on a combination of three factors: scope - the number of variables whose objectives are not met; freq...

  2. Water Stress Projection Modeling

    Science.gov (United States)

    2016-09-01

    En gi ne er in g R es ea rc h La bo ra to ry Juliana M. Wilhoit, Grace M. Díaz-Estrada, James P. Miller, and James Westervelt September 2016...Raster Grids. Recharge rates and land use data were available in raster Geographic Information System ( GIS ) grids (1-km and 30-meter, respec- tively...climatic drivers (Roy et al. 2012). Shifts in ag- ricultural water withdrawals may be affected by factors such as water rights, crops being irrigated

  3. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index

    Science.gov (United States)

    Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher . Lee

    2003-01-01

    Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...

  4. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    This study comprised the development of a new index called the 'universal water quality index (UWQI)'. This index has advantages over pre-existing indices by reflecting the appropriateness of water for specific use, e.g. drinking water supply rather than general supply, and has been developed by studying the ...

  5. Sectoral contributions to surface water stress in the coterminous United States

    Science.gov (United States)

    K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...

  6. Developing index maps of water-harvest potential in Africa

    Science.gov (United States)

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  7. Comparison of corn yield response to plant water stress caused by salinity and by drought

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.

    2004-01-01

    The effect of water stress on corn yield was studied in a salinity experiment and in a drought experiment. The plant water status was determined by measuring the pre-dawn leaf water potential regularly during the whole growing season and expressed by the water stress day index (WSDI). The yield

  8. Postural variations in Cardio Stress Index scores | Bagwath Persad ...

    African Journals Online (AJOL)

    Numerous factors influence heart rate variability, including age, exercise and posture. The Cardio Stress Index (CSI) is a transformed measure of heart rate variability that is determined via a miniature digital multi-channel electrocardiogram system. Although the CSI and heart rate variability are reportedly analogous, little is ...

  9. Do brassinosteroids mediate the water stress response?

    Science.gov (United States)

    Jager, Corinne E; Symons, Gregory M; Ross, John J; Reid, James B

    2008-06-01

    Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea (Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.

  10. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and.

  11. A Geographically Variable Water Quality Index Used in Oregon.

    Science.gov (United States)

    Dunnette, D. A.

    1979-01-01

    Discusses the procedure developed in Oregon to formulate a valid water quality index which accounts for the specific conditions in the water body of interest. Parameters selected include oxygen depletion, BOD, eutrophication, dissolved substances, health hazards, and physical characteristics. (CS)

  12. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    ... water supply rather than general supply, and has been developed by studying the supranational standard, i.e. the European Community Standard. Three classification schemes for water quality are proposed for surface water quality assessment. Water quality determinants of the new index are cadmium, cyanide, mercury, ...

  13. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER ...

    African Journals Online (AJOL)

    2013-12-31

    % quantity of water is available for drinking, agriculture, domestic and industrial consumption1. According to WHO, about 80% of all the diseases in human beings are caused by water [1]. Groundwater is the major source of ...

  14. Stress, abdominal obesity and intrarenal resistive index in essential hypertension.

    Science.gov (United States)

    Trovato, G M; Pace, P; Martines, G F; Trovato, F M; Pirri, C; Catalano, D

    2012-07-01

    Although it is commonly believed that a strong causal link exists between psychological stress and hypertension, as well with other factors, such as obesity, just what kind of empirical evidence supports this assumption is still controversial. The aim of the study is to investigate if perceived stress have any interference with intrarenal resistance and hence with mechanisms related to Essential Hypertension (EH) and if Anxiety, Depression, Self efficacy and Illness Perception can account for perceived stress. Obesity, insulin resistance (HOMA), Doppler Renal Resistive Index (RRI) and glomerular filtration rate (GFR) are studied along with Psychological Stress Measure (PSM), Illness Perception Questionnaire (IPQ-R), Generalized Self-Efficacy scale (GSE) and Hospital Anxiety and Depression Scale (HADS) in 119 hypertensive patients referred for stable lasting EH, and 150 normal controls. Lower salt/lower calories Mediterranean diet, physical activity increase and smoking withdrawal counseling were provided. By Odds Ratios, higher risk of EH is associated with greater perceived stress, older age, lower GFR, obesity, greater RRI and insulin resistance. By Multiple Linear Regression the most significant variable that accounts for higher RRI are abdominal obesity and arterial pulse pressure; the only significant independent psychological variable that accounts for abdominal obesity are PSM and identity IPQ subscale. Self-Efficacy anxiety and Illness perception subscales (IPQr), accounts significantly for 62.0% of the variance to PSM, with possible effects on RRI and on the pathophysiological hypertension cascade. Worst identity and treatment control perceptions of EH, and a lower self-efficacy are the main psychological factors accounting for a greater stress. Interventions aimed to reduce perceived stress can be warranted in EH.

  15. Remote sensing of water and nitrogen stress in broccoli

    Science.gov (United States)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  16. Crop water stress of tomato as affected by irrigation regimes

    Directory of Open Access Journals (Sweden)

    H. Ismail

    2014-08-01

    Full Text Available A field experiment was conducted at the Irrigation Research Station, Kadawa Kano State, Nigeria (located 11o 30’ N, 08o 30’ E and 486 m above mean sea level during 2012/2013 dry season to evaluate crop water stress index of tomato (lycopersicon enculentum; UC82B as affected by irrigation regimes. The experiment consisted of four levels of irrigation water application depth of 100%, 75%, 50% and 25% replacement of moisture depleted and three irrigation intervals (7, 14 and 21 days combined in Randomized Complete Block Design in a Split plot arrangement and laid as treatments in plots (3 m x 3 m basin and replicated three times. Irrigation water was applied to each basin using a calibrated PVC pipe. The soil moisture was monitored throughout the crop growing season with theta probe. The crop canopy temperature (Tc in the experimental plots was measured with a portable hand-held infrared thermometer. The dry and wet bulb temperatures were measured with an aspirated psychrometer in the open area adjacent to the experimental plots. The mean air temperature (Ta was determined from the average of the dry bulb temperature readings during the measurement period. The mean vapor pressure deficit (VPD was computed as the average of the calculated instantaneous VPDs, using the corresponding instantaneous wet and dry bulb temperatures. The Crop water stress index increases with decrease in percentage of moisture depletion replacement from 100% to 25% and increase in the irrigation interval from 7 days to 21 days. The most stressed tomato was at 25% replacement of moisture depleted in 21 days (I21D-25% with stress index of 1.000 and the fully watered (none stressed tomato was when irrigated fully at 7 days (I7D-100% with stress index of 0.003. Hence, a tomato can give a best yield and optimum water management with no stress under high water table condition, when irrigated at 7 days with 25% replacement of its moisture depleted.

  17. Influence of intense training program on cardio stress index

    Directory of Open Access Journals (Sweden)

    Peet J. du Toit

    2014-02-01

    Full Text Available Armed service recruits are faced with many stressors, including a strenuous training regimen that may have an impact on their physiological functioning. The Cardio Stress Index (CSI is a noninvasive marker of the stress that the heart is experiencing. The aim of the study was to test the physiological impact of 20 weeks of intense training of armed service recruits, using CSI as a noninvasive biomarker of cardiac stress. Armed service recruits are faced with many stressors, including a strenuous training regimen that may have an impact on their physiological functioning. The CSI is a noninvasive marker of the stress that the heart is experiencing. The calculation of the CSI is based on the duration of vascular excitation (QRS duration, heart rate, heart rhythm and standard deviation of the duration of time between each successive cardiac cycle (RR-interval. The aim of the present study was to test the physiological impact of 20 weeks of strenuous training of armed service recruits, using CSI as a noninvasive biomarker of cardiac stress. Experiments were conducted at three points in time (weeks 1, 12, 20 during the basic military training of armed service recruits (n = 202, males = 115, females = 87, aged between 18 and 24 years. Variables measured include: Resting CSI, heart rate and blood pressure. Data analysis was performed, using paired t-tests for pairwise comparisons of week 1 (baseline with week 12; week 12 with week 20; and week 1 with week 20. The average CSI and heart rate remained within normal values for male participants on all three testing occasions. However, baseline readings for females were significantly higher during week 1. There was an overall decrease in the CSI in the 20 week time frame. From this study it seems as if the CSI measurement is a noninvasive method to establish the effects of training on the health of the heart.

  18. Water stress detection using radar

    NARCIS (Netherlands)

    van Emmerik, T.H.M.

    2017-01-01

    Vegetation is a crucial part of the water and carbon cycle. Through photosynthesis carbon is assimilated for biomass production, and oxygen is released into the atmosphere. During this process, water is transpired through the stomata, and is redistributed in the plant. Transpired water is refilled

  19. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    on this planet. We use water for various purposes and for each purpose we require water of appropriate quality. Consumption of water which has not met internationally acceptable standards could lead to an attack by water-borne such as cholera, typhoid fever and others (Udom et al., 2002). There is increasing awareness ...

  20. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  1. A Water Accumulation Flooding Potentiality Index (WAFPI) for rating ...

    African Journals Online (AJOL)

    The Water Accumulation Flooding Potentiality Index (WAFPI) is a qualitative risk assessment method based on a factorial scoring system that is aimed at dividing the land into classes that are similar in their susceptibility to flooding due to accumulating water. Such an assessment precedes quantitative flood modeling work, ...

  2. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    The parameters that most influenced the WQI as depicted by quality rating values include pH, Mn, Ni, Cd and Pb. Application of WQI in this study has been found functional in assessing the water quality of this stream based on the selected parameters. Key words: Water quality index, physicochemical parameters, Iguedo ...

  3. An Environmental Stress Index (ESI) as a Substitute for the Wet Bulb Globe Temperature (WBGT)

    Science.gov (United States)

    2001-02-01

    This report summarizes the development of a new environmental stress index (ESI) to asses heat stress. Two independent studies containing four...develop a new environmental stress index (ESI). Meteorological measurements were taken in three climatic zones (hot/wet, hot/dry, and extremely hot/dry

  4. Water absorption in a refractive index model for bacterial spores

    Science.gov (United States)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  5. Crop water stress of tomato as affected by irrigation regimes

    OpenAIRE

    H. Ismail; S. Z. Abubakar; M. A. Oyebode; N. J. Shanono; M. K. Dalhat

    2014-01-01

    A field experiment was conducted at the Irrigation Research Station, Kadawa Kano State, Nigeria (located 11o 30’ N, 08o 30’ E and 486 m above mean sea level) during 2012/2013 dry season to evaluate crop water stress index of tomato (lycopersicon enculentum; UC82B) as affected by irrigation regimes. The experiment consisted of four levels of irrigation water application depth of 100%, 75%, 50% and 25%  replacement of moisture depleted and three irrigation intervals (7, 14 and 21 days) com...

  6. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  7. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    DEFF Research Database (Denmark)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton

    2016-01-01

    This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included...... to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI...... season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps...

  8. Evaluation index system for positive operation of water conservancy projects

    Directory of Open Access Journals (Sweden)

    Qing-yuan ZHU

    2009-12-01

    Full Text Available The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis, and expert consultation. This evaluation index system can be divided into six first-level indices: the degree to which facilities are intact and functionality standards are reached, the status of operation and management funds, the rationality and degree of advancement of the management team structure, the adaptability and rationality of the water conservancy project management system, the degree of automatization and informationization of the management techniques, and the conduciveness of the exterior environment. The weights for evaluation indices were obtained through the analytic hierarchy process method with consideration of the difference between public welfare and profit-oriented water conservancy projects. This study provides a scientific method for evaluating the positive operation of water conservancy projects.

  9. Production efficiency in sunflower: The role of water and nitrogen stress

    Energy Technology Data Exchange (ETDEWEB)

    Joel, G. [Carnegie Institution of Washington, Stanford, CA (United States). Dept. of Plant Biology]|[Stanford Univ., CA (United States). Dept. of Biological Sciences; Gamon, J.A.; Field, C.B. [Carnegie Institution of Washington, Stanford, CA (United States). Dept. of Plant Biology

    1997-11-01

    The authors monitored the impact of water stress, nitrogen stress, and the combination of both on the fractional interception of photosynthetically active radiation (fPAR) and growth per unit of intercepted radiation in sunflower canopies over a growing season. The efficiency with which intercepted radiation was converted into biomass ({var_epsilon}) was reduced by approximately 35% in the nitrogen-limited canopy and approximately 30% in the water-limited canopy. The relative effect of the stress treatments on {epsilon} was sensitive to assumptions concerning solar geometry. The impact of stress on fPAR depended more on whether the canopy was nitrogen- and/or water-limited. IN the second half of the season, nitrogen stress reduced fPAR by approximately 25%, whereas water stress reduced fPAR by about 70%. Reduction in leaf area index, 45% and 85% for the nitrogen-stressed and water-stressed canopies, respectively, appeared to be a major factor in the fPAR reductions. In the water-stressed canopy, wiling also contributed to the reduced fPAR. Neither of the stress treatments affected the strong correlation between fPAR and simple ratio (SR) or the normalized difference vegetation index (NDVI). The authors used three approaches to calculate fPAR, with two based on a single sun position and one based on the sun position updated at hourly intervals, In general, {var_epsilon} was notably higher in the calculations with higher solar elevation angles.

  10. A Water Accumulation Flooding Potentiality Index (WAFPI) for rating ...

    African Journals Online (AJOL)

    Nafiisah

    Professor of Physics. University of Mauritius. Email: sdr@uom.ac.mu. Paper Accepted on 25 June 2008. Abstract. The Water Accumulation Flooding Potentiality Index (WAFPI) is a qualitative risk assessment method based on a factorial scoring system that is aimed at dividing the land into classes that are similar in their ...

  11. Comparative physiology of salt and water stress.

    Science.gov (United States)

    Munns, R.

    2002-02-01

    Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl-- transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

  12. Suitability Analysis of Water in an Urban Tropical Lake Using Seasonal Water-Quality Index

    Directory of Open Access Journals (Sweden)

    Madhavi Tiwari

    2016-09-01

    Full Text Available This study deals with the study of water-quality index (WQI of a tropical, urban water body in Gorakhpur region (India. Water-quality index was determined on the basis of various physico-chemical parameters like pH, temperature, total solids, total dissolved solids, total suspended solids, dissolved oxygen, biological oxygen demand, hardness, calcium, magnesium, etc. Then, on the basis of calculated WQI, the water was correlated for its use for public consumption, recreation, or any other purpose. A number of parameters directly regulate the utility of water for a particular purpose. The water-quality index obtained for the water body in different seasons of study periods, i.e., rainy season, winter season, and summer season are 78.29, 74.01, and 116.94, respectively; this indicates the water quality of the collected samples to be very poor.

  13. Financial Stress Index for Turkey = Türkiye Finansal Stres Endeksi

    Directory of Open Access Journals (Sweden)

    Aykut EKİNCİ

    2013-07-01

    Full Text Available This study presents a financial stress index for Turkey on a daily basis. The index covers the time period between 01.08.2002 and 31.01.2013, and it presents the summation of stress levels collected through the Banking Sector, Public Sector, Stock Market and Foreign Exchange Market. So as to enable the financial institutions and policy makers to determine the financial stress on the sub-markets and financial sector, and manage the monetary policy, an indicator with high frequency was aimed to be provided. By use of the financial stress analysis, the Turkish Economy has been broken down into six different periods, namely (i the high stress period (ii the normal stress period (iii the global crisis stress period (iv the low stress period (v the increasing stress period (vi the decreasing stress period and the analyses related to each of these periods are presented.

  14. Development of innovative computer software to facilitate the setup and computation of water quality index

    OpenAIRE

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to faci...

  15. Food cravings mediate the relationship between chronic stress and body mass index.

    Science.gov (United States)

    Chao, Ariana; Grilo, Carlos M; White, Marney A; Sinha, Rajita

    2015-06-01

    This study examined the relationships between chronic stress, food cravings, and body mass index. A community-based sample of adults (N = 619) completed a comprehensive assessment battery and heights and weights were measured. Chronic stress had a significant direct effect on food cravings, and food cravings had a significant direct effect on body mass index. The total effect of chronic stress on body mass index was significant. Food cravings partially mediated the relationship between chronic stress and body mass index. These findings are consistent with research that chronic stress may potentiate motivation for rewarding substances and behaviors and indicate that high food cravings may contribute to stress-related weight gain. © The Author(s) 2015.

  16. Evaluation of water quality index for River Sabarmati, Gujarat, India

    Science.gov (United States)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  17. Water scarcity: moving beyond indexes to innovative institutions.

    Science.gov (United States)

    Jarvis, W Todd

    2013-01-01

    Water scarcity is a media darling often times described as a trigger of conflict in arid regions, a by-product of human influences ranging from desertification to climate change, or a combination of natural- and human-induced changes in the water cycle. A multitude of indexes have been developed over the past 20 years to define water scarcity to map the "problem" and guide international donor investment. Few indexes include groundwater within the metrics of "scarcity." Institutional communication contributes to the recognition of local or regional water scarcity. However, evaluations that neglect groundwater resources may incorrectly define conditions as scarce. In cases where there is a perception of scarcity, the incorporation of groundwater and related storage in aquifers, political willpower, new policy tools, and niche diplomacy often results in a revised status, either reducing or even eliminating the moniker locally. Imaginative conceptualization and innovative uses of aquifers are increasingly used to overcome water scarcity. © 2013, National Ground Water Association.

  18. A novel water poverty index model for evaluation of Chinese regional water security

    Science.gov (United States)

    Gong, L.; Jin, C. L.; Li, Y. X.; Zhou, Z. L.

    2017-08-01

    This study proposed an improved Water Poverty Index (WPI) model employed in evaluating Chinese regional water security. Firstly, the Chinese WPI index system was constructed, in which the indicators were obtained according to China River reality. A new mathematical model was then established for WPI values calculation on the basis of Center for Ecology and Hydrology (CEH) model. Furthermore, this new model was applied in Shiyanghe River (located in western China). It turned out that the Chinese index system could clearly reflect the indicators threatening security of river water and the Chinese WPI model is feasible. This work has also developed a Water Security Degree (WSD) standard which is able to be regarded as a scientific basis for further water resources utilization and water security warning mechanism formulation.

  19. Measuring urban water conservation policies: Toward a comprehensive index

    Science.gov (United States)

    Hess, David; Wold, Christopher; Worland, Scott C.; Hornberger, George M.

    2017-01-01

    This article (1) discusses existing efforts to measure water conservation policies (WCPs) in the United States (U.S.); (2) suggests general methodological guidelines for creating robust water conservation indices (WCIs); (3) presents a comprehensive template for coding WCPs; (4) introduces a summary index, the Vanderbilt Water Conservation Index (VWCI), which is derived from 79 WCP observations for 197 cities for the year 2015; and (5) compares the VWCI to WCP data extracted from the 2010 American Water Works Association (AWWA) Water and Wastewater Rates survey. Existing approaches to measuring urban WCPs in U.S. cities are limited because they consider only a portion of WCPs or they are restricted geographically. The VWCI consists of a more comprehensive set of 79 observations classified as residential, commercial/industrial, billing structure, drought plan, or general. Our comparison of the VWCI and AWWA survey responses indicate reasonable agreement (ρ = 0.76) between the two WCIs for 98 cities where the data overlap. The correlation suggests the AWWA survey responses can provide fairly robust longitudinal WCP information, but we argue the measurement of WCPs is still in its infancy, and our approach suggests strategies for improving existing methods.

  20. Assessing Maize Foliar Water Stress Levels Under Field Conditions ...

    African Journals Online (AJOL)

    Initially, plant water stress has been measured through destructive approaches that are limited in spatial extent as a result of being labour intensive (Graeff & Claupein,. 2007). The basis of detecting water stress with remote sensing relates to the difference in reflectance properties of plants under different water stress levels ...

  1. Estimating ecological water stress caused by anthropogenic uses in the US Great Lakes region

    Science.gov (United States)

    Alian, S.; Mayer, A. S.; Maclean, A.; Watkins, D. W., Jr.; Gyawali, R.; Mirchi, A.

    2016-12-01

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g., agriculture, power utilities, manufacturing, etc.), withdrawal sources, and extent of return flow (i.e., return of water to river system) at different spatial and temporal scales in order to characterize potentially harmful streamflow disturbances, and to inform water management. Herein, GIS technology is used to characterize and map ecological water stress in the Great Lakes region by compiling and analyzing water withdrawal data for different use categories. An integrative geospatial method is developed to quantify catchment scale streamflow disturbance as the sum of flow depletion and return flow, and propagate it along the stream network in order to calculate water stress index as function of consumptive use and impacted streamflow. Results for the Kalamazoo River Watershed, Michigan, illustrate that although average annual and July water stress is generally relatively low, protective management actions may be necessary in a significant number of catchments, especially in urban catchments with very high water stress. Water stress is significantly higher under low flow conditions, indicating the need to adjust withdrawals to reduce adverse resource impacts on sensitive streams.

  2. Adolescents’ Level of Perceived Stress and its Relationship with Body Mass Index in a Bangladeshi Population

    OpenAIRE

    Sarker Shamima Ahmed

    2017-01-01

    Background: Several behavioral factors, specially stress, eating behavior, and physical activity have been linked with adolescent obesity. In our country, mental health of adolescents is often neglected. So, we designed this study to describe the current perception of stress in Bangladeshi adolescent students. Objective: Aim of this study was to assess association between stress and body mass index of adolescents while controlling for physical activity and examining stress associated eati...

  3. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  4. Robust principal component analysis in water quality index development

    Science.gov (United States)

    Ali, Zalina Mohd; Ibrahim, Noor Akma; Mengersen, Kerrie; Shitan, Mahendran; Juahir, Hafizan

    2014-06-01

    Some statistical procedures already available in literature are employed in developing the water quality index, WQI. The nature of complexity and interdependency that occur in physical and chemical processes of water could be easier explained if statistical approaches were applied to water quality indexing. The most popular statistical method used in developing WQI is the principal component analysis (PCA). In literature, the WQI development based on the classical PCA mostly used water quality data that have been transformed and normalized. Outliers may be considered in or eliminated from the analysis. However, the classical mean and sample covariance matrix used in classical PCA methodology is not reliable if the outliers exist in the data. Since the presence of outliers may affect the computation of the principal component, robust principal component analysis, RPCA should be used. Focusing in Langat River, the RPCA-WQI was introduced for the first time in this study to re-calculate the DOE-WQI. Results show that the RPCA-WQI is capable to capture similar distribution in the existing DOE-WQI.

  5. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    Energy Technology Data Exchange (ETDEWEB)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-07-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  6. Water quality index calculated from biological, physical and chemical attributes.

    Science.gov (United States)

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality.

  7. Selection of an evaluation index for water ecological civilizations of water-shortage cities based on the grey rough set

    Science.gov (United States)

    Zhang, X. Y.; Zhu, J. W.; Xie, J. C.; Liu, J. L.; Jiang, R. G.

    2017-08-01

    According to the characteristics and existing problems of water ecological civilization of water-shortage cities, the evaluation index system of water ecological civilization was established using a grey rough set. From six aspects of water resources, water security, water environment, water ecology, water culture and water management, this study established the prime frame of the evaluation system, including 28 items, and used rough set theory to undertake optimal selection of the index system. Grey correlation theory then was used for weightings in order that the integrated evaluation index system for water ecology civilization of water-shortage cities could be constituted. Xi’an City was taken as an example, for which the results showed that 20 evaluation indexes could be obtained after optimal selection of the preliminary framework of evaluation index. The most influential indices were the water-resource category index and water environment category index. The leakage rate of the public water supply pipe network, as well as the disposal, treatment and usage rate of polluted water, urban water surface area ratio, the water quality of the main rivers, and so on also are important. It was demonstrated that the evaluation index could provide an objectively reflection of regional features and key points for the development of water ecology civilization for cities with scarce water resources. It is considered that the application example has universal applicability.

  8. Communicating Environmental Information to the Public: A New Water Quality Index

    Science.gov (United States)

    Schaeffer, David J.; Janardan, Konanur G.

    1977-01-01

    A water quality index developed by the authors and used by the Illinois Environmental Protection Agency is described. It compares biological and chemical assessments of water quality. Sampling procedures and use of the index are described. (BT)

  9. Evaluation of droght tolerance of new wheat genotypes under water stress conditions

    Directory of Open Access Journals (Sweden)

    hamidreza komeyli

    2009-06-01

    Full Text Available To evaluate the drought tolerance of new wheat genotypes to terminal water stress in field conditions, an experiment using a split plot design based on compelet randomaised block design with three replications was conducted in Torogh Agricultural Research Station (Mashad in 1382-83. Irrigation treatments with two levels were allocated in main plots: I1- full irrigation (100% water use in different development stages and I2- water stress (withdrawal of irrigation from anthesis stage to maturity with prevention of precipitation using mobile rain shelter. Number of 16 elite wheat genotypes suited for cold regions of Iran and Khorasan province (C-82 were allocated in sub plots. Results showed that, irrigation treatment had a significant effect on grain yield (GY, harvest index (HI, No. of spike per m2 (S.m-2, No. of grain per spike (G.S-1 and thousands kernel weight (1000 KW. There was significant differences between genotypes. C-82-5 was a high yielding genotype in both conditions (control and water stress and had optimum level of HI, G.S-1 and 1000 KW. The tolerance of genotypes to water stress was evalovated with different drought tolerance indices, such as stress tolerance index (STI. Results showed that, C-82-5 was a high yielding genotype with more tolerance to terminal water stress.

  10. Sap flow index as an indicator of water storage use

    Directory of Open Access Journals (Sweden)

    Nadezhdina Nadezhda

    2015-06-01

    Full Text Available Symmetrical temperature difference also known as the sap flow index (SFI forms the basis of the Heat Field Deformation sap flow measurement and is simultaneously collected whilst measuring the sap flow. SFI can also be measured by any sap flow method applying internal continuous heating through the additional installation of an axial differential thermocouple equidistantly around a heater. In earlier research on apple trees SFI was found to be an informative parameter for tree physiological studies, namely for assessing the contribution of stem water storage to daily transpiration. The studies presented in this work are based on the comparative monitoring of SFI and diameter in stems of different species (Pseudotsuga menziesii, Picea omorika, Pinus sylvestris and tree sizes. The ability of SFI to follow the patterns of daily stem water storage use was empirically confirmed by our data. Additionally, as the HFD multipointsensors can measure sap flow at several stem sapwood depths, their use allowed to analyze the use of stored water in different xylem layers through SFI records. Radial and circumferential monitoring of SFI on large cork oak trees provided insight into the relative magnitude and timing of the contribution of water stored in different sapwood layers or stem sectors to transpiration.

  11. Physiological quality of sesame seeds produced from plants subjected to water stress

    Directory of Open Access Journals (Sweden)

    Ronimeire Torres da Silva

    2016-12-01

    Full Text Available ABSTRACT Germination and seed vigor may be influenced by several factors, such as water stress during production, which affect crops differently according to the phenological stage of the plant. The aim of this study therefore was to evaluate the physiological quality of sesame seeds from plants subjected to water stress at different phenological stages. To this end, sesame plants were subjected to water stress at the following stages: I - germination to the start of vegetative growth (T1; II - vegetative growth to flowering (T2; III - flowering to pod formation (T3; IV - fruit maturation (T4; also for stress at all stages (T5 and full irrigation (T6. By weighing and daily irrigation of the containers, levels were kept at 50% of pot capacity (CV for treatments with water deficit, and at 100% CV for treatments with no deficit. At 90 days after planting, the plants were harvested. The seeds were evaluated by germination test, first germination count, germination speed index, mean germination time, accelerated aging, electrical conductivity, seedling emergence, emergence speed index, mean time of emergence, seedling length and seedling dry weight. Sesame seeds from plants grown under water deficit display lower physiological quality. Between germination and the start of vegetative growth, and between flowering and fruit formation, the sesame is more sensitive to water stress, so that water limitation during these periods results in the production of seeds of low physiological quality.

  12. Development of a Water Clarity Index for the Southeastern U.S. As a Climate Indicator

    Science.gov (United States)

    Sheridan, S. C.; Hu, C.; Lee, C. C.; Barnes, B.; Pirhalla, D.; Ransi, V.; Shein, K. A.

    2014-12-01

    A common index of water quality is water clarity, which can be estimated by measuring the diffuse attenuation coefficient for downwelling irradiance (Kd). Kd estimates the availability of light to marine organisms at various depths. Marine habitats, including such species as coral and seagrass, can be negatively affected by extreme episodes of sediment suspension, where water clarity is reduced and little light penetrates. Evidence of increased stress on coastal ecosystems exists, partially due to climate change, yet a systematic analysis of extreme events and trends is difficult due to limited data. To address this concern, we have developed as a potential climate indicator a Kd-Index for nine regions along the US coast of the Gulf of Mexico, in which Kd values have been standardized over time and space to allow for a more holistic assessment of climate drivers and their trends. Variability in the Kd-Index is then assessed with regard to occurrences of surface weather types (using the Spatial Synoptic Classification), a synoptic climatology of mean sea-level-pressure patterns across the region, along with heavy precipitation events. Kd can be estimated from MODIS and SeaWiFS observations from 1997 to date; an earlier period of satellite observations from 1978-86 is also available. A non-linear autoregressive neural network model with external input (NARX) is used to develop the historical relationship between Kd-Index and atmospheric conditions, and then this model is used to simulate a full time series from 1948 to 2013. The modeled data set is strongly correlated with observations, with correlations above 0.8 for many regions. Hit rates of extreme Kd-Index values - those which would most likely be associated with a negative environmental impact - exceed 70% in some regions. Across the full data set, long term trends vary slightly across regions but are generally small. Trends in extreme events appear to be more consistently increasing across the domain.

  13. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    The research was conducted to detect changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and to two nutrient regimes (with or without fertilization) of oil palm. Under stress conditions, changes in plant growth, dry matter allocation, relative ...

  14. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... The research was conducted to detect changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and to two nutrient regimes (with or without fertilization) of oil palm. Under stress conditions, changes in plant growth, dry.

  15. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  16. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  17. The association of perceived stress, contextualized stress, and emotional eating with body mass index in college-aged Black women.

    Science.gov (United States)

    Diggins, Allyson; Woods-Giscombe, Cheryl; Waters, Sandra

    2015-12-01

    A growing body of literature supports the association between adverse stress experiences and health inequities, including obesity, among African American/Black women. Adverse stress experiences can contribute to poor appetite regulation, increased food intake, emotional eating, binge eating, and sedentary behavior, all of which can contribute to weight gain and obesity. Most research studies concerning the effect of psychological stress on eating behaviors have not examined the unique stress experience, body composition, and eating behaviors of African American/Black women. Even fewer studies have examined these constructs among Black female college students, who have an increased prevalence of overweight and obesity compared to their counterparts. Therefore, the aim of the current study is to examine the associations among emotional eating, perceived stress, contextualized stress, and BMI in African American female college students. All participants identified as African American or Black (N=99). The mean age of the sample was 19.4 years (SD=1.80). A statistically significant eating behavior patterns×perceived stress interaction was evident for body mass index (BMI) (β=0.036, S.E.=.0118, peating behavior patterns×contextualized stress interaction was observed for BMI (β=0.007, S.E.=.0027, p=.015). Findings from this study demonstrate that the stress experience interacts with emotional eating to influence BMI. Based on these findings, culturally relevant interventions that target the unique stress experience and eating behavior patterns of young African American women are warranted. Copyright © 2015. Published by Elsevier Ltd.

  18. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  19. Water Stress Assessment in Jharkhand State Using Soil Data and ...

    African Journals Online (AJOL)

    Michael Horsfall

    Full-text Available Online at www.bioline.org.br/ja. Water Stress Assessment in Jharkhand ... state is facing acute water crisis and due to lowering of ground water table. Thus this work would help the administrators and ... interactive cycle, ground water is largely an invisible resource, occurring in a range of water producing.

  20. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  1. Water quality index estimate for Isiodu river water during dredging in ...

    African Journals Online (AJOL)

    Ten parameters were analysed using recommended standard methods and the water quality index was calculated for each. These parameters include fecal coliform count, biochemical oxygen demand (BOD5), dissolved oxygen (DO), hydrogen ion concentration (pH), temperature, total dissolved solids (TDS), phosphate, ...

  2. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    Science.gov (United States)

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Setting of index system of environmental and economic accounting of water

    Science.gov (United States)

    Tan, Yarong

    2017-10-01

    To realize the quality advancement of integrated water management in China, a scientific and perfect index system of environmental and economic accounting should be built. At present, the water shortage in China becomes increasingly serious, which further highlights the importance of efficient water management and improving the index system of water economic accounting. Based on the internal structure of the new statistical method of environmental and economic accounting, this paper focuses on analyzing and discussing the index system which it should have.

  4. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Loon, van W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and

  5. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Van Loon, W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI,

  6. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  7. Comparing the Heat Stress Index of HSI and WBGT in BakeryWorkplaces in Hamadan

    Directory of Open Access Journals (Sweden)

    S. Mahdavi

    2006-10-01

    Full Text Available Background and aims   Thermal stress is one of the important issues of physical stress in workplaces. Bakery workers that are one of widely population that under occupation heat stress. In this study, heat stress indexes consist of HSI and WBGT in worker positions in total of 88  bakeries in Hamadan city was assessed.   Methods   In this study 88 bakery workplace was considered. Measuring of air variables to obtain  of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and  hygrometer made in CASELLA CompanyIn this study 88 bakery workplace was considered.   Measuring of air variables to obtain of HSI and WBGTheat stress indices was performed by axial fan anemometer, WBGTmeter and hygrometer made in CASELLACompany.   Results   Results showed that the average HSI index (214.2 ± 43.7 % and the average work experience were (28.57±1.97 C. Analyzing of results showed that Pearson's correlation of coefficient between HSI and WBGT was equal to 0.509. Depending of HSI to air velocity was considerable (r = -0.811 that was not expected.   Conclusion   Values of HSI index had a wide scatter in variances in study fields comparing of  WBGTindex that had a minimal scatter, whereas those are measuring of variables and computing of indexes were same workplaces. Finally, although both heat indexes showed exceeded values form criteria, but calibration between HSI and WBGT in this study, showed that, the HSI index  had any weakness.    

  8. Impacts of Climate Variability on the Spatio-temporal Characteristics of Water Stress in Korea

    Science.gov (United States)

    Kim, Soojun; Devineni, Naresh; Lall, Upmanu; Kim, Hung Soo

    2017-04-01

    This study intended to evaluate water stress quantitatively targeted at the Korean Peninsula and to analyze the spatial and temporal characteristics of its occurrence. First, the severity and multiyear influence of water stress were analyzed by realizing water balance based on water supply and demand and by calculating the normalized deficit index (NDI) and the normalized deficit cumulated (NDC) for 113 small basins in the Korean Peninsula. Next, a change in the periodic characteristics of water stress was analyzed using wavelet transform of the NDI by small basins and 3 bands of periods of 1 year, 2-4 years, and 4-8 years were separated. Through an analysis of the empirical orthogonal function (EOF) on each band, it was found that water stress occurring in the Korean Peninsula has the characteristics of spatial distribution that it is extended from the south coast to the northern area and inland as its period gets longer. An analysis of the band with a period of 2-8 years for water stress showed that it has a relationship with El Niño-Southern Oscillation (ENSO). Acknowledgment This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Changes in the index of sweat ion concentration with increasing sweat during passive heat stress in humans.

    Science.gov (United States)

    Shamsuddin, A K M; Yanagimoto, S; Kuwahara, T; Zhang, Y; Nomura, C; Kondo, N

    2005-06-01

    To investigate the pattern changes in the index of sweat ion concentration at skin surface with increasing sweat during passive heat stress in humans, we measured conductivity of the perfused water with sweat as the index of sweat ion concentration and sweat rate, continuously at the chest skin surface. Eight healthy subjects (22.4 +/-1.0 years) were passively heated by lower-leg immersion in a hot water bath of 42 degrees C for 50 min in an ambient temperature of 28 degrees C and relative humidity of 50%. The internal temperature (Tor) thresholds of sweat rate and index of sweat ion concentration were almost similar. Concomitant onset for the index of sweat ion concentration and sweat rate occurred but two types of linear regression lines were identified in the relationship between the index of sweat ion concentration and sweat rate at a boundary sweat rate value of 0.30 +/- 0.08 mg cm(-2) min(-1). The slope of the regression line at low levels of sweat (slope 0.02 +/- 0.01 V mg(-1) cm(-2) min(-1)) was significantly gradual compared with that at moderate levels of sweat (slope 0.30 +/- 0.08 V mg(-1) cm(-2) min(-1)) (P<0.05). These results suggest that at low levels of sweat the index of sweat ion concentration responds gradually with respect to sweat rate, which may be due to the ion reabsorption capacity of the sweat duct, and then the index of sweat ion concentration increased steeply with sweat rate.

  10. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    minimum productivity index. Therefore, in water deficit conditions, the priority of water distribution in all options is for tomatoes and the last priority for sugar beets. In all of the options, wheat, barley and canola ascend in productivity index and corn and sugar beets descend in productivity index. Conclusion: Studying water- production index shows that considering instructions will result in optimal productivity that in turn will increase production and network total income. Optimal model results show that drought effects can be satisfied with optimal and targeted management in allocating water, so that network total income has not reduced in stress occurrences compared to network net income. Optimization method in model development has been selected according to aim of model and it is proposed that model results to be assessed by non- linear optimization methods. It is proposed that, different scenarios of climate are studied in region according to climate changes and optimal allocation of water is prepared according to the effect of these scenarios on temperature increase, raining decrease and products water need increase in present cultivation method. For model efficiency increase, it is proposed that using neural networks capabilities, intelligent prediction of the input discharge to the network is done and the possibility of comprehensive management and timely combining of network with water allocation optimal model is provided.

  11. US Power Production at Risk from Water Stress in a Changing Climate.

    Science.gov (United States)

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  12. Assessing river water quality using water quality index in Lake Taihu Basin, China.

    Science.gov (United States)

    Wu, Zhaoshi; Wang, Xiaolong; Chen, Yuwei; Cai, Yongjiu; Deng, Jiancai

    2018-01-15

    Lake Taihu Basin, one of the most developed regions in China, has received considerable attention due to its severe pollution. Our study provides a clear understanding of the water quality in the rivers of Lake Taihu Basin based on basin-scale monitoring and a water quality index (WQI) method. From September 2014 to January 2016, four samplings across four seasons were conducted at 96 sites along main rivers. Fifteen parameters, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity (tur), permanganate index (CODMn), total nitrogen, total phosphorus, ammonium (NH4-N), nitrite, nitrate (NO3-N), calcium, magnesium, chloride, and sulfate, were measured to calculate the WQI. The average WQI value during our study period was 59.33; consequently, the water quality was considered as generally "moderate". Significant differences in WQI values were detected among the 6 river systems, with better water quality in the Tiaoxi and Nanhe systems. The water quality presented distinct seasonal variation, with the highest WQI values in autumn, followed by spring and summer, and the lowest values in winter. The minimum WQI (WQImin), which was developed based on a stepwise linear regression analysis, consisted of five parameters: NH4-N, CODMn, NO3-N, DO, and tur. The model exhibited excellent performance in representing the water quality in Lake Taihu Basin, especially when weights were fully considered. Our results are beneficial for water quality management and could be used for rapid and low-cost water quality evaluation in Lake Taihu Basin. Additionally, we suggest that weights of environmental parameters should be fully considered in water quality assessments when using the WQImin method. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of Water Stress on The Rooting, Nodulation Potentials

    African Journals Online (AJOL)

    Administrator

    plants show a decrease in cell sap osmotic potential, thus increasing the water potential gradient between soil and roots, thereby allowing water uptake to continue despite declining soil water content (Larcher, 2003). It has been reported by Gomesda et al., (2001), that water stress has a significant effect on the growth and ...

  14. Effect of progressive water deficit stress on proline accumulation and ...

    African Journals Online (AJOL)

    Water deficit stress is one of the important factors limiting chickpea production in arid and semi-arid regions of West Asia and North Africa. When water deficit stress is imposed, different molecular and biochemical responses take place. This study was carried out to investigate proline accumulation and protein profiles of ...

  15. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    Water stress is known to induce active oxygen species in plants. The accumulation of these harmful species must be prevented by plants as rapidly as possible to maintain growth and productivity. The aim of this study was to determine the effect of water stress on superoxide dismutase isozymes (SOD, EC 1.15.1.1.) in two ...

  16. [Responses of tomato leaf photosynthesis to rapid water stress].

    Science.gov (United States)

    Han, Guo-Jun; Chen, Nian-lai; Huang, Hai-xia; Zhang, Ping; Zhang, Kai; Guo, Yan-hong

    2013-04-01

    By using polyethylene glycol (PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 micromol m-2 s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1.5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85%, and the light compensation point (LCP) was increased by 75% to 100%, suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40%, but increased the dark respiration rate by about 45% . It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion, water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.

  17. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  18. SMEX02 Iowa Satellite Vegetation and Water Index (NDVI and NDWI) Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) data, derived from Landsat 5 Thematic Mapper...

  19. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    Science.gov (United States)

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  20. Methodology of water quality index (WQI) development for filtrated water using irradiated basic filter elements

    Science.gov (United States)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas; Abu Bakar, Asyraf Arif

    2017-01-01

    Clean water production can be achieved by using common simple water filtration system that consists of an empty bottle and the filter elements such as cotton/coffee filter, sands, and gravels, which can be easily assembled and used. To reduce the time to get an acceptably clean water using the common water filtration, this paper will discuss on a solution to increase the filtration effectiveness of the filter elements by irradiating gossypium (or commonly known as cotton), and silica oxide which is the main composition material for sand and gravel from various scale based on the Wentworth scale. There were few studies regarding gamma and neutron irradiation of silica based materials that proves that gamma and neutron irradiation introduce defects, hence, we expect that it may lead to the formation of micropores and alter the water filtration effectiveness. It was established that higher amount of irradiation results in higher concentration of defects. This paper will firstly review literatures on the effect of gamma and neutron irradiation effect on filter elements such as sands and papers, and then develops a water quality index (WQI) that reflects the water appearance quality of the filtrated water. The WQI focuses on the physical appearance such as smells and color of the filtered water.

  1. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    Science.gov (United States)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  2. Assessment of Heat Stress Index, and evaluation of theirvalidity in Mobarakeh Steel Association's Mobarakeh Steel Association's

    Directory of Open Access Journals (Sweden)

    M Sadeghi Aliabadi

    2005-10-01

    Full Text Available Background and Aims: Existence of heat in industries is considered as a serious problem. Someindexes have been invited to evaluate the rate of heat loud on worker. These indexes have beenused & comprised in different researches. This research validity of some of these indexes wasevaluated.Method: In purpose of evaluation of indexes and environmental factor ordinary and CataTermometer, WBCT Meter instrument and Humidity Meter was used. As a first step Molding unitdivided into 15 stations, and in the second step parameters measurement was begone . After thatthe obtained figures was used in special equation to calculate heat stress indexes.Mouth, skin, and core body temperature of 90 healthy and adopted male worker was recorded.Then the obtained result was analysed by Spss, and mean, standard deviation and correlationcoficient was ealeutated for each of them.Results: At first mean, minimum, maximum and standard deviation was calculated forenvironmental parameter and indexes.At the second step the relationship between personalfactors (mouth, skin and core body temperature and parameters and environmental indexes. (Airtemperature, radiation temperature, air velocity and relative humidity was assessed.The result showed no significance relationship between personal factor and heat stressor. Factor(p>5% only purse index had significance relationship (p=0/005, and the others indexes did notshowed significance relationship.Conclusion: In this research the relationship between purse and all variables was significance.Therefore this index considered as a first valid index in this research.WBGTindex shows the most relationship after the purse index in comparison with other indexes.Because of the other indexes's no significance relationship, so pours had a good validity in thisresearch.

  3. Developing Index for Sustainable Water Use with Environmental and Socioeconomic Indicators: an Application for Hydrologic Units in South Korea

    Science.gov (United States)

    Kim, Y.; Kong, I.

    2014-12-01

    This study aimed to develop index for sustainable water use over hydrologic units in South Korea. We identified major indicators for sustainable water use with considering multiple aspects of water use: not only physical, biological and chemical aspects but also social and environmental aspects. Furthermore, stressors for sustainable water use were of major interests because they were straightforward and easy to measure in comparison to indicators representing the state- and impact-related indictors. As a result, sustainability index was constructed with a theme-based hierarchical approach. It is comprised of two components of stress and response to sustainable water use and each component includes five sub-components of human water requirements, water quality requirements, 4) h, equitable water use and others. Then for each sub-component, multiple indicators, i.e., proxy variables were identified. For drainage basins in South Korea, standard hydrologic units with their total number of about 100 across the country, total 19 indicators were identified and their data from the various sources such as remote-sensing based datasets and survey-based national datasets were collected for current times. Then they were integrated to estimate the sustainability index with a multi-criteria decision making (MCDM) approach. At last, we evaluated sustainability index with focusing on the spatial variability of indices and indicators and the sensitivity of indices to individual indicators to better understand the sustainability of water use in Korea. In addition, we derived the indices with different MCDM methods to evaluate the sensitivity of index to various mathematical techniques.

  4. Water quality assessment of the Borska Reka river using the WPI (Water Pollution Index method

    Directory of Open Access Journals (Sweden)

    Milijašević Dragana

    2011-01-01

    Full Text Available The Borska Reka river (47 km long, 373 km2 of basin area is located in eastern Serbia and it is the biggest tributary of the river Veliki Timok. It is also one of the most polluted watercourses in Serbia. Using the data of the Republic Hydrometeorological Service of Serbia, the paper analyzes water pollution using the combined physical-chemical WPI index (water pollution index over two periods: 1993-1996 and 2006-2009. The analysis of parameters showed significantly increased values of heavy metals (especially iron and manganese which are indicators of inorganic pollution (primarily because of mining, but also increased values of organic pollution indicators (Biological Oxygen Demand-BOD5, ammonium, coliform germs, as the result of uncontrolled domestic wastewater discharge.

  5. Systems responses to progressive water stress in durum wheat.

    Directory of Open Access Journals (Sweden)

    Dimah Z Habash

    Full Text Available Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1 and a recombinant inbred line (RIL2219 showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum

  6. Validity of the Short Form of the Parenting Stress Index for Fathers of Toddlers

    Science.gov (United States)

    McKelvey, Lorraine M.; Whiteside-Mansell, Leanne; Faldowski, Richard A.; Shears, Jeffrey; Ayoub, Catherine; Hart, Andrea D.

    2009-01-01

    We examined the psychometric properties of two scales of the parenting stress index-short form (PSI-SF) in a low-income sample of fathers of toddlers. The factor structure, reliability, and validity of the parental distress and parent-child dysfunctional interaction subscales were assessed for 696 fathers in a multi-site study of Early Head Start.…

  7. Psychometric Properties of the Parenting Stress Index with Parents of Children with Autistic Disorder

    Science.gov (United States)

    Dardas, L. A.; Ahmad, M. M.

    2014-01-01

    Purpose: The purpose of this study was to examine the psychometric properties and the theoretical structure of the Parenting Stress Index-short form (PSI-SF) with Jordanian parents of children with autistic disorder. Methods: Using a cross-sectional design for data collection, the convenience sample of the study was composed of 184 Jordanian…

  8. Development and Validation of the Index of Race-Related Stress (IRRS).

    Science.gov (United States)

    Utsey, Shawn O.; Ponterotto, Joseph G.

    1996-01-01

    Describes the development and validation of a measure of the stress experienced by African Americans as a result of daily encounters with racism and discrimination. The scale has adequate indexes of internal consistency and fair-to-adequate estimates of test-retest stability. Several other factors also indicated the measure's reliability. (RJM)

  9. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  10. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  11. Validity of the Parenting Stress Index-Short Form in a sample of Spanish fathers.

    Science.gov (United States)

    Díaz-Herrero, Angela; López-Pina, José Antonio; Pérez-López, Julio; Brito de la Nuez, Alfredo G; Martínez-Fuentes, María Teresa

    2011-11-01

    The purpose of this study was to analyze the psychometric properties of the Spanish version of the Parenting Stress Index-Short Form in a sample of 115 fathers of infants aged between ten and thirty-nine months old. The exploratory factor analysis revealed three reasonably distinct factors, as in the original version of the instrument. The three extracted factors: Parental Distress, Parent-Child Dysfunctional Interaction and Difficult Child accounted for 47.48 % of the variance. The internal consistency coefficients were high in each factor or subscale. These results provided empirical evidence in favour of the reliability and validity of the Parenting Stress Index-Short Form in Spanish fathers, and can be useful to elucidate the mechanisms through which stress impacts parenting and permitting to develop more targeted interventions for infants and their families.

  12. WATER QUALITY INDEX FOR ASSESSMENT OF DRINKING WATER SOURCES FROM MEDIAŞ TOWN, SIBIU COUNTY

    Directory of Open Access Journals (Sweden)

    ROŞU CRISTINA

    2014-03-01

    Full Text Available The purpose of this study was to evaluate the drinking water sources quality from Mediaş Town, Sibiu County. In November 2013, 6 water samples were taken from different drinking water sources and each water sample was analysed to determinate physico-chemical parameters (using a portable multiparameter WTW 320i major ions (using DIONEX ICS1500 ion chromatograph and heavy metals (using Atomic Absorption Spectrophotometer model ZENIT 700 Analytik Jena. The investigated physico-chemical parameters were: temperature, salinity, electrical conductivity (EC, pH, total dissolved solids (TDS and redox potential (ORP. The analysed major ions were: lithium (Li+, sodium (Na+, potassium (K+, magnesium (Mg2+, calcium (Ca2+, fluoride( F-, chloride (Cl-, bromide (Br-, nitrite (NO2-, nitrate (NO3-, phosphate (PO43- and sulphate (SO42-. The investigated heavy metals were: lead (Pb, zinc (Zn, cooper (Cu, iron (Fe, cadmium (Cd, nickel (Ni, chromium (Cr and arsenic (As. The Water Quality Index (WQI was calculated using the analysed water quality parameters and it ranged from 76 (very poor water quality to 375 (unsuitable for drinking.

  13. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  14. Development and sensitivity analysis of a global drinking water quality index.

    Science.gov (United States)

    Rickwood, C J; Carr, G M

    2009-09-01

    The UNEP GEMS/Water Programme is the leading international agency responsible for the development of water quality indicators and maintains the only global database of water quality for inland waters (GEMStat). The protection of source water quality for domestic use (drinking water, abstraction etc) was identified by GEMS/Water as a priority for assessment. A composite index was developed to assess source water quality across a range of inland water types, globally, and over time. The approach for development was three-fold: (1) Select guidelines from the World Health Organisation that are appropriate in assessing global water quality for human health, (2) Select variables from GEMStat that have an appropriate guideline and reasonable global coverage, and (3) determine, on an annual basis, an overall index rating for each station using the water quality index equation endorsed by the Canadian Council of Ministers of the Environment. The index allowed measurements of the frequency and extent to which variables exceeded their respective WHO guidelines, at each individual monitoring station included within GEMStat, allowing both spatial and temporal assessment of global water quality. Development of the index was followed by preliminary sensitivity analysis and verification of the index against real water quality data.

  15. Development of innovative computer software to facilitate the setup and computation of water quality index.

    Science.gov (United States)

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  16. Effects of salinity stress on water uptake, germination and early ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... Key words: Ryegrass, Lolium perenne L., salinity stress, water uptake, seedling growth. INTRODUCTION. In the dry areas of the world, there is an increasing pressure to apply low quality water for plant irrigation. (Schleiff, 2008). Use of low quality water is increasing salinity of soil. The osmotic pressure of ...

  17. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  18. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  19. Analysis of environmental status of the Kechut Artificial Reservoir and river Arpa with Armenian index of water quality

    OpenAIRE

    SIMONYAN ARSEN GEVORGOVICH; PIRUMYAN GEVORG PETROSOVICH; SIMONYAN GEVORG SARKISOVICH

    2016-01-01

    The water quality of Kechut Artificial Reservoir and river Arpa was evaluated by Armenian water guality index at first time. It was shown that from the source to the mouth of the river the values of the Armenian water guality index increases, indicating the decline in the water quality of river Arpa. It was established that the Armenian water guality index has a lineаr relationship with the Water сontamination index, Specific-combinatorial water quality index and Entropic water quality index ...

  20. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  1. The Biotic Indexing of Water Quality and Its Application to Field Work in Schools and Colleges.

    Science.gov (United States)

    Dale, C. R.

    1980-01-01

    Discussed is the biotic indexing of water quality and its application to A-level field work with reference to the Trent Biotic Index and Chandler Score system. These indices are related to the classification of water quality used by the Department of the Environment. Interpretations and limitations of the indices are discussed. (Author/DS)

  2. Measuring Thermal Stress of Dairy Cattle Based on Temperature Humidity Index (THI in Tropical Climate

    Directory of Open Access Journals (Sweden)

    Sugiono

    2016-01-01

    Full Text Available Thermal comfort for workers is very important factor to increase their performance, as well as the comfort level of dairy cattle will influence in milk productivity. The purposes of the paper is to measure the level of heat stress and then use the information to design the dairy cattle house for increasing thermal comfort. The research is started with literature review of heat stress and early survey of environment condition e.g. temperature, wind speed and relative humidity. The next step is using the information to determine the temperature humidity index (THI level for dairy cattle with maximum THI = 86 and 84 (moderate stress. The 3D CAD model and Computational Fluid Dynamic (CFD simulation are employed to looking for solution for reducing the discomfort thermal of dairy cattle. A scenario (fan air conditioning to get better condition of thermal comfort have been successfully presented with final THI index = 76 and 78 (mild stress. Finally, the paper shows how to reduce heat stress of cattle house by installation 3 exhaust fans in tropical climate.

  3. Sap flow index as an indicator of water storage use

    National Research Council Canada - National Science Library

    Nadezhda Nadezhdina; Jan Čermák; Alec Downey; Valeriy Nadezhdin; Martti Perämäki; Jorge Soares David; Clara A. Pinto; Teresa Soares David

    2015-01-01

    Symmetrical temperature difference also known as the sap flow index (SFI) forms the basis of the Heat Field Deformation sap flow measurement and is simultaneously collected whilst measuring the sap flow...

  4. Standardized Water Budget Index and Validation in Drought Estimation of Haihe River Basin, North China

    OpenAIRE

    Shaohua Liu; Denghua Yan; Hao Wang; Chuanzhe Li; Baisha Weng; Tianling Qin

    2016-01-01

    The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI) with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI) based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, t...

  5. The response of Cyclamen hederifolium to water stress induced by ...

    African Journals Online (AJOL)

    STORAGESEVER

    for endemic plants can live on relatively unfertile sub- strates (Cowling and Holmes, 1992; Cowling et al., 1994;. Ojeda et al., 2001), and may be more adapted to stress- ful habitats and unable to compete for resources in more productive habitats (Griggs, 1940; Drury, 1974). Water stress can affect the stomatal closure and ...

  6. Water stress effects on spatially referenced cotton crop canopy properties

    Science.gov (United States)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  7. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    The objective of the present work was to determine the mechanisms of tolerance of four sunflower hybrids; H1 = Azargol, H2 = Alstar, H3 = Hysun 33 and H4 = Hysun 25 to water stress under three different levels of irrigation regimes; WD1 = irrigation after 50 mm (normal irrigation), WD2 = 100 mm (mild stress) and WD3 ...

  8. Using Canopy Reflectance and Crop Stress Index to Enhance Wheat Yield Prediction

    Science.gov (United States)

    Asadi, S.; Zare, H.; Paymard, P.; Lashkari, A.; Salehnia, N.; Bannayan, M.

    2015-12-01

    Canopy reflectance can be useful indicator of crop health status. Canopy stress index (CSI) is usually expressed as canopy temperature minus air temperature, and this value is higher and a positive number in a well irrigated wheat field. Three main environmental variables constructing CSI are: plant canopy temperature (Tc), air temperature (Ta) and atmospheric vapor pressure deficiency (VPD). CSI is effected by biological and environmental factors such as soil water status, wind speed, evapotranspiration, conduction systems, plant metabolism, air temperature, relative humidity, etc. which all influence on final yield. This paper aims to investigate the relation of CSI calculated by Landsat images and wheat yield. So, eighteen wheat fields were selected for two years (2009 and 2010) and 5 Landsat images (TM and ETM+) from April to Jun were used to monitor field status in each year. Tc was calculated by applying single-channel method and VPD was computed from Tc, air temperature and humidity. Each single Landsat bands and CSI were defined as the descriptor variables. Relation between wheat yield and the descriptors was assessed by means of linear correlation. The results of stepwise correlation depicted that band 1 (blue) and 3 (red) had the most correlations to yield until grain filling stage. This reflects the importance of photosynthesis rate which absorb blue and red wavelength during mentioned period. This two bands also could capture yield changes (r2=0.77). However, during grain filling period CSI was the only descriptor determining yield volatility (r2=0.85). Low temperature is one of the key factors which increase remobilization of carbohydrate to grain. Therefore, grain yield in the canopy which has less temperature in compared to air temperature would be higher than others.

  9. Application of a sustainability index for integrated urban water ...

    African Journals Online (AJOL)

    Integrated urban water management (IUWM) is that component of IWRM that addresses the impact of urban centres on the nat- ural water cycle. It explores, through appropriate management and concerted action, avenues for improved service delivery. It considers the efficient management of water resources including.

  10. Analysis of Production-Water-Salinity of Index Crops in

    Science.gov (United States)

    Sharifan, H.; Ghahreman, B.

    2009-04-01

    One method to investigate the advantages of irrigation in cultivation is to evaluate the amount of increase in productions as a result of irrigation. Such relations which usually characterized by mathematics formulas or curves are called production to water function. In the agricultural analysis like pattern optimization and culture accumulation, we need some function like agricultural crops production, water and salinity. The amount of water used and salinity has influence on crops function, so that by increase in both components in various stages of plant growth, crop function decreases. Many researches have been performed on production-water and production-salinity function, therefore less researches on production-water-salinity components. The equation provided by Letey and Dinar (1986) is a sample of these researches. Their model is a quadratics equation from independent variables of water salinity in irrigation (ECi) and dimensionless proportion of the amount of water used to evaporation in class A (AW/EP) in plant growth stage. Therefore, by using this model and parameters like evaporation, rainfall and also quantity and quality water potential in Golestan farmlands, we obtained production-water-salinity components for each product in three different areas across Golestan province (moisture to dry areas). These products include sunflower, cotton, wheat, barely, potato, tomato, corn, sorgom, water melon, soybean and rice. Finally, these equations were compared by results of previous experiments, some results correspond and others were different. Key Word: production-water, production-salinity and production-water-salinity function, Letey and Dinar, Golestan.

  11. Use of geographic information system and water quality index to ...

    African Journals Online (AJOL)

    Based on the analysis, most of the area under study falls 70% in poor water class and 30% in good water class. Hence, the result revealed that 70% of the groundwater samples of the study area are hardly suitable for drinking purposes without water quality management activities. Key words: spatial distribution, GIS, WQI, ...

  12. Fuzzy Logic Water Quality Index and Importance of Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Raman Bai. V

    2009-01-01

    Full Text Available Determination of status of water quality of a river or any other water sources is highly indeterminate. It is necessary to have a competent model to predict the status of water quality and to advice for type of water treatment for meeting different demands. One such model (UNIQ2007 is developed as an application software in water quality engineering. The unit operates in a fuzzy logic mode including a fuzzification engine receiving a plurality of input variables on its input and being adapted to compute membership function parameters. A processor engine connected downstream of the fuzzification unit will produce fuzzy set, based on fuzzy variable viz. DO, BOD, COD, AN, SS and pH. It has a defuzzification unit operative to translate the inference results into a discrete crisp value of WQI. The UNIQ2007 contains a first memory device connected to the fuzzification unit and containing the set of membership functions, a secondary memory device connected to the defuzzification unit and containing the set of crisp value which appear in the THEN part of the fuzzy rules and an additional memory device connected to the defuzzification unit. More advantageously, UINQ2007 is constructed with control elements having dynamic fuzzy logic properties wherein target non-linearity can be input to result in a perfect evaluation of water quality. The development of the fuzzy model with one river system is explained in this paper. Further the model has been evaluated with the data from few rivers in Malaysia, India and Thailand. This water quality assessor probe can provide better quality index or identify the status of river with 90% perfection. Presently, WQI in most of the countries is referring to physic-chemical parameters only due to great efforts needed to quantify the biological parameters. This study ensures a better method to include pathogens into WQI due to superior capabilities of fuzzy logic in dealing with non-linear, complex and uncertain systems.

  13. Index of sources of stress in nursing students: a confirmatory factor analysis.

    Science.gov (United States)

    Gibbons, Chris; Dempster, Martin; Moutray, Marianne

    2009-05-01

    This paper is a report of a study to test the proposed factor structure of the Index of Sources of Stress in Nursing Students. Research across many countries has identified a number of sources of distress in nursing students but little attempt has been made to understand and measure sources of eustress or those stressors likely to enhance performance and well-being. The Index of Sources of Stress in Nursing Students was developed to do this. Exploratory factor analysis suggested a three-factor structure, the factors being labelled: learning and teaching; placement-related and course organization. It is important, however, to subject the instrument to confirmatory factor analysis as a further test of construct validity. A convenience sample of final year nursing students (n = 176) was surveyed in one university in Northern Ireland in 2007. The Index of Sources of Stress in Nursing Students, which measures sources of stress likely to contribute to distress and eustress, was completed electronically. The LISREL programme was used to carry out the confirmatory factor analysis and test the factor structure suggested in the exploratory analysis. The proposed factor structure for the items measuring 'Uplifts' proved to be a good fit to the data and the proposed factor structure for the items measuring 'Hassles' showed adequate fit. In nursing programmes adopting the academic model and combining university-based learning with placement experience, this instrument can be used to help identify the sources of stress or course demands that students rate as distressing and those that help them to achieve. The validity of the ISSN could be further evaluated in other education settings.

  14. Hyperspectral remote sensing to assess the water status, biomass, and yield of maize cultivars under salinity and water stress

    Directory of Open Access Journals (Sweden)

    Salah Elsayed

    Full Text Available ABSTRACT Spectral remote sensing offers the potential to provide more information for making better-informed management decisions at the crop canopy level in real time. In contrast, the traditional methods for irrigation management are generally time-consuming, and numerous observations are required to characterize them. The aim of this study was to investigate the suitability of hyperspectral reflectance measurements of remote sensing technique for salinity and water stress condition. For this, the spectral indices of 5 maize cultivars were tested to assess canopy water content (CWC, canopy water mass (CWM, biomass fresh weight (BFW, biomass dry weight (BDW, cob yield (CY, and grain yield (GY under full irrigation, full irrigation with salinity levels, and the interaction between full irrigation with salinity levels and water stress treatments. The results showed that the 3 water spectral indices (R970 − R900/(R970 + R900, (R970 − R880/(R970 + R880, and (R970 − R920/(R970 + R920 showed close and highly significant associations with the mentioned measured parameters, and coefficients of determination reached up to R2 = 0.73*** in 2013. The model of spectral reflectance index (R970 − R900/(R970 + R900 of the hyperspectral passive reflectance sensor presented good performance to predict the CY, GY, and CWC compared to CWM, BFW, and BDW under full irrigation with salinity levels and the interaction between full irrigation with salinity levels and water stress treatments. In conclusion, the use of spectral remote sensing may open an avenue in irrigation management for fast, high-throughput assessments of water status, biomass, and yield of maize cultivars under salinity and water stress conditions.

  15. Infrared spectra of penetration depth of into water and of water refraction-index

    Science.gov (United States)

    Ichikawa, Mahito

    1990-01-01

    above two effects in his analysis and measurement. He first established analytical formulae comprizing multi-reflection effect under condition with no interference, and second rejected to employ measured transmittance data seemingly under interference state, thus has succeeded in giving the exact penetration depth for 0.9 - 25. micro-meter wave with normal-incidence to free water surface at room temperature(25 ± 5°C). Conversely, taking advantage of the mentioned unfavorable interference, he has also succeeded in giving water refraction-index spectrum covering 0.9 - 2.5 micro-meter region. The same spectrum for 2.5 - 25. micro-meter is also given in the text, by using a special reflectance measurement, though the latter being approximate value. The above water refraction-index spectra are, depending on wavelength region, in good or poor agreement with the corresponding table data which was compiled by Messrs. Hale & Querry in early years from those days published date The spectrum data obtained by himself was employed in later calculation to find 0C.

  16. [Work-related Stress and the Allostatic Load Index - A Systematic Review].

    Science.gov (United States)

    Mauss, D; Li, J; Schmidt, B; Angerer, P; Jarczok, M N

    2017-12-01

    Work-related stress is a growing social challenge and has been associated with reduced employee health, well-being, and productivity. One tool to measure the stress-related wear and tear of the body is the Allostatic Load Index (ALI). This review summarizes recent evidence on the association between work-related stress and ALI in working adults. A systematic literature search following the PRISMA-Statement was conducted in 21 databases including Medline, PubPsych, MedPilot, and Cochrane Register. Publications addressing work related-stress and medical parameters using ALI were considered. Data on study population, analytic techniques, and results were tabulated. Methodological quality was evaluated using a standardized checklist. 9 articles were identified with a total of 3 532 employees from 5 countries reporting cross-sectional data from the years 2003-2013. Overall, 7 studies reported a positive and significant association between work-related stress and ALI, while 2 studies showed no or an insignificant association. Substantial heterogeneity was observed in methods applied and study quality. This systematic review provides evidence that work-related stress is associated with ALI in cross-sectional studies. This association needs to be demonstrated by future studies using longitudinal data on working populations. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effectiveness of Stress Management Cognitive-Behavioral Therapy on Psychological and Physiological Indexes of Patients

    Directory of Open Access Journals (Sweden)

    Vahideh Montazeri-Khadem

    2012-10-01

    Full Text Available Background: The purpose of this study was to determine the effectiveness of stress management cognitive-behavioral therapy on psychological indexes anxiety and depression of patients volunteer to surgery. Materials and Methods: The design of research was Quasi-experimental with pre-post test type, and control group. 26 subjects were selected on the list of elective surgery in March 2009 had been assigned randomly to experimental (N=13 and control group (N=13. Stress management intervention was conducted in experimental group and were under no intervention in control group. Test anxiety by Spilberger, depression by Beck depression were measured.Results: Destabilizing Middle data using covariance analysis was used. Results showed that test scores of anxiety, depression compared to the experimental group had a significant reduction (p< 0.05.Conclusion: Stress management cognitive-behavior intervention can be a elective psychotherapy.

  18. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    effects of water stress on plants were ameliorated by exogenous application of ABA and this ameliorating effect was found to be more significant at booting stage as compared to grainfilling particularly in the accession 320. The accessions 417 and 320 (which were most dissimilar on the basis of physiology under water ...

  19. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... plant growth. X. sorbifolia seed varies greatly in mass. Thus, whether water and seed mass influence the germination of X. sorbifolia in this region must be determined. The primary objectives of this current study were as follows: (1) to analyze individually the effect of water stress and seed mass as well as ...

  20. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    The effects of water stress and seed mass on germination, as well as antioxidative enzymes, in Xanthoceras sorbifolia seed were studied. The germination percentage decreased gradually in all seeds with decreasing water potential. The reduction was more significant under -0.6 MPa treatment than under the -0.2 MPa ...

  1. Water resources thesaurus: A vocabulary for indexing and retrieving the literature of water resources research and development

    Science.gov (United States)

    ,

    1980-01-01

    This Water Resources Thesaurus encompasses such broad research areas as the hydrologic cycle, supply of and demand for water, conservation and best use of available supplies of water, methods of increasing supplies, and the economic, legal, social, engineering, recreational, biological, geographical, ecological, and qualitative aspects of water resources. This volume represents a major revision of the previous edition of the Thesaurus, published in 1971. The principal source of terms for this edition has been the indexing used in Selected Water Resources Abstracts (SWRA). Since its inception in 1968, SWRA has indexed tens of thousands of publications. Its indexing terminology has been developed by expert abstracters and researchers, and represents the range of disciplines related to research, development, and management of water resources.

  2. Application of a sustainability index for integrated urban water ...

    African Journals Online (AJOL)

    ice for water supply were based on the WHO Guidelines for. Access to Water Supply (Howard and Bartram, .... a minimum of 25 ℓ/cap∙d within a cartage distance of 200m, and a VIP latrine per household); 70% have ... ice that is responsive to issues such as low pressure, leaks and blockages. In response to ever-increasing ...

  3. Salivary nerve growth factor response to intense stress: effect of sex and body mass index.

    Science.gov (United States)

    Taylor, Marcus K; Laurent, Heidemarie K; Larson, Gerald E; Rauh, Mitchell J; Hiller Lauby, Melissa D; Granger, Douglas A

    2014-05-01

    Ample evidence links stress to psychiatric and neurological disease. Although many studies examine stress hormone secretion and receptor activity, exciting new developments signify a shift in focus to neuromodulatory systems influencing neuronal development, survival, and neuroplasticity. The purpose of this study was to characterize salivary nerve growth factor (sNGF) responses to intense stress exposure in healthy military members undergoing survival training. A second purpose was to explore effects of age, sex, education, and body mass index (BMI). One hundred sixteen military members (80% male) were studied before, during, and 24 h after a stressful mock-captivity exercise. sNGF was measured at all three time points. Reactivity, recovery, and residual elevation of sNGF were computed. General linear modeling with repeated measures evaluated effect of stress exposure, as well as the roles of age, sex, education, and BMI. sNGF increased 137% from baseline to intense stress. During recovery, sNGF remained elevated an average of 67% above baseline (i.e., residual elevation). Men showed greater sNGF reactivity than women quantified by larger absolute T1-T2Δ (+148.1 pg/mL vs. +64.9 pg/mL, peffects of age or education were shown. This study shows substantial reactivity and residual elevation of sNGF in response to intense stress exposure in healthy humans. Further research is needed to refine the sNGF assay, fully characterize the sNGF stress response, delineate correlates and mechanisms, and validate therapeutic applications. Published by Elsevier Ltd.

  4. Adolescents’ Level of Perceived Stress and its Relationship with Body Mass Index in a Bangladeshi Population

    Directory of Open Access Journals (Sweden)

    Sarker Shamima Ahmed

    2017-05-01

    Full Text Available Background: Several behavioral factors, specially stress, eating behavior, and physical activity have been linked with adolescent obesity. In our country, mental health of adolescents is often neglected. So, we designed this study to describe the current perception of stress in Bangladeshi adolescent students. Objective: Aim of this study was to assess association between stress and body mass index of adolescents while controlling for physical activity and examining stress associated eating behavior. Materials and Methods: This cross-sectional study was carried out among 278 adolescent students during the period from January to December 2013. Data were collected through self-administered questionnaire which included physical activity questions, Dutch Eating Behavior Questionnaire (DEBQ, Adolescent stress questionnaire (ASQ and standard anthropometric measurements and were analyzed statistically using SPSS version 21.0. Results: In this study majority of the respondents were males. Among the female respondents, about 12.23% were overweight and obese compared to their male peers (4.1%. The normal and high BMI adolescents in the study showed significantly different proportions regarding gender (p<0.001, father’s education (p=0.036 and smoking status (p=0.22. Findings in this study reveals negative correlation between physical activity score and body mass index (ρ=−0.15, p<0.05. Body mass index was found significantly correlated with all three DEBQ eating subscales the restraint score, emotional eating score (ρ=0.58 p<0.001, and external eating score (ρ=0.55, p<0.001. Based on sample data, the mean stress scores were due to home life (3.40±0.54, school performance (3.31±0.63, school attendance (2.42±0.87, romantic relationship (3.02±0.92, peer pressure (2.85±0.72, due to teacher interaction (2.89±0.56, future uncertainty (3.83±0.90, school/leisure conflict (3.55±0.68, financial pressure (2.99±0.79 and emerging adult responsibility (3

  5. Index for Assessing Water Trophic Status in Semi-Enclosed Cuban Bays. Case Study: Cienfuegos Bay

    CERN Document Server

    Seisdedo, Mabel; Arencibia, Gustavo

    2013-01-01

    This paper aims at contributing to the coastal environmental management by developing a new trophic status index of the water (TSIW). The index is tailored to semi-enclosed bays with estuarine characteristic like the Cienfuegos bay in Cuba. We also propose pressure indicators related to exporting and assimilation capacities as a tool to assess the vulnerability of the system to eutrophication. The TSIW is based on response indicators to eutrophication processes showing correspondence with the predefined pressure indicators and previous reports on water quality. Thus, the proposed trophic status index is a reliable scientific tool to measure the current stage of the water quality and to establish a baseline for further studies.

  6. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River.

    Science.gov (United States)

    Misaghi, Farhad; Delgosha, Fatemeh; Razzaghmanesh, Mostafa; Myers, Baden

    2017-07-01

    Rivers are one of the main water resources for agricultural, drinking, environmental and industrial use. Water quality indices can and have been used to identify threats to water quality along a stream and contribute to better water resources management. There are many water quality indices for the assessment and use of surface water for drinking purposes. However, there is no well-established index for the assessment and direct use of river water for irrigation purposes. The aim of this study was to adopt the framework of the National Sanitation Foundation Water Quality Index (NSFWQI) and, with adjustments, apply it in a way which will conform to irrigation water quality requirements. To accomplish this, the NSFWQI parameters for drinking water use were amended to include water quality parameters suitable for irrigation. For each selected parameter, an individual weighting chart was generated according to the FAO 29 guideline. The NSFWQI formula was then used to calculate a final index value, and for each parameter an acceptable range in this value was determined. The new index was then applied to the Ghezel Ozan River in Iran as a case study. A forty five year record of water quality data (1966 to 2010) was collected from four hydrometery stations along the river. Water quality parameters including Na + , Cl - , pH, HCO - 3, EC, SAR and TDS were employed for water quality analysis using the adjusted NSFWQI formula. The results of this case study showed variation in water quality from the upstream to downstream ends of the river. Consistent monitoring of the river water quality and the establishment of a long term management plan were recommended for the protection of this valuable water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  8. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index.

    Science.gov (United States)

    Cingi Yirün, Merve; Ünal, Kübranur; Altunsoy Şen, Neslihan; Yirün, Onur; Aydemir, Çiğdem; Göka, Erol

    2016-09-01

    Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.

  9. Response mechanisms of Brachiaria brizantha cultivars to water deficit stress

    Directory of Open Access Journals (Sweden)

    Patricia Menezes Santos

    2013-11-01

    Full Text Available Two cultivars of Brachiaria brizantha (Hochst ex. A. Rich Stapf. (Syn. Urochloa were evaluated for their adaptation to water deficit and the stress response mechanisms in a greenhouse experiment. The experimental design was in completely randomized blocks with a 2 × 2 × 4 factorial arrangement. The Marandu and BRS Piatã cultivars were evaluated under two water availability conditions, with or without water restriction. The harvests were carried out 0, 7, 14 and 28 days after the start of water restriction. For both cultivars, the water deficit stress caused a reduction in shoot biomass and leaf area and an increase in the percentage of roots in the deeper soil layers. The B. brizantha cv. Marandu reached critical levels of leaf water potential in a shorter period of water restriction than did the B. brizantha cv. BRS Piatã. The osmoregulation and deepening of the root system are mechanisms of adaptation to water stress observed in both Marandu and BRS Piatã cultivars. Besides that, the Marandu cultivar also increases its leaf senescence and, consequentially, decreases its leaf area, as a response to water deficit.

  10. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  11. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  12. Reduction of Langelier index of cooling water by electrolytic ...

    African Journals Online (AJOL)

    LSI) of the cooling water from a cooling tower of a textile industry was investigated. Sacrificial anodes were employed which prevent obnoxious chlorine generation. A series of batch experiments using stainless steel electrodes were conducted ...

  13. Relationship between work stress and body mass index among 45,810 female and male employees.

    Science.gov (United States)

    Kouvonen, Anne; Kivimäki, Mika; Cox, Sara J; Cox, Tom; Vahtera, Jussi

    2005-01-01

    The proportion of overweight and obese people has grown rapidly, and obesity has now been widely recognized as an important public health problem. At the same time, stress has increased in working life. The 2 problems could be connected if work stress promotes unhealthy eating habits and sedentary behavior and thereby contributes to weight gain. This study explored the association between work stress and body mass index (BMI; kg/m2). We used cross-sectional questionnaire data obtained from 45,810 female and male employees participating in the ongoing Finnish Public Sector Cohort Study. We constructed individual-level scores, as well as occupational- and organizational-level aggregated scores for work stress, as indicated by the demand/control model and the effort-reward imbalance model. Linear regression analyses were stratified by sex and socioeconomic status (SES) and adjusted for age, marital status, job contract, smoking, alcohol consumption, physical activity, and negative affectivity. The results with the aggregated scores showed that lower job control, higher job strain, and higher effort-reward imbalance were associated with a higher BMI. In men, lower job demands were also associated with a higher BMI. These associations were not accounted for by SES, although an additional adjustment for SES attenuated the associations. The results obtained with the individual-level scores were in the same direction, but the relationships were weaker than those obtained with the aggregated scores. This study shows a weak association between work stress and BMI.

  14. The oxidative stress index increases among patients with hyperemesis gravidarum but not in normal pregnancies.

    Science.gov (United States)

    Yilmaz, Saynur; Ozgu-Erdinc, A Seval; Demirtas, Canan; Ozturk, Gulfer; Erkaya, Salim; Uygur, Dilek

    2015-05-01

    The etiology and pathogenesis of hyperemesis gravidarum (HG) is still undetermined and has been suggested to involve oxidative stress. We aimed to evaluate the status of oxidative stress in HG by measuring the levels of total oxidant status (TOS), total antioxidant status (TAS), and by calculating the oxidative stress index (OSI). In a case-control trial, fasting morning blood samples of patients with HG (n = 41) and healthy pregnant women (n = 39) were collected for analysis of serum TOS and TAS values as well as for calculation of OSI according to the formula: OSI = TOS / TAS × 100. Serum TOS and TAS levels were similar in both groups. However, serum TAS levels were lower among HG patients compared to controls, which resulted in an increase in OSI (P = 0.025). The present study supports the role of systemic oxidative stress, reflected by an imbalance between the TOS and TAS, in patients with HG. Our findings distinguish the mechanism underlying oxidative stress to result from reduction of antioxidants rather than an increase in oxidants.

  15. Indexed

    CERN Document Server

    Hagy, Jessica

    2008-01-01

    Jessica Hagy is a different kind of thinker. She has an astonishing talent for visualizing relationships, capturing in pictures what is difficult for most of us to express in words. At indexed.blogspot.com, she posts charts, graphs, and Venn diagrams drawn on index cards that reveal in a simple and intuitive way the large and small truths of modern life. Praised throughout the blogosphere as “brilliant,” “incredibly creative,” and “comic genius,” Jessica turns her incisive, deadpan sense of humor on everything from office politics to relationships to religion. With new material along with some of Jessica’s greatest hits, this utterly unique book will thrill readers who demand humor that makes them both laugh and think.

  16. Effect of phytoliths for mitigating water stress in durum wheat.

    Science.gov (United States)

    Meunier, Jean Dominique; Barboni, Doris; Anwar-Ul-Haq, Muhammad; Levard, Clément; Chaurand, Perrine; Vidal, Vladimir; Grauby, Olivier; Huc, Roland; Laffont-Schwob, Isabelle; Rabier, Jacques; Keller, Catherine

    2017-07-01

    The role of silicon (Si) in alleviating biotic and abiotic stresses in crops is well evidenced by empirical studies; however, the mechanisms by which it works are still poorly known. The aim of this study is to determine whether or not phytolith composition and distribution in wheat are affected by drought and, if so, why. Durum wheat was grown using hydroponics in the presence of polyethylene glycol (PEG)-6000 to perform a water-stress simulation. We developed an original method for in situ analysis of phytoliths in leaves via X-ray imaging. PEG was efficient in inhibiting water uptake by roots and creating stress, and prevented a small fraction of Si from being accumulated in the shoots. The application of Si with PEG maintained shoot and root fresh weights (FW) and relative water content at higher values than for plants without Si, especially at PEG 12%. Our data show that, under water stress in the presence of Si, accumulation of phytoliths over the veins provides better support to the leaf, thus allowing for a better development of the whole plant than in the absence of Si. The development of silicified trichomes in durum wheat depends primarily on the availability of Si in soil and is not an adaptation to water stress. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    OpenAIRE

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised wi...

  18. Water stress before harvest of pepper-rosmarin

    Directory of Open Access Journals (Sweden)

    Ivan Caldeira Almeida Alvarenga

    2011-07-01

    Full Text Available The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.

  19. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  20. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and...

  1. The iterative self-consistent reaction-field method: The refractive index of pure water

    DEFF Research Database (Denmark)

    Sylvester-Hvid, Kristian O.; Mikkelsen, K. V.; Ratner, M.A.

    2011-01-01

    We present different microscopic models for describing electromagnetic properties of condensed phases and the models involve iterative self-consistent procedures for calculating the properties. We report calculations of the frequency-dependent refractive index of pure water. We investigate...

  2. AN INDEXING APPROACH FOR THE ASSESSMENT OF HEAVY METALS IN DRINKING WATER PRODUCED BY MAURITANIAN WATER TREATMENT PLANT

    OpenAIRE

    Brahim Baba Aloueimine*; Mohamed Ould Kankou; Driss Belghyti

    2017-01-01

    In the present work, the assessment of drinking water quality was carried out through a monitoring of heavy metals in the treated and consumed waters in the city of Nouakchott (Mauritania). Monthly sampling was conducted for a period of 24 months between January 2012 and December 2013. Nine parameters were evaluated: pH, T (°C), Turbidity (NTU), Al, Fe, Cu, Mn, Al2(SO4)3 and CaO. Indexing approaches have been applied by calculating the Heavy Metal Pollution Index (HPI) and Metal Index (MI) fo...

  3. Combined effect of virus infection and water stress on water flow and water economy in grapevines.

    Science.gov (United States)

    El Aou-Ouad, Hanan; Pou, Alicia; Tomás, Magdalena; Montero, Rafael; Ribas-Carbo, Miquel; Medrano, Hipólito; Bota, Josefina

    2017-06-01

    Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide. Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh ) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well-watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole-plant hydraulic conductance (Khplant ) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole-plant WUE (WUEWP ) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change. © 2017 Scandinavian Plant Physiology Society.

  4. Development, application, and sensitivity analysis of a water quality index for drinking water management in small systems.

    Science.gov (United States)

    Scheili, A; Rodriguez, Manuel J; Sadiq, R

    2015-11-01

    The aim of this study was to produce a drinking water assessment tool for operators of small distribution systems. A drinking water quality index (DWQI) was developed and applied to small systems based on the water quality index of the Canadian Council of Ministers of Environment. The drinking water quality index was adapted to specific needs by creating four drinking water quality scenarios. First, the temporal and spatial dimensions of drinking water quality variability were taken into account. The DWQI was designed to express global drinking water quality according to different monitoring frequencies. Daily, monthly, and seasonal assessment was also considered. With the data made available, it was possible to use the index as a spatial monitoring tool and express water quality in different points in the distribution system. Moreover, adjustments were made to prioritize the type of contaminant to monitor. For instance, monitoring contaminants with acute health effects led to a scenario based on daily measures, including easily accessible and affordable water quality parameters. On the other hand, contaminants with chronic effects, especially disinfection by-products, were considered in a seasonal monitoring scenario where disinfection by-product reference values were redefined according to their seasonal variability. A sensitivity analysis was also carried out to validate the index. Globally, the DWQI developed is adapted to the needs of small systems. In fact, expressing drinking water quality using the DWQI contributes to the identification of problematic periods and segments in the distribution system. Further work may include this index in the development of a customized decision-making tool for small-system operators and managers.

  5. Drinking water composition and incidence of urinary calculus: introducing a new index.

    Science.gov (United States)

    Basiri, Abbas; Shakhssalim, Nasser; Khoshdel, Ali Reza; Pakmanesh, Hamid; Radfar, Mohammad Hadi

    2011-01-01

    INTRODUCTION. We searched for a pathophysiologically based feature of major water electrolytes, which may define water quality better than the water hardness, respecting urinary calculus formation. MATERIALS AND METHODS. Utilizing a multistage stratified sampling, 2310 patients were diagnosed in the imaging centers of the provincial capitals in Iran between 2007 and 2008. These were composed of 1755 patients who were settled residents of 24 provincial capitals. Data on the regional drinking water composition, obtained from an accredited registry, and their relationships with the region's incidence of urinary calculi were evaluated by metaregression models. The stone risk index (defined as the ratio of calcium to magnesium-bicarbonate product in drinking water) was used to assess the risk of calculus formation. RESULTS. No correlation was found between the urinary calculus incidence and the amount of calcium, bicarbonate, or the total hardness of the drinking water. In contrast, water magnesium had a marginally significant nonlinear inverse relationship with the incidence of the disease in the capitals (R(2) = 26%, P = .05 for a power model). The stone risk index was associated nonlinearly with the calculus incidence (R(2) = 28.4%, P = .04). CONCLUSIONS. Urinary calculus incidence was inversely related with drinking water magnesium content. We introduced a new index constructed on the foundation of a pathophysiologically based formula; the stone risk index had a strong positive association with calculus incidence. This index can have therapeutic and preventive applications, yet to be confirmed by clinical trials.

  6. Assessment of the ecological status of Maltese coastal waters using the Ecological Evaluation Index (EEI)

    OpenAIRE

    Azzopardi, Marthese; Schembri, Patrick J.; 44th European Marine Biology Symposium

    2009-01-01

    Benthic macroalgae are a reliable indicator of the trophic status of coastal waters. Macroalgae are also one of the Biological Quality Elements for the evaluation of ecological quality required by the European Water Framework Directive (WFD, 2000/60/EE). The Ecological Evaluation Index (EEI) described by Orfanidis et al. (2001), a specific biological index for the implementation of the WFD in the Mediterranean, was applied to seven sites around Malta with different degrees of anthropogenic st...

  7. Design of negative refractive index metamaterial with water droplets using 3D-printing

    Science.gov (United States)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  8. Application of the Water Needs Index: Can Tho City, Mekong Delta, Vietnam

    Science.gov (United States)

    Moglia, Magnus; Neumann, Luis E.; Alexander, Kim S.; Nguyen, Minh N.; Sharma, Ashok K.; Cook, Stephen; Trung, Nguyen H.; Tuan, Dinh D. A.

    2012-10-01

    SummaryProvision of urban water supplies to rapidly growing cities of South East Asia is difficult because of increasing demand for limited water supplies, periodic droughts, and depletion and contamination of surface and groundwater. In such adverse environments, effective policy and planning processes are required to secure adequate water supplies. Developing a Water Needs Index reveals key elements of the complex urban water supply by means of a participatory approach for rapid and interdisciplinary assessment. The index uses deliberative interactions with stakeholders to create opportunities for mutual understanding, confirmation of constructs and capacity building of all involved. In Can Tho City, located at the heart of the Mekong delta in Vietnam, a Water Needs Index has been developed with local stakeholders. The functional attributes of the Water Needs Index at this urban scale have been critically appraised. Systemic water issues, supply problems, health issues and inadequate, poorly functioning infrastructure requiring attention from local authorities have been identified. Entrenched social and economic inequities in access to water and sanitation, as well as polluting environmental management practices has caused widespread problems for urban populations. The framework provides a common language based on systems thinking, increased cross-sectoral communication, as well as increased recognition of problem issues; this ought to lead to improved urban water management. Importantly, the case study shows that the approach can help to overcome biases of local planners based on their limited experience (information black spots), to allow them to address problems experienced in all areas of the city.

  9. Determination of water quality index by fuzzy logic approach: a case of ground water in an Indian town.

    Science.gov (United States)

    Jinturkar, A M; Deshmukh, S S; Agarkar, S V; Chavhan, G R

    2010-01-01

    The paper proposes fuzzy logic model that deals with the physico-chemical water analysis of ground water of Chikhli town for determination of Water Quality Index (WQI). The study was carried by collection of ground water samples from about eleven hand pumps located in this town. Ground water quality is studied by systematic collection and analysis of samples. The fuzzy logic is used for the deciding the water quality index on the basis of which, water quality rankings are given to determine the quality of water. The Water Quality Index presented here is a unitless number ranging from 1 to 10. A higher number is indicative of better water quality. Around 81% of samples were found suitable for drinking purpose. It is also observed that all the parameters fall within the permissible limits laid by WHO, ISI, and ICMR, except Total Hardness, Calcium and Magnesium. The quality parameters were compared with standards laid by the World Health Organization (WHO), Indian Standards Institute (ISI) and Indian Council of Medical Research (ICMR) for drinking water quality.

  10. Class frequency distribution for a surface raw water quality index in ...

    African Journals Online (AJOL)

    A harmonised in-stream water quality guideline was constructed to develop a water quality index for the Upper and Middle Vaal Water Management Areas, in the Vaal basin of South Africa. The study area consisted of 12 water quality monitoring points; V1, S1, B1, S4, K9, T1, R2, L1, V7, V9, V12, and V17. These points are ...

  11. Computing the Water Quality Index: The Hudson River Project.

    Science.gov (United States)

    Mihich, Orlando

    1996-01-01

    Describes a science project at Booker T. Washington Middle School #54 (New York City) where seventh and eighth graders computed the Hudson River's water quality using ClarisWorks spreadsheets and MicroWorlds software. Students gained technology skills and public recognition, as well as scientific and environmental information. Includes sample…

  12. use of geographic information system and water quality index

    African Journals Online (AJOL)

    Osondu

    Chemical quality of groundwater is an important attribute data which controls water use. These data, being spatially different, can be processed and analyzed in the GIS software in a highly efficient manner. The chemical quality of groundwater is expressed in terms of various parameters like Temperature, Total dissolved.

  13. Water quality assessment of Kavvayi Lake of northern Kerala, India using CCME water quality index and biological water quality criteria.

    Science.gov (United States)

    Shiji, M; Sabitha, A R; Prabhakar, Kavya; Harikumar, P S

    2016-11-01

    Assessment of water quality status of 7 sites of Kavvayi Wetland in northern Kerala (India) was carried out. The physico-chemical, bacteriological and biological parameters were monitored during pre-monsoon, monsoon and post-monsoon seasons. Canadian Council of Ministers of the Environment (CCME) water quality index of the Kavvayi Lake samples ranged from 43.99-44.77; indicating that water quality was threatened or impaired. The poor water quality status might be due to dumping of wastes from municipal and domestic sources and agricultural runoff. Biological water quality criteria (BWQC) determined for wetland revealed that stations such as mixing point of Kariangode River into Kavvayi Lake and Kottikkadavu was moderately polluted in pre-monsoon and post- monsoon seasons. Mixing point of Nileswar River into Kavvayi Lake was moderately polluted in pre-monsoon season. Both calculated indices suggest that quality of lake was found to be influenced by anthropogenic activities such as unscientific tourism and infrastructure development, land encroachment, sand mining, pollution etc. The study was carried out as part of a programme, which aimed to conserve Kavvayi wetland because of its unique ecological and environmental characteristics.

  14. Role of chromatin in water stress responses in plants.

    Science.gov (United States)

    Han, Soon-Ki; Wagner, Doris

    2014-06-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index in Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Jesús A. Aguilar-Maldonado

    2018-01-01

    Full Text Available Phytoplankton blooms are sporadic events in time and are isolated in space. This complex phenomenon is produced by a variety of both natural and anthropogenic causes. Early detection of this phenomenon, as well as the classification of a water body under conditions of bloom or non-bloom, remains an unresolved problem. This research proposes the use of Inherent Optical Properties (IOPs in optically complex waters to detect the bloom or non-bloom state of the phytoplankton community. An IOP index is calculated from the absorption coefficients of the colored dissolved organic matter (CDOM, the phytoplankton (phy and the detritus (d, using the wavelength (λ 443 nm. The effectiveness of this index is tested in five bloom events in different places and with different characteristics from Mexican seas: 1. Dzilam (Caribbean Sea, Atlantic Ocean, a diatom bloom (Rhizosolenia hebetata; 2. Holbox (Caribbean Sea, Atlantic Ocean, a mixed bloom of dinoflagellates (Scrippsiella sp. and diatoms (Chaetoceros sp.; 3. Campeche Bay in the Gulf of Mexico (Atlantic Ocean, a bloom of dinoflagellates (Karenia brevis; 4. Upper Gulf of California (UGC (Pacific Ocean, a diatom bloom (Coscinodiscus and Pseudo-nitzschia and 5. Todos Santos Bay, Ensenada (Pacific Ocean, a dinoflagellate bloom (Lingulodinium polyedrum. The diversity of sites show that the IOP index is a suitable method to determine the phytoplankton bloom conditions.

  16. Perceived stress and freshman weight change: the moderating role of baseline body mass index.

    Science.gov (United States)

    Boyce, Jessica A; Kuijer, Roeline G

    2015-02-01

    The transition from high-school to university is a critical period of weight change. Popular media suggest that freshman students gain 15 lb (6.80 kg) of body weight during their first year at university (i.e., the freshman 15). In contrast, a recent meta-analysis calculated freshman weight gain to be 1.75 kg, with statistics suggesting that only a proportion of freshman students are prone to gain weight. Researchers are beginning to investigate how certain variables and interactions between such variables predict freshman weight status. The current study focused on body mass index (BMI) and psychological stress. In isolation, previous research has tested how these two variables predict freshman student's weight status. However, because BMI and stress interact to predict weight gain and weight loss in adult samples, the current study tested the interaction between student's baseline BMI and baseline stress levels to predict weight change in a New Zealand sample of freshman students (N=65). Participants completed two separate online surveys in March and October 2012 (i.e., New Zealand's academic year). Although only three students gained over 6.80 kg (i.e., the freshman 15), participants did gain a statistically significant 1.10 kg of body weight during the year. Consistent with previous research, students with a higher baseline BMI gained a higher amount of body weight. However, this main effect was qualified by an interaction between stress and BMI. Students who entered university with high levels of stress gained weight if they also had high BMIs; if they had lower BMIs then they lost weight. In order to reduce unhealthy levels of freshman weight change, vulnerable students need to be taught stress-reduction techniques and coping strategies early in the academic year. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The relationship between job stress and body mass index using longitudinal data from Canada.

    Science.gov (United States)

    Azagba, Sunday; Sharaf, Mesbah F

    2012-10-01

    This paper examines the effect of job stress, as measured by the job strain model (high job demands and low job control) on an individual's body mass index (BMI) using data from the Canadian National Population Health Survey. We use panel data estimation methods to account for unobserved individual-level heterogeneity to better examine the relationship between job-related stress and BMI. Results from the fixed effects and random effects models show no statistically significant difference in BMI levels between individuals in jobs with high/medium strain compared to jobs with low strain. However, in the cross-sectional OLS model, job stress has a positive and significant effect on BMI. These analyses control for socio-demographic factors, lifestyle behavior, workplace social support, occupational and provincial fixed effects. The results suggest that the mixed findings in the previous studies may in part be due to unobserved characteristics that cannot be controlled for using standard cross-sectional analysis. This study results suggest the need for further longitudinal evidence in order to have a better understanding of the relationship between job stress and body weight.

  18. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions.

    Science.gov (United States)

    Singh, Surjeet; Ghosh, N C; Gurjar, Suman; Krishan, Gopal; Kumar, Sumant; Berwal, Preeti

    2017-12-19

    Agriculture is a major sector in India which contributes around 14% of country's gross domestic product (GDP). Being an agriculture-based country, good quality of water for irrigation has been a prime requisite. Highly growing population and accelerated industrial development are causing anthropogenic pollution to both surface and groundwater on one side and geogenic contamination like arsenic, fluoride, high dissolved solids, sodicity, and iron in groundwater on other side. As a result, ensuring safe water quality for the irrigation has become a major challenge to both the central and state governments. The present irrigation water quality standards being followed in India have been set by the Central Pollution Control Board (CPCB) and Central Ground Water Board (CGWB) in the year 2000. These standards are solely based on four parameters, namely electrical conductivity, sodium percentage, sodium absorption ratio, and residual sodium carbonate, which are quite subjective and many times are not capable to exactly decide the quality of irrigation water particularly when there are large variations in the source water quality. Therefore, in the present paper, an indices-based approach is presented for categorization of irrigation water quality. These indices are mathematical equations that transform water quality data into a numeric value, which describes the quality of irrigation water. The proposed irrigation water quality index (IWQI), which is based on 12 parameters, classifies the water into five categories, viz. excellent, good, medium, bad, and very bad in the same manner as given by the CPCB and CGWB. In order to give proper rating to various parameters of the index, weights are computed using Saaty's analytic hierarchy process (AHP)-based multiple criteria decision analysis (MCDA) approach. This approach minimizes the subjectivity in assessment of weights and improves understanding of water quality issues by generating an overall index to describe the status

  19. Influence of water stress on Botryosphaeriaceae disease expression in grapevines

    Directory of Open Access Journals (Sweden)

    Jan VAN NIEKERK

    2011-12-01

    Full Text Available Several species in Botryosphaeriaceae have been associated with grapevine trunk diseases. To evaluate the effect of water stress on infection of grapevines by Botryosphaeriaceae spp., 1-year-old Shiraz/101-14 Mgt nursery grapevine plants were planted in plastic potting bags and placed outdoors under shade netting. Five weeks after planting, vines were pruned and the pruning wounds inoculated with spore suspensions of Neofusicoccum australe, Neofusicoccum parvum, Lasiodiplodia theobromae or Diplodia seriata. Control treatments consisted of applications of sterile water or a Trichoderma harzianum spore suspension. Stem inoculations were done by inserting a colonised or uncolonised agar plug into a wound made in each stem. Four different irrigation regimes were introduced 12 weeks after planting to simulate varying degrees of water stress. Measurements of stomatal conductance, photosynthetic rate and leaf spectrometry were made to monitor physiological stress. Eight months after inoculation, vines were uprooted and the root, shoot and plant mass of each vine determined. Lesions observed in the inoculated pruning wounds and stems were also measured. Vines subjected to the lowest irrigation regime were significantly smaller than optimally irrigated vines. Water stressed vines also had significantly lower photosynthetic rates and levels of stomatal conductance compared with vines receiving optimal irrigation, indicating that these plants experienced significantly higher levels of physiological stress. The mean lesion length was significantly longer in the pruning wounds and stems of plants subjected to the lowest irrigation regime, with lesion length declining linearly with increasing irrigation volume. These results clearly indicate that when a grapevine is exposed to water stress, colonisation and disease expression by Botryosphaeriaceae spp. are much more severe.

  20. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    Science.gov (United States)

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  1. [Justification of the significance of Pseudomonas aeruginosa index in assessing the quality of drinking water].

    Science.gov (United States)

    Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S

    2013-01-01

    The analysis of literature data was carried out and performed research justifying the epidemic value of detection in water P. aeruginosa in drinking and domestic water use. The were revealed features of the vital activity of P aeruginosa in water bodies as opposed to conventional microbiological indicators. It was shown that the coliform group indices can not guarantee the epidemic safety of drinking water use in relation to P aeruginosa. The data obtained justify the need for the introduction of P aeruginosa as an additional index in monitoring the water quality of centralized and decentralized water supply.

  2. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  3. Effects of Water Deficit Stress on Several Quantitative and Qualitative Characteristics of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Mohammad HOSSEINI

    2011-08-01

    Full Text Available Water deficit stress considered as one of the most important limiting factors for oil seed canola (Brassica napus L. growth and productivity in Iran. To evaluate the effects of water deficit stress on some qualitative and quantitative characteristics of canola cultivars, this experiment in a greenhouse trial carried out as factorial based on completely randomized design with three replications in Shahid Chamran University of Ahwaz (Iran. Canola cultivars, including ‘Hyola 308’, ‘Hyola 401’ and ‘RGS 003’ as first factor, and the second one was three levels of water deficit stress, including stress at early stem elongation stage to early flowering (D1, early flowering stage to early emergence of sacs (D2, beginning of stem elongation stage to early emergence of sacs (D3 and normal irrigation (C, as check. Results showed that the interaction between water deficit stress and cultivars affected biological yield, seed oil yields and harvest index (p≤0.01, dry matter and economic yield (p≤0.05. Water deficit stress reduced grain oil yields. ‘Hyola 308’ under stress at beginning stem elongation stage to early flowering had the lowest oil yields (1.1 g plants-1 and ‘Hyola 401’ under non-stress conditions showed highest oil yields (4.3 g plants-1. The decrease of oil yields at the flowering stage to stem elongation stage was more than the other stages. In addition, water deficit stress reduced harvest index in the three stress levels due to reduced economic yield and reduced biological yield. Stress susceptibility index for ‘Hyola 401’ at the beginning of stem elongation stage to early emergence of sacs was 0.914 and the ‘Hyola 308’ showed 1.12 at the beginning of stem elongation stage to early emergence of sacs respectively, which it can implies that ‘Hyola 308’ is more sensitive than ‘Hyola 401’ to water deficit stress.

  4. Survey of water quality in Moradbeik river basis on WQI index by GIS

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2015-01-01

    Full Text Available Background: Survey of pollution and evaluation of water quality in rivers with Oregon Water Quality Index (OWQI and GIS are effective tools for management of the impact of environmental water resources. The information in calculating the WQI of Moradbeikriver allowed us to take our tests results and make a scientific conclusion about the quality of water. GIS can be a powerful tool for developing solutions for water resources problems for assessing water quality, determining water availability, preventing flooding, understanding the natural environment, and managing water resources on a local or regional scale. Methods: The WQI of Moradbeikriver consists of nine tests: Fecal Coliform (FC, Biochemical Oxygen Demand (BOD5, Nitrates (NO3, Total Phosphate (PO4, pH, temperature, Dissolved Oxygen (DO, turbidity, and Total Solid (TS. Water quality of Moradbeikriver was investigated for 12 months. Concentrations of these nine variables were normalized on a scale from 0 to 100 and translated into statements of water quality (excellent, good, regular, fair, and poor. Also this data were analyzed with WQI index, and then river basis on water quality was zoning by GIS. Results: The average of WQI was 61.62, which corresponded to ‘‘medium’’ quality water at the sampling point 1 (best station and decreased to around 26.41 (bad quality at sampling point 6. The association between sampling points and water quality indexes was statistically significant (P<0.05. Conclusion: Based on physical, chemical and biological agent monitoring and also with control of water quality indexes of these points, we observed wastewater and other river pollutants.

  5. Indexes for water management and planning on the Paraopeba River Basin, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Bruno Marcel Barros da Silva

    2015-07-01

    Full Text Available Knowledge of the true amount of officially granted use of water and the spatial distribution of water usage in a watershed has become indispensable for the appropriate management of water resources. In this process, the use of indexes allows for the identification of possible water use conflicts. The objective of this study was to evaluate the indexes of conflict regarding water use in the management (icg and planning (icp of water resources in the Paraopeba River Basin, focusing on identifying possible water resource conflicts and on providing supportive information for the water management agency in Minas Gerais State. Besides the Digital Elevation Model (DEM for hydrological analyses to calculate the drainage area for every river segment, the official amount of granted water use and estimated river flows at watershed confluences was also needed. The results of the icg calculation demonstrated that in 22.7% of the analyzed river segments the use of water was higher than what is legally granted, and this indicates a potential conflict regarding water use. The icp analyses showed that in three river segments the use of water was higher than the long-term mean flow. The combined icg and icp analyses led us to conclude that in the water use conflict scenario the solution could be establishing an infrastructure that would allow a year-round increase in the availability of water to be granted.

  6. Stress – an underestimated hazard in water sports

    Directory of Open Access Journals (Sweden)

    Remlein Małgorzata

    2015-12-01

    Full Text Available Strong wind, low temperature, intense current and poor visibility under water are the most common stress inducing factors in individuals practising water sports. Stress is a state of agitation, which can be caused both by external and internal factors. Its objective is to mobilise one’s physical and psychological capabilities, thus it is a favourable reaction especially in crisis situations when such full mobilisation enables one to cope. Psychological stress is usually evoked by the occurrence of an atypical situation, exceeding one’s handling capacity. It can be induced by seeing real or imagined danger in the surroundings, as well as by external pressure related to a task interpreted as too difficult or exceeding one’s capabilities. Internal pressure appears when a person feels insecure in a given situation, when they cannot solve a problem or they feel discomfort due to their inability to meet the expectations of others, for instance, to perform a particular dive, or because of the money spent on this purpose or the invested time. Physical stress is usually an organism’s response to the environmental impacts. This article presents and discusses factors which have an effect on stress intensification, as well as providing a characterisation of selected psychological and medical theories of stress.

  7. The effects of basin morphology on soil water content and vegetation stress

    Science.gov (United States)

    Pizzolla, T.; Acampora, A.; Manfreda, S.; Fiorentino, M.

    2012-04-01

    Soil water content plays an important role especially in water limited ecosystems. It controls the partition of net radiation into sensible and latent heat, the movement of solutes and pollutants, the soil temperature and affects the water stress of vegetation. All these processes are intimately interconnected and strongly influenced by the radiation balance. The available solar radiation, that depends on climatic conditions and morphology, may strongly modify hydrological processes at the local scale. Basin morphology in fact modifies the amount of direct solar radiation, and also the amount of diffuse and reflected solar radiation received by a given point in the basin. Using the analytical model developed by Allen et al. (2006), it is possible to describe the radiation balance taking in to consideration the effects of basin morphology. This approach is extremely useful to describe the spatial distribution of solar radiation and the maps of potential evapotranspiration during any phase of the year. Using this approach in cascade with the analytical form of the soil water balance equation proposed by Laio et al. (2001), we identified the main statistics of soil moisture dynamics as well as the dynamic water stress of the vegetation (Porporato et al., 2001) during the growing season. The model has been applied using three study cases: 1) a flat river basin under stationary climate; 2) a river basin with morphology under stationary climate; 3) a river basin with morphology under stationary climate with imposed initial conditions. It is necessary to specify that the initial conditions for the last study case were defined based on the climatic conditions during the dormant period, while the vegetation water stress refers to the growing season. Results show that basin morphology (case 2 and 3) significantly affects the spatial distribution of vegetation water stress increasing its variability. The variability of this index increases when taking into consideration the

  8. Confronting Future Risks of Global Water Stress and Sustainability: Avoided Changes Versus Adaptive Actions

    Science.gov (United States)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C.; Paltsev, S.; Monier, E.; Sokolov, A. P.; Winchester, N.; Chen, H.; Kicklighter, D. W.; Ejaz, Q.

    2016-12-01

    We examine the fate of global water resources under a range of self-consistent socio-economic projections using the MIT Integrated Global System Model (IGSM) under a range of plausible mitigation and adaptation scenarios of development to the water-energy-land systems and against an assessment of the results from the UN COP-21 meeting. We assess the trends of an index of managed water stress as well as unmet water demands as simulated by the Water Resource System within the IGSM framework (IGSM-WRS). The WRS is forced by the simulations of the global climate response, variations in regional climate pattern changes, as well as the socio-economic drivers from the IGSM scenarios. We focus on the changes in water-stress metrics in the coming decades and going into the latter half of this century brought about by our projected climate and socio-economic changes, as well as the total (additional) populations affected by increased stress. We highlight selected basins to demonstrate sensitivities and interplay between supply and demand, the uncertainties in global climate sensitivity as well as regional climate change, and their implications to assessing and reducing water risks and the populations affected by water scarcity. We also evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. We highlight the importance of adaptive measures that will be required, worldwide, to meet surface-water shortfalls even under more aggressive and certainly under intermediate climate mitigation pathways - and further analyses is presented in this context quantifying risks averted and their associated costs. In addition, we also demonstrate that the explicit representation of irrigated land within this intergrated modeling frameowork has a small impact on food, bioenergy and deforestation outcomes within the scenarios considered

  9. Sowing date and water stress effects on sole and intercropped ...

    African Journals Online (AJOL)

    Sowing date and water stress effects on sole and intercropped maize/pea cultivars under controlled conditions. ... In the first-year study in 2000, intercropping maize with pea was generally more advantageous than when either crop was sown sole. Delaying the time of intercropping of pea by 14 days after sowing maize ...

  10. Water stress strengthens mutualism among ants, trees, and scale insects.

    Science.gov (United States)

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  11. Water stress strengthens mutualism among ants, trees, and scale insects.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Pringle

    2013-11-01

    Full Text Available Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  12. Breeding potential of the basmati rice germplasm under water stress ...

    African Journals Online (AJOL)

    From Griffing analysis, genotypes CB-17, CB-32 and Basmati-198 were found to be good general combiners for productive tillers per plant, primary branches per panicle and yield per plant, especially under water stress condition. Also, maximum specific combining ability was found in Basmati-198 × CB-17 for productive ...

  13. Effects of salinity stress on water uptake, germination and early ...

    African Journals Online (AJOL)

    This research was conducted for the determination of effects of salinity stress on water uptake of seed, germination and early seedling development of perennial ryegrass (Lolium perenne L. cv. Ovation) in the seed laboratory of Field Crops, Department of Agricultural Faculty of Namik Kemal University, Tekirdag, Turkey, ...

  14. Water stress affects the germination, emergence, and growth of ...

    African Journals Online (AJOL)

    Two experiments were conducted to study the effects of water deficit stress on the germination, emergence and seedling growth of sorghum [Sorghum bicolor (L.) Moench] using Completely Randomised Block Design in four replications. Five sorghum cultivars (Jigurti, Gambella 1107, Meko, 76 T1 #23 and P9403) were ...

  15. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  16. Breeding potential of the basmati rice germplasm under water stress ...

    African Journals Online (AJOL)

    Yomi

    2012-03-27

    Mar 27, 2012 ... Muhammad Ashfaq1, Muhammad Saleem Haider1, Abdus Salam Khan2 and Sami Ul Allah3 .... the base of the main tiller to the tip of the panicle. .... 10. 12. Vr. W r. Figure 2. Vr-Wr graph for productive tillers per plant under normal (a) and water stress (b) conditions. the variancecomponents that give the ...

  17. Effects of temperature and water stresses on germination of some ...

    African Journals Online (AJOL)

    Insaf

    2013-04-24

    Apr 24, 2013 ... species. Acta Oecol. 23:23-30. Singh F, Diwakar B (1995). Chickpea botany and production practices. Skill Development Series N°16. ICRISAT. Smita KJ, Nayyar H (2005). Carbendazim alleviates effects of water stress on chickpea seedlings. Biol. Plant. 49:289-291. Tejera NA, Soussi M, Lluch C (2006).

  18. Mobbing, Stress, and Work Ability Index among Physicians in Bosnia and Herzegovina: Survey Study

    Science.gov (United States)

    Pranjić, Nurka; Maleš-Bilić, Ljiljana; Beganlić, Azijada; Mustajbegović, Jadranka

    2006-01-01

    Aim To assess the frequency of reported mobbing and the association among mobbing, working environment factors, stress, health outcome, personality type, and work ability index in a sample of physicians in Bosnia and Herzegovina. Method We conducted a questionnaire survey using a validated self-reported questionnaire among 511 physicians in national health sector of Bosnia and Herzegovina. The questions covered five major categories of mobbing behavior. Characteristics of the work, perceived work environment and its effects, stress, health, and satisfaction with work and life were assessed by the standardized abridged form of Occupational Stress Questionnaire (OSQ). A standardized questionnaire Work Ability Index (WAI) was used to determine the relation between mobbing and work ability. Results Of 511 surveyed physicians, 387 (76%) physicians self-reported mobbing behavior in the working environment and 136 (26%) was exposed to persistent mobbing. More than a half of the physicians experienced threats to their professional status and almost a half felt isolated. Logistic regression analysis showed that lack of motivation, loss of self-esteem, loss of confidence, fatigue, and depressiveness were significantly associated with lack of support from colleagues. Intention to leave work was associated with lack of support from colleagues (OR 2.3, 95% CI, 1.065-3.535, t = 4.296, P = 0.003) and lack of support from superiors (OR 1.526, 95% CI, 0.976-2.076, t = 5.753; P = 0.001). Isolation or exclusion and threats to professional status were predictors for mental health symptoms. Persistent mobbing experience was a significant predictor for sick leave. Conclusion Exposure to persistent threat to professional status and isolation or exclusion as forms of mobbing are associated with mental health disturbances and lack of self-esteem and confidence. Setting up a system of support for physicians exposed to mobbing may have important benefits. PMID:17042067

  19. Mobbing, stress, and work ability index among physicians in Bosnia and Herzegovina: survey study.

    Science.gov (United States)

    Pranjić, Nurka; Males-Bilić, Ljiljana; Beganlić, Azijada; Mustajbegović, Jadranka

    2006-10-01

    To assess the frequency of reported mobbing and the association among mobbing, working environment factors, stress, health outcome, personality type, and work ability index in a sample of physicians in Bosnia and Herzegovina. We conducted a questionnaire survey using a validated self-reported questionnaire among 511 physicians in national health sector of Bosnia and Herzegovina. The questions covered five major categories of mobbing behavior. Characteristics of the work, perceived work environment and its effects, stress, health, and satisfaction with work and life were assessed by the standardized abridged form of Occupational Stress Questionnaire (OSQ). A standardized questionnaire Work Ability Index (WAI) was used to determine the relation between mobbing and work ability. Of 511 surveyed physicians, 387 (76%) physicians self-reported mobbing behavior in the working environment and 136 (26%) was exposed to persistent mobbing. More than a half of the physicians experienced threats to their professional status and almost a half felt isolated. Logistic regression analysis showed that lack of motivation, loss of self-esteem, loss of confidence, fatigue, and depressiveness were significantly associated with lack of support from colleagues. Intention to leave work was associated with lack of support from colleagues (OR 2.3, 95% CI, 1.065-3.535; t =4.296, P =0.003) and lack of support from superiors (OR 1.526, 95% CI, 0.976-2.076; t =5.753; P =0.001). Isolation or exclusion and threats to professional status were predictors for mental health symptoms. Persistent mobbing experience was a significant predictor for sick leave. Exposure to persistent threat to professional status and isolation or exclusion as forms of mobbing are associated with mental health disturbances and lack of self-esteem and confidence. Setting up a system of support for physicians exposed to mobbing may have important benefits.

  20. Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma.

    Science.gov (United States)

    Zafar, Hina; Ali, Shakir

    2013-01-15

    Hepatocellular carcinoma (HCC) is a common malignancy and the main cause of mortality in patients with chronic liver diseases. This study reports the inhibitory effect of boron on HCC induced in rats by administering thioacetamide (TAA) (0.03%) in drinking water for 400days. Boron (4mg/kg body weight) was administered orally after induction of carcinoma. Treatment was continued for 122days, and cell proliferation, histology and biochemistry of treated and control group of rats were studied. Proliferating cell nuclear antigen (PCNA), and [(3)H]-thymidine incorporation, which increased in rats exposed to carcinogen, significantly decreased after boron treatment. PCNA index decreased from 80 in HCC rats to 32 after boron treatment. In the control group, it was 20. Boron caused a dose-dependent decrease in carcinogen-induced [(3)H]-thymidine uptake by the rat hepatocyte. It could partially reverse the activity of selected biochemical indicators of hepatic damage, oxidative stress, selenium and serum retinol, which are depleted in liver cancer, and improved overall health of animal. The study implicates the elevated levels of mammalian molybdenum Fe-S containing flavin hydroxylases, which increase the free radical production and oxidative stress, consequently causing increased hepatic cell proliferation in HCC, and reports boron to ameliorate these changes in liver cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A high oxidative stress index predicts endothelial dysfunction in young male smokers.

    Science.gov (United States)

    Karahan, O; Manduz, S; Bektasoglu, G; Zorlu, A; Turkdogan, K A; Bozok, S

    2013-01-01

    Experimental studies have shown that smoking was related to endothelial dysfunction via oxidative stress. However, the degree of oxidative stress to be associated with endothelial dysfunction is unknown. Oxidative stress index (OSI) might be a useful and easy way of determining the endothelial dysfunction. Hence, we aimed to evaluate the relationship between OSI and flow mediated dilatation (FMD) in smoking healthy male volunteers. Eighty smoking healthy male volunteers were enrolled in the study. Participants were classified as having normal and abnormal FMD response. In an univariate analysis; systolic and diastolic blood pressures, C-reactive protein (CRP), low-density lipoprotein cholesterol, OSI and lipid peroxidation (LPO) levels were predictive for abnormal FMD response. In a multivariable logistic regression analysis with forward stepwise method, OSI (OR: 3.194, 95% CI: 1.710-5.966, ppredicting abnormal FMD response in young male smokers. The optimal cut-off value of OSI for detecting abnormal FMD response was found to be >3.35, with 100 % sensitivity and 84.1 % specificity. We have shown that critical endothelial dysfunction can easily be detected by OSI in individuals, at risk for developing coronary artery disease, such as smokers (Tab. 3, Fig. 3, Ref. 30). Text in PDF www.elis.sk.

  2. MODIFIED OPTIMIZATION WATER INDEX (MOWI FOR LANDSAT-8 OLI/TIRS

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2017-09-01

    Full Text Available Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI has a proper performance on different condition like cloud, cloud shadow and mountain shadow.

  3. Modified Optimization Water Index (mowi) for LANDSAT-8 Oli/tirs

    Science.gov (United States)

    Moradi, M.; Sahebi, M.; Shokri, M.

    2017-09-01

    Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.

  4. Phosphatidic acid, a versatile water-stress signal in roots

    Directory of Open Access Journals (Sweden)

    Fionn eMcLoughlin

    2013-12-01

    Full Text Available Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases and phosphatases, Ca2+, reactive oxygen species and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 (SnRK2 and mitogen activated protein kinases (MAPKs were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid (ABA-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase (GAPDH under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting towards additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.

  5. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  6. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  7. Root water uptake under non-uniform transient salinity and water stress

    NARCIS (Netherlands)

    Homaee, M.

    1999-01-01

    The study described in this thesis focuses on the quantitative understanding of water uptake by roots under separate and combined salinity and water stresses. The major difficulty in solving Richards' equation stems from the lack of a sink term function that adequately

  8. Determination of the water quality index ratings of water in the Mpumalanga and North West provinces, South Africa

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2016-04-01

    This study reports on the water quality index (WQI) of wastewater and drinking water in the Mpumalanga and North West provinces of South Africa. The WQI is one of the most effective tools available to water sustainability researchers, because it provides an easily intelligible ranking of water quality on a rating scale from 0 to 100, based on the ascription of different weightings to several different parameters. In this study the WQI index ratings of wastewater and drinking water samples were computed according to the levels of pH, electrical conductivity (EC), biochemical oxygen demand (BOD), E. coli, temperature, turbidity and nutrients (nitrogen and phosphates) found in water samples collected from the two provinces between June and December, 2014. This study isolated three groups of WQ-rated waters, namely: fair (with a WQI range = 32.87-38.54%), medium (with a WQI range = 56.54-69.77%) and good (with a WQI range = 71.69-81.63%). More specifically, 23%, 23% and 54% of the sampled sites registered waters with fair, medium and good WQ ratings respectively. None of the sites sampled during the entire period of the project registered excellent or very good water quality ratings, which would ordinarily indicate that no treatment is required to make it fit for human consumption. Nevertheless, the results obtained by the Eerstehoek and Schoemansville water treatment plants in Mpumalanga and North West provinces, respectively, suggest that substantial improvement in the quality of water samples is possible, since the WQI values for all of the treated samples were higher than those for raw water. Presence of high levels of BOD, low levels of dissolved oxygen (DO), E. coli, nitrates and phosphates especially in raw water samples greatly affected their overall WQ ratings. It is recommended that a point-of-use system should be introduced to treat water intended for domestic purposes in the clean-water-deprived areas.

  9. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  10. Standardized Water Budget Index and Validation in Drought Estimation of Haihe River Basin, North China

    Directory of Open Access Journals (Sweden)

    Shaohua Liu

    2016-01-01

    Full Text Available The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI, Reconnaissance Drought Index (RDI, and Standardized Precipitation Evapotranspiration Index (SPEI based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized Water Budget Index (SWBI is constructed based on the difference between areal precipitation and actual evapotranspiration (AET, which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar drought indices are insignificant at time scale less than 3 months.

  11. EPA Office of Water (OW): 303(d) Listed Impaired Waters NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 303(d) Listed Impaired Waters program system provides impaired water data and impaired water features reflecting river segments, lakes, and estuaries designated...

  12. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    Science.gov (United States)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  13. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sun Shuhong

    2015-01-01

    Full Text Available This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and leaf area of winter wheat; the water stress duration at a single stage is relatively short, and rehydration crop has a certain compensatory growth without making a big difference; the continuous water stress stage plays a significantly inhibiting role in the plant height and leaf area.; water stress has a largest effect on the plant height in the elongation period; the heading period suffers from water stress, so the leaf area decreases rapidly; water stress at a single stage in the appropriate period can increase water use efficiency. Regulated deficit irrigation can reduce luxury water consumption, which has a little effect on the yield and plays a guiding role in water saving and stable yield.

  14. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China.

    Science.gov (United States)

    Wang, Xiaoping; Zhang, Fei; Ding, Jianli

    2017-10-09

    The water quality index (WQI) has been used to identify threats to water quality and to support better water resource management. This study combines a machine learning algorithm, WQI, and remote sensing spectral indices (difference index, DI; ratio index, RI; and normalized difference index, NDI) through fractional derivatives methods and in turn establishes a model for estimating and assessing the WQI. The results show that the calculated WQI values range between 56.61 and 2,886.51. We also explore the relationship between reflectance data and the WQI. The number of bands with correlation coefficients passing a significance test at 0.01 first increases and then decreases with a peak appearing after 1.6 orders. WQI and DI as well as RI and NDI correlation coefficients between optimal band combinations of the peak also appear after 1.6 orders with R 2 values of 0.92, 0.58 and 0.92. Finally, 22 WQI estimation models were established by POS-SVR to compare the predictive effects of these models. The models based on a spectral index of 1.6 were found to perform much better than the others, with an R 2 of 0.92, an RMSE of 58.4, and an RPD of 2.81 and a slope of curve fitting of 0.97.

  15. Estimation of Water Stress in Grapevines Using Proximal and Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Alessandro Matese

    2018-01-01

    Full Text Available In light of climate change and its impacts on plant physiology, optimizing water usage and improving irrigation practices play a crucial role in crop management. In recent years, new optical remote sensing techniques have become widespread since they allow a non-invasive evaluation of plant water stress dynamics in a timely manner. Unmanned aerial vehicles (UAV currently represent one of the most advanced platforms for remote sensing applications. In this study, remote and proximal sensing measurements were compared with plant physiological variables, with the aim of testing innovative services and support systems to farmers for optimizing irrigation practices and scheduling. The experiment, conducted in two vineyards located in Sardinia, Italy, consisted of two regulated deficit irrigation (RDI treatments and two reference treatments maintained under stress and well-watered conditions. Indicators of crop water status (Crop Water Stress Index—CWSI—and linear thermal index were calculated from UAV images and ground infrared thermal images and then related to physiological measurements. The CWSI values for moderate water deficit (RDI-1 were 0.72, 0.28 and 0.43 for ‘Vermentino’, ‘Cabernet’ and ‘Cagnulari’ respectively, while for severe (RDI-2 water deficit the values were 0.90, 0.34 and 0.51. The highest differences for net photosynthetic rate (Pn and stomatal conductance (Gs between RDI-1 and RDI-2 were observed in ‘Vermentino’. The highest significant correlations were found between CWSI with Pn (R = −0.80, with ΦPSII (R = −0.49 and with Fv’/Fm’ (R = −0.48 on ‘Cagnulari’, while a unique significant correlation between CWSI and non-photochemical quenching (NPQ (R = 0.47 was found on ‘Vermentino’. Pn, as well as the efficiency of light use by the photosystem II (PSII, declined under stress conditions and when CWSI values increased. Under the experimental water stress conditions, grapevines were able to recover

  16. Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi

    Science.gov (United States)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Gift

    An assessment of characteristics and chemical water quality index (WQI) of water supplied by the Northern Region water Board (NRWB) in Mzuzu City was carried out in order to ascertain the quality of water for domestic purposes. The WQI offers a single number that expresses overall water quality for a water sample based on several water quality parameters. In this study raw water and 72 tap water samples were collected monthly between March and September, 2011 and analyzed for major ions, pH, total dissolved solids (TDSs), electrical conductivity (EC), turbidity, total hardness (TH), suspended solids (SSs) and alkalinity using standard methods. The quality and accuracy of the chemical data was assessed by checking electrical balances. The calculated electrical balance errors were found to be less than ±10%, which meant the results were reliable. Based on the Sawyer and McCarty TH classification, 100% of the samples were soft waters (TH pH, which is used to determine suitability of water for various purposes, ranged between 6.40 and 6.90 and registered a good water quality rating (WQ rating range: 72.73-87.02) for both raw and treated water. Raw water registered an overall medium water quality rating of 62.67%. Overall, 91.67% of the samples registered a good water quality rating (WQI range: 80.28-88.80%) and 8.33% registered a very good water quality rating (WQI = 90.07%). The results suggested substantial water treatment by the NRWB since the treated water is protected with some negligible degree of impairment that rarely departs from desirable levels of domestic water quality. It is recommended that the WQI should be adopted as a tool to monitor and establish trends in quality of water supplied by the NRWB since it is a composite index that turns complex water quality data into an aggregate rating that reflects the combined influence on the overall water quality as opposed to the univariate water quality assessment approaches such as the Malawi Bureau of

  17. Validation of the French version of the Pittsburgh Sleep Quality Index Addendum for posttraumatic stress disorder

    Science.gov (United States)

    Ait-Aoudia, Malik; Levy, Pierre P.; Bui, Eric; Insana, Salvatore; de Fouchier, Capucine; Germain, Anne; Jehel, Louis

    2013-01-01

    Background Sleep disturbances are one of the main complaints of patients with trauma-related disorders. The original Pittsburgh Sleep Quality Index Addendum for PTSD (PSQI-A) is self-report instrument developed to evaluate posttraumatic stress disorder (PTSD)-specific sleep disturbances in trauma-exposed individuals. However, to date, the PSQI-A has not yet been translated nor validated in French. Objective The present study aims to: a) translate the PSQI-A into French, and b) examine its psychometric properties. Method Seventy-three adult patients (mean age=40.3 [SD=15.0], 75% females) evaluated in a specialized psychotraumatology unit completed the French versions of the PSQI-A, Pittsburgh Sleep Quality Index (PSQI), Hospital Anxiety and Depression Scale (HADS), and Impact Event Scale-Revised (IES-R). Results The French version of the PSQI-A showed satisfactory internal consistency, inter-item correlations, item correlations with the total score, convergent validity with PTSD and anxiety measures, and divergent validity with a depression measure. Conclusion Our findings support the use of the French version of the PSQI-A for both clinical care and research. The French version of the PSQI-A is an important addition to the currently available instruments that can be used to examine trauma-related sleep disturbances among French-speaking individuals. PMID:24044071

  18. Turkish Version of the Student Nurse Stress Index: Validity and Reliability.

    Science.gov (United States)

    Sarikoc, Gamze; Bayram Demiralp, Meral; Oksuz, Emine; Pazar, Berrin

    2017-06-01

    This study aimed to adapt the Student Nurse Stress Index (SNSI) for the Turkish nursing students and investigate its psychometric properties. Research was conducted with 152 volunteer female students who attended a university college in Ankara, Turkey. Test-retest reliability was investigated for the scale internal consistency (Cronbach α) and stability. Also, content validity and construct validity of the SNSI were assessed. In order to determine the construct validity of SNSI, Uygulamalı Çok Değişkenli İstatistiksel Yöntemler and confirmatory factor analysis was conducted. The Turkish version of SNSI with 15 items comprised four factors (academic load, clinical concerns, personal problems, interface worries). The content validity index (CVI) score was .97. Factor loadings of Turkish version of SNSI varied between .532 and .868. The "personal problems" subscale explained 19.01% of the variance; "clinical concerns" explained 18.51%; "interface worries" explained 15.32%; "academic load" explained 14.14%. The total variance explained was 66.99%. CFA results (χ2/SD, GFI, CFI, TLI, IFI, RMSEA and SRMR) were acceptable and in good agreement. The internal consistency coefficient of the SNSI was .86. Results showed that the SNSI had a satisfactory level of reliability and validity in nursing students in Turkey. Multicenter studies including nursing students from different nursing schools are recommended for the SNSI to be generalized. Copyright © 2017. Published by Elsevier B.V.

  19. Corona Discharge from Water Droplet on Electrically Stressed Polymer Surface

    Science.gov (United States)

    Zhu, Yong; Otsubo, Masahisa; Honda, Chikahisa; Tanaka, Shou

    2006-01-01

    This paper describes the results of experiments and simulations made to examine the corona discharges from water droplets on a polymer surface exposed to electrical stress. In this study, water droplets with different conductivities and volumes were placed on the surface of plate-shaped high temperature vulcanized silicone rubber (HTV-SR) energized with ac voltage, and the corona discharge phenomena were observed by a high-speed camera with an image intensifier. The electric-field distributions were calculated by the finite element method (FEM). It is demonstrated that the electric field is intensified at the triple junction of the water droplet, air and the insulating material due to the difference in their permittivities, which can ionize the surrounding air and trigger a corona discharge. It can also be confirmed that the contact angle, volume, conductivity and number of water droplets are shown to have a marked effect on the mode of the corona discharge development.

  20. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    OpenAIRE

    Sun Shuhong; Liu Ling; Yang Shusheng

    2015-01-01

    This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and lea...

  1. Seasonal water storage, stress modulation, and California seismicity.

    Science.gov (United States)

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  2. Association of arteriosclerosis index and oxidative stress markers in school children.

    Science.gov (United States)

    Yamano, Yuko; Miyakawa, Sanpei; Nakadate, Toshio

    2015-06-01

    Recent years have seen increased numbers of children with conditions that contribute strongly to atherosclerotic disease, such as passive smoking, obesity, and dyslipidemia. In the present study, we evaluated the utility of non-invasive urinary markers in preventing lifestyle-related diseases by comparing lipid metabolism-related parameters with oxidative stress markers in school children. Subjects were 85 first-grade students. The variables examined included the smoking in subjects' household; exercise habits; height and weight; blood pressure; and plasma total cholesterol, high-density lipoprotein cholesterol, triglyceride, leptin, blood sugar, urinary cotinine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-isoprostaglandin F2α (IsoP). Of the subjects, 10.6% were obese (% overweight ≥ 20%), 3.5% had a high-risk arteriosclerosis index (AI; 3 ≤ AI stress and inflammation. The present findings of the strongest correlation between urinary IsoP and AI suggest that urinary IsoP may serve as a non-invasive and effective early marker in predicting risk in children of developing lifestyle-related diseases. © 2014 Japan Pediatric Society.

  3. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  4. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood

    National Research Council Canada - National Science Library

    TOZZI, EMILY S; EASLON, HSIEN MING; RICHARDS, JAMES H

    2013-01-01

    .... However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 ° C versus at 41 ° C for well‐watered plants...

  5. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    ... as a tool in comparing the water quality of different sources. It gives the public a general idea of the possible problems with water in a particular region. The indices are among the most effective ways to communicate the information on water quality trends to the public or to the policy makers and water quality management.

  6. GIS based water quality indexing of Malad creek, Mumbai (India): an impact of sewage discharges.

    Science.gov (United States)

    Vijay, Ritesh; Bhattacharyya, Tapas; Joshi, Rucha R; Dhage, S S; Sohony, R A

    2011-04-01

    Malad creek is one of the most heavily polluted water bodies in Mumbai, India. Presently, creek receives wastewater and sewage from open drains and nallahs as well as partially treated wastewater from treatment facilities. The objective of the present study was to assess and classify the water quality zones spatially and temporally based on physico-chemical and bacteriological analysis. For this, GIS based methodology was integrated with water quality indexing, according to National Sanitation Foundation. Nine water quality parameters were considered to generate the indices that represent the overall status of creek water quality. Based on field observations and spatial distribution of water quality, various options were suggested for improvement in water quality of the creek.

  7. Validation of Environmental Stress Index by Measuring Infrared Radiation as a Substitute for Solar Radiation in Indoor Workplaces

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2016-09-01

    Full Text Available Background The exposure of individuals to heat at different jobs warrants the use of heat stress evaluation indices. Objectives The aim of this study was to validate environmental stress index using an infrared radiation (IR measurement instrument as a substitute for pyranometer in indoor workplaces. Methods This study was conducted on 2303 indoor workstations in different industries in Isfahan, Iran, during July, August, and September in 2012. The intensity of the Infrared Radiation (IR (w/m2 was measured at five-centimeter distances in six different directions, above, opposite, right, left, behind and below the globe thermometer. Then, the dry globe temperature (Ta, wet globe temperature (Tnw, globe temperature (Tg and relative humidity (RH were also simultaneously measured. The data were analyzed using correlation and regression by the SPSS18 software. Results The study results indicate that a high correlation (r = 0.96 exists between the environmental stress index (ESI and the values of wet bulb globe temperature (P < 0.01. According to the following equation, WBGT = 1.086 × ESI - 1.846, the environmental stress index is able to explain 91% (R2 = 0.91 of the WBGT index variations (P < 0.01. Conclusions Based on the results, to study heat stress in indoor workplaces when the WBGT measurement instrument is not available and also in short-term exposures (shorter than 30 minutes when measuring the wet bulb globe temperature shows a considerable error, it is possible to calculate the environmental stress index and accordingly to the WBGT index, by measuring the parameters of dry bulb temperature (Ta, relative humidity (RH, and infrared radiation intensity that can be easily measured in a short time.

  8. Root xylem plasticity to improve water use and yield in water-stressed soybean.

    Science.gov (United States)

    Prince, Silvas J; Murphy, Mackensie; Mutava, Raymond N; Durnell, Lorellin A; Valliyodan, Babu; Shannon, J Grover; Nguyen, Henry T

    2017-04-01

    We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24-80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6-R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    Science.gov (United States)

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  10. Investigating the Association between Heat Stress and its Psychological Response to Determine the Optimal Index of Heat Strain

    Directory of Open Access Journals (Sweden)

    Amir Negahban

    2014-04-01

    Full Text Available Background & Objectives : Exposure to high temperatures is common among workers in warm environments leading to some undesirable effects . The aim of this study was to examine physiological responses to heat stress to determine the optimal index for direct measurement of physiological strain in workers of hot environments . Methods: In this study, 40 workers of melting and casting process were evaluated . Thermal stress was evaluated based on the WBGT index and physiological strain by measuring oral and tympanic temperature , urine temperature , heart rate, and recovery heart rate. Data was analyzed using SPSS v.16 software . Results : Heat stress exceeded the national and international recommended limits based on the WBGT index in 80% of cases of workstations . The correlations between heat strains including tympanic temperature, oral temperature, urine temperature, heart rate and heart rate recovery to heat stress index were significant, while tympanic temperature had a stronger association according to simple linear regression (P<0.01, R2=0.78 . Conclusion: Tympanic temperature had a stronger correlation with the WBGT index among the investigated indices . Accordingly , tympanic temperature could be a useful indicator compared to other parameters for measuring physiological strain in warm workplaces due to the ease of measurement, noninvasive nature , acceptance by workers , and fast and non- interference in the measurement process .

  11. Creating a spatially-explicit index: a method for assessing the global wildfire-water risk

    Science.gov (United States)

    Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.

    2017-04-01

    The wildfire-water risk (WWR) has been defined as the potential for wildfires to adversely affect water resources that are important for downstream ecosystems and human water needs for adequate water quantity and quality, therefore compromising the security of their water supply. While tools and methods are numerous for watershed-scale risk analysis, the development of a toolbox for the large-scale evaluation of the wildfire risk to water security has only started recently. In order to provide managers and policy-makers with an adequate tool, we implemented a method for the spatial analysis of the global WWR based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. As this approach heavily relies on data, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. When appropriate, we applied a hydrological routing function to our indicators in order to simulate downstream accumulation of potentially harmful material. Each indicator was then assigned a DPSIR category. We collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the WWR. A thorough sensitivity analysis has been performed in order to understand the relationship between the final risk values and the spatial pattern of each category used during the indexation. For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, to get a sense of regional DPSIR specificities. This rather simple method does not necessitate the use of complex physical models and provides a scalable and efficient tool

  12. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  13. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China.

    Science.gov (United States)

    Liu, Shuguang; Lou, Sha; Kuang, Cuiping; Huang, Wenrui; Chen, Wujun; Zhang, Jianle; Zhong, Guihui

    2011-10-01

    Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  15. A Survey of Indexing and Abstracting Services for Water Resources Engineering.

    Science.gov (United States)

    Wellisch, Hans (Hanan)

    This report provides a complete and up-to-date review of the abstracting and indexing services available in water resources engineering. Between 1955 and 1970 the number of services in this field increased from about 20 to 40. This exponential growth or doubling every 15 years suggests that by 1985 there will be 80 abstracting services in…

  16. Class frequency distribution for a surface raw water quality index in ...

    African Journals Online (AJOL)

    2013-01-01

    Jan 1, 2013 ... The IF-THEN-ELSE function then sub-classified the data from 1 to 5 while the daily index was calculated as a median of that day's sub-classes. ... them by using feedback mechanisms from continuous assess- ments (Even et ... constant that relates to a particular water body at a specific time of sampling, but ...

  17. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  18. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  19. EPA Office of Water (OW): Impaired Waters with TMDLs NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the...

  20. EPA Office of Water (OW): STORET Water Quality Monitoring Stations NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  1. EPA Office of Water (OW): 305(b) Waters as Assessed NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 305(b) program system provide assessed water data and assessed water features for river segments, lakes, and estuaries designated under Section 305(b) of the...

  2. EPA Office of Water (OW): 305(b) Assessed Waters NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 305(b) program system provide assessed water data and assessed water features for river segments, lakes, and estuaries designated under Section 305(b) of the...

  3. EPA Office of Water (OW): TMDLs on Impaired Waters NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the...

  4. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  5. An evaluation index system of water security in China based on macroeconomic data from 2000 to 2012

    Science.gov (United States)

    Li, X. S.; Peng, Z. Y.; Li, T. T.

    2016-08-01

    This paper establishes an evaluation index system of water security. The index system employs 5 subsystems (water circulation security, water environment security, water ecology security, water society security and water economy security) and has 39 indicators. Using the AHP method, each indicator is given a relative weight to integrate within the whole system. With macroeconomic data from 2000 to 2012, a model of water security evaluation is applied to assess the state of water security in China. The results show an improving trend in the overall state of China's water security. In particular, the cycle of water security is at a high and low fluctuation. Water environment security presents an upward trend on the whole; however, this trend is unsteady and has shown a descending tendency in some years. Yet, water ecology security, water society security, and water economy security are basically on the rise. However, the degree of coordination of China's water security system remains in need of consolidation.

  6. Health evaluation of drinking water regarding to scaling and corrosion potential using corrosion indexes in Noorabad city, Iran

    Directory of Open Access Journals (Sweden)

    ghodratolah Shams Khorramabadi

    2016-05-01

    Conclusion: Result obtained from studied indexes showed that the drinking water in Noorabad is corrosive and so the water quality in water supply system should be monitored continuously. The best applicable practices for decreasing water corrosion in water supply system are including continuous control of pH, chlorination mechanism and the use of corrosion resistant pipelines and facilities.

  7. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey).

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-04-15

    The aim of this study is evaluate water quality of the Aksu River, the main river recharging the Karacaören-1 Dam Lake and flowing approximately 145km from Isparta province to Mediterranean. Due to plan for obtaining drinking water from the Karacaören-1 Dam Lake for Antalya Province, this study has great importance. In this study, physical and chemical analyses of water samples taken from 21 locations (in October 2011 and May 2012, two periods) through flow path of the river were investigated. The analysis results were compared with maximum permissible limit values recommended by World Health Organization and Turkish drinking water standards. The water quality for drinking purpose was evaluated using the water quality index (WQI) method. The computed WQI values are between 35.6133 and 337.5198 in the study. The prepared WQI map shows that Karacaören-1 Dam Lake generally has good water quality. However, water quality is poor and very poor in the north and south of the river basin. The effects of punctual and diffuse pollutants dominate the water quality in these regions. Furthermore, the most effective water quality parameters are COD and Mg on the determination of WQI for the present study. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Validation of the UCLA Child Post traumatic stress disorder-reaction index in Zambia

    Directory of Open Access Journals (Sweden)

    Cohen Judith A

    2011-09-01

    Full Text Available Abstract Background Sexual violence against children is a major global health and human rights problem. In order to address this issue there needs to be a better understanding of the issue and the consequences. One major challenge in accomplishing this goal has been a lack of validated child mental health assessments in low-resource countries where the prevalence of sexual violence is high. This paper presents results from a validation study of a trauma-focused mental health assessment tool - the UCLA Post-traumatic Stress Disorder - Reaction Index (PTSD-RI in Zambia. Methods The PTSD-RI was adapted through the addition of locally relevant items and validated using local responses to three cross-cultural criterion validity questions. Reliability of the symptoms scale was assessed using Cronbach alpha analyses. Discriminant validity was assessed comparing mean scale scores of cases and non-cases. Concurrent validity was assessed comparing mean scale scores to a traumatic experience index. Sensitivity and specificity analyses were run using receiver operating curves. Results Analysis of data from 352 youth attending a clinic specializing in sexual abuse showed that this adapted PTSD-RI demonstrated good reliability, with Cronbach alpha scores greater than .90 on all the evaluated scales. The symptom scales were able to statistically significantly discriminate between locally identified cases and non-cases, and higher symptom scale scores were associated with increased numbers of trauma exposures which is an indication of concurrent validity. Sensitivity and specificity analyses resulted in an adequate area under the curve, indicating that this tool was appropriate for case definition. Conclusions This study has shown that validating mental health assessment tools in a low-resource country is feasible, and that by taking the time to adapt a measure to the local context, a useful and valid Zambian version of the PTSD-RI was developed to detect

  9. Noninvasive index of cardiac contractility during stress testing: a collaborative study.

    Science.gov (United States)

    Luisada, A A; Singhal, A; Portaluppi, F; Strozzi, C

    1985-07-01

    The present study was conducted in parallel in three different institutions with a similar purpose but using different technical setups. Based on the experimental demonstration that the external phonocardiogram is similar to the rate of acceleration (d3P/d3t) of the left ventricular pressure, and that catecholamines in a similar way increase the early positive wave of the left ventricular pressure and the first heart sound (S1) of the external phonocardiogram; knowing that exercise causes secretion of catecholamines and sympathetic reflexes, we have studied the S1 changes as a result of exertion in 34 normal young subjects. Blood pressure, heart rate, electrocardiograph, and phonocardiograph recordings of each subject were taken. In 10 subjects, cardiac output was also recorded by impedance cardiography. The result of the study was that the first heart sound increased routinely 4-5 times the normal amplitude; in a few subjects the increase was up to 15 times greater. While the extent of increase of S1 was proportional to the severity and duration of the effort and was usually proportional to the increase of other parameters, exceptions were noted as having marked increase of S1 with moderate increase of either blood pressure or heart rate. This was explained by the different receptors activated by the catecholamines and by the complexity of hormonal and neural influences acting on various organs in a stress test. The amplitude of S1 was found to be a reasonably reliable index for following changes of cardiac contractility during exercise, and the suggestion was made that this parameter should be studied in parallel with the others in routine stress tests.

  10. Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia.

    Directory of Open Access Journals (Sweden)

    Sarah K Dickin

    Full Text Available The Water-associated Disease Index (WADI was developed to identify and visualize vulnerability to different water-associated diseases by integrating a range of social and biophysical determinants in map format. In this study vulnerability is used to encompass conditions of exposure, susceptibility, and differential coping capacity to a water-associated health hazard. By assessing these conditions, the tool is designed to provide stakeholders with an integrated and long-term understanding of subnational vulnerabilities to water-associated disease and contribute to intervention strategies to reduce the burden of illness. The objective of this paper is to describe and validate the WADI tool by applying it to dengue. A systemic ecohealth framework that considers links between people, the environment and health was applied to identify secondary datasets, populating the index with components including climate conditions, land cover, education status and water use practices. Data were aggregated to create composite indicators of exposure and of susceptibility in a Geographic Information System (GIS. These indicators were weighted by their contribution to dengue vulnerability, and the output consisted of an overall index visualized in map format. The WADI was validated in this Malaysia case study, demonstrating a significant association with dengue rates at a sub-national level, and illustrating a range of factors that drive vulnerability to the disease within the country. The index output indicated high vulnerability to dengue in urban areas, especially in the capital Kuala Lumpur and surrounding region. However, in other regions, vulnerability to dengue varied throughout the year due to the influence of seasonal climate conditions, such as monsoon patterns. The WADI tool complements early warning models for water-associated disease by providing upstream information for planning prevention and control approaches, which increasingly require a

  11. Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China.

    Science.gov (United States)

    Wu, Zhaoshi; Zhang, Dawen; Cai, Yongjiu; Wang, Xiaolong; Zhang, Lu; Chen, Yuwei

    2017-12-21

    Twenty-four samplings were conducted every 3 months at 15 sites from January 2009 to October 2014 in Lake Poyang, and 20 parameters were analyzed and classified into three groups (toxic metals, easily treated parameters, and others). The assessment results based on water quality index (WQI) showed that the water quality in Lake Poyang was generally "moderate", according to the classification of the surface water quality standard (GB3838-2002) in China, but a deteriorating trend was observed at the interannual scale. Seasonally, the water quality was best in summer and worst in winter. Easily treated parameters generally determined the WQI value in the assessment, especially total nitrogen (TN) and total phosphorus (TP), while toxic metals and other parameters in Lake Poyang were generally at low and safe levels for drinking water. Water level (WL) has a net positive effect on water quality in Lake Poyang through dilution of environmental parameters, which in practice means TN. Consequently, local management agencies should pay more attention to nutrient concentrations during the monitoring schedule, as well as during the low-water periods which manifest a relatively bad water quality state, especially with the prevailing low WL observed recently in Lake Poyang.

  12. The implementation of an aquatic toxicity index as a water quality monitoring tool in the Olifants River (Kruger National Park

    Directory of Open Access Journals (Sweden)

    V. Wepener

    1999-01-01

    Full Text Available Large sets of water quality data can leave water quality managers and decision-makers totally overwhelmed. In order to convey the interpretation of the data in a simplified and understandable manner, the water quality results from bi-monthly surveys undertaken at seven different sampling sites in the Letaba, Olifants, and Selati rivers over a two year period (February 1990 to April 1992 were reduced to index values, using a water quality index. The water quality index (Aquatic Toxicity Index or ATI revealed spatial and temporal trends. The higher index values, recorded for the sampling sites towards the eastern part of the Kruger National Park (KNP, revealed that the water quality was better than the quality measured in the Olifants River on the western bound-ary. The lowest index values were calculated for the Selati River, with index values consistently below 50. Index values indicate that the water quality in the Selati River was unsuitable for supporting normal physiological processes in fish. The water quality of the Selati River had an immediate impact on the water quality of the Olifants River directly below the confluence. Lower index values recorded at sites further downstream was also attributed to the influence of the Selati River since there are no known point sources of contaminants within the boundaries of the KNP. The index scores also elucidated temporal trends with lower scores evident during winter months. This was due to reduced flow in the Olifants River and a greater contribution of contaminated water from the Selati River. Index values increased following the first seasonal rains due to a dilution effect. Very low index values were recorded at certain sites during flood periods due to increased turbidity, reduced oxygen, and increased metal concentrations.

  13. Diallel analysis in white oat cultivars subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Guilherme Ribeiro

    2011-01-01

    Full Text Available The goal of this work was to determine the combining ability of three white oat parental genotypes (UPF 18, URS21and URS 22 and to estimate the heterosis of F1 hybrids in two conditions, with and without water stress. The results indicate a largeeffect of the environment on the evaluated characters (cycle, leaf area, plant stature, grain yield per plant, main panicle weight andnumber of grains of the main panicle. The condition without stress was the most efficient for the selection of superior genotypes.Based on the general and specific combining ability, the cultivar URS 22 was shown to be indicated for cycle and stature reduction,while UPF 18 lead to increases in leaf area, main panicle weight and number of grains of the main panicle. The specific cross URS22 x URS 21 was the best for the selection of superior genotypes.

  14. Physiological responses of selected African sorghum landraces to progressive water stress and re-watering

    CSIR Research Space (South Africa)

    Devnarain, N

    2016-03-01

    Full Text Available stress treatments and a moderate re-watered treatment on day 7. Plant height, soil moisture, and LWC were measured during harvests. Chlorophyll, carotenoid, and proline contents were quantified. All five genotypes maintained LWC above 80% during mild...

  15. Statistical analysis of short-term water stress conditions at Riggs Creek OzFlux tower site

    Science.gov (United States)

    Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.

    2017-10-01

    A large range of indices and proxies are available to describe the water stress conditions of an area subject to different applications, which have varying capabilities and limitations depending on the prevailing local climatic conditions and land cover. The present study uses a range of spatio-temporally high-resolution (daily and within daily) data sources to evaluate a number of drought indices (DIs) for the Riggs Creek OzFlux tower site in southeastern Australia. Therefore, the main aim of this study is to evaluate the statistical characteristics of individual DIs subject to short-term water stress conditions. In order to derive a more general and therefore representative DI, a new criterion is required to specify the statistical similarity between each pair of indices to allow determining the dominant drought types along with their representative DIs. The results show that the monitoring of water stress at this case study area can be achieved by evaluating the individual behaviour of three clusters of (i) vegetation conditions, (ii) water availability and (iii) water consumptions. This indicates that it is not necessary to assess all individual DIs one by one to derive a comprehensive and informative data set about the water stress of an area; instead, this can be achieved by analysing one of the DIs from each cluster or deriving a new combinatory index for each cluster, based on established combination methods.

  16. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    U IVERSITY OF MAURITIUS RESEARCH JOUR AL – Volume 15 – 2009. University of ... for three sites, showed that the Smith Index method is well adapted to the .... important information. He noted that the NSF WQI method had the disadvantage of 'losing' some important information during the processing of the data. Smith.

  17. Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran

    Directory of Open Access Journals (Sweden)

    Mahmood Yousefi

    2017-12-01

    Full Text Available Public health is at risk from physical and chemical contaminants in the drinking water which may have immediate health consequences. The data from the current study was evaluated for groundwater quality in the rural villages of Neyshabur County in Iran. For determination of the essential physicochemical parameters, water samples were collected from 30 randomly-selected water wells during 2013 and 2014. The samples were tested in situ to measure physical parameters of pH and electrical conductivity and chemical parameters of total dissolved solids, total hardness and levels of calcium, magnesium, carbonates, bicarbonates, sodium, potassium, chloride and sulfates. The APHA method was applied to determine the physicochemical parameters of the water samples. Keywords: Ground water quality index, Rural area, Neyshabur, Iran

  18. Utilization of the water quality index method as a classification tool.

    Science.gov (United States)

    Boyacioglu, Hülya

    2010-08-01

    The study comprised modification of the Canadian Council of Ministers of the Environment (CCME) Water Quality Index (CCMEWQI) to obtain a tool in classification of surface waters according to quality defined by the European Legislation-75/440/EEC. Three categories were proposed, and the category ranges of CCMEWQI have been modified depending on the objective chosen. The application of the CCMEWQI with modified categorization scheme was demonstrated to assess overall water quality by integrating observed water quality determinants in the Kucuk Menderes Basin, Turkey. In this scope, the samples analyzed for pH, total dissolved solids (TDS), chlorides (Cl), nitrate-nitrogen (NO3-N), dissolved oxygen (DO), biochemical oxygen demand (BOD5), sulfate (SO4), and boron (B), variables taken monthly over 2 years from the five monitoring sites, were processed. Results revealed that the overall surface water mainly fell within the A2 water class. The CCMEWQI with modified categorization scheme is believed to assist water managers to integrate and interpret the picture of overall water quality based on the European legislation concerning the quality required of surface water intended for the abstraction of drinking water in the Member States (75/440/EEC).

  19. Evaluation of Water Stress on Yield, Its Components and Some Physiological Traits at Different Growth Stages in Grain Sorghum Genotypes

    Directory of Open Access Journals (Sweden)

    Ali AZARINASRABAD

    2016-06-01

    Full Text Available Investigation on yield improvement and development under drought condition using breeding techniques is difficult, due to the association with low heritability of specific traits. Even more, investigation of physiological indicators (stomatal conductance, chlorophyll index, relative water content, chlorophyll fluorescence, canopy temperature, radiation use efficiency, stay-green etc. is of interest as they are more accessible, with a low cost, therefore these indicators of physiological traits can be used as good criteria in selecting valuable species. In order to evaluate the effects of water stress on grain yield, its components and some physiological traits of grain sorghum genotypes (Sorghum bicolor L., a field experiment using split plot design with three replications was carried. The main plots included three water stress treatments: normal irrigation as control, halting irrigation at the stage of terminal leaf emergence and halting irrigation at the stage of 50% flowering. The sub-plots included 10 genotypes of sorghum (‘KGS29’, ‘MGS2’, ‘Sepideh’, ‘KGFS27’, ‘MGS5’, ‘KGFS5’, ‘KGFS17’, ‘KGFS13’ and ‘KGFS30’. Results showed that water stress significantly decreased grain yield and its components (1,000 seed weight, number of seed per panicle and had various effects on physiological traits. The water stress increased canopy temperature and radiation use efficiency, while stomatal conductance, chlorophyll index (SPAD and stay-green of genotypes were decreased; the maximum efficiency of photosystem II of photosynthesis remained unchanged between the treatments. Genotypes turned out to have significantly different responses to the drought treatments for all the studied traits, indicating the existence of a high variability among them. In general, physiological traits could be used as good indicators in water stress investigations and might provide comprehensive information as compared with morphological traits.

  20. Effects of ozone therapy on haemostatic and oxidative stress index in coronary artery disease.

    Science.gov (United States)

    Martínez-Sánchez, Gregorio; Delgado-Roche, Livan; Díaz-Batista, Arquímides; Pérez-Davison, Gema; Re, Lamberto

    2012-09-15

    Coronary artery disease (CAD) is the most common cause of sudden death, and death of people over 20 years of age. Because ozone therapy can activate the antioxidant system and improve blood circulation and oxygen delivery to tissue, the aim of this study was to investigate the therapeutic efficacy of ozone in patients with CAD, treated with antithrombotic therapy, Aspirin and policosanol. A randomized controlled clinical trial was performed with 53 patients divided into two groups: one (n=27) treated with antithrombotic therapy and other (n=26) treated with antithrombotic therapy plus rectal insufflation of O(3). A parallel group (n=50) age and gender matched was used as reference for the experimental variables. The efficacy of the treatments was evaluated by comparing hemostatic indexes and biochemical markers of oxidative stress in both groups after 20 day of treatment. Ozone treatment significantly (Ptherapy only group, without modifying bleeding time. Combination antithrombotic therapy+O(3) improved the antioxidant status of patients reducing biomarkers of protein and lipid oxidation, enhancing total antioxidant status and modulating the level of superoxide dismutase and catalase with a 57% and 32% reduction in superoxide dismutase and catalase activities respectively, moving the redox environment to a status of low production of O(2)(•-) with an increase in H(2)O(2) detoxification. No side effects were observed. These results show that medical ozone treatment could be a complementary therapy in the treatment of CAD and its complications. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Associations between Pittsburgh Sleep Quality Index factors and health outcomes in women with posttraumatic stress disorder.

    Science.gov (United States)

    Casement, Melynda D; Harrington, Kelly M; Miller, Mark W; Resick, Patricia A

    2012-06-01

    The Pittsburgh Sleep Quality Index (PSQI) is a widely used measure of subjective sleep disturbance in clinical populations, including individuals with posttraumatic stress disorder (PTSD). Although the severity of sleep disturbance is generally represented by a global symptom score, recent factor analytic studies suggest that the PSQI is better characterized by a two- or three-factor model than a one-factor model. This study examined the replicability of two- and three-factor models of the PSQI, as well as the relationship between PSQI factors and health outcomes, in a female sample with PTSD. The PSQI was administered to 319 women with PTSD related to sexual or physical assault. Confirmatory factor analyses tested the relative fit of one-, two-, and three-factor solutions. Bivariate correlations were performed to examine the shared variance between PSQI sleep factors and measures of PTSD, depression, anger, and physical symptoms. Confirmatory factor analyses supported a three-factor model with Sleep Efficiency, Perceived Sleep Quality, and Daily Disturbances as separate indices of sleep quality. The severity of symptoms represented by the PSQI factors was positively associated with the severity of PTSD, depression, and physical symptoms. However, these health outcomes correlated as much or more with the global PSQI score as with PSQI factor scores. These results support the multidimensional structure of the PSQI. Despite this, the global PSQI score has as much or more explanatory power as individual PSQI factors in predicting health outcomes. Published by Elsevier B.V.

  2. Alcohol and binge eating as mediators between posttraumatic stress disorder symptom severity and body mass index.

    Science.gov (United States)

    Cronce, Jessica M; Bedard-Gilligan, Michele A; Zimmerman, Lindsey; Hodge, Kimberley A; Kaysen, Debra

    2017-04-01

    Sexual-minority women are at elevated risk for obesity, as well as exposure to traumatic events. Rates of obesity are elevated in individuals with posttraumatic stress disorder (PTSD), but little is known about why this relationship exists. Behavioral mechanisms, such as eating patterns and alcohol use, are possible explanations that would be clinically useful to identify. Binge eating and alcohol use were longitudinally investigated as mediators of the relationship between PTSD symptom severity and body mass index (BMI) in a large sample of young-adult, sexual-minority women (N = 425). PTSD symptom severity was assessed at baseline, binge eating and alcohol use were assessed 12 months later, and BMI was assessed 24 months after baseline. Using a multiple mediator model, higher baseline PTSD symptom severity was found to be significantly associated with higher BMI 2 years later, operating through binge-eating behavior but not through alcohol use. Exploratory moderator analyses found that this effect was higher for those with lower baseline BMI. Results suggest that higher PTSD symptoms are longitudinally associated with increased BMI and that binge eating behavior is one factor that explains this relationship. © 2017 The Obesity Society.

  3. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    Science.gov (United States)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  4. Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure.

    Science.gov (United States)

    Pan, Chun; Chen, Lu; Zhang, Yun-Hang; Liu, Wei; Urbino, Rosario; Ranieri, V Marco; Qiu, Hai-Bo; Yang, Yi

    2016-07-20

    Stress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Pawstress index on lung mechanics and the correlation between Pawstress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients. Twenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio Respiratory elastance, gas-exchange, Pawstress index, and PLstress index were measured. Student's t-test, regression analysis, and Bland-Altman analysis were used for statistical analysis. Pneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Pawstress index and the PLstress index in H group (R2 = 0.56, P < 0.01) and L group (R2 = 0.85, P < 0.01). In the ARF patients with MV, Pawstress index can substitute for PLto guide ventilator settings. ClinicalTrials.gov NCT02196870 (https://clinicaltrials.gov/ct2/show/NCT02196870).

  5. [Simplification of crop shortage water index and its application in drought remote sensing monitoring].

    Science.gov (United States)

    Liu, Anlin; Li, Xingmin; He, Yanbo; Deng, Fengdong

    2004-02-01

    Based on the principle of energy balance, the method for calculating latent evaporation was simplified, and hence, the construction of the drought remote sensing monitoring model of crop water shortage index was also simplified. Since the modified model involved fewer parameters and reduced computing times, it was more suitable for the operation running in the routine services. After collecting the concerned meteorological elements and the NOAA/AVHRR image data, the new model was applied to monitor the spring drought in Guanzhong, Shanxi Province. The results showed that the monitoring results from the new model, which also took more considerations of the effects of the ground coverage conditions and meteorological elements such as wind speed and the water pressure, were much better than the results from the model of vegetation water supply index. From the view of the computing times, service effects and monitoring results, the simplified crop water shortage index model was more suitable for practical use. In addition, the reasons of the abnormal results of CWSI > 1 in some regions in the case studies were also discussed in this paper.

  6. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets

    Science.gov (United States)

    The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and stored in the Reach Addressing Database (RAD). NHDPlus is a database that interconnects and uniquely identifies the millions of stream segments or reaches that comprise the Nations' surface water drainage system. NHDPlus provides a national framework for assigning reach addresses to water quality related entities, such as fish advisories locations. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network in a manner similar to street addresses. The assignment of reach addresses is accomplished through a process known as reach indexing. Fish consumption advisories and fish tissue sampling stations are reported to EPA by the states. Sampling stations are the locations where a state has collected fish tissue data for use in advisory determinations. Fish consumption advisory locations are coded onto NHDPlus flowline features to create point and linear events. Fish consumption advisory locations are also coded onto NHDPlus waterbody features to create area events. In addition to NHDPlus-reach indexed data, there may also be custom events (point, line, or area) that are not associated with NHDPlus. Although these Fish consumption advisories are not represented in NHDPlus, the data created for them are in an EPA standard format that is co

  7. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  8. AN INDEXING APPROACH FOR THE ASSESSMENT OF HEAVY METALS IN DRINKING WATER PRODUCED BY MAURITANIAN WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Brahim Baba Aloueimine*

    2017-10-01

    Full Text Available In the present work, the assessment of drinking water quality was carried out through a monitoring of heavy metals in the treated and consumed waters in the city of Nouakchott (Mauritania. Monthly sampling was conducted for a period of 24 months between January 2012 and December 2013. Nine parameters were evaluated: pH, T (°C, Turbidity (NTU, Al, Fe, Cu, Mn, Al2(SO43 and CaO. Indexing approaches have been applied by calculating the Heavy Metal Pollution Index (HPI and Metal Index (MI for the assessment of influence of heavy metals on the overall quality of water. The obtained results for heavy metals are in good agreement with World Health Organization (WHO standards. Though the aluminum concentration remains in the limits set by WHO, yet it shows a major contribution in the indices. This has been verified by the statistical analysis which demonstrates fair correlations between aluminum, HPI (r = 0.9 and MI (r = 0.77. Aluminum showed the important influence of seasonal change in the year as well as the doses of reagents injected during the treatment process on the concentration of aluminum is detailed.

  9. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    DEFF Research Database (Denmark)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher

    2012-01-01

    into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized...... porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψm, we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (–0.4 MPa) for 4, 24, or 72 h. The major response...... 8000), a nonpermeating solute often used to simulate Ψm, on the gene expression profile and detected a different profile than that observed by directly imposing Ψm. This study is the first transcriptome profiling of KT2440 under directly controlled Ψm and also the first to show the difference in gene...

  10. EPA Office of Water (OW): 2002 Impaired Waters Baseline NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of geospatial and attribute data identifying the spatial extent of state-reported impaired waters (EPA's Integrated Reporting categories 4a,...

  11. EPA Office of Water (OW): Facilities that Discharge to Water NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Discharge of pollutants into waters of the United States is regulated under the National Pollutant Discharge Elimination System (NPDES), a mandated provision of the...

  12. Weak-field H3O+ ion cyclotron resonance alters water refractive index.

    Science.gov (United States)

    D'Emilia, E; Ledda, M; Foletti, A; Lisi, A; Giuliani, L; Grimaldi, S; Liboff, A R

    2017-01-01

    Heretofore only observed in living systems, we report that weak-field ion cyclotron resonance (ICR) also occurs in inanimate matter. Weak magnetic field (50 nT) hydronium ICR at the field combination (7.84 Hz, 7.5 µT) markedly changes water structure, as evidenced by finding an altered index of refraction exactly at this combined field. This observation utilizes a novel technique which measures the scattering of a He-Ne laser beam as the sample is exposed to a ramped magnetic field frequency. In addition to the hydronium resonance, we find evidence of ICR coupling to a more massive structure, possibly a tetrahedral combination of three waters and a single hydronium ion. To check our observations, we extended this technique to D2O, successfully predicting the specific ICR charge-to-mass ratio for D3O+ that alters the index of refraction.

  13. Evaluating Reliability Index and Determining the Allocation Levels of Water Resources in Water User Association of Alborz Scheme

    Directory of Open Access Journals (Sweden)

    S.F. Hashemi

    2017-01-01

    region. In order to evaluate the water allocation, the reliability index must also be defined which stands as the oldest and most practical criterion for water resource systems analysis serving as the indicator which identifies and analyzes the system status for failure or non-failure condition. In some studies, to determine the reliability index, the entire month in which the system was successful in providing the required water divided by the entire system operation duration. Accordingly, the system can be considered as reliable if the deficiency in not more than 20% in simulation, that is, the probability of 80% can be used to provide the water supply level over four years out of five years. The application of the given method will be used in evaluating the demand balance simulation. Results and Discussion: The results of estimating the reliability index showed that the water users association with the highest priority in terms of location priority have approximately a reliability index of 70%, representing considerable shortages and deficiency making inevitable use of other resources (BMC1, HATKI1, B3-1-1, TMC1 and RaiskolaWUAs among which Raiskola had the highest priority relative to other WUAs, with about 91 percent, and was successful in providing the required water. WUAs with lower location priority adjacent to Siahrood River have been successful in approximately 75 percent of their water supply. The WUAs with the lowest priority (HATKI3, TMC3 and BMC3 had the lowest reliability index of about 50% meaning they were successful in meeting the water supply for only 50%. The C24-1 WUAs was 100 percent successful in its water supply which could be also noticeable among other WUAs. In order to assess the success of the system to meet the demand of WUAs, the Alborz network functionality was investigated. The major water utilization from river channels and the release of Alborz Dam were analyzed based on the statistical normal distribution function governing the However

  14. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

    Science.gov (United States)

    Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...

  15. Development of a water state index to assess the severity of impacts on and changes in natural water resources.

    Science.gov (United States)

    Suridge, A K J; Brent, A C

    2008-01-01

    Lifecycle assessment (LCA) is a standardised methodology that is used to assess the impact of techno-economic systems on the natural environment. By compiling an inventory of energy and material inputs and environmental releases or outputs of a system, and evaluating the potential environmental impacts associated with the inventory, one can make an informed decision regarding the sustainability of a techno-economic system in question. However, the current lifecycle impact assessment (LCIA) methodologies that form part of LCA studies do not effectively consider the impacts of techno-economic systems on ground and surface water resources in South Africa (and elsewhere). It is proposed that a microbiology based index method, similar to methods proposed for terrestrial resources, can establish the states of water resources for six classes of current economic exploitation: protected, moderate use, degraded, cultivated, plantation, and urban. It is further suggested that changes in these classes (and states) can be used meaningfully in LCIA methodologies to quantify the extent to which techno-economic interventions may alter natural water resources. Research is recommended to further improve the accuracy and reliability of the water state index. IWA Publishing 2008.

  16. Do stressed mothers have heavier children?: A meta-analysis on the relationship between maternal stress and child body mass index

    Science.gov (United States)

    Tate, Eleanor B.; Wood, Wendy; Liao, Yue; Dunton, Genevieve F.

    2015-01-01

    Child obesity continues to be a prevalent public health issue. This meta-analysis synthesized 17 studies investigating the association between levels of psychological stress experienced by mothers and the body mass index of their children. The overall standardized mean difference effect size was positive and significantly different from zero in cross-sectional d = 0.20 [k = 14, 95% Confidence Interval (CI): 0.06, 0.34] and longitudinal studies d = 0.18 (k = 5, 95% CI: 0.00, 0.351), and had significant heterogeneity in both [cross-sectional, Q(13) = 193.00, p stress management component in childhood obesity prevention programs. PMID:25879393

  17. A Global Index for Mapping the Exposure of Water Resources to Wildfire

    Directory of Open Access Journals (Sweden)

    François-Nicolas Robinne

    2016-01-01

    Full Text Available Wildfires are keystone components of natural disturbance regimes that maintain ecosystem structure and functions, such as the hydrological cycle, in many parts of the world. Consequently, critical surface freshwater resources can be exposed to post-fire effects disrupting their quantity, quality and regularity. Although well studied at the local scale, the potential extent of these effects has not been examined at the global scale. We take the first step toward a global assessment of the wildfire water risk (WWR by presenting a spatially explicit index of exposure. Several variables related to fire activity and water availability were identified and normalized for use as exposure indicators. Additive aggregation of those indicators was then carried out according to their individual weight. The resulting index shows the greatest exposure risk in the tropical wet and dry forests. Intermediate exposure is indicated in mountain ranges and dry shrublands, whereas the lowest index scores are mostly associated with high latitudes. We believe that such an approach can provide important insights for water security by guiding global freshwater resource preservation.

  18. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India

    Science.gov (United States)

    Singaraja, C.

    2017-09-01

    The present hydrogeochemical study was confined to the Thoothukudi District in Tamilnadu, India. A total of 100 representative water samples were collected during pre-monsoon and post-monsoon and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulfate, bicarbonate, fluoride and nitrate) along with various physical and chemical parameters (pH, total dissolved salts and electrical conductivity). Water quality index rating was calculated to quantify the overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to dilution of ions and agricultural impact. The overlay of WQI with chloride and EC corresponds to the same locations indicating the poor quality of groundwater in the study area. Sodium (Na %), sodium absorption ratio (SAR), residual sodium carbonate (RSC), residual sodium bicarbonate, permeability index (PI), magnesium hazards (MH), Kelly's ratio (KR), potential salinity (PS) and Puri's salt index (PSI) and domestic quality parameters such as total hardness (TH), temporary, permanent hardness and corrosivity ratio (CR) were calculated. The majority of the samples were not suitable for drinking, irrigation and domestic purposes in the study area. In this study, the analysis of salinization/freshening processes was carried out through binary diagrams such as of mole ratios of {SO}_{ 4}^{ 2- } /Cl- and Cl-/EC that clearly classify the sources of seawater intrusion and saltpan contamination. Spatial diagram BEX was used to find whether the aquifer was in the salinization region or in the freshening encroachment region.

  19. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. The relationship between the development of musculoskeletal disorders, body mass index, and academic stress in Bahraini University students

    Science.gov (United States)

    Abdul Rahman, Asma; Abdul Ameer, Maryam

    2017-01-01

    Background There are many mechanisms in which stress can lead to weight gain thus high a BMI. The endocrine and inflammatory pathway can directly increase abdominal adiposity. Another way in which stress leads to weight gain is through changes in health behaviors. The study aimed to investigate the prevalence of musculoskeletal disorders (MSDs) among healthy students of Ahlia University, and to determine the relationship between the development of MSDs and academic stressors and body mass index. Methods Self-administered questionnaires were distributed to 94 students aged 18-26 years who were enrolled at various Ahlia University colleges and met other inclusion criteria. The students responded to the standardized Nordic musculoskeletal questionnaire and the modified College Student Stress Inventory regarding musculoskeletal symptoms and academic stressors. Height and weight measurements were also obtained to determine body mass index. Results A total of 77.66% reported MSDs in one or more body part, with the prevalence being higher among women than among men. The 7-day prevalence of MSDs severe enough to interfere with activities of daily living was 60.64%, and 44.68% by female and male students, respectively. There was a significant relationship between academic stress and MSDs in the neck, shoulders, lower back, and hips, while the relationship between MSDs, and body mass index, academic stress, and grade point average was not significant. Conclusions The prevalence of MSDs among Ahlia University students was found to be high. Apart from the positive correlation between academic stress and MSDs in certain body parts, other correlations were not significant. PMID:28416996

  1. The relationship between the development of musculoskeletal disorders, body mass index, and academic stress in Bahraini University students.

    Science.gov (United States)

    Tantawy, Sayed A; Abdul Rahman, Asma; Abdul Ameer, Maryam

    2017-04-01

    There are many mechanisms in which stress can lead to weight gain thus high a BMI. The endocrine and inflammatory pathway can directly increase abdominal adiposity. Another way in which stress leads to weight gain is through changes in health behaviors. The study aimed to investigate the prevalence of musculoskeletal disorders (MSDs) among healthy students of Ahlia University, and to determine the relationship between the development of MSDs and academic stressors and body mass index. Self-administered questionnaires were distributed to 94 students aged 18-26 years who were enrolled at various Ahlia University colleges and met other inclusion criteria. The students responded to the standardized Nordic musculoskeletal questionnaire and the modified College Student Stress Inventory regarding musculoskeletal symptoms and academic stressors. Height and weight measurements were also obtained to determine body mass index. A total of 77.66% reported MSDs in one or more body part, with the prevalence being higher among women than among men. The 7-day prevalence of MSDs severe enough to interfere with activities of daily living was 60.64%, and 44.68% by female and male students, respectively. There was a significant relationship between academic stress and MSDs in the neck, shoulders, lower back, and hips, while the relationship between MSDs, and body mass index, academic stress, and grade point average was not significant. The prevalence of MSDs among Ahlia University students was found to be high. Apart from the positive correlation between academic stress and MSDs in certain body parts, other correlations were not significant.

  2. Relationship between work stress and body mass index among 45,810 female and male employees

    National Research Council Canada - National Science Library

    Kouvonen, Anne; Kivimäki, Mika; Cox, Sara J; Cox, Tom; Vahtera, Jussi

    2005-01-01

    .... At the same time, stress has increased in working life. The 2 problems could be connected if work stress promotes unhealthy eating habits and sedentary behavior and thereby contributes to weight gain...

  3. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions.

    Science.gov (United States)

    Hatami, Mehrnaz

    2017-08-01

    The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL-1) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Affect systems, changes in body mass index, disordered eating and stress: an 18-month longitudinal study in women.

    Science.gov (United States)

    Kupeli, N; Norton, S; Chilcot, J; Campbell, I C; Schmidt, U H; Troop, N A

    2017-01-01

    Background: Evidence suggests that stress plays a role in changes in body weight and disordered eating. The present study examined the effect of mood, affect systems (attachment and social rank) and affect regulatory processes (self-criticism, self-reassurance) on the stress process and how this impacts on changes in weight and disordered eating. Methods: A large sample of women participated in a community-based prospective, longitudinal online study in which measures of body mass index (BMI), disordered eating, perceived stress, attachment, social rank, mood and self-criticism/reassurance were measured at 6-monthly intervals over an 18-month period. Results: Latent Growth Curve Modelling showed that BMI increased over 18 months while stress and disordered eating decreased and that these changes were predicted by high baseline levels of these constructs. Independently of this, however, increases in stress predicted a reduction in BMI which was, itself, predicted by baseline levels of self-hatred and unfavourable social comparison. Conclusions: This study adds support to the evidence that stress is important in weight change. In addition, this is the first study to show in a longitudinal design, that social rank and self-criticism (as opposed to self-reassurance) at times of difficulty predict increases in stress and, thus, suggests a role for these constructs in weight regulation.

  5. Cell membrane stability in two barley genotypes under water stress conditions

    National Research Council Canada - National Science Library

    Hanna Bandurska; Halina Gniazdowska-Skoczek

    2014-01-01

    The effect of water stress induced in vitro by polyethylene glycol 6000 (PEG) and under drought stress on cell membrane stability was examined in two barley genotypes, the cultivar Aramir and line R567...

  6. The effects of water stress on the chemical composition of soybean ...

    African Journals Online (AJOL)

    Plants subjected to water deficit after early podding had higher available carbohydrate in the stem at maturity. Percent oil content was slightly increased in the seeds of plants subjected to water stress at early podding but percent protein was generally reduced by water stress. Total oil and protein yields were reduced by ...

  7. Water Stress Assessment in Jharkhand State Using Soil Data and GIS

    African Journals Online (AJOL)

    In this paper an attempt has been made to study the interrelationship of water resources available with that of soil class and its properties including soil drainage and erosional characteristics which has been used to generate drainage stress map and water stress map inferring the basic reason for water scarcity in the district ...

  8. The impacts of water stress on phloem transport in Douglas-fir trees

    Science.gov (United States)

    David Woodruff

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water...

  9. Deteriorations of pulmonary function, elevated carbon monoxide levels and increased oxidative stress amongst water-pipe smokers

    Directory of Open Access Journals (Sweden)

    Funda Karaduman Yalcin

    2017-10-01

    Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731

  10. Managing the financial risk of low water levels in Great Lakes with index-based contracts

    Science.gov (United States)

    Meyer, E.; Characklis, G. W.; Brown, C. M.; Moody, P.

    2014-12-01

    Low water levels in the Great Lakes have recently had significant financial impacts on the region's commercial shipping, responsible for transporting millions of dollars' worth of bulk goods each year. Low lake levels can significantly affect shipping firms, as cargo capacity is a function of draft, or the distance between water level and the ship's bottom. Draft increases with weight, and lower lake levels force ships to reduce cargo to prevent running aground in shallow harbors, directly impacting the finances of shipping companies. Risk transfer instruments may provide adaptable, yet unexplored, alternatives for managing these financial risks, at significantly less expense than more traditional solutions (e.g., dredging). Index-based financial instruments can be particularly attractive as contract payouts are directly linked to well-defined transparent metrics (e.g., lake levels), eliminating the need for subjective adjustors, as well as concerns over moral hazard. In developing such instruments, a major challenge is identifying an index that is well correlated with financial losses, and thus a contract that reliably pays out when losses are experienced (low basis risk). In this work, a relationship between lake levels and shipping revenues is developed, and actuarial analyses of the frequency and magnitude of revenue losses is completed using this relationship and synthetic water level data. This analysis is used to develop several types of index-based contracts. A standardized suite of binary contracts is developed, with each indexed to lake levels and priced according to predefined thresholds. These are combined to form portfolios with different objectives (e.g. options, collars), with optimal portfolio structure and length of coverage determined by limiting basis risk and contract cost, using simulations over the historic dataset. Results suggest that portfolios of these binary contracts can substantially reduce the risk of financial losses during periods of

  11. Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions

    OpenAIRE

    Rahmati, M; Gh. Davarynejad; M. Bannayan Awal; Azizi, M

    2015-01-01

    In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta) under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress), 180 (moderate stress) and 90 (severe stress) m3ha-1week-1 using a drip irrigation system (minimum stem water potenti...

  12. Evaluation the Quality of The Wells Water in Hilla City by Water Quality Index and Applying in Visual Basic Program

    Directory of Open Access Journals (Sweden)

    Nesrin J.Al-Mansori

    2017-03-01

    Full Text Available In the present study, ground water samples were gathered from differentregions located inHillacity during period from October 2014 to September ,2015. Water samples were taken from ten wells (monthly two samples from each well in different regions for analyzing laboratory for thirteen parameters, they are: Temperature, pH , Electrical conductivity (EC, Total hardness (TH, Calcium (Ca+2, Magnesium (Mg+2, Chloride (Cl-1, Sulphate (SO4-2, Nitrate (NO3-, Sodium (Na+, Potassium (K+ and Total Dissolved Solid (TDS . The evaluation of water suitability of the present study for drinking and other irrigated purposes was achieved by means of arithmetic method of WQI depending on guideline values of (WHO,2004 and Iraqi Standard No.417 for (2004 . Values of WQI ranged from (97.230 - 79.100at Hilla city which is not suitable for human consumption according to the classification of Iraqi Standard No.417 for (2004 and WHO ,2004. These values belong to high water electrical conductivity and chloride of the studied wells comparable with other parameters. Also, correlation coefficient supports this interpretation where there are strong positively correlation between WQI values and both electrical conductivity and chloride values (0.997, 0.919 respectively.While in the assessment of ground water quality for irrigation, electrical conductivity, pH, sodium absorption ratio (SAR, chloride,slphate, sodium, calisum and magisumwere used to calculateWQI values which range from (98.074- 83.187. These values are associated with both EC and Cl- in a strong negatively correlation (-0.968, -0.969 respectively. Application of Visual Basicsoftware is a good tool to explain the WQI index for all types of rivers and streams in Iraq, that will be useful to give fast indication about WQI index

  13. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    Science.gov (United States)

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.

  14. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity

    OpenAIRE

    糟谷, 憲明; 太田, 昌一郎; 髙波, 嘉一; Kawai, Yukari; 井上, 裕; 村田, 勇; 金本, 郁男

    2015-01-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to ric...

  15. The Omega-3 Index Is Inversely Associated with Depressive Symptoms among Individuals with Elevated Oxidative Stress Biomarkers123

    Science.gov (United States)

    Bigornia, Sherman J; Falcón, Luis M; Ordovás, José M; Lai, Chao-Qiang

    2016-01-01

    Background: Omega-3 (n–3) fatty acid (FA) consumption is thought to improve depressive symptoms. However, current evidence is limited, and whether this association exists among Puerto Ricans, a population burdened by depression, remains uncertain. Objectives: We examined the association between ω-3 FA biomarkers and depressive symptoms as well as the potential influence of oxidative stress. Methods: Baseline and longitudinal analyses were conducted in the Boston Puerto Rican Health Study (n = 787; participants aged 57 ± 0.52 y, 73% women). Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentration, a measure of oxidative stress, and erythrocyte FA composition were collected at baseline. We calculated the omega-3 index as the sum of eicosapentaenoic and docosahexaenoic acids, expressed as a percentage of total FAs. Baseline and 2-y depressive symptoms were characterized by using the Center for Epidemiological Studies–Depression Scale (CES-D). Statistical analyses included linear and logistic regression. Results: Urinary 8-OHdG concentration tended to modify the relation between the erythrocyte omega-3 index and baseline CES-D score (P-interaction = 0.10). In stratified analyses, the omega-3 index was inversely associated with CES-D score (β = −1.74, SE = 0.88; P = 0.02) among those in the top quartile of 8-OHdG concentration but not among those in the lower quartiles. The relation between the omega-3 index and CES-D at 2 y was more clearly modified by 8-OHdG concentration (P-interaction = 0.04), where the omega-3 index was inversely associated with CES-D at 2 y, adjusted for baseline (β = −1.66, SE = 0.66; P = 0.02), only among those with elevated 8-OHdG concentrations. Among individuals not taking antidepressant medications and in the top tertile of urinary 8-OHdG concentration, the omega-3 index was associated with significantly lower odds of a CES-D score ≥16 at baseline (OR: 0.72; 95% CI: 0.53, 0.96) but not at 2 y (OR: 0.83; 95% CI: 0.60, 1

  16. Predictors of Emotional Eating during Adolescents' Transition to College: Does Body Mass Index Moderate the Association between Stress and Emotional Eating?

    Science.gov (United States)

    Wilson, Shana M.; Darling, Katherine E.; Fahrenkamp, Amy J.; D'Auria, Alexandra L.; Sato, Amy F.

    2015-01-01

    Objective: This study sought to (1) examine perceived stress and resources to cope with stress as predictors of emotional eating during the transition to college and (2) determine whether body mass index (BMI) moderated the emotional eating-stress relationship. Participants: Participants were 97 college freshmen (73% female; BMI: M = 25.3…

  17. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    Science.gov (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  18. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses

    National Research Council Canada - National Science Library

    Feng, Wei; Lindner, Heike; Robbins, 2nd, Neil E; Dinneny, José R

    2016-01-01

    .... While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal...

  19. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata)

    OpenAIRE

    hoseyn hoseyni; parviz rezvani moghadam

    2009-01-01

    Isabgol (Plantago ovata) is an important medicinal plant in world that has more medicinal uses. Germination stage is an importance of growth plant stage that often effective by environmental stress including water and salinity stress. In order to study germination characteristics of Isabgol in water and salinity stress conditions were conducted two laboratories experimental. The two experimental were conducted in completely randomized design with 3 and 4 replications for salinity and water st...

  20. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    OpenAIRE

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler gr...

  1. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    OpenAIRE

    Prateek eTripathi; Rabara, Roel C.; Vladimir eShulaev; Shen, Qingxi J; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler g...

  2. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 117 ... Vol 10, No 1 (2005), Growth of Lemon (Citrus Limon L. Buru) in response to Water Stress and shading, Abstract ... Vol 7, No 1 (2002), Performance index efficacy for cultivar rating in tomato (Lycopersicon esculentum mill) evaluated for heat tolerance in a dry hot eco-zone, Abstract. J. Goke Bodunde.

  3. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  4. Abscisic acid biosynthesis in water-stressed leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi.

    1989-01-01

    Although abscisic acid (ABA) was discovered 30 years ago, very little is known about its biosynthetic pathway in higher plants. Two hypotheses have been proposed: (i) a direct pathway involving only C-15 intermediates like farnesyl pyrophosphate, (ii) an indirect pathway involving C-40 intermediates like the xanthophylls. When {sup 14}CO{sub 2} was fed into greened bean plants, the {sup 14}C specific activity of ABA was always lower than those in xanthophylls, such as violaxanthin and lutein, regardless of {sup 12}CO{sub 2} chase periods. The ABA accumulation in green leaves was not affected by fluridone when plants were stressed once, but the {sup 14}C incorporation into ABA was inhibited to the same extent as those of xanthophylls. The incorporation of {sup 18}O into the ABA ring when violaxanthin was labeled by {sup 18}O in vivo via the violaxanthin cycle indicates that at least a portion of ABA was derived from {sup 18}O-labeled violaxanthin during water stress.

  5. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    Science.gov (United States)

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period.

  6. Stochastic variability in stress, sleep duration, and sleep quality across the distribution of body mass index: insights from quantile regression.

    Science.gov (United States)

    Yang, Tse-Chuan; Matthews, Stephen A; Chen, Vivian Y-J

    2014-04-01

    Obesity has become a problem in the USA and identifying modifiable factors at the individual level may help to address this public health concern. A burgeoning literature has suggested that sleep and stress may be associated with obesity; however, little is know about whether these two factors moderate each other and even less is known about whether their impacts on obesity differ by gender. This study investigates whether sleep and stress are associated with body mass index (BMI) respectively, explores whether the combination of stress and sleep is also related to BMI, and demonstrates how these associations vary across the distribution of BMI values. We analyze the data from 3,318 men and 6,689 women in the Philadelphia area using quantile regression (QR) to evaluate the relationships between sleep, stress, and obesity by gender. Our substantive findings include: (1) high and/or extreme stress were related to roughly an increase of 1.2 in BMI after accounting for other covariates; (2) the pathways linking sleep and BMI differed by gender, with BMI for men increasing by 0.77-1 units with reduced sleep duration and BMI for women declining by 0.12 unit with 1 unit increase in sleep quality; (3) stress- and sleep-related variables were confounded, but there was little evidence for moderation between these two; (4) the QR results demonstrate that the association between high and/or extreme stress to BMI varied stochastically across the distribution of BMI values, with an upward trend, suggesting that stress played a more important role among adults with higher BMI (i.e., BMI > 26 for both genders); and (5) the QR plots of sleep-related variables show similar patterns, with stronger effects on BMI at the upper end of BMI distribution. Our findings suggested that sleep and stress were two seemingly independent predictors for BMI and their relationships with BMI were not constant across the BMI distribution.

  7. How increased extreme precipitation under future climate change affects plant water stress and water availability.

    Science.gov (United States)

    Eekhout, Joris P. C.; Hunink, Johannes E.; de Vente, Joris

    2017-04-01

    For many areas worldwide, increased rainfall intensity and frequency of extreme weather events are projected for the coming century. This will have effect on water security and soil erosion in large parts of the world. Here we present a detailed catchment-scale study, arguing that global and regional studies may be insufficiently accurate to describe actual impacts on the redistribution of water and the consequences for soil erosion. We applied a hydrological model, including infiltration excess surface runoff, coupled with an erosion model. The model was applied to 1 reference and 4 future climate scenarios (2 periods and 2 Representative Concentration Pathways), consisting of an ensemble of 9 Regional Climate Models. The climatic input for the future scenarios was bias-corrected using quantile mapping. Our results show a significant increase of plant water stress, reservoir inflow, soil erosion and reservoir sedimentation in all 4 future scenarios. Hence, a redistribution of water is expected, where agriculture may shift from rainfed to irrigated crops as a result of decreasing soil moisture and increased reservoir inflow. At the same time, reservoir sedimentation increases and threatens long-term sustainability of water storage and water security. Our results emphasize the role infiltration excess surface runoff and bias-correction methods play in the quantification of the impact of increased intense precipitation on water availability and soil erosion at the catchment scale.

  8. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  9. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  10. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D. [Washington State Univ., Intensive Forestry Program, Puyallup, WA (United States); Tognetti, R. [Universita del Molize, Dipartimento de Scienze Animali, Vegetali e dell' Ambiente, Compobasso (Italy); Pris, P. [Consiglio Nazionale delle Ricerche, Instituto per l' Agroselvicoltura, Porano (Italy)

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO{sub 2}] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO{sub 2} and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO{sub 2} and water stress in these two species, and to determine if elevated CO{sub 2} mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 {mu}mol mol{sup -1}) or elevated (700 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration ([CO{sub 2}]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO{sub 2}], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO{sub 2}] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO{sub 2}] and water stress reduced Rd in the trees growing in ambient [CO{sub 2}]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO{sub 2}] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO{sub 2}] and water stress, singly, suggest that these species respond like other tree species. The interaction Of [CO{sub 2}] and water stress suggests that elevated [CO{sub 2}] did mitigate the effects of water stress in willow, but not in poplar. (au)

  11. Comparative Morpho-Biochemical Responses of Wheat Cultivars Sensitive and Tolerant to Water Stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2014-05-01

    Full Text Available Water stress is likely the most important factor that adversely affects plant growth and development. In this study two wheat cultivars Gemmieza-7 (sensitive and Sahel-1 (tolerant were subjected to water stress and compared in terms of growth parameters (growth vigor of root and shoot, water relations (relative water content and saturation water deficit and protein as well as nucleic acids (DNA and RNA content in flag leaves of both cultivars. In general, water stress caused noticeable reduction in almost all growth criteria of root, shoot and flag leaf which was consistent with the progressive alteration in water relations, protein and nucleic acids content of both cultivars during grain filling. Furthermore, degree of leaf succulence and degree of leaf sclerophylly were severely affected by water stress in both wheat cultivars. In relation to wheat cultivar, the sensitive was more affected by water stress than the tolerant one. Generally, the application of salicylic acid, trehalose or their interaction induced marked increase in growth vigor of root and shoot, water relations and protein as well as nucleic acids in flag leaves of both wheat cultivars in compare with control and water stressed plants. In conclusion, Sahel-1 has suitable mechanisms to enable it to respond more effectively to water stress than Gemmieza-7.

  12. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering

    Science.gov (United States)

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C.

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars (‘Scarletprince’ and ‘CaroTiger’). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes. PMID:28979284

  13. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering.

    Science.gov (United States)

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

  14. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  15. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture

  16. Appraisal of long term groundwater quality of peninsular India using water quality index and fractal dimension

    Science.gov (United States)

    Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar

    2018-02-01

    A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.

  17. Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses.

    Science.gov (United States)

    González-Méijome, José M; Lira, Madalena; López-Alemany, Antonio; Almeida, José B; Parafita, Manuel A; Refojo, Miguel F

    2006-01-01

    The purpose of the present study was to measure equilibrium water content (EWC) and refractive index of conventional and silicone hydrogel soft contact lenses (SCL) using a hand refractometer and an automated refractometer. Sixteen SCL were used in this study including 12 conventional SCL not containing siloxane moieties (equilibrium water content (EWC) range: 38.6-74%) and the four silicone hydrogel based contact lenses currently available (WC range: 24-47%). Two experienced observers performed the measurements in a randomised order being masked by a third party during the three sessions at which the measurements were collected. The Atago N-2E hand refractometer and the CLR 12-70 digital refractometer were used. Data were analysed separately for conventional and silicone hydrogel materials. Measured EWC and refractive index correlate better when measured with the instruments used in this study (r(2) = 0.979, p lenses are analysed together (r(2) = 0.840) than when conventional hydrogel (r(2) = 0.953) and silicone hydrogel contact lenses (r(2) = 0.967) are analysed separately. Regarding refractive index, the relationship between nominal and measured values when all the lenses are considered together (r(2) = 0.794) becomes weaker when conventional hydrogel are considered separately (r(2) = 0.688), while a stronger relationship is observed for silicone hydrogel lenses (r(2) = 0.939). Hence, hand refractometry overestimates the EWC of silicone hydrogels, while automated refractive index measurements are more accurate in silicone hydrogels than in conventional hydrogels. New relationships are presented that correlate nominal and measured values of EWC and refractive index for the silicone containing hydrogels. The linear relationships derived fit well to the data. Hand refractometry overestimates the EWC of silicone hydrogel materials and this bias is related to the proportion of siloxane moieties in the material. Conversely, refractive index can be obtained more

  18. Differential responses of plumbagin content in Plumbago zeylanica L. (Chitrak under controlled water stress treatments

    Directory of Open Access Journals (Sweden)

    Kharadi R.

    2011-12-01

    Full Text Available A pot experiment was conducted on Plumbago zeylanica L. (Chitrak under controlled water stress environment in greenhouse during the kharif season. The experiment was laid out in completely randomized design with five treatments of different water stress levels i.e. control, 20%, 40%, 60% and 80% and four replications. Out of five stress levels, 80% water stress has influenced root length, dry herbage, plumbagin, potassium and proline content. In control conditions the plant height, number of leaf, total leaf area, stomatal conductance, transpiration rate, photosynthesis, CO2 utilization, H2O utilization and chlorophyll were found to be maximum. The impact of water stress on plumbagin content has shown increase trend with respect to different water stress levels that is maximum at 80 % and minimum at control.

  19. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata

    Directory of Open Access Journals (Sweden)

    hoseyn hoseyni

    2009-06-01

    Full Text Available Isabgol (Plantago ovata is an important medicinal plant in world that has more medicinal uses. Germination stage is an importance of growth plant stage that often effective by environmental stress including water and salinity stress. In order to study germination characteristics of Isabgol in water and salinity stress conditions were conducted two laboratories experimental. The two experimental were conducted in completely randomized design with 3 and 4 replications for salinity and water stress respectively. The treatment, for salinity and water stress was six potential (zero, -2, -4, -6, -8 and -10 bar of NaCl and four potential (zero, -4, -8 and -12 bar of PEG respectively. Results of two experimental showed that increasing water and salinity stress decreased significantly germination rate, germination percentage, plumule and radicle length (P

  20. Assessment of the water chemical quality improvement based on human health risk indexes: Application to a drinking water treatment plant incorporating membrane technologies.

    Science.gov (United States)

    López-Roldán, Ramón; Rubalcaba, Alicia; Martin-Alonso, Jordi; González, Susana; Martí, Vicenç; Cortina, Jose Luis

    2016-01-01

    A methodology has been developed in order to evaluate the potential risk of drinking water for the health of the consumers. The methodology used for the assessment considered systemic and carcinogenic effects caused by oral ingestion of water based on the reference data developed by the World Health Organisation (WHO) and the Risk Assessment Information System (RAIS) for chemical contaminants. The exposure includes a hypothetical dose received by drinking this water according to the analysed contaminants. An assessment of the chemical quality improvement of produced water in the Drinking Water Treatment Plant (DWTP) after integration of membrane technologies was performed. Series of concentration values covering up to 261 chemical parameters over 5 years (2008-2012) of raw and treated water in the Sant Joan Despí DWTP, at the lower part of the Llobregat River basin (NE Spain), were used. After the application of the methodology, the resulting global indexes were located below the thresholds except for carcinogenic risk in the output of DWTP, where the index was slightly above the threshold during 2008 and 2009 before the upgrade of the treatment works including membrane technologies was executed. The annual evolution of global indexes showed a reduction in the global values for all situations: HQ systemic index based on RAIS dropped from 0.64 to 0.42 for surface water and from 0.61 to 0.31 for drinking water; the R carcinogenic index based on RAIS was negligible for input water and varied between 4.2×10(-05) and 7.4×10(-06) for drinking water; the W systemic index based on the WHO data varied between 0.41 and 0.16 for surface water and between 0.61 and 0.31 for drinking water. A specific analysis for the indexes associated with trihalomethanes (THMs) showed the same pattern. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Life Stress and Treatment Course of Recurrent Depression: 1. Response during Index Episode.

    Science.gov (United States)

    Monroe, Scott M.; And Others

    1992-01-01

    Conducted prospective study of 91 individuals treated for recurrent depression. Specific forms of stress occurring before treatment entry or during first 6 weeks of treatment predicted poor clinical response both after 16 weeks and after more extended intervention period. Severe stress occurring early in treatment predicted loner time to attain…

  2. Comparative responses of cuttings and seedlings of Eucalyptus globulus to water stress

    Energy Technology Data Exchange (ETDEWEB)

    Sasse, J. [Univ. of Melbourne, Creswick, VIC (Australia); Sands, R. [Canterbury Univ., Christchurch (New Zealand)

    1996-01-01

    Responses of eucalyptus cuttings and seedlings to water stress were studied in a nine-week experiment. Two water stress treatments were imposed by reducing watering frequency to once every 6 or 14 days (from daily watering). Water-stress treatment reduced growth rates by up to 15 per cent. Diameter growth in cuttings was 25 per cent lower than in seedlings under well-watered conditions. In water stress treatment seedlings had used up to 28.5 per cent more water than cuttings. Responses to transpiration and stomatal conductance to soil water content were similar in both cuttings and seedlings. Seedlings that have been preconditioned by watering at 14 day intervals survived to lower soil water content than seedlings from the well-watered treatment, however, cuttings died at higher soil water content than seedlings undergoing the same treatment. It would appear from these results that moderate water stress does not adequately precondition cuttings, hence their ability to withstand water deprivation may be limited, probably due to differences in the root structure of cuttings and seedlings. 19 refs., 7 tabs., 4 figs.

  3. The Effect of Water Deficit stress on Osmotic Metabolites and Anti Oxidant System and Grain and Oil Yield of Amaranth CV. Koniz

    Directory of Open Access Journals (Sweden)

    Mehrdad Yarnia

    2015-01-01

    Full Text Available Drought is one of the most important environmental stresses that highly affect crop growth and yield. But the response of crops to stress depending on the timing of crop growth stages is different. The purpose of this study was to investigate effect of different levels of water stress (irrigation after 50, 80, 110, 140 and 170 mm evaporation from pan on different stages of Amaranth growth (establishment, branching, flowering and grain filling. To find the effects of water deficit stress on this plant it was decided to determine its protein percentage, oil and grain yields under drought stress. Evaluation of physiological characteristics as to the extent of osmotic adjustment and antioxidant activity was also carried out. Results showed that water deficit stress,depending on the severity and duration of stress, caused a reduction between between a minimum of 10 to a maximum of 89 percent in yield, 28 to 70 percent in harvest index, 12 to 32 percent in grain protein and 29 to 97 percent in oil yield. This indicates the high sensitivity of grain and oil yields to severe and prolonged drought stresses. Changes in osmotic substances (proline and soluble carbohydrates showed that this crop under water stress conditions increased proline and soluble carbohydrates by 31 and 50 percents, respectively. Thus, if could be said that under severe droughts the ability of crops to cops with drought will be reduced. Similarly, amaranth, to cope with water stress, increases the amount of antioxidant enzymes like catalase, peroxidase and super oxid dismutase up to 53, 23 and 79%, respectively. Higher amount of super oxid dismutase enzyme produce as the result of drought stress may play an important role to cope with reactive oxygen species and oxidative stresses.

  4. Blunted cortisol response to stress is associated with higher body mass index in low-income preschool-aged children.

    Science.gov (United States)

    Miller, Alison L; Clifford, Caitlin; Sturza, Julie; Rosenblum, Katherine; Vazquez, Delia M; Kaciroti, Niko; Lumeng, Julie C

    2013-11-01

    No known studies have tested the hypothesis that a blunted pattern of cortisol reactivity to stress, which is often found following exposure to chronic life stressors, is associated with a higher body mass index (BMI) in very young children. Low-income children (n=218, mean age 56.6 (range: 38.1-78.5; SD 7.0) months, 49.1% male, 56.4% white, 16.1% black, 11.5% Hispanic/Latino) participated in a series of behavioral tasks designed to elicit stress. Cortisol was sampled in saliva 5 times during the protocol, and area under the curve (AUC), representing total cortisol output during stress elicitation, was calculated. Children were weighed and height measured and body mass index (BMI) z-score was calculated. Linear regression was used to evaluate the association between cortisol AUC and BMI z-score, controlling for child age, sex, and race/ethnicity (non-Hispanic white vs. not); primary caregiver weight status (overweight, defined as BMI ≥ 25 vs. not); and family income-to-needs ratio. Mean child BMI z-score was 0.88 (SD=1.03). Mean cortisol AUC was 6.11 μg/dL/min (SD=10.44). In the fully adjusted model, for each 1-standard deviation unit decrease in cortisol AUC, the child's BMI z-score increased by 0.17 (SE 0.07) standard deviation units (pchildren. Further work is needed to understand how associations between stress, cortisol, and elevated body mass index may develop very early in the lifespan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    Yu eShi

    2016-02-01

    Full Text Available Silicon (Si can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’ under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  6. Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation

    NARCIS (Netherlands)

    Moene, A.F.

    2003-01-01

    The refractive index of air (n) mainly depends on temperature and water vapour content. For near-infrared radiation, temperature is the main determining factor. To determine the structure parameter of temperature (C-T(2)) from the structure parameter of the refractive index (C-n(2)), the influence

  7. Near infrared index to assess the effect of soil tillage and fertilizer on soil water content.

    Science.gov (United States)

    Soltani, Ines; Fouad, Youssef; Michot, Didier; Breger, Pascale; Dubois, Remy; Pichelin, Pascal; Cudennec, Christophe

    2017-04-01

    Characterization of soil hydraulic properties is important for assessing soil water regime in agricultural fields. In the laboratory, measurements of soil hydrodynamic properties are costly and time consuming. Numerous studies recently demonstrated that reflectance spectroscopy can give a rapid estimation of several soil properties including those related with soil water content. The main objective of this research study was to show that near infrared spectroscopy (NIRS) is a useful tool to study the combined effect of soil tillage and fertilizer input on soil hydrodynamic properties. The study was carried out on soil samples collected from an experimental station located in Brittany, France. In 2000, the field was designed in a split-plot combining three tillage practices and four sources of fertilizers (mineral and organic). Undisturbed soil blocks were sampled in 2012 from three different depths of topsoil (0-7 cm, 7-15 cm and 15-20 cm) at each treatment. From each soil block, four aggregates with 3-4 cm diameter by 5-6 cm height were collected. Soil aggregates were first saturated and were then drained through 10 matric potential, from saturation up to permanent wilting point (pF=4.2), by successively using a suction table and a pressure chamber. Once the desired water pressure head was reached, soil samples were scanned to acquire reflectance spectra between 400-2500 nm using a handheld spectroradiometer equipped with a contact probe. Each spectrum was transformed into continuum removal, and an index based on the full width at half maximum (FWHM) of the absorption feature around 1920 nm was calculated. This index showed a linear relationship (R2>0.9) with volumetric water content. Moreover our results showed that the slope of the line was well correlated with the range of treatment. Overall, our findings indicate that the absorption feature of continuum removal spectra around 1900 nm can be useful to study the effect, particularly, of tillage on hydrodynamic

  8. Water Stress Effect on Anatomical and Physiological Characteristics of Two Wheat (Triticum aestivum L. Cultivars

    Directory of Open Access Journals (Sweden)

    T. Jafarian

    2015-01-01

    Full Text Available The aim of this study was to determine the effects of water stress on the anatomy of xylem and phloem vessels, mesophyll and epidermal cells, relative water content and ion transfer rate of two wheat cultivars including Azar2 as drought tolerant and Shole as drought susceptible cultivars at four leaf stages. Seeds were sown in pots under normal (soil water content at 100% of FC and the water stress (60% of FC conditions in a factorial experiment based on CRBD design at the Experimental Farm of Kerman University in 2011. Four samples were taken from different positions of the fully expanded 4th leaf. Results showed that in both cultivars water stress decreased the xylem and phloem vessel diameter and the area of the mesophyll and upper epidermal cells at all positions. However, no significant effect of water stress by cultivar interaction was found on lower surface epidermal cell size and RWC. Water stress effect on the amount of ion leakage up to 30 min after soaking the leaf samples in distilled water was highly significant while it was not significant at 60 min after soaking. The effect of water stress on ion leakage was higher in Shole compared to Azar 2. Anatomical changes of the wheat leaf under water stress condition can be considered as adaptation responses. The effects of such anatomical changes on the final yield need to be investigated in future studies.

  9. Factor analysis of the Parenting Stress Index-Short Form with parents of young children with autism spectrum disorders.

    Science.gov (United States)

    Zaidman-Zait, Anat; Mirenda, Pat; Zumbo, Bruno D; Georgiades, Stelios; Szatmari, Peter; Bryson, Susan; Fombonne, Eric; Roberts, Wendy; Smith, Isabel; Vaillancourt, Tracy; Volden, Joanne; Waddell, Charlotte; Zwaigenbaum, Lonnie; Duku, Eric; Thompson, Ann

    2011-10-01

    The primary purpose of this study was to examine the underlying factor structure of the Parenting Stress Index-Short Form (PSI-SF) in a large cohort of parents of young children with autism spectrum disorder (ASD). A secondary goal was to examine relationships between PSI-SF factors and autism severity, child behavior problems, and parental mental health variables that have been shown to be related to parental stress in previous research. A confirmatory factor analysis (CFA) was used to examine the three-factor structure described in the PSI-SF manual [Abidin, 1995]: parental distress, parent-child dysfunctional interaction, and difficult child. Results of the CFA indicated that the three-factor structure was unacceptable when applied to the study sample. Thus, an exploratory factor analysis was conducted and suggested a six-factor model as the best alternative for the PSI-SF index. Spearman's correlations revealed significant positive correlations with moderate to large effect sizes between the revised PSI-SF factors and autism severity, externalizing and internalizing child behaviors, and an index of parent mental health. The revised factors represent more narrowly defined aspects of the three original subscales of the PSI-SF and might prove to be advantageous in both research and clinical applications. Autism Res 2011,4:336-346. © 2011 International Society for Autism Research, Wiley Periodicals, Inc. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.

  10. Effect of water stress on the growth and some yield parameters of ...

    African Journals Online (AJOL)

    Effect of water stress on the growth and some yield parameters of Solanum lycopersicum L. ... Plants in the first group (W1) were supplied with 200 ml of water everyday; plants in the second group (W2) were supplied with 200 ml of water once every 3 days; plants in the third group (W3) were supplied with 200 ml of water ...

  11. Effect of Water Deficit Stress on the Physiology, Growth and Leaf ...

    African Journals Online (AJOL)

    The three water deficit levels were created by adding 0, 10 and 20% (w/v) polyethylene glycol 6000 (PEG 6000) to the nutrient solution. The results indicated that water deficit, especially severe water deficit (-0.96 MPa), severely affected the growth and physiology of sorghum. Water deficit stress reduced plant height, leaf ...

  12. Estimating anthropogenic ecological water stress in the US great lakes region

    Science.gov (United States)

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g...

  13. Spinach biomass yield and physiological response to interactive salinity and water stress

    Science.gov (United States)

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  14. [HYGIENIC JUSTIFICATION OF OPTIMIZATION OF THE INTEGRATED ASSESSMENT OF DRINKING WATER ACCORDING TO THE WATER QUALITY INDEX].

    Science.gov (United States)

    Krasovskiy, G N; Rakhmanin, Yu; Egorova, N

    2015-01-01

    The present study is devoted to theoretical questions of optimization of integrated assessment of the composition and properties of drinking water with the use of the Water Quality Index (WQI) and considering in it all 4 criteria for its hygienic quality-sanitary-toxicological, microbiological, radiation and organoleptic. There is presented a sequence of the analysis of benchmark data of the laboratory study of drinking water, including the selection of priority indices, their distribution into 4 groups according to hygienic criteria, calculations the ratios of real values (C) of indices to their hygiene MPC and the final calculation of the WQI. There is emphasized the importance of classes of hazard of substances, and the need for the special attention to the substances-carcinogens in the integrated assessment of water quality. To overcome the non-equivalence of contributions to the assessment of water quality factors, measured in different units, often disparated in their effect on human health, there are used the principles of combined action at levels below the MCL:C/MPC indices of performance of the unidirectional action are summed (e.g. carcinogenic substances), from indices of the independent action there are selected the most significant ones with the highest values of C/MPC, besides that there are also used counterbalancing factors K determined accordingly to Delphi method, with a maximum values of 5 for carcinogens and the minimum value of 1 for the substances affecting the organoleptic properties ofwater. There is presented the scheme of the final calculation of the value of WQI.

  15. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    Science.gov (United States)

    Bora, Minakshi; Goswami, Dulal C.

    2017-10-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  16. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at Moghan region. Four lines of bread wheat (N-82-9, N-83-5,. N-84-12 and N-85-20) were evaluated into contrasting water regimes (well-watered and drought stressed.

  17. Growth of Lemon ( Citrus Limon L. Buru) in response to Water Stress ...

    African Journals Online (AJOL)

    A greenhouse study was conducted to determine if the effects of water stress and shade on the growth of lemon are interactive or independent. The main effects of water stress significantly decreased number and surface area of young and old leaves, fresh and dry weight of leaves, flushes and whole plants as well as ...

  18. Evaluation of 10 wheat cultivars under water stress at Moghan (Iran ...

    African Journals Online (AJOL)

    Grain yield, ear number/m2, seed number per ear, 1000 kernel weight, ear length and plant height were studied. Analysis of variance showed that seed yield, ear number, grain number per ear, 1000 kernel weight and plant height was affected significantly by water stress, but ear length was not affected by water stress.

  19. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata

    Science.gov (United States)

    Paul F. Gugger; Juan Manuel Peñaloza-Ramírez; Jessica W. Wright; Victoria L. Sork; Jörg-Peter Schnitzler

    2016-01-01

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née...

  20. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... Tatar and Gevrek (2008) and Kameli and Losel (1996) showed that wheat dry mater production, relative water content (RWC) decreased and proline content increased under drought stress. Higher proline content in wheat plants after water stress has been reported by. Vendruscolo et al. (2007) and Patel ...

  1. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at Moghan region. Four lines of bread wheat (N-82-9, N-83-5, N-84-12 and N-85-20) were evaluated into contrasting water regimes (well-watered and drought stressed after anthesis).

  2. Physiological failures in Zea mays during water-stress: opportunities for improvement

    Science.gov (United States)

    Maintaining high photosynthetic yield in water-stressed maize plants is a present priority for agriculture, and will likely increase in importance as key food producing regions become drier in the future. Although several physiological responses to water stress in maize have been studied in isolatio...

  3. Development of spatial water resources vulnerability index considering climate change impacts.

    Science.gov (United States)

    Jun, Kyung Soo; Chung, Eun-Sung; Sung, Jin-Young; Lee, Kil Seong

    2011-11-15

    This study developed a new framework to quantify spatial vulnerability for sustainable water resources management. Four hydrologic vulnerability indices--potential flood damage (PFDC), potential drought damage (PDDC), potential water quality deterioration (PWQDC), and watershed evaluation index (WEIC)--were modified to quantify flood damage, drought damage, water quality deterioration, and overall watershed risk considering the impact of climate change, respectively. The concept of sustainability in the Driver-Pressure-State-Impact-Response (DPSIR) framework was applied in selecting all appropriate indicators (criteria) of climate change impacts. In the examination of climate change, future meteorological data was obtained using CGCM3 (Canadian Global Coupled Model) and SDSM (Statistical Downscaling Model), and future stream run-off and water quality were simulated using HSPF (Hydrological Simulation Program - Fortran). The four modified indices were then calculated using TOPSIS, a multi-attribute method of decision analysis. As a result, the ranking obtained can be changed in consideration of climate change impacts. This study represents a new attempt to quantify hydrologic vulnerability in a manner that takes into account both climate change impacts and the concept of sustainability. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. COMMUNITY STRESS, DEMORALIZATION AND BODY MASS INDEX: EVIDENCE FOR SOCIAL SIGNAL TRANSDUCTION. (R827027)

    Science.gov (United States)

    Quantification of the relationship between community-level chronic stress from neighborhood conditions and individual morale has rarely been reported. In this work, pregnant women were recruited at the prenatal clinics of Harlem Hospital and Columbia Presbyterian Medical Cente...

  5. WATER QUALITY INDEX AS AN TOOL FOR RIVER ASSESSMENT IN AGRICULTURAL AREAS IN THE PAMPEAN PLAINS OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Carlos Moscuzza

    2007-01-01

    Full Text Available The contributions of nutrients and xenobiotics by anthropogenic activities developed in riverside deteriorate water quality. In this context, the impact of different agroindustry effluents on the water quality of Salado River in Buenos Aires Province (Argentina was analyzed applying water quality indexes (WQI. Water quality index is an efficient a simple monitoring tool to instrument corrective and remediation policies. Winter and summer samplings were performed. A minimal water quality index (WQImin was calculated using only two parameters which can be easy determined in situ. The use of WQImin may be a useful methodology for river management. Meat industry appears as the most pollutant source. Since it is considered as point pollution source, effluents should be treated previous to its disposal with the available technologies.

  6. Do stressed mothers have heavier children? A meta-analysis on the relationship between maternal stress and child body mass index.

    Science.gov (United States)

    Tate, E B; Wood, W; Liao, Y; Dunton, G F

    2015-05-01

    Child obesity continues to be a prevalent public health issue. This meta-analysis synthesized 17 studies investigating the association between levels of psychological stress experienced by mothers and the body mass index of their children. The overall standardized mean difference effect size was positive and significantly different from zero in cross-sectional d = 0.20 (k = 14, 95% confidence interval [CI]: 0.06, 0.34) and longitudinal studies d = 0.18 (k = 5, 95% CI: 0.00, 0.351) and had significant heterogeneity in both (cross-sectional, Q[13] = 193.00, P stress management component in childhood obesity prevention programmes. © 2015 World Obesity.

  7. Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential

    Science.gov (United States)

    Peters, Andre; Durner, Wolfgang; Iden, Sascha C.

    2017-04-01

    Modeling water flow in the soil-plant-atmosphere continuum with the Richards equation requires a model for the sink term describing water uptake by plant roots. Despite recent progress in developing process-based models of water uptake by plant roots and water flow in aboveground parts of vegetation, effective models of root water uptake are widely applied and necessary for large-scale applications. Modeling root water uptake consists of three steps, (i) specification of the spatial distribution of potential uptake, (ii) reduction of uptake due to various stress sources, and (iii) enhancement of uptake in part of the simulation domain to describe compensation. We discuss the conceptual shortcomings of the frequently used root water uptake model of Feddes and suggest a simple but effective improvement of the model. The improved model parametrizes water stress in wet soil by a reduction scheme which is formulated as function of air content where water stress due to low soil water potential is described by the original approach of Feddes. The improved model is physically more consistent than Feddes' model because water uptake in wet soil is limited by aeration which is a function of water content. The suggested modification is particularly relevant for simulations in heterogeneous soils, because stress parameters are uniquely defined for the entire simulation domain, irrespective of soil texture. Numerical simulations of water flow and root water uptake in homogeneous and stochastic heterogeneous soils illustrate the effect of the new model on root water uptake and actual transpiration. For homogeneous fine-textured soils, root water uptake never achieves its potential rate. In stochastic heterogeneous soil, water uptake is more pronounced at the interfaces between fine and coarse regions which has potential implications for plant growth, nutrient uptake and depletion.

  8. Paraheliotropism can protect water-stressed bean (Phaseolus vulgaris L.) plants against photoinhibition.

    Science.gov (United States)

    Pastenes, Claudio; Porter, Victor; Baginsky, Cecilia; Horton, Peter; González, Javiera

    2004-12-01

    In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.

  9. Psychometric Evaluation of a Six Dimension Scale of Nursing Performance and Student Nurse Stress Index Using an Objective Structured Clinical Examination - Modules for Asthma and Type 1 Diabetes

    National Research Council Canada - National Science Library

    Park, Kyong-ok; Ahn, Young-mee; Kang, Na-rae; Lee, Mi-jin; Sohn, Min

    2013-01-01

    ...) and Student Nurse Stress Index (SNSI) and psychometric evaluation of the two measurements. This was a methodology study using a descriptive cross-sectional design with 51 nursing students in 4th year of university...

  10. Developmental reaction norms for water stressed seedlings of succulent cacti.

    Directory of Open Access Journals (Sweden)

    Ulises Rosas

    Full Text Available Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity.

  11. The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management

    Directory of Open Access Journals (Sweden)

    Joel Hernández-Bedolla

    2017-03-01

    Full Text Available Integrated water resource management (IWRM is facing great challenges due to growing uncertainties caused by climate change (CC, rapid socio-economic and technological changes, and population growth. In the present study, we have developed different indices to assess the availability of water using an IWRM approach. These indices evaluate supply to demands, surface availability, groundwater availability, reservoirs, and environmental flow. Moreover, reliability, resilience, and vulnerability were determined. Sustainability index (SI and sustainability index by groups (SG were determined based on the five indices (all indices vary from 0 to 1. The impacts of climate change affect surface and groundwater availability, as do the agricultural, urban, and industrial requirements on the different supplies. We used the generalized AQUATOOL Decision Support System Shell (DSSS to evaluate the IWRM in the Rio Grande Basin (Morelia, México. Various emission scenarios from representative concentration pathways (RCPs were applied to the basin for the years 2015–2039 and 2075–2099. The results indicate increases in agricultural and urban demand, and decreases in surface runoff, as well as groundwater recharge. The proposed indices are useful for different approaches (decision-makers, water policy, and drought risks, among others. CC significantly affects the different proposed indices and indicates a decrease of the SI, SG1, and SG2 (i.e., less availability. For example, we found that SG2 decreased from 0.812 to 0.195 under the RCP 8.5 2075–2099 scenario, and SG2 equal to 0.252 and 0.326 for the RCP 6.0 2075–2099 and RCP 4.5 2070–2099 scenarios, respectively (values close to 0 indicate worst drought conditions.

  12. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress

    Science.gov (United States)

    Talukdar, Dibyendu

    2013-01-01

    Background: Both lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.) in the family Fabaceae are two important cool-season food legumes, often experiencing water stress conditions during growth and maturity. Objective: The present study was undertaken to ascertain the response of these two crops under different water stress regimes. Materials and Methods: Different morpho-physiological and biochemical parameters were studied in a pot experiment under controlled environmental conditions. Along with control (proper irrigation, 0 stress), three sets of plants were subjected to mild (6 d), moderate (13 d) and severe (20 d) water stress by withholding irrigation at the appropriate time. Results: Compared with control, plant growth traits and seed yield components reduced significantly in both crops with increasing period of water stress, resulting in lowering of dry mass with more severe effect on lentil compared with grass pea. Foliar Relative Water Content (RWC) (%), K+/Na+ ratio, chlorophyll (chl) a, chl a/b ratio, stomatal conductance and net photosynthetic rate declined considerably in both crops under water stress. Leaf-free proline level increased significantly in both crops, but it decreased markedly in nodules of lentil and remained unchanged in grass pea. Nodulation was also affected due to water stress. The impairment in growth traits and physio-biochemical parameters under water stress was manifested in reduction of drought tolerance efficiency of both crops. Conclusion: Impact of water stress was more severe on lentil compared with grass pea, and modulation of growth traits signified necessity of a detailed strategy in breeding of food legumes under water stress. PMID:24082740

  13. Growth of rock bass, Ambloplites rupestris, in relation to the morphoedephic index as a indicator of an environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Harvey, H.H.

    1977-01-01

    Atmospheric contamination by sulfur dioxide in the Sudbury region and the associated acidification has reduced population densities of fishes in the La Cloch Mountain lakes, 33-90 km away. Surviving rock bass (Ambloplites rupestris) responded to decreased abundance with increased growth rate. Variation in abudance among surviving populations could be monitored by means of individual growth rates and mean lake depth. Our findings suggest that growth rate of fishes, in conjuction with the morphoedaphic index, may serve as an indicator of environmental stress.

  14. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    Science.gov (United States)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  15. ASSESSMENT OF EARLY SEASON AGRICULTURAL DROUGHT THROUGH LAND SURFACE WATER INDEX (LSWI AND SOIL WATER BALANCE MODEL

    Directory of Open Access Journals (Sweden)

    K. Chandrasekar

    2012-08-01

    Full Text Available An attempt was made to address the early season agriculture drought, by monitoring the surface soil wetness during 2010 cropping seasons in the states of Andhra Pradesh and Tamil Nadu. Short Wave Infrared (SWIR based Land Surface Water Index (LSWI and Soil Water Balance (SWB model using inputs from remote sensing and ancillary data were used to monitor early season agriculture drought. During the crop season, investigation was made on LSWI characteristics and its response to the rainfall. It was observed that the Rate of Increase (RoI of LSWI was the highest during the fortnights when the onset of monsoon occurred. The study showed that LSWI is sensitive to the onset of monsoon and initiation of cropping season. The second part of this study attempted to develop a simple book keeping – bucket type – water tight soil water balance model to derive the top 30cm profile soil moisture using climatic, soil and crop parameters as the basic inputs. Soil moisture derived from the model was used to compute the Area Conducive for Sowing (ACS during the sowing window of the cropping season. The soil moisture was validated spatially and temporally with the ground observed soil moisture values. The ACS was compared with the RoI of LSWI. The results showed that the RoI was high during the sowing window whenever the ACS was greater than 50% of the district area. The observation was consistent in all the districts of the two states. Thus the analysis revealed the potential of LSWI for early season agricultural drought management.

  16. The Psychological General Well-Being Index (PGWBI) for assessing stress of seafarers on board merchant ships.

    Science.gov (United States)

    Carotenuto, Anna; Fasanaro, Angiola M; Molino, Ivana; Sibilio, Fabio; Saturnino, Andrea; Traini, Enea; Amenta, Francesco

    2013-01-01

    In their working activity, seafarers are exposed to high levels of stress that should be accuratelyinvestigated, measured, followed up and, if possible, countered. This is also required by regulations recently entered into force such as the Maritime Labour Convention 2006, recommending to consider special physiological or psychological problems created by the shipboard environment. The choice of the tools for this evaluation is challenging, and a common basic standard usable in a large scale should be identified. The aim of this study was to evaluate: 1) the suitability of the Psychological General Well-Being Index (PGWBI) questionnaire conducted on board for assessing stress in the sailing seafarers, 2) The presenceof stress in seafarers of different categories (deck officers, engine officers, deck crew, engine crew, chiefstewards/catering staff) monitored by the PGWBI. 162 male seafarers on board of 7 tankers belonging to the same shipping companywere evaluated through the PGWB questionnaire. Analysis of variance (ANOVA) was used to analyse thedifferences in the scores of the questionnaire. Engine officers exhibited significantly higher anxiety levels than the deck or engine crew, andshowed lower satisfaction than the deck crew. Deck and engine officers revealed higher self-control levelsthan the engine crew. Chief stewards/catering staff showed lower vitality levels than the deck crew. Deck or engine officers should achieve a greater self-control than the crew and this is documentedby the present study. Our findings support the view that management responsibility is more often associated with higher levels of stress. In our opinion, the PGWB questionnaire is a reasonable compromise forobtaining a global evaluation of psychological conditions, including stress of seafarers. It should be therefore considered as a large scale tool for assessing the well-being and eventual stress levels of sailing seafarers.

  17. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  18. Predicting Vegetation Condition from ASCAT Soil Water Index over Southwest India

    Science.gov (United States)

    Pfeil, Isabella Maria; Hochstöger, Simon; Amarnath, Giriraj; Pani, Peejush; Enenkel, Markus; Wagner, Wolfgang

    2017-04-01

    In India, extreme water scarcity events are expected to occur on average every five years. Record-breaking droughts affecting millions of human beings and livestock are common. If the south-west monsoon (summer monsoon) is delayed or brings less rainfall than expected, a season's harvest can be destroyed despite optimal farm management, leading to, in the worst case, life-threatening circumstances for a large number of farmers. Therefore, the monitoring of key drought indicators, such as the healthiness of the vegetation, and subsequent early warning is crucial. The aim of this work is to predict vegetation state from earth observation data instead of relying on models which need a lot of input data, increasing the complexity of error propagation, or seasonal forecasts, that are often too uncertain to be used as a regression component for a vegetation parameter. While precipitation is the main water supply for large parts of India's agricultural areas, vegetation datasets such as the Normalized Difference Vegetation Index (NDVI) provide reliable estimates of vegetation greenness that can be related to vegetation health. Satellite-derived soil moisture represents the missing link between a deficit in rainfall and the response of vegetation. In particular the water available in the root zone plays an important role for near-future vegetation health. Exploiting the added-value of root zone soil moisture is therefore crucial, and its use in vegetation studies presents an added value for drought analyses and decision-support. The soil water index (SWI) dataset derived from the Advanced Scatterometer (ASCAT) on board the Metop satellites represents the water content that is available in the root zone. This dataset shows a strong correlation with NDVI data obtained from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is exploited in this study. A linear regression function is fit to the multi-year SWI and NDVI dataset with a temporal

  19. Assessing the heat stress of brick-manufacturing units’ workers based on WBGT index in Qom city

    Directory of Open Access Journals (Sweden)

    R. Hajizadeh

    2015-01-01

    Full Text Available Introduction: Heat stress is considered as a serious risk factor to the health and safety of workers in most working environments, especially in outdoor works and jobs that workers are exposed to heat due to the working process. This study aimed to evaluate heat stress among workers of brick-manufacturing units in Qom city based on WBGT index as well as the relationship between WBGT and physiological indicators. .Material and Method: The present study was conducted in 40 brick-manufacturing units in Qom city. WBGT measurements were performed according to ISO7243 standard. Physiological responses of 184 workers (up to 5 people per unit and also atmospheric parameters were measured. The physiological responses included oral temperature, skin temperature, and temperature for the carotid artery of the ear, heart rate, systolic and diastolic blood pressure. Statistical analysis was done using SPSS software version 16. .Result: Mean WBGT index for various brick-manufacturing jobs including firing, manual material handling, working with conveyors, molding, and tempering were 30.8 °C, 26.74 °C 26.58 °C and 24.25 °C, respectively and the average WBGT was estimated 27.98 °C. WBGT levels measured in all units exceeded the level provided in ISO7243 standard. The highest mean WBGT was belonged to kiln section (30.8 °C. The mean WBGT at three heights of head, abdomen and legs were not statistically different (using t-test. The correlation coefficients between mean WBGT and mean oral, skin and ears temperatures were 0.203, 0.319, and 0.490, respectively, with the highest correlation belonged to the carotid arteries of ears. Moreover, WBGT showed no significant association with the mean heart rate, systolic, and diastolic blood pressure (P-value>0.05. Indoor and outdoor WBGT index was significantly different (P-value<0.05. .Conclusion: The level of heat stress in all brick-manufacturing units was higher than the recommended limits, and the workers in kiln

  20. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  1. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  2. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS.

    Science.gov (United States)

    Perel, Azriel

    2013-01-24

    The recent Berlin definition has made some improvements in the older definition of acute respiratory distress syndrome (ARDS), although the concepts and components of the definition remained largely unchanged. In an effort to improve both predictive and face validity, the Berlin panel has examined a number of additional measures that may reflect increased pulmonary vascular permeability, including extravascular lung water. The panel concluded that although extravascular lung water has improved face validity and higher values are associated with mortality, it is infeasible to mandate on the basis of availability and the fact that it does not distinguish between hydrostatic and inflammatory pulmonary edema. However, the results of a multi-institutional study that appeared in the previous issue of Critical Care show that this latter reservation may not necessarily be true. By using extravascular lung water and the pulmonary vascular permeability index, both of which are derived from transpulmonary thermodilution, the authors could successfully differentiate between patients with ARDS and other patients in respiratory failure due to either cardiogenic edema or pleural effusion with atelectasis. This commentary discusses the merits and limitations of this study in view of the potential improvement that transpulmonary thermodilution may bring to the definition of ARDS.

  3. Liquid sinusoidal pressure measurement by laser interferometry based on the refractive index of water.

    Science.gov (United States)

    Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo

    2016-12-01

    A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.

  4. Projective drawings for assessing stress among subjects with medical symptoms compatible with sick building syndrome, and validation of a modified version of the Stress Load Index from the Drawing Personality Profile: a pilot study.

    Science.gov (United States)

    Runeson, Roma; Wahlstedt, Kurt; Norbäck, Dan

    2007-02-01

    It was hypothesized that subjects with medical symptoms would show more signs of stress in projective drawings. A Stress Load Index, including five signs of stress in drawings, was evaluated. A questionnaire with an instruction to draw "a person in the rain" was sent to a cohort of 195 subjects, and the drawings were analysed blindly for eight stress items. Men had a higher index than women (p sick building syndrome symptoms (p < .05). In conclusion, a nonverbal projective drawing test detected sex differences which represent directions opposite to those with verbal methods. These need empirical assessment.

  5. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions

    OpenAIRE

    Thais H. S. Ferreira; Tsunada, Max S.; Denis Bassi; Pedro Araújo; Lucia Mattiello; Guidelli, Giovanna V.; Righetto, Germanna L.; Gonçalves, Vanessa R.; Prakash Lakshmanan; Marcelo Menossi

    2017-01-01

    Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcan...

  6. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. [Work stress, common mental disorders and Work Ability Index among call center workers of an Italian company].

    Science.gov (United States)

    Conway, Paul Maurice; Campanini, Paolo; Punzi, Silvia; Fichera, Giuseppe Paolo; Camerino, Donatella; Francioli, Laura; Neri, Luca; Costa, Giovanni

    2013-01-01

    To test three hypotheses in an Italian sample of call center workers: higher levels of perceived work stress are associated with more frequent common mental disorders (GHQ-12) and a lower Work Ability Index; combining the Job Strain (JS) and Effort/Reward Imbalance (ERI) models increases explained variance in health over and above either model when applied separately; compared with outbound operators, inbound call handlers are expected to report a lower health status,which is due to a more intense exposure to task-related work stress factors in the latter. A multi-center cross-sectional study, conducted by means of interviews and self-administered questionnaires. Call handlers working in the Italian branch of a telecommunication multinational company. In all, 1,106 permanent workers were examined (35.9%of the total target population, 98.9% response rate). The majority were women (76.5%);mean age was 33.3 (SD: 3.9) and company seniority 8.0 (SD: 2.1). Nearly 60% worked as inbound call handlers, about one third as outbound operators. Work stress was measured with the well-known JS and ERI models. Three exposure levels (based on tertiles) were identified for each scale. Common mental disorders were measured with the GHQ-12 questionnaire. Subjects with a GHQ-12 score 4 were classified as "cases". The Work Ability Index (WAI) was used to evaluate work ability. Being in the "poor" or "moderate" categories of the WAI indicated a low work ability status. Cronbach's alphas were 0.70 for all scales. Multivariate Poisson regressions showed that both models were linked to more frequent common mental disorders and a lower WAI. Moreover, combined models demonstrated an advantage in terms of explained variance in health. Finally, performing inbound call handling was associated with a lower WAI in comparison with engaging in outbound activities. Mediation analyses showed that such association is explained by the higher levels of psychological job demands and Job Strain experienced

  8. Development of a water quality index (WQI) for the Loktak Lake in India

    Science.gov (United States)

    Das Kangabam, Rajiv; Bhoominathan, Sarojini Devi; Kanagaraj, Suganthi; Govindaraju, Munisamy

    2017-10-01

    The present work was carried out to assess a water quality index (WQI) of the Loktak Lake, an important wetland which has been under pressure due to the increasing anthropogenic activities. Physicochemical parameters like temperature (Tem), potential hydrogen (pH), electrical conductivity (EC), turbidity (T), dissolved oxygen (DO), total hardness (TH), calcium (Ca), chloride (Cl), fluoride (F), sulphate ({SO}4^{2-}), magnesium (Mg), phosphate ({PO}4^{3-}), sodium (Na), potassium (K), nitrite (NO2), nitrate (NO3), total dissolved solids (TDS), total carbon (TC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed using standard procedures. The values obtained were compared with the guidelines for drinking purpose suggested by the World Health Organization and Bureau of Indian Standard. The result shows the higher concentration of nitrite in all the location which is beyond the permissible limit. Eleven parameters were selected to derive the WQI for the estimation of water potential for five sampling sites. A relative weight was assigned to each parameter range from 1.46 to 4.09 based on its importance. The WQI values range from 64 to 77 indicating that the Loktak Lake water is not fit for drinking, including both human and animals, even though the people living inside the Lake are using it for drinking purposes. The implementation of WQI is necessary for proper management of the Loktak Lake and it will be a very helpful tool for the public and decision makers to evaluate the water quality of the Loktak Lake for sustainable management.

  9. Respiratory sinus arrhythmia as a non-invasive index of ′brain-heart′ interaction in stress

    Directory of Open Access Journals (Sweden)

    Ingrid Tonhajzerova

    2016-01-01

    Full Text Available Respiratory sinus arrhythmia (RSA is accepted as a peripheral marker of cardiac-linked parasympathetic regulation. According to polyvagal theory, the RSA is also considered as the index of emotion regulation. The neurovisceral integration model posits that parasympathetic modulation of the heart marked by RSA is related to complex nervous regulation associated with emotional and cognitive processing. From this perspective, high resting RSA amplitude associated with a greater withdrawal during stressors and subsequent recovery could represent a flexible and adaptive physiological response system to a challenge. Conversely, low resting RSA accompanied by an inadequate reactivity to stress might reflect maladaptive regulatory mechanisms. The RSA reactivity is different with various types of stressors: while the RSA decreases to cognitive tasks indicating a vagal withdrawal, the RSA magnitude increases to emotional challenge indicating an effective cognitive processing of emotional stimuli. The RSA reactivity to stress could have important implications for several mental disorders, e.g. depressive or anxiety disorder. It seems that the study of the RSA, as a non-invasive index of ′brain-heart′ communication, could provide important information on the pathway linked to mental and physical health.

  10. Measurement of water transfer and swelling stress in the buffer material due to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Chijimatsu, M.; Fujita, A.

    1999-03-01

    Coefficients concerning the water transfer in the buffer material was obtained by empirically giving a temperature gradient, and the swelling stress was measured when water was soaked in the sample under the uniform temperature and temperature gradient conditions. The distributions of temperature and water in the buffer material empirically given a temperature gradient were measured to deduce water diffusion constant due to the temperature gradient. The diffusion constant was the order of 10{sup -8} cm{sup 2}/s/degC. As a result of a equitemperature soaking test, it was found that the swelling stress of the part where soaktion was slow was greater than that of the part with fast soaking at a stage of non-uniform water distribution. The water soaking quantity to the sample and swelling stress reached a stationary state after 7000 hours and the water distribution in the whole sample was found saturated. (H. Baba)

  11. Neutrophils stimulation index in people under consumption of broiler chickens meat at pre-slaughter stress correction

    Directory of Open Access Journals (Sweden)

    S. Grabovskyi

    2015-09-01

    introduced before slaughter (experimental group. The neutrophils stimulation index decreased in men blood (–2,21 after consumption of broiler chickens meat at pre-slaughter stress (control group. The neutrophils stimulation index in men blood of experimental and control groups differed by 34,8%, but did not go beyond the physiological norm. At the final stage of poultry feeding it is necessary to consider pre-slaughter stress and to apply biologically active substances of natural origin, such as spleen extract. The results obtained in the experiment on broiler chickens can be used in studies of non-specific resistance indices of the farm animals for increasing the organism resistance, correction and avoiding of pre-slaughter stress and improvement of product quality

  12. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Tiina Föhr

    2016-08-01

    Full Text Available Abstract Background Physical inactivity, overweight, and work-related stress are major concerns today. Psychological stress causes physiological responses such as reduced heart rate variability (HRV, owing to attenuated parasympathetic and/or increased sympathetic activity in cardiac autonomic control. This study’s purpose was to investigate the relationships between physical activity (PA, body mass index (BMI, and HRV-based stress and recovery on workdays, among Finnish employees. Methods The participants in this cross-sectional study were 16 275 individuals (6863 men and 9412 women; age 18–65 years; BMI 18.5–40.0 kg/m2. Assessments of stress, recovery and PA were based on HRV data from beat-to-beat R-R interval recording (mainly over 3 days. The validated HRV-derived variables took into account the dynamics and individuality of HRV. Stress percentage (the proportion of stress reactions, workday and working hours, and stress balance (ratio between recovery and stress reactions, sleep describe the amount of physiological stress and recovery, respectively. Variables describing the intensity (i.e. magnitude of recognized reactions of physiological stress and recovery were stress index (workday and recovery index (sleep, respectively. Moderate to vigorous PA was measured and participants divided into the following groups, based on calculated weekly PA: inactive (0 min, low (0 300 min. BMI was calculated from self-reported weight and height. Linear models were employed in the main analyses. Results High PA was associated with lower stress percentages (during workdays and working hours and stress balance. Higher BMI was associated with higher stress index, and lower stress balance and recovery index. These results were similar for men and women (P < 0.001 for all. Conclusion Independent of age and sex, high PA was associated with a lower amount of stress on workdays. Additionally, lower BMI was associated with better recovery during

  13. Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data

    Directory of Open Access Journals (Sweden)

    Zhuoya Ni

    2015-03-01

    Full Text Available The purpose of this paper was to investigate the early water stress in maize using leaf-level measurements of chlorophyll fluorescence and temperature. In this study, a series of diurnal measurements, such as leaf chlorophyll fluorescence (Fs, leaf spectrum, temperature and photosynthetically active radiation (PAR, were conducted for maize during gradient watering and filled watering experiments. Fraunhofer Line Discriminator methods (FLD and 3FLD were used to obtain fluorescence from leaves spectrum. This simulated work using the SCOPE model demonstrated the variations in fluorescence and temperature in stress levels expressed by different stress factors. In the field measurement, the gradient experiment revealed that chlorophyll fluorescence decreased for plants with water stress relative to well-water plants and Tleaf-Tair increased; the filled watering experiment stated that chlorophyll fluorescence of maize under water stress were similar to those of maize under well-watering condition. In addition, the relationships between the Fs, retrieved fluorescence, Tleaf-Tair and water content were analyzed. The Fs determination resulted to the best coefficients of determination for the normalized retrieved fluorescence FLD/PAR (R2 = 0.54, Tleaf-Tair (R2 = 0.48 and water content (R2 = 0.71. The normalized retrieved fluorescence yielded a good coefficient of determination for Tleaf-Tair (R2 = 0.48. This study demonstrated that chlorophyll fluorescence could reflect variations in the physiological states of plants during early water stress, and leaf temperature confirmed the chlorophyll fluorescence analysis results and improved the accuracy of the water stress detection.

  14. Water stress projections for the northeastern and Midwestern United States in 2060: anthropogenic and ecological consequences

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Peter Caldwell; Ge Sun

    2013-01-01

    Future climate and land-use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast...

  15. Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions

    NARCIS (Netherlands)

    Ploeg, van der M.J.; Gooren, H.P.A.; Bakker, G.; Rooij, de G.H.

    2008-01-01

    In many regions of the world, plant growth and productivity are limited by water deficits. As a result of more frequent and intense droughts, the area of land characterized as very dry has more than doubled since the 1970s. Consequently, understanding root water uptake under water-stressed

  16. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    Science.gov (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  17. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?

    Science.gov (United States)

    Martìnez, Juan-Pablo; Lutts, Stanley; Schanck, André; Bajji, Mohammed; Kinet, Jean-Marie

    2004-09-01

    The effect of water stress was investigated in plants from two populations of Atriplex halimus L: Tensift issued from a salt-affected coastal area and Kairouan, originating from an inland dried site. Water deficit was applied by withholding water for 22 days. Shoot dry weight (shoot DW), leaf relative water content (RWC), turgid weight to dry weight ratio (TW/DW), osmotic potential (psis), osmotic adjustment (OA), proline, glycinebetaine, and sugar content were determined 1, 8, 15 and 22 days after withholding watering. Water stress induced a decrease in shoot DW, RWC, psis, and TW/DW, but an increase in glycinebetaine and sugar leaf contents. The decrease of psis and TW/DW was more marked in Kairouan than in Tensift. At the end of the stress period, Kairouan showed a greater OA compared with Tensift. However, the contribution of net solute accumulation (OAacc) was similar in both populations in response to stress. Water stress resistance could thus not be associated with higher OA, although the ability of plants to regulate these metabolic and physiological functions could play an important role under harmful conditions. The possible roles of osmolyte accumulations are discussed in relation to the specific physiological strategy of water-stress-resistance in this species.

  18. Hyperspectral image analysis for water stress detection of apple trees

    Science.gov (United States)

    Plant stress significantly reduces plant productivity. Automated on-the-go mapping of plant stress would allow for a timely intervention and mitigation of the problem before critical thresholds are exceeded, thereby maximizing productivity. The spectral signature of plant leaves was analyzed by a ...

  19. Multistructure index in revealing complexity of regulatory mechanisms of human cardiovascular system at rest and orthostatic stress in healthy humans

    Science.gov (United States)

    Makowiec, Danuta; Graff, Beata; Struzik, Zbigniew R.

    2017-02-01

    Biological regulation is sufficiently complex to pose an enduring challenge for characterization of both its equilibrium and transient non-equilibrium dynamics. Two univariate but coupled observables, heart rate and systolic blood pressure, are commonly characterized in the benchmark example of the human cardiovascular regulatory system. Asymmetric distributions of accelerations and decelerations of heart rate, as well as rises and falls in systolic blood pressure, recorded in humans during a head-up tilt test provide insights into the dynamics of cardiovascular response to a rapid, controlled deregulation of the system's homeostasis. The baroreflex feedback loop is assumed to be the fundamental physiological mechanism for ensuring homeostatic blood supply to distant organs at rest and during orthostatic stress, captured in a classical beat-to-beat autoregressive model of baroreflex by de Boer et al. (1987). For model corroboration, a multistructure index statistic is proposed, seamlessly evaluating the size spectrum of magnitudes of neural reflexes such as baroreflex, responsible for maintaining the homeostatic dynamics. The multistructure index exposes a distinctly different dynamics of multiscale asymmetry between results obtained from real-life signals recorded from healthy subjects and those simulated using both the classical and perturbed versions of the model. Nonlinear effects observed suggest the pronounced presence of complex mechanisms resulting from baroreflex regulation when a human is at rest, which is aggravated in the system's response to orthostatic stress. Using our methodology of multistructure index, we therefore show a marked difference between model and real-life scenarios, which we attribute to multiscale asymmetry of non-linear origin in real-life signals, which we are not reproducible by the classical model.

  20. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Reddi

    2017-10-01

    Full Text Available Remote sensing-based assessments of large river basins such as the Krishna, which supplies water to many states in India, are useful for operationally monitoring agriculture, especially basins that are affected by abiotic stress. Moderate-Resolution Imaging Spectroradiometer (MODIS time series products can be used to understand cropland changes at the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were used to identify land use/land cover (LULC areas for two crop years: 2013–2014, which was a normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were categorized into three classes—severe, moderate and mild—based on the normalized difference vegetation index (NDVI and intensity of damage assessed through field sampling. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived classification individual products. Water inflows into and outflows from the Krishna river basin during the study period were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived LULC classification of individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM was used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will have significant impacts on food security. It has been also observed that the farmers in the basin tend to use lower inputs and labour per ha during drought years. Among

  1. Water stress induced breakdown of carbon-water relations: indicators from diurnal FLUXNET patterns

    Science.gov (United States)

    Nelson, Jacob; Carvalhais, Nuno; Migliavacca, Mirco; Reichstein, Markus; Jung, Martin

    2017-04-01

    Understanding of terrestrial carbon and water cycles is currently hampered by an uncertainty in how to capture the large variety of plant responses to drought across climates, ecological strategies, and environments. In FLUXNET, many sites do not uniformly report the ancillary variables needed to study drought response physiology such as soil moisture, sap flux, or species composition. In this sense, the use of diurnal patters to derive clues on ecosystem water limitation responses at a daily resolution from an existing dataset could prove valuable, if nothing less than a benchmark to test current hypotheses. To this end, we propose two data-driven indicators derived directly from the eddy covariance data and based on expected physiological responses to hydraulic and non-stomatal limitations. Hydraulic limitations are proxied using the normalized diurnal centroid, which measures the degree to which the flux of ET is shifted toward the morning. Non-stomatal limitations are characterized by the Diurnal Water:Carbon Index (DWCI), which measures the degree of coupling between daily ET and GPP fluxes. Globally, we found significantly high frequencies of morning shifted days in dry/Mediterranean climates and savanna plant functional types (PFT), whereas high frequencies of decoupling were found in dry climates and grassland/savanna PFTs. Overall, both the diurnal centroid and DWCI were associated with high net radiation and low latent energy. Using three water use efficiency (WUE) models, we found the mean difference between expected and observed WUE to be 0.09 to -0.23 umol/mmol and -0.42 to -0.49 umol/mmol for decoupled and morning shifted days respectively, indicating an increase in WUE associated with the metrics that the models were unable to capture. Furthermore we discuss the application of diurnal centroid and DWCI to methods of evapotranspiration partitioning and estimation of ecosystem isohydricity.

  2. Wave-induced bottom shear stress estimation in shallow water exemplified by using deep water wind statistics

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    2017-04-01

    Full Text Available The paper provides a simple and analytical method which can be used to give estimates of the wave-induced bottom shear stress for very rough beds and mud beds in shallow water based on wind statistics in deep water. This is exemplified by using long-term wind statistics from the northern North Sea, and by providing examples representing realistic field conditions. Based on, for example, global wind statistics, the present results can be used to make estimates of the bottom shear stress in shallow water.

  3. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India.

    Science.gov (United States)

    Poonia, Shubra; Singh, T Shantikumar; Tsering, Dechen C

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculated. The water quality values ranged 32.01-96.71. The results showed that most of the water samples were in poor condition (85.3%) and very few of them were in good condition (2.6%). The water quality of the natural sources indicated that the water is poor-quality and not totally safe for human consumption, and that it needs treatment before consumption.

  4. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: a cross-sectional study.

    Science.gov (United States)

    Föhr, Tiina; Pietilä, Julia; Helander, Elina; Myllymäki, Tero; Lindholm, Harri; Rusko, Heikki; Kujala, Urho M

    2016-08-02

    Physical inactivity, overweight, and work-related stress are major concerns today. Psychological stress causes physiological responses such as reduced heart rate variability (HRV), owing to attenuated parasympathetic and/or increased sympathetic activity in cardiac autonomic control. This study's purpose was to investigate the relationships between physical activity (PA), body mass index (BMI), and HRV-based stress and recovery on workdays, among Finnish employees. The participants in this cross-sectional study were 16 275 individuals (6863 men and 9412 women; age 18-65 years; BMI 18.5-40.0 kg/m(2)). Assessments of stress, recovery and PA were based on HRV data from beat-to-beat R-R interval recording (mainly over 3 days). The validated HRV-derived variables took into account the dynamics and individuality of HRV. Stress percentage (the proportion of stress reactions, workday and working hours), and stress balance (ratio between recovery and stress reactions, sleep) describe the amount of physiological stress and recovery, respectively. Variables describing the intensity (i.e. magnitude of recognized reactions) of physiological stress and recovery were stress index (workday) and recovery index (sleep), respectively. Moderate to vigorous PA was measured and participants divided into the following groups, based on calculated weekly PA: inactive (0 min), low (0 300 min). BMI was calculated from self-reported weight and height. Linear models were employed in the main analyses. High PA was associated with lower stress percentages (during workdays and working hours) and stress balance. Higher BMI was associated with higher stress index, and lower stress balance and recovery index. These results were similar for men and women (P sleep, expressed by a greater amount and magnitude of recovery reactions, which suggests that PA in the long term resulting in improved fitness has a positive effect on recovery, even though high PA may disturb recovery during the

  5. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines

    Directory of Open Access Journals (Sweden)

    Carlos Zúñiga Espinoza

    2017-09-01

    Full Text Available Precision irrigation management is based on the accuracy and feasibility of sensor data assessing the plant water status. Multispectral and thermal infrared images acquired from an unmanned aerial vehicle (UAV were analyzed to evaluate the applicability of the data in the assessment of variants of subsurface irrigation configurations. The study was carried out in a Cabernet Sauvignon orchard located near Benton City, Washington. Plants were subsurface irrigated at a 30, 60, and 90 cm depth, with 15%, 30%, and 60% irrigation of the standard irrigation level as determined by the grower in commercial production management. Half of the plots were irrigated using pulse irrigation and the other half using continuous irrigation techniques. The treatments were compared to the control plots that received standard surface irrigation at a continuous rate. The results showed differences in fruit yield when the control was compared to deficit irrigated treatments (15%, 30%, 60% of standard irrigation, while no differences were found for comparisons of the techniques (pulse, continuous or depths of irrigation (30, 60, 90 cm. Leaf stomatal conductance of control and 60% irrigation treatments were statistically different compared to treatments receiving 30% and 15% irrigation. The normalized difference vegetation index (NDVI, green normalized difference vegetation index (GNDVI, and canopy temperature were correlated to fruit yield and leaf stomatal conductance. Significant correlations (p < 0.01 were observed between NDVI, GNDVI, and canopy temperature with fruit yield (Pearson’s correlation coefficient, r = 0.68, 0.73, and −0.83, respectively, and with leaf stomatal conductance (r = 0.56, 0.65, and −0.63, respectively at 44 days before harvest. This study demonstrates the potential of using low-altitude multispectral and thermal imagery data in the assessment of irrigation techniques and relative degree of plant water stress. In addition, results provide

  6. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus

    Directory of Open Access Journals (Sweden)

    Jing eZhang

    2015-11-01

    Full Text Available Drought stress can directly inhibit seedling establishment in canola (Brassica napus, resulting in lower plant densities and reduced yields. To dissect this complex trait, 140 B. napus accessions were phenotyped under normal (0.0 MPa, S0 and water-stressed conditions simulated by polyethylene glycol (PEG 6000 (–0.5 MPa, S5 in a hydroponic system. Phenotypic variation and heritability indicated that the root to shoot length ratio was a reliable indicator for water stress tolerance. Thereafter, 66 accessions (16 water stress tolerant, 34 moderate and 16 sensitive lines were genotyped using 25,495 Brassica single nucleotide polymorphisms. Genome-wide association studies identified 16 loci significantly associated with water stress response. Two B. napus accessions were used for RNA-seq, with differentially-expressed genes under normal and water-stressed conditions examined. By combining differentially-expressed genes detected by RNA-seq with significantly associated loci from genome-wide association studies, 79 candidate genes were identified, of which eight were putatively associated with drought tolerance based on gene ontology of Arabidopsis. Functional validation of these genes may confirm key drought-related genes for selection and breeding in B. napus. Our results provide insight into the genetic basis of water stress tolerance in canola.

  7. Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress.

    Science.gov (United States)

    Wu, Huanian; Zhang, Yongqiang; Zhang, Wangbin; Pei, Xinwu; Zhang, Chao; Jia, Shirong; Li, Weimin

    2015-01-01

    Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance. We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs) reflecting the early response to water stress (6h vs. 0h), the late response to water stress (24h vs. 0h) and the response to post water stress rehydration (30h vs. 24h). Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the 'Glutathione metabolism pathway' in response to water stress. This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia in response to water stress, and merit further investigation.

  8. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  9. Effects of Nutrients Foliar Application on Agrophysiological Characteristics of Maize under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Nour Ali SAJEDI

    2010-09-01

    Full Text Available To investigate effects of nutrients foliar application on agrophysiological characteristics of maize hybrid �KSC 704� water deficit stress conditions, an experiment was arranged in a split plot factorial based on a randomized complete block design with four replications to the Research Station of Islamic Azad University-Arak Branch, Iran in 2007-2008. Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, blister stage (R2 and filling grain stage (R4 in the main plot. Combined levels of selenium treatment (without and with application 20 gha-1 and micronutrients (without and with application 2 lha-1 were situated in sub plots. Results showed that water deficit stress decreased grain yield 19.7% in blister stage as compared with control. Using selenium increased relative content water at R2 and R4 stages significantly. Using selenium in water deficit stress condition increased measured traits except plant height as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. Between treatments of water deficit stress, highest grain yield equal 6799.52 and 6736.97 kgha-1 was obtained from combined treatments of water deficit stress at eight-leaf stage+without selenium+without micronutrients and water deficit stress at eight-leaf stage+selenium+without micronutrients respectively which compared with treatment of irrigation equal to crop water requirement+selenium+microelements did not differ significant. According to the results of experiment, it is concluded that with micronutrients fertilizer spray under optimum irrigation and selenium spray under water deficit obtain optimum yield.

  10. Effects of Nutrients Foliar Application on Agrophysiological Characteristics of Maize under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Nour Ali SAJEDI

    2010-09-01

    Full Text Available To investigate effects of nutrients foliar application on agrophysiological characteristics of maize hybrid KSC 704 water deficit stress conditions, an experiment was arranged in a split plot factorial based on a randomized complete block design with four replications to the Research Station of Islamic Azad University-Arak Branch, Iran in 2007-2008. Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, blister stage (R2 and filling grain stage (R4 in the main plot. Combined levels of selenium treatment (without and with application 20 gha-1 and micronutrients (without and with application 2 lha-1 were situated in sub plots. Results showed that water deficit stress decreased grain yield 19.7% in blister stage as compared with control. Using selenium increased relative content water at R2 and R4 stages significantly. Using selenium in water deficit stress condition increased measured traits except plant height as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. Between treatments of water deficit stress, highest grain yield equal 6799.52 and 6736.97 kgha-1 was obtained from combined treatments of water deficit stress at eight-leaf stage+without selenium+without micronutrients and water deficit stress at eight-leaf stage+selenium+without micronutrients respectively which compared with treatment of irrigation equal to crop water requirement+selenium+microelements did not differ significant. According to the results of experiment, it is concluded that with micronutrients fertilizer spray under optimum irrigation and selenium spray under water deficit obtain optimum yield.

  11. Consumption of a high glycemic load but not a high glycemic index diet is marginally associated with oxidative stress in young women.

    Science.gov (United States)

    Arikawa, Andrea Y; Jakits, Holly E; Flood, Andrew; Thomas, William; Gross, Myron; Schmitz, Kathryn H; Kurzer, Mindy S

    2015-01-01

    Research studies have suggested that chronic consumption of high glycemic index foods may lead to chronically high oxidative stress. This is important because oxidative stress is suspected to be an early event in the etiology of many disease processes. We hypothesized that dietary glycemic index and glycemic load were positively associated with oxidative stress assessed by plasma F2-isoprostanes in healthy, premenopausal women (body mass index [BMI] = 24.7 ± 4.8 kg/m(2) and age 25.3 ± 3.5 years, mean ± SD). We measured plasma F2-isoprostanes in 306 healthy premenopausal women at the baseline visit for the Women In Steady Exercise Research study, using gas chromatography-mass spectrometry. Dietary glycemic index and load were calculated from the National Cancer Institute Diet History Questionnaire, and participants were divided into quartiles of dietary glycemic index and of glycemic load. Plasma F2-isoprostanes were compared across quartile groups of dietary glycemic index and glycemic load using linear regression models. Plasma F2-isoprostanes (pg/mL) increased with quartile of glycemic load (test for linear trend, P = .033), and also increased with quartile of glycemic index in participants with BMI ≥ 25 (P = .035) but not in those with BMI glycemic index and P = .065 for quartiles of glycemic load). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI for balancing nutrition and human health

    Directory of Open Access Journals (Sweden)

    Joseph Kanner

    2017-08-01

    Full Text Available Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA. MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs, producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI. The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0. The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.

  13. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health.

    Science.gov (United States)

    Kanner, Joseph; Selhub, Jacob; Shpaizer, Adi; Rabkin, Boris; Shacham, Inbal; Tirosh, Oren

    2017-08-01

    Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Copyright © 2017. Published by Elsevier B.V.

  14. Adapting to Water Stress in the Comahue Region of Argentina ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    , quality, and distribution -generate local and regional climate and hydrological models and scenarios for mid- and long-term water availability -assess current water availability, use, and distribution in sub-regions of the Comahue and provide ...

  15. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  16. Effects of water stress on the rooting, nodulation potentials and ...

    African Journals Online (AJOL)

    The experiment was conducted in plastic buckets arranged in a completely Randomized Design with three replications, and treatments represented as 500ml, 1000ml, and 1500ml of water, respectively. Control treatment was represented by cowpea plants that grown with rain-fed water. The 500ml and 1000ml of water were ...

  17. Phosphatidic acid, a versatile water-stress signal in roots

    NARCIS (Netherlands)

    McLoughlin, F.; Testerink, C.

    2013-01-01

    Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones,

  18. Adapting to Water Stress in the Comahue Region of Argentina ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change is expected to lead to decreases in annual precipitation for the Comahue region in central-west Argentina. Combined with a projected increase in water demand and use, this will likely result in more frequent and severe water shortages over the coming decades. Water access and distribution in the region is ...

  19. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    Science.gov (United States)

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics

  20. Association of the Alternative Healthy Eating Index (AHEI-2010) with depression, stress and anxiety among Iranian military personnel.

    Science.gov (United States)

    Rahmani, Jamal; Milajerdi, A; Dorosty-Motlagh, A

    2017-09-15

    Psychological disorders have a major role in the incidence of chronic diseases and may result in reductions in the cost-effectiveness of the Armed Forces. Previous civilian studies have shown a protective association between healthy eating guidelines and mental disorders, but evidence to support this for a military population is limited. The aim of this study was to examine the association of Alternative Healthy Eating Index (AHEI-2010) with depression, stress and anxiety among Iranian military personnel. A cross-sectional study was conducted on 246 male Army soldiers. Stress, anxiety, depression and dietary intakes were assessed. The association between variables was determined using multivariate logistic regression. The prevalence of depression, stress and anxiety in study participants was 15.9%, 10.6% and 27.2% respectively. Participants with the highest adherence to the AHEI-2010 had an 80% lower odds of depression than those with the lowest adherence (OR: 0.20; 95% CI 0.04 to 0.78). Such an association was also found between adherences to the AHEI-2010 and anxiety (OR: 0.28; 95% CI 0.05 to 0.95). No significant association between adherence to the AHEI-2010 and stress was found. An inverse association between adherence to the AHEI-2010 and odds of depression and anxiety was found. Further studies are required to clarify this relationship. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Interaction between the Stress Phase Angle (SPA and the Oscillatory Shear Index (OSI Affects Endothelial Cell Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ronny Amaya

    Full Text Available Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS and solid circumferential stress (CS. Due to variations in impedance (global factors and geometric complexities (local factors in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA. Asynchronous flows (SPA close to -180° that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous

  2. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective

    National Research Council Canada - National Science Library

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    .... However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled...

  3. Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2015-06-01

    Full Text Available In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress, 180 (moderate stress and 90 (severe stress m3ha-1week-1 using a drip irrigation system (minimum stem water potential near harvest: -1.2, -1.5 and -1.7 MPa, respectively from the mid-pit hardening stage (12th of June until harvest (23rd of Sep. applied. Predawn, stem and leaf water potentials, leaf photosynthesis, transpiration, stomatal conductance and leaf temperature, the number of new shoots on fruit bearing shoots and vegetative shoots lengths during growing season as well as leaf area at harvest were measured. The results showed that water deficit stress had negative effects on peach tree water status, thereby resulting in decreased leaf gas exchange and tree vegetative growth. As significant decreased assimilate production of tree was resulted from both decreased leaf assimilation rate (until about 23 % and 50 %, respectively under moderate and severe stress conditions compared to low stress conditions and decreased leaf area of tree (until about 57% and 79%, respectively under moderate and severe stress conditions compared to low stress conditions at harvest. The significant positive correlation between leaf water potential and vegetative growth of peach revealed that shoot growth would decrease by 30% and 50% of maximum at leaf water potential of –1.56 and –2.30 MPa, respectively.

  4. Physiological changes of pepper accessions in response to salinity and water stress

    Directory of Open Access Journals (Sweden)

    Lidia López-Serrano

    2017-11-01

    Full Text Available New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  5. Response of Maize to Nutrients Foliar Application Under Water Deficit Stress Conditions

    OpenAIRE

    N. A Sajedi; M.R. Ardakani; A Naderi; H Madani; M. M. A. Boojar

    2009-01-01

    Problem statement: To investigate the effect of nutrient application on agronomical characteristic and water use efficiency under water deficit stress of hybrid maize 704, an experiment was arranged in a split plot factorial based on a complete randomized block design with four replicates in the research station of Islamic Azad University-Arak Branch, Iran in 2007. Approach: Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit st...

  6. Stability of Water Lubricated Flow of Yield Stress Fluid in Sloping Pipe

    OpenAIRE

    Decruppe J.; Nsom B.; Ahmad A

    2010-01-01

    To facilitate the transport of viscous crudes in a pipe, an immiscible lubricating liquid, usually water, is added. In such configuration, the water migrates into the regions of high shear at the pipe wall where it lubricates the flow. The pumping pressures being balanced by wall shear stresses in the water, the flow therefore requires pressures comparable to pumping water alone, at the same total throughput [1]. So significant savings in pumping power can be derived from this process p...

  7. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  8. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd.

    Science.gov (United States)

    Bascuñán-Godoy, Luisa; Reguera, Maria; Abdel-Tawab, Yasser M; Blumwald, Eduardo

    2016-03-01

    Water deficit stress followed by re-watering during grain filling resulted in the induction of the ornithine pathway and in changes in Quinoa grain quality. The genetic diversity of Chenopodium quinoa Willd. (Quinoa) is accompanied by an outstanding environmental adaptability and high nutritional properties of the grains. However, little is known about the biochemical and physiological mechanisms associated with the abiotic stress tolerance of Quinoa. Here, we characterized carbon and nitrogen metabolic changes in Quinoa leaves and grains in response to water deficit stress analyzing their impact on the grain quality of two lowland ecotypes (Faro and BO78). Differences in the stress recovery response were found between genotypes including changes in the activity of nitrogen assimilation-associated enzymes that resulted in differences in grain quality. Both genotypes showed a common strategy to overcome water stress including the stress-induced synthesis of reactive oxygen species scavengers and osmolytes. Particularly, water deficit stress induced the stimulation of the ornithine and raffinose pathways. Our results would suggest that the regulation of C- and N partitioning in Quinoa during grain filling could be used for the improvement of the grain quality without altering grain yields.

  9. Application of index number theory to the construction of a water quality index: aggregated nutrient loadings related to the areal extent of hypoxia in the northern Gulf of Mexico

    Science.gov (United States)

    The development of an index for description and monitoring of surface water quality has received significant attention in the water resources literature in recent years, primarily because of the increasing need for assessing water quality and the complex, multidimensional data collected from water q...

  10. Variation of Water-Soluble Carbohydrates and Grain Yield in Iranian Cold Barley Promising Lines Under Well-Watered and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Mohammadi Soleiman

    2014-10-01

    Full Text Available In order to evaluate promising lines in terms of grain yield and water-soluble carbohydrates remobiliza-tion, an experiment with fifteen promising lines and two checks was carried out under full irrigation and terminal water stress conditions at Miyandoab Agricultural Research and Natural Resources Station. Mobilized dry matter content and remobilization percentage from shoot to grain under water deficit (177mg(11.2% were greater than those under well watering condition. The lowest (110 mg and the highest (260mg mobilized dry matter to grain were obtained for C-79-18 and C-83-15lines, respectively. Water deficit reduced grain yield of barley genotypes by 200-1600 kg/ha, and mean grain yield reduction was 800 kg/ha. Line 14 with 5.880and 5.300t/ha grain yield in favorable and water stress conditions was superior to the other lines. Under water deficit condition, line 14 had greater grain yieldby20% and 38% than the Bahman and Makouee cultivars, respectively. The results showed that greater grain yield in tolerant lines under water deficit was due to remobilization of unstructured carbohydrates from shoot to grain. Thus, it seems that selection of lines with higher translocated dry matter and contribution of pre-anthesis assimilate in grain filling under water stress, the suitable way for achieving genotypes with high grain yield under water stress condition.

  11. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.

    Science.gov (United States)

    Wu, Qiang-Sheng; Xia, Ren-Xue

    2006-03-01

    The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance.

  12. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    NARCIS (Netherlands)

    Kadam, N.N.; Yin, X.; Bindraban, P.S.; Struik, P.C.; Jagadish, K.S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other

  13. Evaluating EO-based canopy water stress from seasonally detrended NDVI and SIWSI with modeled evapotranspiration in the Senegal River Basin

    DEFF Research Database (Denmark)

    Olsen, Jørgen L.; Stisen, Simon; Proud, Simon Richard

    2015-01-01

    the Shortwave Infrared Water Stress Index (SIWSI) as compared to Normalized Difference Vegetation Index (NDVI). We perform a spatio-temporal evaluation of NDVI and SIWSI using geostationary remote sensing imagery from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The indices and their seasonally...... detrended anomalies are evaluated using a gridded rainfall product (RFE2) and modeled actual evapotranspiration (ETa) for the Senegal River basin in 2008. Daily NDVI and SIWSI were found spatially highly correlated to ETa with r=0.73 for both indices, showing the importance of the north/south vegetation...... gradient in the river catchment. The hypothesis that short term evolution of index anomalies are related to canopy water status was tested by comparing 10-day averages of ETa with short term changes in daily NDVI and SIWSI anomalies, and moderate to strong coefficients of determination where found when...

  14. The Response of Rice Root to Time Course Water Deficit Stress-Two Dimensional Electrophoresis Approach

    Directory of Open Access Journals (Sweden)

    Mahmood Toorchi

    2015-11-01

    Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.

  15. Assessing regulatory violations of disinfection by-products in water distribution networks using a non-compliance potential index.

    Science.gov (United States)

    Islam, Nilufar; Sadiq, Rehan; Rodriguez, Manuel J; Legay, Christelle

    2016-05-01

    Inactivating pathogens is essential to eradicate waterborne diseases. However, disinfection forms undesirable disinfection by-products (DBPs) in the presence of natural organic matter. Many regulations and guidelines exist to limit DBP exposure for eliminating possible health impacts such as bladder cancer, reproductive effects, and child development effects. In this paper, an index named non-compliance potential (NCP) index is proposed to evaluate regulatory violations by DBPs. The index can serve to evaluate water quality in distribution networks using the Bayesian Belief Network (BBN). BBN is a graphical model to represent contributing variables and their probabilistic relationships. Total trihalomethanes (TTHM), haloacetic acids (HAA5), and free residual chlorine (FRC) are selected as the variables to predict the NCP index. A methodology has been proposed to implement the index using either monitored data, empirical model results (e.g., multiple linear regression), and disinfectant kinetics through EPANET simulations. The index's usefulness is demonstrated through two case studies on municipal distribution systems using both full-scale monitoring and modeled data. The proposed approach can be implemented for data-sparse conditions, making it especially useful for smaller municipal drinking water systems.

  16. Hydropriming Increases Germination of Lentil (Lens culinaris Medik. under Water Stress

    Directory of Open Access Journals (Sweden)

    Sevil SAĞLAM

    2010-06-01

    Full Text Available Fresh seeds of lentil cultivars ‘Pul 11’, ‘Sultan 1’ and ‘Meyveci 2001’ were subjected to hydropriming with an objective to improve germination and seedling vigor under water stress induced by PEG-6000 at the water potentials of 0.0 (distilled water, -0.3 and-0.6 MPa. Results revealed that germination delayed in increasing water stress with variable germination among cultivars. Root, shoot length and germination were higher but mean germination time were lower in the primed seeds. Seeds were able to germinate at all concentrations of PEG but higher germination and improved seedling growth was observed in primed seeds. Cultivars showed variable response to water stress and cv. ‘Pul 11’ with the lightest seed weight gave better performance. Whereas, cv. ‘Sultan 1’ enhanced germination percentage with hydropriming under increased water stress. It was concluded that inhibition of germination due to water stress should be overcome by using primed lentil seeds.

  17. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system.

    Directory of Open Access Journals (Sweden)

    Syed Suhail Ahmed

    Full Text Available Increasing temperature and CO2 concentrations can alter tritrophic interactions in ecosystems, but the impact of increasingly severe drought on such interactions is not well understood. We examined the response of a wheat-aphid-parasitoid system to variation in water-deficit stress levels. Our results showed that arid area clones of the aphid, Sitobion avenae (Fabricius, tended to have longer developmental times compared to semiarid and moist area clones, and the development of S. avenae clones tended to be slower with increasing levels of water-deficit. Body sizes of S. avenae clones from all areas decreased with increasing water-deficit levels, indicating their declining adaptation potential under drought. Compared to arid area clones, moist area clones of S. avenae had a higher frequency of backing under severe water stress only, but a higher frequency of kicking under well-watered conditions only, suggesting a water-deficit level dependent pattern of resistance against the parasitoid, Aphidius gifuensis (Ashmead. The number of S. avenae individuals attacked by the parasitoid in 10 min showed a tendency to decrease with increasing water-deficit levels. Clones of S. avenae tended to have lower parasitism rates under treatments with higher water-deficit levels. The development of the parasitoid tended to be slower under higher levels of water-deficit stress. Thus, the bottom-up effects of water-deficit stressed plants were negative on S. avenae. However, the top-down effects via parasitoids were compromised by water-deficit, which could favor the growth of aphid populations. Overall, the first trophic level under water-deficit stress was shown to have an indirect and negative impact on the third trophic level parasitoid, suggesting that parasitoids could be increasingly vulnerable in future warming scenarios.

  18. Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments.

    Science.gov (United States)

    Gaspar, Adélio R; Quintela, Divo A

    2009-05-01

    The present paper describes a physical model that estimates the globe and the natural wet bulb temperatures from the main parameters generally recorded at meteorological weather stations, in order to predict the wet bulb globe temperature (WBGT) heat stress index for outdoor environments. The model is supported by a thermal analysis of the globe and the natural wet bulb temperature sensors. The results of simultaneous measurements of the WBGT and climatological parameters (solar radiation, wind velocity, humidity, etc.) are presented and used to validate the model. The final comparison between calculated and measured values shows a good agreement with the experimental data, with a maximum absolute deviation of 2.8% for the globe temperature and 2.6% for the natural wet bulb temperature and the WBGT index. The model is applied to the design reference year for Coimbra, Portugal, in order to illustrate its preventative capabilities from a practical point of view. The results clearly show that during the summer there is a critical daily period (1200-1600 hours, local standard time) during which people working outdoors should not be allowed to perform their normal activities.

  19. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation.

    Science.gov (United States)

    Jaleel, C Abdul; Manivannan, P; Sankar, B; Kishorekumar, A; Gopi, R; Somasundaram, R; Panneerselvam, R

    2007-10-15

    The present investigation was conducted to determine whether CaCl(2) increases Catharanthus roseus drought tolerance and if such tolerance is correlated with changes in oxidative stress, osmoregulation and indole alkaloid accumulation. C. roseus plants were grown under water deficit environments with or without CaCl(2). Drought induced oxidative stress was measured in terms of lipid peroxidation (LPO) and H(2)O(2) contents, osmolyte concentration, proline (PRO) metabolizing enzymes and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress and drought stress with 5mM CaCl(2) and 5mM CaCl(2) alone from 30 days after planting (DAP) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). Drought stressed plants showed increased LPO, H(2)O(2), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) activity and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl(2) to drought stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl(2) appears to confer greater osmoprotection by the additive role with drought in GB accumulation. The drought with CaCl(2)-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to drought stressed and well-watered plants.

  20. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress

    Science.gov (United States)

    Aparicio-Tejo, P.; Sánchez-Díaz, Manuel

    1982-01-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3−. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3−. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3−, while with rewatering, leaf NRA recovery was quite important especially in the NO3−-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3− and in those without NO3− contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3−. This phenomenon was not observed in nodules of plants given water only. Upon rewatering, it was observed that in plants watered with NO3− the nodular NRA increased again, while in plants watered but not given NO3−, such activity began to decrease. Nitrogen fixation increased only in plants without NO3−. PMID:16662233

  1. Validation of the Pittsburgh Sleep Quality Index Addendum for Posttraumatic Stress Disorder (PSQI-A) in Male Military Veterans

    Science.gov (United States)

    Insana, Salvatore P.; Hall, Martica; Buysse, Daniel J.; Germain, Anne

    2013-01-01

    Sleep disturbances are core symptoms of posttraumatic-stress disorder (PTSD), yet they bear less stigma than other PTSD symptoms. Given the growing number of returning military veterans, brief, valid assessments that identify PTSD in a minimally stigmatizing way may be highly useful in both research and clinical practice. The Pittsburgh Sleep Quality Index Addendum for PTSD (PSQI-A) was examined for the ability to identify cases of PTSD among male military veterans. Male military veterans (N = 119) completed the PSQI-A, as well as measures of sleep quality, combat exposure, posttraumatic stress, depression, and anxiety. Veterans with PTSD had higher PSQI-A identified disruptive nocturnal behaviors than veterans without PTSD. The PSQI-A had good internal consistency and had convergent validity with sleep quality, combat exposure, PTSD symptoms, depression, and anxiety. A cutoff score ≥ 4 provided an area-under-the-curve = .81, with 71% sensitivity, 82% specificity, and 60% positive and 83% negative predictive value for a clinical diagnosis of PTSD; correct classification was 74%. The PSQI-A is a valid measure to possibly detect PTSD among male military veterans without directly probing trauma reactions. Assessment of disruptive nocturnal behaviors may provide a cost-effective, non-stigmatizing approach to PTSD screening among male military veterans. PMID:23512653

  2. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers.

    Science.gov (United States)

    Kunt, Halil; Şentürk, İhsan; Gönül, Yücel; Korkmaz, Mehmet; Ahsen, Ahmet; Hazman, Ömer; Bal, Ahmet; Genç, Abdurrahman; Songur, Ahmet

    2016-01-01

    In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule. Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect. Bone mineral density levels of L1-L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group. Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status.

  3. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment

    Science.gov (United States)

    Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing

    2017-04-01

    A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.

  4. Relationship between the Peroxidation of Leukocytes Index Ratio and the Improvement of Postprandial Metabolic Stress by a Functional Food

    Directory of Open Access Journals (Sweden)

    Ilaria Peluso

    2016-01-01

    Full Text Available For the first time, we investigated the relationship between postprandial dysmetabolism and the Peroxidation of Leukocytes Index Ratio (PLIR, a test that measures the resistance of leukocytes to exogenous oxidative stress and their functional capacity of oxidative burst upon activation. Following a blind, placebo controlled, randomized, crossover design, ten healthy subjects ingested, in two different occasions, a high fat and high carbohydrates meal with Snello cookie (HFHCM-S or with control cookies (HFHCM-C. Snello cookie, a functional food covered by dark chocolate and containing glucomannan, inulin, fructooligosaccharides, and Bacillus coagulans strain GanedenBC30, significantly improved postprandial metabolic stress (insulin, glucose, and triglycerides and reduced the postprandial increase of uric acid. HFHCM-S improved PLIR of lymphocytes, but not of monocytes and granulocytes. Both meals increased granulocytes’ count and reduced the lipoperoxidation induced by both exogenous free radicals and reactive oxygen species (ROS produced by oxidative burst. Our results suggest that the healthy status of the subjects could be a limitation of this pilot study for PLIR evaluation on cells that produce ROS by oxidative burst. In conclusion, the relationship between PLIR and postprandial dysmetabolism requires further investigations.

  5. Effect of water stress on the movement and distribution of water in Rhodesgrass and Job's tears

    Energy Technology Data Exchange (ETDEWEB)

    Saneoka, Hirohumi; Premachandra, G.S.; Ogata, Shoitsu (Hiroshima Univ. (Japan))

    1990-05-01

    Rhodesgrass (Chloris gayana Kunth.) and Job's tears (Coix larcryma jobi L.) are known to be drought tolerant and drought susceptible forage crops, respectively. They were grown in a nutrient solution with water stress treatment (osmotic potential of the solution adjusted to {minus}0.97 MPa using mannitol) and control (osmotic potential {minus}0.05 MPa). Tritiated water ({sup 3}H{sub 2}O) was used as the tracer. In the water stress treatment, twenty four hours after the addition of {sup 3}H{sub 2}O, relative {sup 3}H radioactivity in roots, stems, expanded leaves and expanding leaves in Rhodesgrass reached to 5, 45, 9 and 8% of that of the nutrient solution, respectively. The respective values in Job's tears were 48, 18, 5.5 and 4% indicating that the movement of {sup 3}H{sub 2}O was remarkably higher in both crops under water stress conditions. The results suggested that water movement through plants differ according to plant species. A series of resistance exists along the pathway of water movement from the soil to atmosphere through the plant. The major resistance to the movement appears to exist in the nodes and/or basal stems which locate in transit position from one organ to another Resistance to water flow at the upper nodes as well as at the basal stems was higher in drought sensitive crop, Job's tears, than in Rhodesgrass.

  6. Plant Water Use and Environmental Stress on Two Opposite Slopes: from Water and Carbon Stable Isotopic Perspective

    Science.gov (United States)

    Guan, H.; Xu, X.; Skrzypek, G.; Simmons, C. T.

    2014-12-01

    Climate-soil-vegetation dynamics are among key research focuses in the emerging ecohydrology discipline. Topographic relieves on landscapes provide various hydroclimatic conditions to examine vegetation functions and its responses to climate variation and changes in a short distance. In this study, we investigate ecohydrologic processes on two slopes of contrasting orientation and soil conditions in a native vegetation catchment with mean annual precipitation of 716 mm in South Australia, using water and carbon stable isotopes. Throughfall, soil water, twig water, and groundwater stable isotopes were measured and integrated into an isotope incorporated soil-plant-atmosphere model to examine different plant water use patterns on two slopes with different environmental conditions. The focuses are on how ecosystems on the two slopes receive, store, and use soil moisture in different manners. On these two slopes, trees are under different water stresses. Both leaf and soil 13C/12C ratio were measured for the two slopes to examine if δ13C can be used as an water stress indicator in this small catchment, and if the potential difference in δ13C can be observed in the soil organic matter. We monitored one-year leaf δ13C of two tree species, Eucalyptus leucoxylon and Acacia pycnantha. Our results indicate that leaf δ13C reflects different water stress conditions between slopes, seasons, and different locations on the slopes.

  7. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI

    Directory of Open Access Journals (Sweden)

    Bingyu Sun

    2013-10-01

    Full Text Available Remote sensing has more advantages than the traditional methods of land surface water (LSW mapping because it is a low-cost, reliable information source that is capable of making high-frequency and repeatable observations. The normalized difference water indexes (NDWIs, calculated from various band combinations (green, near-infrared (NIR, or shortwave-infrared (SWIR, have been successfully applied to LSW mapping. In fact, new NDWIs will become available when Advanced Land Imager (ALI data are used as the ALI sensor provides one green band (Band 4, two NIR bands (Bands 6 and 7, and three SWIR bands (Bands 8, 9, and 10. Thus, selecting the optimal band or combination of bands is critical when ALI data are employed to map LSW using NDWI. The purpose of this paper is to find the best performing NDWI model of the ALI data in LSW map. In this study, eleven NDWI models based on ALI, Thematic Mapper (TM, and Enhanced Thematic Mapper Plus (ETM+ data were compared to assess the performance of ALI data in LSW mapping, at three different study sites in the Yangtze River Basin, China. The contrast method, Otsu method, and confusion matrix were calculated to evaluate the accuracies of the LSW maps. The accuracies of LSW maps derived from eleven NDWI models showed that five NDWI models of the ALI sensor have more than an overall accuracy of 91% with a Kappa coefficient of 0.78 of LSW maps at three test sites. In addition, the NDWI model, calculated from the green (Band 4: 0.525–0.605 μm and SWIR (Band 9: 1.550–1.750 μm bands of the ALI sensor, namely NDWIA4,9, was shown to have the highest LSW mapping accuracy, more than the other NDWI models. Therefore, the NDWIA4,9 is the best indicator for LSW mapping of the ALI sensor. It can be used for mapping LSW with high accuracy.

  8. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    Science.gov (United States)

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  9. Hydrology and water quality characteristics of a stressed lotic ...

    African Journals Online (AJOL)

    The hydrology and water quality of Aiba stream were investigated from November 2012 to April 2013 on monthly basis. This was with a view to assessing the status of the stream sequel to its last study which indicated a poor physico-chemical water quality. Four sampling stations were established for the study along the ...

  10. ( Sorghum bicolor L. Moench) after exposure to water stress and ...

    African Journals Online (AJOL)

    The experimental design was completely randomized in a 2×4 factorial arrangement with seven replicates, two hydric conditions (irrigated and water deficit) and four silicon applications (0.5, 1.0, 1.5 and 2.0 μM). The multivariate analysis showed that when there is no shortage of water and regardless of the silicon dose, ...

  11. Assessing maize foliar water stress levels under field conditions ...

    African Journals Online (AJOL)

    Plant physiological processes required for crop productivity are dependent on the availability of water to crops. Water availability to crops therefore requires real time monitoring for timeous rescue or intervention measures. Such monitoring over vast areas is only possible through remotely sensed techniques such as ...

  12. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud

    2012-01-01

    Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since the S...

  13. Impact of Mass Bathing and Religious Activities on Water Quality Index of Prominent Water Bodies: A Multilocation Study in Haryana, India

    Directory of Open Access Journals (Sweden)

    Anita Bhatnagar

    2016-01-01

    Full Text Available The present study was designed to assess the impact of mass bathing and religious activities on water quality index (WQI of prominent water bodies (eight in Haryana, India. Water quality characteristics revealed significant increase in the values of nitrate, biochemical oxygen demand (BOD, turbidity, total dissolved solids (TDS, conductivity, total hardness, total alkalinity, and MPN count after the religious activities. The computed WQI at all the eight selected sites varied from 47.55 to 211.42. The results revealed that there was a significant increase in the value of WQI after mass bathing or any other ritual performed. Out of eight water bodies studied three (sites 3, 4, and 5 were found under good water quality status; four sites (1, 2, 6, and 7 depicted medium water quality but site 8 was found under poor water quality after the religious activities. The good water quality status of water bodies was correlated with larger size of the water bodies and less number of pilgrims; however, the poor WQI values may be attributed to smaller size of the water body and heavy load of pilgrims on such sites. Therefore, water of these religious water bodies needed to be regularly changed after mass bathing to protect the aquatic component from different contaminations.

  14. Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions

    Science.gov (United States)

    Campos, Isidro; Villodre, Julio; Carrara, Arnaud; Calera, Alfonso

    2013-06-01

    This paper aims to present the use of a remote sensing-based soil water balance to estimate holm oak woodland evapotranspiration (ET). The model is based on the assimilation of MODIS reflectance-based vegetation indices in the dual crop coefficient methodology. A daily water balance was performed on the root zone soil to estimate plant water stress. The methodology was evaluated with respect to the actual ET measured by eddy covariance in Mediterranean holm oak savanna (dehesa) for five consecutive years (2004-2008). The model adequately reproduced the absolute values and tendencies measured at daily and weekly periods. Root mean square error (RMSE) was 0.50 mm/day for daily values and 2.70 mm/week for weekly accumulated values. The analysis demonstrated the presence of a long period of water stress during the summer and at the beginning of fall. Measured ET dropped during these periods, and the model replicated this tendency accurately, reaching a stress coefficient value close to 0.2. To be operative, the proposed method required low ground data (reference evapotranspiration and precipitation) and the results indicated a simple, robust method that can be used to map ET and water stress in the dehesa ecosystem.

  15. Development of a Demand Sensitive Drought Index and Its Forecasting for Climate Adaptation and Water Management over the Continental United States

    Science.gov (United States)

    Etienne, E.; Khanbilvardi, R.; Devineni, N.

    2014-12-01

    Drought has cascading effects on the environment, economy and society. Seasonal water deficits resulting from natural variability in rainfall coupled with increased demands have severe implications for the adequacy of water storage in both surface and groundwater stores. Managers need better estimates of potential shortfalls in supply due to droughts of varying severity and duration. While global and national drought indicators exist, none directly connect existing or projected water demand to the potential deficit during the drought. They are essentially supply based. However, the temporal patterns of both demand and supply ultimately determine the stress or impact. Consequently, assessment of risk for various sectorial operations could be much better informed if appropriate stress indices were developed for drought conditions relative to current and projected demands, and their likelihood assessed for future climate scenarios. The present research addresses this methodological gap by (1) developing new drought indices that consider both water supply and current or projected sectorial demands, and (2) developing insights into the large-scale climatic drivers for forecasting drought onset, duration and severity up to one season ahead for climate informed adaptive risk assessment and long-term planning. We present an application at a county level for the conterminous United States considering more than 60 years of rainfall data as the renewable supply, and water demand patterns for 3 sectors (agricultural, industrial, and domestic use). The demand data are available at the county level. Consequently, we use the county rather than river basins as the unit of analysis. The county is also a spatial resolution consistent with political decision making. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution.

  16. Effects of temperature and water stresses on germination of some ...

    African Journals Online (AJOL)

    Chickpea production did not progress, in spite, of intensification of agricultural practices. Drought and thermal stresses were the major factors that decreased yield when the crop is generally sown in spring. Nevertheless, winter sowing has opened new opportunities for increasing chickpea production in arid areas.

  17. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... Mechanisms of ROS detoxification exist in all plants. (Mundree et al., 2002). Changes of antioxidants reflect the impact of environmental stresses on plant metabolism. (Herbinger et al., 2002). The level of response depends on the species, the development and the metabolic status of the plant, as well as ...

  18. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  19. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress

    Directory of Open Access Journals (Sweden)

    Kinga Bociong

    2017-09-01

    Full Text Available The contraction stress generated during the photopolymerization of resin dental composites is the major disadvantage. The water sorption in the oral environment should counteract the contraction stress. The purpose was to evaluate the influence of the water sorption of composite materials on polymerization shrinkage stress generated at the restoration-tooth interface. The following materials were tested: Filtek Ultimate, Gradia Direct LoFlo, Heliomolar Flow, Tetric EvoCeram, Tetric EvoCeram Bulk Fill, Tetric EvoFlow, Tetric EvoFlow Bulk Fill, X-tra Base, Venus BulkFil, and Ceram.X One. The shrinkage stress was measured immediately after curing and after: 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Moreover, water sorption and solubility were evaluated. Material samples were weighted on scale in time intervals to measure the water absorbency and the dynamic of this process. The tested materials during polymerization generated shrinkage stresses ranging from 6.3 MPa to 12.5 MPa. Upon water conditioning (56 days, the decrease in shrinkage strain (not less than 48% was observed. The decrease in value stress in time is material-dependent.

  20. Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress.

    Science.gov (United States)

    Zhu, Xian Can; Song, Feng Bin; Liu, Tie Dong; Liu, Sheng Qun

    2010-05-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic mycorrhizal symbiotic associations with the roots of approximately 80% of all terrestrial plant species while facilitate the uptake of soil mineral nutrients by plants and in exchange obtain carbohydrates, thus representing a large sink for photosynthetically fixed carbon. Also, AM symbiosis increase plants resistance to abiotic stress such as chilling. In a recent study we reported that AM fungi improve low temperature stress in maize plants via alterations in host water status and photosynthesis. Here, the influence of AM fungus, Glomus etunicatum, on water loss rate and growth of maize plants was studied in pot culture under low temperature stress. The results indicated that low temperature stress significantly decreases the total fresh weight of maize plants, and AM symbiosis alleviate the water loss in leaves of maize plants.

  1. Dry Matter Accumulation and Remobilization in Grain Sorghum Genotypes (Sorghum bicolor L. Moench (underNormal and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Beheshti

    2011-02-01

    Full Text Available Abstract Production, remobilization and accumulation of assimilates in crops especially under water stress are essential factors for determination and studying the yield differences of species and cultivars. Field experiment was conducted using a split plot design based on a randomized complete block design with 3 replication s during 2007 growing season in agricultural research station (Khorasan Agricultural and Natural Resource Research Center, Mashhad-Iran. Main plots were consisted of 2 levels of water, water deficit after anthesis and normal condition (with out water stress and factorial arrangement of photosynthesis status (non desiccation and chemical desiccation with potassium iodide and 3 grain sorghum genotypes (Sepide, M5 and M2 promising lines were assigned to sub plots. Results of variance analysis showed, that the effects of water stress on dry matter accumulation, efficiency of remobilization (REE, percent of remobilization (REP, biologic yield were significant in (p≤0.01 (and grain yield (economic yield was significant in p≤0.05, respectively. Water deficit caused an increase of 10.08%, 24.45 % and 12.43% in dry matter accumulation, percent of remobilization and efficiency of remobilization, respectively as compared to normal conditions. This in turn was led to decrease in seed yield, biological yield and harvest index by 36.38%, 5.43% and 31.60%, respectively. The effect of disturbance in current photosynthesis was significant in all of traits and caused the increase of 15.58%, 17.5% and 36.62% in dry matter accumulation, efficiency of remobilization and percent of remobilization, respectively. The role of remobilization was crucial in sorghum genotypes. Interaction between factors showed that highest dry matter accumulation, percentage of remobilization and efficiency of remobilization was in drought stress and disturbance in current photosynthesis and was 16.62%, 62.54 and 24.60%, respectively and was significantly

  2. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O3) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O3 sensitive hybrid poplar clone ('546') under three O3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O3. Impairment of photosynthesis by O3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O3 were less in RW than in WW for total biomass per plant. A stomatal O3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O3.m-2.s-1 (POD7) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m-2. Our results suggest that current O3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    Science.gov (United States)

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  4. Effects of Water Stress on Photosynthesis and Chlorophyll Fluorescence of the Sugar Beet

    Directory of Open Access Journals (Sweden)

    HAN Kai-hong

    2015-10-01

    Full Text Available To investigate the effect of water stress and rewatering on sugar beet yield and its corresponding photosynthetic parameters, and to provide the basis of water management for the sugar beet fields, pool experiments in an artificial proof canopy were set up to observe changes of beet net photosynthetic rate(Pn, transpiration rate(Tr, water use efficiency(WUE and stomatal limitation (Ls, intercellular CO2 oncentration(Ci, and PSⅡ maximum quantum yield(Fv/Fm. The results indicated that the diurnal variation of Tr and Pn in CK treatment (whole growth period replenishment at different times near "unimodal" type; and water shortage treatments presented "twin peaks" change. Diurnal transpiration capacity(DTC under water stress at sugar accumulation stage reduced by 70.16%~74.81% and diurnal photosynthetic capacity(DPC was 63.48%~69.96% lower than that of CK, while diurnal water use efficiency(WUEd increased by 19.28%~22.39%. Rehydration helped Tr and Pn recovery, but did not reach unstressed levels. Ls changes under extremely dry environment had a midday trough "twin peaks" feature, and Ci was at "double-dip" in consistent with the timing of Ls; Water stress inhibited and inactivated photochemical reaction center of midday PSⅡ. Water stress led to irreversible decrease in the Pn and Tr, and prolonged the Pn inefficient period, which become the important factor of influencing the sugar beet yield.

  5. Integrated Water Resources Management, institutions and livelihoods under stress: bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management

  6. Integrated Water Resources Management, institutions and livelihoods under stress : Bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management

  7. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices

    Science.gov (United States)

    Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.

    2012-07-01

    This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (Ψx), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress

  8. Accuracy of the Temperature-Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions

    DEFF Research Database (Denmark)

    Garcia, Monica; Fernández, N.; Villagarcía, L.

    2014-01-01

    Water deficit indices based on the spatial relationship between surface temperature (Ts) and NDVI, known as triangle approaches, are widely used for drought monitoring. However, their application has been recently questioned when the main factor limiting evapotranspiration is energy. Even though...... water is the main control in dryland ecosystems, these can also undergo periods of energy and temperature limitation. In this paper we aimed to: (i) evaluate the TVDI (Temperature-Vegetation Dryness Index) to estimate water deficits (e.g. ratio between actual and potential evapotranspiration), and heat...

  9. Use of a macroinvertebrate based biotic index to estimate critical metal concentrations for good ecological water quality.

    Science.gov (United States)

    Van Ael, Evy; De Cooman, Ward; Blust, Ronny; Bervoets, Lieven

    2015-01-01

    Large datasets from total and dissolved metal concentrations in Flemish (Belgium) fresh water systems and the associated macroinvertebrate-based biotic index MMIF (Multimetric Macroinvertebrate Index Flanders) were used to estimate critical metal concentrations for good ecological water quality, as imposed by the European Water Framework Directive (2000). The contribution of different stressors (metals and water characteristics) to the MMIF were studied by constructing generalized linear mixed effect models. Comparison between estimated critical concentrations and the European and Flemish EQS, shows that the EQS for As, Cd, Cu and Zn seem to be sufficient to reach a good ecological quality status as expressed by the invertebrate-based biotic index. In contrast, the EQS for Cr, Hg and Pb are higher than the estimated critical concentrations, which suggests that when environmental concentrations are at the same level as the EQS a good quality status might not be reached. The construction of mixed models that included metal concentrations in their structure did not lead to a significant outcome. However, mixed models showed the primary importance of water characteristics (oxygen level, temperature, ammonium concentration and conductivity) for the MMIF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  11. Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants.

    Science.gov (United States)

    Saud, Shah; Fahad, Shah; Yajun, Chen; Ihsan, Muhammad Z; Hammad, Hafiz M; Nasim, Wajid; Amanullah; Arif, Muhammad; Alharby, Hesham

    2017-01-01

    Non-irrigated crops in temperate and irrigated crops in arid regions are exposed to an incessant series of drought stress and re-watering. Hence, quick and efficient recuperation from drought stress may be amongst the key determinants of plant drought adjustment. Efficient nitrogen (N) nutrition has the capability to assuage water stress in crops by sustaining metabolic activities even at reduced tissue water potential. This study was designed to understand the potential of proper nutrition management by studying the morphological and physiological attributes, and assimilation of nitrogen in Kentucky bluegrass under drought stress. In present study, one heterogeneous habitat and four treatments homogenous habitats each with four replications were examined during field trial. Drought stress resulted in a significant reduction in the nitrogen content of both mother and first ramets, maximum radius, above and below ground mass, number of ramets per plot, leaf water contents and water potential and increased the carbon content and the C:N ratio in both homogenous and heterogeneous plots compared to well-watered and nutritional conditions. Observation using electron microscopy showed that drought stress shrunk the vessel diameter, circumference and xylem area, but increased the sieve diameter, and phloem area in the leaf crosscutting structure of Kentucky bluegrass, first, second, and third ramet leaf. Thus, it can be concluded that water stress markedly reduced all the important traits of Kentucky bluegrass, however, proper nutritional management treatment resulted in the best compensatory performance under drought assuaging its adversity up to some extent and may be considered in formulating good feasible and cost-effective practices for the environmental circumstances related to those of this study.

  12. Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants

    Science.gov (United States)

    Saud, Shah; Fahad, Shah; Yajun, Chen; Ihsan, Muhammad Z.; Hammad, Hafiz M.; Nasim, Wajid; Amanullah; Arif, Muhammad; Alharby, Hesham

    2017-01-01

    Non-irrigated crops in temperate and irrigated crops in arid regions are exposed to an incessant series of drought stress and re-watering. Hence, quick and efficient recuperation from drought stress may be amongst the key determinants of plant drought adjustment. Efficient nitrogen (N) nutrition has the capability to assuage water stress in crops by sustaining metabolic activities even at reduced tissue water potential. This study was designed to understand the potential of proper nutrition management by studying the morphological and physiological attributes, and assimilation of nitrogen in Kentucky bluegrass under drought stress. In present study, one heterogeneous habitat and four treatments homogenous habitats each with four replications were examined during field trial. Drought stress resulted in a significant reduction in the nitrogen content of both mother and first ramets, maximum radius, above and below ground mass, number of ramets per plot, leaf water contents and water potential and increased the carbon content and the C:N ratio in both homogenous and heterogeneous plots compared to well-watered and nutritional conditions. Observation using electron microscopy showed that drought stress shrunk the vessel diameter, circumference and xylem area, but increased the sieve diameter, and phloem area in the leaf crosscutting structure of Kentucky bluegrass, first, second, and third ramet leaf. Thus, it can be concluded that water stress markedly reduced all the important traits of Kentucky bluegrass, however, proper nutritional management treatment resulted in the best compensatory performance under drought assuaging its adversity up to some extent and may be considered in formulating good feasible and cost-effective practices for the environmental circumstances related to those of this study. PMID:28642781

  13. Climate change and the vulnerability of electricity generation to water stress in the European Union

    Science.gov (United States)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  14. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions

    Directory of Open Access Journals (Sweden)

    Thais H. S. Ferreira

    2017-06-01

    Full Text Available Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.

  15. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2018-01-01

    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  16. Impact of water stress on growth reserves and re-growth of Themeda ...

    African Journals Online (AJOL)

    Four water stress treatments (T1 = 0–25%, T2 = 25–50%, T3 = 50–75% and T4 = 75–100% depletion of plant available water) were applied to the plants in pots in a glasshouse. The TNCC declined drastically after severe defoliation over all the water treatments (P < 0.05), in all the plant parts (P < 0.05) and for all the growth ...

  17. Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees.

    Science.gov (United States)

    Egea, Gregorio; González-Real, María M; Baille, Alain; Nortes, Pedro A; Diaz-Espejo, Antonio

    2011-06-01

    Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field-grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (W(a)), greater leaf dry-to-fresh weight ratio and lower N content per unit of leaf dry weight (N(w)). Concomitantly, area-based maximum carboxylation rate (V(cmax)), maximum electron transport rate (J(max)), mesophyll conductance to CO₂ diffusion (gm)' and light-saturated net photosynthesis (A(max)) declined in both well-watered and water-stressed almond leaves. Although g(m) and stomatal conductance (g(s)) seemed to be co-ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between g(m) and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age-related decline of A(max) was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, A(max) was mainly limited by g(s) and, to a lesser extent, by photosynthetic capacity and g(m). When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly. © 2011 Blackwell Publishing Ltd.

  18. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  19. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-08-01

    Water management is an important component in agriculture, particularly for perennial tree crops such as coffee. Proper detection and monitoring of water stress therefore plays an important role not only in mitigating the associated adverse impacts on crop growth and productivity but also in reducing expensive and environmentally unsustainable irrigation practices. Current methods for water stress detection in coffee production mainly involve monitoring plant physiological characteristics and soil conditions. In this study, we tested the ability of selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using the random forest algorithm. An experiment was set up such that coffee plants were exposed to different levels of water stress and reflectance and plant water content measured. In selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only three wavebands (485 nm, 670 nm and 885 nm) were identified by at least two methods as significant. The selected wavebands were trained (n = 36) and tested on independent data (n = 24) after being integrated into the random forest algorithm to predict coffee PWC. The results showed that the reflectance sensitivity selected bands performed the best in water stress detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance difference (r = 0.79, RMSE = 6.19 and pBias = 2.5%) and cross-correlation selected wavebands (r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably predict PWC using wavebands in the VIS/NIR range that correspond with many of the available multispectral scanners using random forests and further research at field and landscape scale is required to operationalize these findings.

  20. What is the Optimal Water Productivity Index for Irrigated Grapevines? Case of 'Godello' and 'Albariño' cultivars

    Science.gov (United States)

    Fandiño, María; Martínez, Emma M.; Rey, Benjamín J.; Cancela, Javier J.

    2015-04-01

    Different studies have tackled the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP) (Pereira et al., 2012; Scheierling et al., 2014). The high number of stakeholders, working about agricultural water use (hydrology and hydrogeology, civil and irrigation engineering, agronomy and crop physiology, economics), has hindered the real improvement thereof, from a multidisciplinary perspective. For example, Flexas et al. (2010) reviewed the future improvements in water use efficiency in grapevines, from a physiological approach. In this study, two grapevine cultivars, priority in Galicia (Spain): 'Godello' (DO Valdeorras) and 'Albariño' (DO Rías Baixas, two locations), was assessed in relation to four water productivity index, focus on irrigation systems, agronomy and crop physiology aspects, during a wet year (2012). All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WPTWU, include all components of soil water balance; to WPTWUfarm, introduced rainfall and irrigation depth; to WPIrrig, only irrigation depth applied; and to WPT, crop transpiration was used. In the last index, SIMDualKc model was used to partitioning crop evapotranspiration and cover crop transpiration. Different ranges of values was obtained for both cultivars, WPTWUfarm was higher in cv 'Godello' than in cv 'Albariño', 3.8 and 0.9 kg m-3 respectively. Average value to WPIrrig has showed: 17.6 kg m-3 for cv 'Albariño' and 15.5 kg m-3 for cv 'Godello', due to a reduction of 60% of irrigation depth in DO Rías Baixas. However, for both locations, higher WPIrrig was obtained to drip irrigation system versus subsurface drip irrigation. WPT showed a different tendency, rain-fed 'Godello' and surface drip irrigation 'Albariño' treatments obtained higher values (6.8 and 3.6 kg m-3), with higher WPT to cv 'Godello' for all treatments versus 'Albariño'. Results had showed that water

  1. Water Quality Index Assessment ofGroundwater in Todaraisingh Tehsil of Rajasthan State, India-A Greener Approach

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2010-01-01

    Full Text Available This study deals with the statistical analysis and study of water quality index to assess hardness of groundwater in Todaraisingh tehsil of Tonk district of Rajasthan state. The study has been carried out to examine its suitability for drinking, irrigation and industrial purpose. The presence of problematic salts contains in groundwater due to local pollutants and affected the groundwater quality adversely. The estimated values were compared with drinking water quality standards prescribed by B.I.S. It was found that drinking water is severely polluted with hardness causing salts. This study reveals that people dependent on water sources of the study area are prone to health hazards of contaminated water and quality managements to hardness urgently needed.

  2. Modification of a fire drought index for tropical wetland ecosystems by including water table depth

    NARCIS (Netherlands)

    Taufik, Muh; Setiawan, B.I.; Lanen, van H.A.J.

    2015-01-01

    In this paper, we discuss how an existing empirical drought index, i.e. the Keetch-Byram Drought Index (KBDI) that is commonly used for assessing forest fire danger, has been adjusted and modified for improved use in tropical wetland ecosystems. The improvement included: (i) adjustment of the

  3. TDS-Eh graph analysis: a new water quality index and rural water supply implications of a river affected by mining in south-eastern Nigeria

    Science.gov (United States)

    Ezekwe, I. C.; Aisubeogun, A. O.; Chima, G. N.; Odubo, E.

    2012-03-01

    The Ivo River Basin of south-eastern Nigeria is a water scarce and mining region, which suffers from water scarcity. The influence of mining activities on the quality of the Ivo River and its capacity for community water supply was investigated. Also the efficacy of TDS-Eh graph in explaining water quality was presented. Results indicated that the TDS-Eh graph highlights subtle chemical relationships which control water quality and provide a simple but generic pollution index for rapid water quality assessment. It was also discovered that the Ivo River could become an adequate alternative to groundwater as a source of rural water supply in the study area with an estimated average daily discharge of 6726000 L and a rural population of less than 200000 persons. The Ivo River meets the WHO drinking water standards in 20 physicochemical water quality parameters (pH, temperature, conductivity, turbidity, salinity, TDS, Eh, alkalinity, chloride, nitrate, sulfate, phosphate, calcium, magnesium, iron, manganese, zinc, lead and cadmium) analyzed and can therefore (with little treatment) provide up to 133.4% of average community water demand and 83.8% of maximum community water demand. The impact of mining on Ivo River quality was found to have been moderated by the presence of carbonate rocks which may have enhanced the precipitation of heavy metals from the river.

  4. Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress.

    Science.gov (United States)

    Fontaine, Véronique; Cabané, Mireille; Dizengremel, Pierre

    2003-04-01

    Effects of ozone and/or drought stresses on phosphoenolpyruvate carboxylase (PEPc, EC 4.1.1.31) regulation in Pinus halepensis Mill. needles were assessed over 3 months in controlled conditions. Whereas moderated water stress applied to Aleppo pine had no effect on PEPc activity compared to the control, which was probably related to the high tolerance of this species to drought, ozone stress induced a dramatic increase of PEPc activity in pine needles. This stimulation of the anaplerotic pathway could provide substrates to repair processes, well known for being enhanced upon ozone exposure. The ozone-increased PEPc activity was related, to a certain extent, to an increase in protein and mRNA levels. The possible role of the stimulation of the phosphorylation status of the enzyme in the increased PEPc activity under ozone was also investigated. Following the demonstration of the existence of the phosphorylation site at the N terminal part of Aleppo pine PEPc, it was shown that, under ozone treatment, the light/dark PEPc activity ratio and the Ki (malate) for PEPc were increased. This strengthens the hypothesis of an ozone-related post-translational process, which could be part of an adaptation of the plants to prolonged stress. When ozone and water stress were applied in combination, the enhancement in PEPc activity was only related to changes in gene expression. This difference in PEPc regulation, compared to the effect of single stress, could be the consequence of the specific action of each stress on the enzyme. This study brings new insights into the regulation of PEPc in a C3 plant, Aleppo pine under these stresses. A different regulatory mechanism of PEPc is occurring according to the stress. The physiological implications of the increase in PEPc activity in response to ozone and/or water stress are discussed.

  5. Expression of NCED gene in colored cotton genotypes subjected to water stress

    Directory of Open Access Journals (Sweden)

    Alexandre M. S. de Souza

    Full Text Available ABSTRACT Considering that the NCED gene acts on the biosynthetic cascade of ABA, a hormone involved in the functioning of stomata and consequently in the regulation of transpiration, the aim of this research was to analyze the expression of this gene in colored cotton genotypes subjected to water stress at the beginning of plant growth. Four colored cotton genotypes were used, subjected to two managements, with and without water stress, beginning the treatments when the blade of the first true leaves reached an area that allowed the evaluation of gas exchange. For the studies of the expression of the NCED gene, via RT-qPCR, leaves were collected on three distinct dates: at 4 and 6 days of water stress, and after the plants regained their turgor. The differential expression of NCED was found in all genotypes, with higher levels of expression related to six days of water stress. When the stomatal conductance was around 25%, there was overexpression in the genotype CNPA 2009.13, followed by CNPA 2009.6, BRS SAFIRA and CNPA 2009.11, confirming the data obtained in the semi-quantitative RT-PCR. The NCED gene is involved in the response to water stress in the vegetative phase of colored cotton.

  6. Evaluation and Assessment of Fluoride in Drinking Water Wells Damavand Villages Zoning in GIS According to DMF Index

    Directory of Open Access Journals (Sweden)

    Kave Kheirkhah Rahimabad

    2016-09-01

    Full Text Available Background:Fluoride is one the vital anions and the drinking water is the main source of preparing it for the human body. Nonetheless, the aim of this paper is to investigate the Fluoride rate in water supplying wells by using GIS environment according to decay, missing or filled (DMF index.  Methods: This research is an analytic and cross-sectional descriptive study with sampling approach of 12 water supplying wells of Damavand villages in summer and autumn the year 2013. The Fluoride concentration was measured by standard method SPADNS using MN-Nano color 400 Photometer in laboratory of Rural Water and Wastewater Company of Tehran. Then DMF was investigated for local students and finally the obtained data were modeled in GIS. Results: The average of Fluoride concentration was 0.094 to 0.212 mg/L in summer and 0.137 to 3.48 mg/L in autumn. The DMF index was estimated around 5.46 for all evaluated students that the mentioned index was 7.635 and 3.29 for male and female pupils respectively which are statistically significant difference. Conclusion: The amounts of fluorine in drinking water supplies in rural Damavand villages are lower than the international water standards. According to the results of experiments and lack of fluorine ion in the villages of this town, required fluorine should be done by drinkable water fluoridation and continuities of implementation plan for fluoride ion among the schools until reaching the fluoride concentration to the standard threshold, Supplying required fluorine of body by mouth-wash materials for people of this region

  7. Ozone and Water Stress: Effects on the Behaviour of Two White Clover Biotypes

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    Full Text Available ozone pollution, water stress, stomata conductance, ozone uptake, clover, OTC.Ozone is a strong oxidizing pollutant which derives by alteration of the photolytic NOx cycle and it accumulates in the troposphere spreading in rural areas and therefore determining injuries on natural vegetation and crops. Since its penetration occurs mainly through stomata, all factors which alter plant-atmosphere relations could be able to modify plant response to ozone. Interaction between ozone and water stress in Mediterranean environment was studied on ozone resistant and sensitive biotypes of white clover, which were grown in charcoal filtered and notfiltered Open Top Chambers in factorial combination with different levels of water supply. Measurements of biomass, leaf area and stomatal conductance were made during the growth period. Ozone injuries were estimated as not-filtered/filtered OTC yield ratio; the stomatal flux of ozone was estimated multiplying stomata conductance x diffusivity ratio between ozone and water vapour (0.613 x ozone hourly concentrations. The hourly values of ozone uptake were cumulated throughout the cropping periods of the two years. In the sensitive biotype, water stress reduced yield losses due to ozone from 38% to 22%, as well as yield losses due to water stress were reduced by the presence of ozone from 43% to 29%, while no interaction between ozone and water stress was observed in the resistant biotype. Biomass yield losses of the sensitive biotype were strictly correlated to cumulated ozone uptake (R2 = 0.99, while biomass yield losses of the resistant biotype were not affected by the ozone fluxes variations created by the treatments. Flux based models could better estimate yield losses due to ozone in Mediterranean environments in which other stresses could be contemporary present; therefore, the new European directives might replace the actual thresholds based

  8. Water Stress from High-Volume Hydraulic Fracturing Potentially Threatens Aquatic Biodiversity and Ecosystem Services in Arkansas, United States.

    Science.gov (United States)

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly; Fargione, Joseph; Kiesecker, Joseph; Baruch-Mordo, Sharon; Konschnik, Katherine; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N

    2018-01-31

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and "frack" ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7-51% of catchments from June-November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  9. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  10. Water quality index development using fuzzy logic: A case study of ...

    African Journals Online (AJOL)

    Determination of the status of water quality of a river or any other water source is highly indeterminate. It is necessary to have a competent model to predict the status of water quality and to show the type of water treatment that would be used to meet different demands. By exploring the behavior and limitations of ...

  11. Eucalypt plantation management in regions with water stress ...

    African Journals Online (AJOL)

    To be truly sustainable, forest management practices must be environmentally friendly, prevent or reduce land degradation, improve biodiversity and increase resilience to climate variation and change. The main efforts should address the problems of water scarcity, low soil fertility and reduced biodiversity. Forest growers ...

  12. Water stress detection in the Amazon using radar

    NARCIS (Netherlands)

    van Emmerik, T.H.M.; Steele-Dunne, S.C.; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R.L.; Barros, Fernanda de V.; van de Giesen, N.C.

    2017-01-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer

  13. Effects of short-term water deficit stress on physiological ...

    African Journals Online (AJOL)

    South African Journal of Plant and Soil ... However, there is limited information on the ways Bambara groundnut landraces respond and adapt to drought. The study was conducted to evaluate the response of Bambara groundnut landraces sourced from contrasting environments to periods of water deficit initiated at ...

  14. The response of Cyclamen hederifolium to water stress induced by ...

    African Journals Online (AJOL)

    The purpose of this study was to examine the effects of different irrigation levels on morphological and physiological parameters of Cyclamen hederifolium. Irrigation applications was scheduled as 40% of the available water was depleted in the root zone in the full irrigation and intended to refill the root zone up to field ...

  15. Response of carotenoids and tocols of durum wheat in relation to water stress and sulfur fertilization.

    Science.gov (United States)

    Fratianni, Alessandra; Giuzio, Luigia; Di Criscio, Tiziana; Zina, Flagella; Panfili, Gianfranco

    2013-03-20

    Lipophilic antioxidants are essential components of plant defense against stressful conditions. The response of carotenoids and tocols to water deficit and sulfur fertilization was investigated in durum wheat cultivars. The amounts of tocols and carotenoids were evaluated in both whole meal and semolina samples. Differences among cultivars were observed. Simeto cultivar showed a significant effect of water regime on whole meal and semolina carotenoids, with about 20% and 15% increase, respectively. Also tocols and tocotrienols of Simeto were positively affected by water stress (about 10% increase and 15% increase in whole meals and semolinas). Sulfur fertilization positively impacted mainly Ofanto whole-grain and semolina carotenoids, semolina tocols, and tocotrienols. In conclusion, water deficit occurring under a Mediterranean environment was responsible for an improvement of lipophilic antioxidant content in durum wheat; in contrast sulfur supplementation did not improve the response of the antioxidant pool under water deficit.

  16. [Correlation of severity classification of acute respiratory distress syndrome by the Berlin definition with extra vascular lung water index and pulmonary vascular permeability index].

    Science.gov (United States)

    Zhu, Jinyuan; Wang, Xiaohong; Yang, Xiaojun; Wang, Xiaoqi; Ma, Xigang

    2015-05-19

    To explore the correlation of severity classification of acute respiratory distress syndrome (ARDS) by the Berlin definition with extra vascular lung water index (EVLWI) and pulmonary vascular permeability index (PVPI). A total of 70 cases with ARDS at intensive care unit of our hospital from July 2012 to July 2014 were divided into three groups of mild (n = 20), moderate (n = 30) and severe (n = 20) according to the Berlin definition. The scores of acute physiology and chronic health evaluation (APACHE) II and sequential organ failure assessment (SOFA) within 24 h of admission were recorded. And the values of EVLWI and PVPI of three groups from Day 1-4 were monitored by pulse indicator continuous cardiac output (PiCCO). Receiver operating characteristic (ROC) curve was drawn for these parameters and the area under curve was compared. Meanwhile blood gas was analyzed and oxygenation index (OI) calculated. And the correlations of EVLWI and PVPI with OI were analyzed. Comparisons of EVLWI, PVPI and OI were made for three groups at different timepoints: As the severity of ARDS aggravated, EVLWI and PVPI of three groups increased significantly at any timepoint while OI decreased sharply (P 0.05). There was no sharp decline of EVLWI or PVPI in severe ARDS group (P > 0.05). And OI increased significantly from Day 1-4 in three groups (P 2.95 at Day 4 of admission was used as the best threshold value for judging prognosis. And the sensitivity was 70% and specificity 92%. OI had negative correlation with EVLWI and PVPI in three groups from Day 1-4 [(r = -0.685, P = 0.000) and (r = -0.631, P = 0.000)]. Both EVLWI and PVPI reflect adequately the severity of ARDS by the Berlin definition. And the dynamic trend of PVPI is superior to that of EVLWI.

  17. Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress.

    Directory of Open Access Journals (Sweden)

    Huanian Wu

    Full Text Available Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance.We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs reflecting the early response to water stress (6h vs. 0h, the late response to water stress (24h vs. 0h and the response to post water stress rehydration (30h vs. 24h. Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the 'Glutathione metabolism pathway' in response to water stress.This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia in response to water stress, and merit further

  18. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    water-stressed periods may not be necessary for desert bighorn sheep.

  19. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    water-stressed periods may not be necessary for desert bighorn sheep.

  20. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Science.gov (United States)

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  1. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Directory of Open Access Journals (Sweden)

    Roberto O Chávez

    Full Text Available Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI, should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi and between winter and summer (ΔNDVI W-S. In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  2. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  3. Effects of water restriction following feeding on nutrient digestibilities, milk yield and composition and blood hormones in lactating Holstein cows under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Jalil Ghassemi Nejad

    2015-08-01

    Full Text Available The effects of water restriction following feeding under heat stress conditions on nutrient digestibilities, milk yield and composition and some blood hormones in lactating Holstein cows were evaluated. The design was completely randomized with 30 high producing lactating Holstein cows (80.8±40.5 DIM which were assigned to two treatment groups (15 cows per treatment. Treatments were free access to water (FAW and 2 h water restriction (2hWR following feeding. Average temperature-humidity index (THI in the farm was over 80 throughout the experiment which defines heat stress conditions. Neutral detergent fibre, organic matter and ether extract digestibilities increased by water restriction (P0.05. Water intake was recorded daily during the digestibility period and was not different between FAW and 2hWR group (P>0.05. Fat corrected milk was higher in 2hWR group than FAW group (P0.05. Somatic cell counts were greater in 2hWR than FAW group (P0.05. Blood prolactin and growth hormone were higher in 2hWR group than the FAW group (P<0.05. It is concluded that water restriction for 2 hours following feeding improved nutrient digestibility of some dietary components and increased milk fat percentage in lactating Holstein cows under heat stress conditions.

  4. The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment

    NARCIS (Netherlands)

    Cibis, Merih; Potters, Wouter V.; Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; VanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.

    2016-01-01

    Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these

  5. Effect of water deficit stress on yield, physiological and biochemical parameters of two Iranian cantaloupe accessions

    Directory of Open Access Journals (Sweden)

    Hadi Lotfi

    2016-06-01

    Full Text Available Water deficit stress is one of the most important environmental factors limitting plant growth and crop production. In order to evaluate the tolerance of two Iranian melons to water deficit stress, an experiment in research filed of University of Zanjan was conducted. Treatments consisted of three Irrigation levels, starting irrigation at (100, 66 and 33 % Crop Evapotranspiration and two accessions of Iranian cantaloupes (Tile-Zard and Tile-Sabz. In this experiment, total chlorophyll content, carotenoids, proline content, leaf relative water content (RWC, ascorbic acid, peroxidase and catalase activity, yield and water use efficiency (WUE were evaluated. The results indicated that water deficit stress significantly increased proline content, peroxidase and catalase activity and WUE, but decreased RWC, yield and total chlorophyll content. The highest increase in proline content (34.8 %, catalase (18 % and proxidase (42.3 % activity and reduction in yield (61.6 % and RWC (8 % was obtained in 33 % ETc Irrigation. There has been significant difference between accesesions in relation to RWC, proline, total chlorophyll and peroxidase and catalase activity. The highest value of yield and WUE was observed in 'Tile-Zard'. According to the interaction results, both accessions, 'Tile-Sabz' and 'Tile-Zard' with 63.6 % and 59.7 % Reduction in fruit yield under deficit water stress, are.

  6. [Effects of arbuscular mycorrhizal fungi on reactive oxygen metabolism of Citrus tangerine leaves under water stress].

    Science.gov (United States)

    Wu, Qiang-Sheng; Zou, Ying-Ning; Xia, Ren-Xue

    2007-04-01

    In a pot experiment, this paper studied the effects of arbuscular mycorrhizal (AM) fungus Glomus versiforme (Karsten) Berch inoculation on the reactive oxygen metabolism of Citrus tangerine Hort. ex Tanaka leaves under water stress. The results showed that water stress decreased the colonization of G. versiforme on C. tangerine roots significantly, with a decrement of 33%. Under normal water supply and water stress, G. versiforme inoculation increased the leaf P content by 45% and 27%, and decreased the leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents by 25% and 21%, and 16% and 16%, respectively, compared with the control. Inoculation with G. versiforme enhanced the activities of leaf superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and increased the contents of leaf soluble protein, ascorbate (ASC) and total ascorbate (TASC) notably, regardless soil moisture condition. Under water stress, G. versiforme inoculation decreased the leaf superoxide anion radical (O2-*) content by 31%, compared with that under normal water supply. It was suggested that the drought resistance of C. tangerine leaves was enhanced after G. versiforme inoculation.

  7. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks

    Science.gov (United States)

    Harrison, F.E.; Hosseini, A.H.; McDonald, M.P.

    2009-01-01

    The effects of abnormally high or low stress on learning are well established. The Barnes maze and Morris water maze are two commonly-used tests of spatial memory, of which the water maze is considered more stressful; however, until now this has not been demonstrated empirically. In the present study, mice matched for performance on commonly-used anxiety tasks were trained on either the Barnes maze or water maze or received no cognitive testing. Water-maze training induced greater increases in plasma corticosterone than did Barnes maze training, assessed 30 min. after the final session. Importantly, spatial learning was inversely correlated with corticosterone levels in the water maze but not the Barnes maze, suggesting that performance on the water maze may be more affected by test-induced stress even within wild-type subjects of the same age and gender. These findings are important when considering the appropriate cognitive tasks for any experiment in which stress responses may differ systematically across groups. PMID:18996418

  8. Central Hemodynamics and Extravascular Lung Water Index in Varying Degrees of Community-Acquired Pneumonia

    Directory of Open Access Journals (Sweden)

    S. N. Avdeykin

    2015-01-01

    Full Text Available Objective: to assess the specific features of central hemodynamics (CH, extravascular lung water index (EVLWI, and pulmonary oxygenizing function in patients with different outcomes of treatment for severe communityacquired pneumonia (CAP.Subjects and methods. The retrospective study enrolled 57 patients with CAP. According to its outcome, there were 2 groups: 1 44 patients (33 men and 11 women, whose disease ended in recovery; 2 13 patients (8 men and 5 women, whose CAP resulted in a fatal out come. The groups did not differ in age (48.1±2.3 and 55.3±4.1 years and overall disease severity according to the APACHE II (21.5±0.8 and 25.2±2.1 scores and SOFA (8.7±0.2 and 9.7±1.0 scores scales (p<0.05. CAP was more severe in Group 2: 3.5±0.1 and 4.4±0.27 CURB65 scores (p>0.05. All the patients received identical antibiotic therapy. They underwent transpulmonary thermodilution according to the standard procedure. The indicators were daily recorded. The data were statistically processed. A corre lation analysis was made calculating the correlation coefficients (r. The significance of differences was estimated by the Student's ttest or Mann-Whitney test.Results. On day 1 of followup, the patients in both groups were prone to arterial hypotension, had tachycardia, lower or nearnormal central venous pressure (CVP. Group 1 versus Group 2 had higher cardiac index (CI (2.9±0.2 and 2.1±0.1 l/min/m2 and global ejection fraction (GEF (22.5±1 and 15.8±1.7% (p<0.05 and lower CVP (4.1±0.2 and 5.6±0.4 mm Hg (p<0.05. On day 3, Group 2 versus Group 1 had higher CVP (p<0.05 and lower CI, GEF, and some other cardiac pump function indicators. Admission EVLWI was virtually equally elevated in both groups. In Group 1, the indicator decreased later on and approached the normal values at 67 days of treatment. In Group 2, EVLWI remained high and did not virtually decrease. The indicator was ascertained to be inversely correlated with GEF on treatment days 1

  9. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band

    Directory of Open Access Journals (Sweden)

    Yun Du

    2016-04-01

    Full Text Available Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI calculated from the green and Shortwave-Infrared (SWIR bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can provide fine spatial resolution multispectral images. This new dataset is potentially of important significance for regional water bodies’ mapping, due to its free access and frequent revisit capabilities. It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however, wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis (PCA, Intensity Hue Saturation (IHS, High Pass Filter (HPF and À Trous Wavelet Transform (ATWT, were applied in this study. The performance of the proposed method was assessed experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening algorithms, were compared. Three levels of results, including the sharpened images, the produced MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results showed that MNDWI can enhance water bodies and suppressbuilt

  10. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    potential rate, expected under optimum soil water conditions, has been used to assess the water stress of the system. An annual drought index has been calculated based on this relative ET, in order to compare the main drought events occurred during the study period. Two generalised events (2005 and 2012) and a partial one (2009) have been characterised by analysing the evaporative stress time series, performing a detailed comparison over the two eddy covariance tower sites and a general one over the entire oak savanna area of the Peninsula.

  11. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L..

    Directory of Open Access Journals (Sweden)

    Inga Mewis

    Full Text Available Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L. plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer and the crucifer specialist Brevicoryne brassicae (L.. Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid.

  12. Water Stress and Aphid Feeding Differentially Influence Metabolite Composition in Arabidopsis thaliana (L.)

    Science.gov (United States)

    Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian

    2012-01-01

    Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921

  13. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  14. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  15. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective