WorldWideScience

Sample records for water state measurements

  1. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  2. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  3. An evaluation of security measures implemented to address physical threats to water infrastructure in the state of Mississippi.

    Science.gov (United States)

    Barrett, Jason R; French, P Edward

    2013-01-01

    The events of September 11, 2001, increased and intensified domestic preparedness efforts in the United States against terrorism and other threats. The heightened focus on protecting this nation's critical infrastructure included legislation requiring implementation of extensive new security measures to better defend water supply systems against physical, chemical/biological, and cyber attacks. In response, municipal officials have implemented numerous safeguards to reduce the vulnerability of these systems to purposeful intrusions including ongoing vulnerability assessments, extensive personnel training, and highly detailed emergency response and communication plans. This study evaluates fiscal year 2010 annual compliance assessments of public water systems with security measures that were implemented by Mississippi's Department of Health as a response to federal requirements to address these potential terrorist threats to water distribution systems. The results show that 20 percent of the water systems in this state had at least one security violation on their 2010 Capacity Development Assessment, and continued perseverance from local governments is needed to enhance the resiliency and robustness of these systems against physical threats.

  4. Radon measurement in Malaysia water samples

    International Nuclear Information System (INIS)

    Ibrahim, A.B.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    This paper reported the results of the measurement of radon in local water. The water samples collected were rainwater, river water, seawater, well water or ground water at area of State of Selangor and Kuala Lumpur. The samples were collected in scintillation cell ZnS(Ag) through Radon Degassing Unit RDU 200. Alpha activity was counted with scintillation counters RD 200 at energy 5.5 MeV. (author)

  5. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  6. State Water Districts

    Data.gov (United States)

    California Natural Resource Agency — State Water Project District boundaries are areas where state contracts provide water to the district in California. This database is designed as a regions polygon...

  7. Review of state of the art methods for measuring water in landfills

    International Nuclear Information System (INIS)

    Imhoff, Paul T.; Reinhart, Debra R.; Englund, Marja; Guerin, Roger; Gawande, Nitin; Han, Byunghyun; Jonnalagadda, Sreeram; Townsend, Timothy G.; Yazdani, Ramin

    2007-01-01

    In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field

  8. Measuring device for water quality at reactor bottom

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Takagi, Jun-ichi

    1995-10-27

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.).

  9. Measuring device for water quality at reactor bottom

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Takagi, Jun-ichi.

    1995-01-01

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.)

  10. Hydrochemical measures and salinity studies in Inhanhuns' waters, Ceara State, Brazil

    International Nuclear Information System (INIS)

    Lima, Carlos Henrique; Santiago, Marlucia Freitas; Mendes Filho, Josue; Frischkorn, Horst

    1996-08-01

    The Inhamuns region is one of the most arid in Ceara Waters exhibit very high salinity. Here we evaluate measurements of chemical parameters (electrical conductivity, EC, and major ions) and δ 18 O for waters from wells, springs and surface reservoirs. Results show that springs, with EC of up to nearly 5000 μS/cm, are fed by pluvial water, exchange through dams can be excluded. Electrical conductivity is well correlated with Na + Mg ++ and Cl - for waters of various origins, whereas Ca ++ correlates reasonably only for wells. We conclude that aerosol deposition is a major source of salt, Enrichment through evaporation constitutes the most important process for surface water salination. Dissolution of chlorite-silicates is the cause for the magnesian character of underground water. (author)

  11. Monitoring of the state of the paper machine circulation water with a wide-band impedance measurement; Paperikoneen kiertoveden tilan seuranta laajakaistaisella impedanssimittauksella - MPKT 02

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, T. [VTT Automation, Espoo (Finland). Measurement Technology

    1998-12-31

    A new measurement method for monitoring the chemical state of the circulation water in the paper machine is proposed and studied. In the method, the electrical properties - conductivity and permittivity - of the water are measured in a wide frequency band: 20 Hz - 10 mhz. Large-molecule organic compounds in the water are expected cause characteristic changes in the dielectric properties of the water. Continuous monitoring of the permittivity in the wide frequency band thus reveals their presence. Various electronic measurement setups for the measurement are constructed and studied by using test samples. If the method turns out to be promising, a prototype device will be made. (orig.)

  12. Monitoring of the state of the paper machine circulation water with a wide-band impedance measurement; Paperikoneen kiertoveden tilan seuranta laajakaistaisella impedanssimittauksella - MPKT 02

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, T [VTT Automation, Espoo (Finland). Measurement Technology

    1999-12-31

    A new measurement method for monitoring the chemical state of the circulation water in the paper machine is proposed and studied. In the method, the electrical properties - conductivity and permittivity - of the water are measured in a wide frequency band: 20 Hz - 10 mhz. Large-molecule organic compounds in the water are expected cause characteristic changes in the dielectric properties of the water. Continuous monitoring of the permittivity in the wide frequency band thus reveals their presence. Various electronic measurement setups for the measurement are constructed and studied by using test samples. If the method turns out to be promising, a prototype device will be made. (orig.)

  13. Solid-state vs water-perfused catheters to measure colonic high-amplitude propagating contractions

    NARCIS (Netherlands)

    Liem, O.; Burgers, R. E.; Connor, F. L.; Benninga, M. A.; Reddy, S. N.; Mousa, H. M.; Di Lorenzo, C.

    2012-01-01

    Background Solid-state (SS) manometry catheters with portable data loggers offer many potential advantages over traditional water-perfused (WP) systems, such as prolonged recordings in a more physiologic ambulatory setting and the lack of risk for water overload. The use of SS catheters has not been

  14. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    Science.gov (United States)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  15. Measuring water content in soil using TDR: A state-of-the-art in 1998

    International Nuclear Information System (INIS)

    Topp, G.C.; Ferre, P.A.

    2000-01-01

    Over the past decade or so, the development and continuing refinement of the time-domain reflectometry (TDR) technique for in-situ, nondestructive measurement of water content has revolutionized the study and management of the transfer and storage of water within the soil profile. The principles for the application of TDR to water content are now well accepted and straight forward. For many mineral soils, the calibration for water content has a linear relationship with the square root of the relative permittivity measured by TDR. This allows a two-point calibration. TDR-measured water content has been applied successfully to water balance studies ranging from the km scale of small watersheds to the nun scale of the root-soil interface. Soil probes can be designed to meet many and varied requirements. The performance of a number of probe geometries is presented, including some of their strengths and weaknesses. Although coated soil probes allow measurement in more conductive soils, the probe coatings alter the water-content calibration both in sensitivity and linearity. Three general options are available for determining profiles of soil water content from the soil surface to a depth of 1 m. Soil probes of differing total depths extending to the surface are the most accessible. Soil probes buried at selected depths provide easily repeatable values. The vertically installed single probe, Aith depth segments separated by diodes, allows repeated measurement in a single vertical slice. The portability of TDR instrumentation coupled with the simplicity and flexibility of probes has allowed the mapping of spatial patterns of water content and field-based spatial and temporal soil water content distributions. The usefulness and power of the TDR technique for characterizing soil water content is increasing rapidly through continuing improvements in instrument operating range, probe design, multiplexing and automated data collection. (author)

  16. Remote sensing for water quality and biological measurements in coastal waters

    International Nuclear Information System (INIS)

    Johnson, R.W.; Harriss, R.C.

    1980-01-01

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts

  17. Measure for Measure: Urban Water and Energy

    Science.gov (United States)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  18. Terahertz Measurement of the Water Content Distribution in Wood Materials

    Science.gov (United States)

    Bensalem, M.; Sommier, A.; Mindeguia, J. C.; Batsale, J. C.; Pradere, C.

    2018-02-01

    Recently, THz waves have been shown to be an effective technique for investigating the water diffusion within porous media, such as biomaterial or insulation materials. This applicability is due to the sufficient resolution for such applications and the safe levels of radiation. This study aims to achieve contactless absolute water content measurements at a steady state case in semi-transparent solids (wood) using a transmittance THz wave range setup. First, a calibration method is developed to validate an analytical model based on the Beer-Lambert law, linking the absorption coefficient, the density of the solid, and its water content. Then, an estimation of the water content on a local scale in a transient-state case (drying) is performed. This study shows that THz waves are an effective contactless, safe, and low-cost technique for the measurement of water content in a porous medium, such as wood.

  19. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  20. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  1. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  2. Monitoring water for radioactive releases in the United States

    International Nuclear Information System (INIS)

    Porter, C.R.; Broadway, J.A.; Kahn, B.

    1990-01-01

    The major radiological environmental monitoring programs for water in the United States are described. The applications of these programs for monitoring radioactive fallout, routine discharges from nuclear facilities, and releases due to accidents at such facilities are discussed, and some examples of measurements are presented. The programs monitor rainfall, surface water, and water supplies. Samples are usually collected and analyzed on a monthly or quarterly schedule, but the frequency is increased in response to emergencies. (author)

  3. Reflective measurement of water concentration using millimeter wave illumination

    Science.gov (United States)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  4. 50 CFR 648.54 - State waters exemption.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false State waters exemption. 648.54 Section 648... Atlantic Sea Scallop Fishery § 648.54 State waters exemption. (a) State eligibility for exemption. (1) A state may be eligible for a state waters exemption if it has a scallop fishery and a scallop...

  5. Results of environmental radioactivity measurements in the Member States of the European Community for air - deposition - water - milk. 1981

    International Nuclear Information System (INIS)

    1983-01-01

    This is the 21st report on ambient radioactivity published by the Health and Safety Directorate of the Commission of the European Communities. It was drawn up using the data collected by stations responsible for environmental radioactivity monitoring in Member States. The results are extracts from the data sent to the Commission under Article 36 of the Treaty of Rome establishing the European Atomic Energy Community. The results presented in this report deal with radioactivity of the air, deposition, surface water and milk during 1981 in the ten Member States of the European Community, viz. Belgium, Denmark, Federal Republic of Germany, Greece, France, Ireland, Italy, Luxembourg, the Netherlands and the United Kingdom. The results are presented under four main headings: artificial radioactivity in the air at ground level; artificial radioactivity in deposition; radioactivity of water; radioactivity of milk. The report also contains the list of sampling stations and laboratories, together with a list of publications by Member States in this field. This report places special emphasis on the measurement results for specific radionuclides, but it also contains data on total beta activity so as to ensure continuity vis-a-vis previous and provide comparative values

  6. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    Science.gov (United States)

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  7. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  8. Measuring domestic water use

    DEFF Research Database (Denmark)

    Tamason, Charlotte C.; Bessias, Sophia; Villada, Adriana

    2016-01-01

    Objective: To present a systematic review of methods for measuring domestic water use in settings where water meters cannot be used. Methods: We systematically searched EMBASE, PubMed, Water Intelligence Online, Water Engineering and Development Center, IEEExplore, Scielo, and Science Direct...... databases for articles that reported methodologies for measuring water use at the household level where water metering infrastructure was absent or incomplete. A narrative review explored similarities and differences between the included studies and provide recommendations for future research in water use....... Results: A total of 21 studies were included in the review. Methods ranged from single-day to 14-consecutive-day visits, and water use recall ranged from 12 h to 7 days. Data were collected using questionnaires, observations or both. Many studies only collected information on water that was carried...

  9. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  10. Bridging the Gap: Ideas for water sustainability in the western United States

    Science.gov (United States)

    Tidwell, V. C.; Passell, H. D.; Roach, J. D.

    2012-12-01

    Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  11. Transit time measurement of Juqueri river waters

    International Nuclear Information System (INIS)

    Plata Bedmar, E.; Garcia A, E.; Albuquerque, A.M. de; Sanchez, W.

    1975-01-01

    The time of travel of the Juqueri River water through the east branch of the Pirapora Reservoir was measured using radioactive tracers (6 Ci 131 I in Kl Solution). The changes in Juqueri River flow rate were also measured during the run. The center of mass of the radioactive cloud was used for the time of travel calculations. Six measurements of the Juqueri River flow rate were perfomed in different days, using the total count method. Fifty, millicuries of 131 I were used in each run. The results of time travel obtained under non-steady conditions, and their correction for steady state are also discussed

  12. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  13. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  14. Composite measures of watershed health from a water quality perspective.

    Science.gov (United States)

    Mallya, Ganeshchandra; Hantush, Mohamed; Govindaraju, Rao S

    2018-05-15

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-based watershed health. In this study, a modified methodology for computing R-R-V measures is presented, and a new composite watershed health index is proposed. Risk-based assessments for different water quality parameters are carried out using identified national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically for the watershed health (WH) index, suggest that WH values increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use characteristics within the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 33 CFR 2.38 - Waters subject to the jurisdiction of the United States; waters over which the United States has...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters subject to the jurisdiction of the United States; waters over which the United States has jurisdiction. 2.38 Section 2.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION...

  16. Measurement of oil on water

    International Nuclear Information System (INIS)

    Cordemann, A.; Damaske, O.; Schlaak, M.

    1994-01-01

    In the measurement of oil on water in the cooling water outflow, in the outfall and intaked of effluent treatment plants, in waterways and in process plants, many methods of measurement available in the market have duration problems or basic difficulties as a result of associated conditions. A series of methods of measurement and equipment has been investigated for the measurement of oil on water. It was been established that the fluorescence method of measurement which operates without contact is especially suitable for this task. (orig.) [de

  17. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    sanitary rules and regulations by the most of indicators of general health and specific indices. 19.0% of total water supply systems fail to meet the sanitary norms and regulations, in particular: 14.2% for the lack of sanitary protection zones; 1.9% because of unavailability of the necessary integrated treatment facilities, and 7.6% by the reason of absence of disinfecting plants. Possible ways of avoiding the depletion of water bodies are preventive water protection measures aimed at preventing or limiting pollution, water contamination and depletion; besides, it is necessary to educate people explaning them the current state and possible consequences of thoughtless water consumption.

  18. Primary production measurements at three reservoirs in the state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Jureidini, P.; Chinez, S.J.; Agudo, E.G.

    1983-01-01

    Primary production measurements were carried out at three reservoirs in the state of Sao Paulo, Barra Bonita, Paiva Castro and Ponte nova using the 14 C technique. Meanwhile, several physical and chemical parameters of these water were also evaluated, in order to find out the limnological conditions of these reservoirs. Primary production rates ranged from 7,6mg C/m 3 d at Ponte Nova, to 247,2mg C/m 3 d at Barra Bonita. There seems to be god correlation between water quality data and primary production measurements. Regarding the results, it may be stated that the Barra Bonita reservoir has reached the eutrophic level, while the other two exibit mesotrophic levels. As a way of testing the water quality data collected was used in Churchill and Nicholas model, issuing results in agreement with those of the primary production measurements. (Author) [pt

  19. LANDSAT-1 data as it has been applied for land use and water quality data by the Virginia State Water Control Board. 1: The state project. 2: Monitoring water quality from LANDSAT

    Science.gov (United States)

    Trexler, P. L.; Barker, J. L.

    1975-01-01

    LANDSAT-1 imagery has been used for water quality and land use monitoring in and around the Swift Creek and Lake Chesdin Reservoirs in Virginia. This has proved useful by (1) helping determine valid reservoir sampling stations, (2) monitoring areas not accessible by land or water, (3) giving the State a viable means of measuring Secchi depth readings in these inaccessible areas, (4) giving an overview of trends in changing sedimentation loadings over a given time period and classifying these waters into various categories, (5) enabling the State to inventory all major lakes and reservoirs and computing their acreage, (6) monitoring land use changes in any specific area, (7) evaluating possible long-term environmental effects of nearby developments, and (8) monitoring and predicting population shifts with possible impact on water quality problems. The main problems in the long-term use of such imagery appear to be cost and lack of consistency due to cloud cover limitations.

  20. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  1. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  2. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  3. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    International Nuclear Information System (INIS)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-01-01

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water. In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.

  4. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  5. Polyamorphism in Water: Amorphous Ices and their Glassy States

    Science.gov (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  6. Measuring domestic water use: a systematic review of methodologies that measure unmetered water use in low-income settings.

    Science.gov (United States)

    Tamason, Charlotte C; Bessias, Sophia; Villada, Adriana; Tulsiani, Suhella M; Ensink, Jeroen H J; Gurley, Emily S; Mackie Jensen, Peter Kjaer

    2016-11-01

    To present a systematic review of methods for measuring domestic water use in settings where water meters cannot be used. We systematically searched EMBASE, PubMed, Water Intelligence Online, Water Engineering and Development Center, IEEExplore, Scielo, and Science Direct databases for articles that reported methodologies for measuring water use at the household level where water metering infrastructure was absent or incomplete. A narrative review explored similarities and differences between the included studies and provide recommendations for future research in water use. A total of 21 studies were included in the review. Methods ranged from single-day to 14-consecutive-day visits, and water use recall ranged from 12 h to 7 days. Data were collected using questionnaires, observations or both. Many studies only collected information on water that was carried into the household, and some failed to mention whether water was used outside the home. Water use in the selected studies was found to range from two to 113 l per capita per day. No standardised methods for measuring unmetered water use were found, which brings into question the validity and comparability of studies that have measured unmetered water use. In future studies, it will be essential to define all components that make up water use and determine how they will be measured. A pre-study that involves observations and direct measurements during water collection periods (these will have to be determined through questioning) should be used to determine optimal methods for obtaining water use information in a survey. Day-to-day and seasonal variation should be included. A study that investigates water use recall is warranted to further develop standardised methods to measure water use; in the meantime, water use recall should be limited to 24 h or fewer. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  7. Measurements of radon in drinking water (Curitiba, PR, Brazil)

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi; Paschuk, Sergei A.; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: Among the principle mechanisms that bring the radon inside the dwelling is the exhalation and release from the water. It was evaluated that considering the latest mechanism, the exhalation of radon from the water represents about 89% of the cancer risk and the consumption of water with high concentration of radon is related to about 11% of risk cancer. Radon concentration in water could be subject of different factors such as the geology of the area, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. It is well known that the solubility of radon in water is about 510 cm 3 kg -1 at 0 deg C and decreases at higher temperatures. The 222 Rn concentration in various types of natural water in different countries usually is about few Bq/L and is the subject of the National legislation as well as International norms and recommendations. For example, the United States Environmental Protection Agency (USEPA) established a limit of 11.1 Bq/L for the radon level in drinking water and this limit is considered as guideline in Canada and many countries of the European Union. Current work presents the results of more than 100 measurements of 222 Rn activity in drinking water collected at artesian bores at Curitiba region during the period of 2008 - 2009. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology in cooperation with the Nuclear Technology Development Center (CDTN) of Brazilian Nuclear Energy Committee (CNEN). Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specific kit of glass vessels Aqua KIT through the air pump. The equipment was adjusted with air flow of 0.5 L/min. The 222 Rn concentration levels were detected and analyzed by the computer using the software DataEXPERT by GENITRON Instruments. Collected average levels of 222 Rn concentration were processed taking into account the volume of water sample and its temperature

  8. State of Hawaii, Department of Health, Clean Water Branch State-wide Water Quality Sampling Dataset 1999-2006 (NODC Accession 0013723)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monitoring Section of the State of Hawaii, Department of Health, Clean Water Branch collects water quality data at over 300 coastal locations state-wide using...

  9. State of Hawaii, Department of Health, Clean Water Branch State-wide Water Quality Sampling Dataset 1973-1998 (NODC Accession 0013724)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monitoring Section of the State of Hawaii, Department of Health, Clean Water Branch collects water quality data at over 300 coastal locations state-wide using...

  10. Water radiological sanitary control of Veracruz State

    International Nuclear Information System (INIS)

    Carreon G, E.; Vazquez C, J. A.; Aguilar P, M. del C.; Parissi C, A.

    2014-10-01

    This work is carried out in Veracruz State covering over 11 jurisdictions of the State (Panuco, Tuxpan, Poza Rica, Martinez de la Torre, Xalapa, Cordoba, Orizaba, Veracruz, Cosamaloapan, San Andres Tuxtla and Coatzacoalcos). The sampling was realized in a period from 2009 to 2013 analyzing home drinking water, supply sources and wells, the sampling was done by the sanitary checkers of different jurisdictions with approved methods and the methodology was validated at the State Laboratory of Public Health. 1637 samples were analyzed by counting equipment Tennelec Canberra series 5 and a gas supply system P-10 with calibration curves for alpha and gross beta. The results of measurements ranging from 0.07 to 0.25 Bq/L in the activity concentration gross alpha annual average, an gross beta were from 0.12 to 0.17 Bq/L in the activity concentration gross beta annual average, and with a concentration range of alpha activity up to 0.62 and a minimum 0.02, and the concentration of beta activity of a maximum value 1.54 and a minimum 0.02, taking also as resulted in five years of analysis only 1.16% of the analyzed samples (19 samples) showed a value of alpha activity concentration above the minimum detectable concentration and 62.43% (1022 samples) of the analyzed samples showed a value of beta activity concentration above the minimum detectable concentration, is also clear that the results of the sanitary jurisdictions of Panuco and Tuxpan not have corresponding activity values for the years 2009, 2011-2013 except 2010. We can conclude that the regular measurements of alpha and gross beta activity in water are invaluable for timely detection of radioactive contamination. (Author)

  11. Radon and radium measurement in well water at Curitiba (PR), Brazil

    International Nuclear Information System (INIS)

    Correa, Janine N.; Paschuk, Sergei A.; Perna, Allan F.N.; Kappke, Jaqueline; Claro, Flavio del; Denyak, Valeriy; Schelin, Hugo R.; Rocha, Zildete

    2011-01-01

    This study presents the results of 226 Ra and 222 Rn activity concentration measurements in well water in the city of Curitiba - Parana State of Brazil. Water samples were collected from 31 wells and submitted to the radioactivity measurements in the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR) in cooperation with CDTN-CNEN. Each water sample was submitted to 4 measurements of radon concentration with interval of three days. After two months the same samples were submitted once again to 222 Rn concentration measurements with an objective to evaluate indirectly the amount of 226 Ra contained in water samples. The 222 Rn concentration measurements were performed using AlphaGUARD radon monitor (Genitron Instruments) and 226 Ra concentration was evaluated using the decay curves of 222 Rn. Within few hours after extraction about 70% of water samples from monitored wells presented 222 Rn concentration values above the limit of 11.1 Bq/L recommended by the USEPA. Obtained activity values varied between 1.57 Bq/L - 215.16 Bq/L for radon concentration, and radium concentrations deviated within an interval of 0.61 Bq/L - 6.76 Bq/L. Obtained results showed that the biggest part of 222 Rn found in water samples was not originated from the 226 Ra compounds soluble in water but from gas exhalation by the soil adjacent to the well. The results of present research show the requirement of radioactivity monitoring of water extracted from artesian wells at Curitiba region and indicate the necessity of mitigation procedure development for better control of global alpha radioactivity in drinking water. (author)

  12. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  13. Programmes of measures under the water framework directive – a comparative case study

    DEFF Research Database (Denmark)

    Baaner, Lasse

    2011-01-01

    The water framework directive requires programmes of measures composed by the Member States, in order to achieve its environmental objectives. This article examines three programmes of measures for river basins in Denmark, Sweden, and Norway, with a focus on the differences in how the programmes...... direct the authorities’ activities with regard to water management. It concludes that there are major differences in the precision of the measures, the range of legal instruments used, and in the focus on active and direct management of the aquatic environment. The Danish programme seems to facilitate...

  14. Evaluation of radon concentration in dwellings and well water of Parana State-Brazil

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi

    2011-01-01

    Considering the growing interest of International Agencies and national Governmental organs in studies and measurements of radon activity in air, soil gas and ground water (mainly from artesian wells) as well as scarceness of such measurements at Brazilian territory, present studies were initiated by the Laboratory of Applied Nuclear Physics of Federal University of Technology - Parana (UTFPR) in collaboration with the Institute of Radiation Protection and Dosimetry (IRD) and the Center of Nuclear Technology Development (CDTN) of Brazilian Commission on Nuclear Energy (CNEN). This Collaboration started in 2003. Radon monitoring program is based mainly on use of Solid State Nuclear Track Detectors for radon activity measurements in air. Continuous electronic radon detectors are used for radon measurements in soil gas and water. Current work presents the results of indoor 222 Rn activity of dwellings and working places of Curitiba-PR and radon concentration in ground water samples from artesian wells from aquifers of the same area. The indoor measurements of radon activity were performed using Solid State Nuclear Track Detectors CR-39. After the exposition, CR-39 detectors were submitted to chemical development which permitted to make alpha particle tracks counting. The results of calibration of CR-39 together with efficiency of used exhalation chambers as well as alpha particle tracks chemical development procedure were performed in cooperation with CDTN and collaboration with the National Institute of Radiological Sciences (NIRS). The major part of indoor 222 Rn concentration in residences was found below 100 Bq/m3. In the case of working places, all measurements present 222 Rn concentration bellow 100 Bq/m3. The studies of radon activity in water were performed using the samples of water from artesian wells submitted to recursive measurements by instant radon detector AlphaGUARD PQ2000 PRO during few weeks with intervals of about 4 days between each measurement

  15. NOAA Water Level Predictions Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  16. Results of environmental radioactivity measurements in the Member States of the European Community for air - deposition - water - milk - 1977

    International Nuclear Information System (INIS)

    1979-01-01

    The present document is the seventeenth report published by the Health and Safety Directorate of the Commission of the European Communities concerning ambient radioactivity. It was drawn up using the data collected by the stations responsible for environmental radioactivity monitoring in the Member States. The results are extracts from the data sent to the Commission in application of Article 36 of the Treaty of Rome establishing the European Atomic Energy Community. The results presented in this report deal with radioactive contamination of the air, precipitation and fallout, surface water and milk during 1977 in the nine Member States of the European Community, viz. Belgium, Denmark, the Federal Republic of Germany, France, Italy, Ireland, Luxembourg, the Netherlands and the United Kingdom. The report also contains supplementary data on short-lived radioelements detected during the fourth quarter of 1977, the list of sampling stations and laboratories together With a list of publications by Member States in this field. This report places special emphasis on the measurement results for specific radionuclides, but it also contains data on total beta activity so as to ensure continuity vis-a-vis previous reports and provide comparative values

  17. Multispectral televisional measuring control of the ecological state of waterbodies on the characteristics macrophytes

    Science.gov (United States)

    Petruk, Vasil; Kvaternyuk, Sergii; Kozachuk, Anastasia; Sailarbek, Saltanat; Gromaszek, Konrad

    2015-12-01

    Improved methods for multispectral measuring television monitoring of the ecological state of water bodies on the characteristics of macrophytes groups to assess complex human impact on their environment. Integral assessment of water pollution is based on research products of higher aquatic plants and their communities by optical methods.

  18. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  19. Evaluation of radon in hot spring waters in Zacatecas State, Mexico

    International Nuclear Information System (INIS)

    Favila R, E.; Lopez del Rio, H.; Davila R, I.; Mireles G, F.

    2010-10-01

    It is well know that radon is a potent human carcinogen. Because of the health concern of radon exposure, concentrations of 222 Rn were determined in ten hot spring water samples from the Mexican state of Zacatecas. The thermal water is collected in pools and used mainly for recreational purposes. In addition to radon level, the water samples were characterized for temperature, conductivity, and ph. Liquid scintillation spectrometry was used to measure 222 Rn and its decay products by mixing directly an aliquot of water with a commercial liquid scintillation. All measurements were carried out using a liquid scintillation counter (Wallac 1411). The water temperature ranged from 28 to 59 C, while the ph varied from 7.2 to 9.0, and the water conductivity was between 202.4 and 1072 μS/cm. The 222 Rn concentration varied in the range 3.9-32.6 Bq/L. In addition, the risk to radon exposure was assessed by considering three -real and possible- radon exposure scenarios: 1) ingestion of bottled thermal water, 2) direct ingestion of thermal water; and 3) vapor inhalation. The annual effective dose calculated for ingestion of bottled thermal water was 0.010-0.083 mSv/yr; for ingestion of water was 0.65-5.47 mSv/yr; and for inhalation was 0.28-2.81 mSv/yr. (Author)

  20. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  1. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  2. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  3. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  4. A mobile and self-sufficient lab for high frequency measurements of stable water isotopes and chemistry of multiple water sources

    Science.gov (United States)

    Windhorst, David; Kraft, Philipp; Holly, Hartmut; Sahraei, Amir; Breuer, Lutz

    2017-04-01

    Technical advances over the last years have made instruments for stable water isotope and water chemistry measurements smaller, more durable and energy efficient. It is nowadays feasible to deploy such instruments in situ during field campaigns. Coupled to an automated sample delivery system, high temporal resolution online measurements of various sources are within the bounds of economic and technical possibility. However, the day to day operation of such equipment still requires either a lot of man power and infrastructure or the implementation of a quasi-self-sufficient system. The challenge remains on how to facilitate and remotely operate such a system. We present the design and implementation of the Water Analysis Trailer for Environmental Research (WATER), an autonomous platform consisting of instruments for stable water isotope and water chemistry analysis. The system takes and measures samples in high temporal resolution (operation of up to one week several issues need to be addressed. The essential topics are: - self-sufficient power supply, - automated sample delivery and preparation, and - autonomous measurements and management interfacing all instruments. In addition to the basic requirements we implemented: - communication of all system states, alarm messages and measurement results to an internal as well as an external database via cellular telemetry, - automated storage of up to 300 frozen reference samples (100 mL, stored at -18°C), - climate control for temperature sensitive equipment (±1°C), - a local and remote (up to 20 km using radio telemetry) sensor network (i.e. to record states of the hydrological system and climate and soil conditions), also suitable to trigger specific measurements - automatic fire suppression and security system. The initial instrumentation includes a UV spectrometer (ProPs, Trios GmBH, Germany) to measure NO3-, COD, TOC and total suspended sediments, multiparameter water quality probe (YSI600R, YSI, USA) to measure

  5. Measurement of concentration of heavy water

    International Nuclear Information System (INIS)

    Tsukamoto, Yuichi; Kondo, Mitsuo; Sakurai, Naoyuki

    1979-01-01

    The concentration of heavy water is measured as one of the technical management in the Fugen plant. The heavy water is used as the moderator in the reactor. The measuring method depends on the theory of light absorption. The light absorption range of heavy water spreads from near infrared to infrared zone. The near infrared absorption was adopted for the purpose, as the absorption is much larger in infrared zone, and the measurement has to be conducted, limiting the apparent absorption. This measuring method is available to determine the concentration of heavy water in the broad range exactly. The preparation of heavy water sample and the measurement of the absorption spectra of near infrared ray are explained, as the experimental procedure. The sample cell was made of quartz, and the spectroscope was the Hitachi 323 type. The resolving power is 100 nm and 27 nm for the wave length of 1000 nm and 2500 nm, respectively. Concerning the measured results, the absorption was recorded in the wave length range from 600 nm to 2600 nm, and for the heavy water concentration range from 0 to 99.77 wt. %. The peaks of absorption were located at the wave length of 1450, 1660, 1920, 1970, 2020 and 2600 nm. The three kinds of fundamental vibration mode of the molecules of both light and heavy water are shown, and the peaks belong to H 2 O, HDO and D 2 O, respectively. The relation between the absorption and the heavy water concentration, and that between the transmissivity and the wave length are shown, when the cell thickness was varied to 5 mm and 20 mm, and the heavy water concentration to 21%, 62% and 99.85%. (Nakai, Y.)

  6. Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions

    DEFF Research Database (Denmark)

    Christiansen, Lars; Lund, Sanne; Andersen, Ole Baltazar

    2011-01-01

    Subsurface water content is an important state variable in hydrological systems. Established methods to measure subsurface water content have a small support scale which causes scaling problems in many applications. Time-lapse relative gravimetry can give an integrated measure of soil water storage...... changes over tens to hundreds of cubic meters. The use of time-lapse gravimetry in hydrology has until recent years been limited by the large efforts required to obtain precise and accurate gravity data at the 1μGal (10−8ms−2) scale. A typical modern relative gravimeter, the Scintrex CG-5, has...... lead to a loss of accuracy. As a performance test of a CG-5 for applications of time-lapse gravity in hydrology, we have measured the change in water storage in an indoor basin. The experiment was designed to resemble a field application, e.g. a pumping test, a forced infiltration experiment...

  7. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    Science.gov (United States)

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  8. Hot Water after the Cold War – Water Policy Dynamics in (Semi-Authoritarian States

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2010-10-01

    Full Text Available This introductory article of the special section introduces the central question that the section addresses: do water policy dynamics in (semi-authoritarian states have specific features as compared to other state forms? The article situates the question in the post-Cold War global water governance dynamics, argues that the state is a useful and required entry point for water policy analysis, explores the meaning of (semi-authoritarian as a category, and finally introduces the three papers, which are on China, South Africa and Vietnam.

  9. Water availability and vulnerability of 225 large cities in the United States

    Science.gov (United States)

    Padowski, Julie C.; Jawitz, James W.

    2012-12-01

    This study presents a quantitative national assessment of urban water availability and vulnerability for 225 U.S. cities with population greater than 100,000. Here, the urban assessments account for not only renewable water flows, but also the extracted, imported, and stored water that urban systems access through constructed infrastructure. These sources represent important hydraulic components of the urban water supply, yet are typically excluded from water scarcity assessments. Results from this hydraulic-based assessment were compared to those obtained using a more conventional method that estimates scarcity solely based on local renewable flows. The inclusion of hydraulic components increased the mean availability to cities, leading to a significantly lower portion of the total U.S. population considered "at risk" for water scarcity (17%) than that obtained from the runoff method (47%). Water vulnerability was determined based on low-flow conditions, and smaller differences were found for this metric between at-risk populations using the runoff (66%) and hydraulic-based (54%) methods. The large increase in the susceptible population between the scarcity measures evaluated using the hydraulic method may better reconcile the seeming contradiction in the United States between perceptions of natural water abundance and widespread water scarcity. Additionally, urban vulnerability measures developed here were validated using a media text analysis. Vulnerability assessments that included hydraulic components were found to correlate with the frequency of urban water scarcity reports in the popular press while runoff-based measures showed no significant correlation, suggesting that hydraulic-based assessments provide better context for understanding the nature and severity of urban water scarcity issues.

  10. Guidelines for preparation of State water-use estimates for 2015

    Science.gov (United States)

    Bradley, Michael W.

    2017-05-01

    The U.S. Geological Survey (USGS) has estimated the use of water in the United States at 5-year intervals since 1950. This report describes the water-use categories and data elements used for the national water-use compilation conducted as part of the USGS National Water-Use Science Project. The report identifies sources of water-use information, provides standard methods and techniques for estimating water use at the county level, and outlines steps for preparing documentation for the United States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands.As part of this USGS program to document water use on a national scale, estimates of water withdrawals for the categories of public supply, self-supplied domestic, industrial, irrigation, and thermoelectric power are prepared for each county in each State, District, or territory by using the guidelines in this report. County estimates of water withdrawals for aquaculture, livestock, and mining are prepared for each State by using a county-based national model, although water-use programs in each State or Water Science Center have the option of producing independent county estimates of water withdrawals for these categories. Estimates of water withdrawals and consumptive use for thermoelectric power will be aggregated to the county level for each State by the national project; additionally, irrigation consumptive use at the county level will also be provided, although study chiefs in each State have the option of producing independent county estimates of water withdrawals and consumptive use for these categories.Estimates of deliveries of water from public supplies for domestic use by county also will be prepared for each State. As a result, total domestic water use can be determined for each State by combining self-supplied domestic withdrawals and public-supplied domestic deliveries. Fresh groundwater and surface-water estimates will be prepared for all categories of use, and saline groundwater and

  11. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  12. The Role of Overshooting Convection in Elevated Stratospheric Water Vapor over the Summertime Continental United States

    Science.gov (United States)

    Herman, R. L.; Ray, E. A.; Rosenlof, K. H.; Bedka, K. M.; Schwartz, M. J.; Read, W. G.; Troy, R. F.

    2016-12-01

    The NASA ER-2 aircraft sampled the UTLS region over North America during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. On four flights targeting convectively-influenced air parcels, in situ measurements of enhanced water vapor in the lower stratosphere over the summertime continental United States were made using the JPL Laser Hygrometer (JLH Mark2). Water vapor mixing ratios greater than 10 ppmv, twice the stratospheric background levels, were measured at pressure levels between 80 and 160 hPa. Through satellite observations and analysis, we make the connection between these in situ water measurements and overshooting cloud tops. The overshooting tops (OT) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Back-trajectory analysis ties enhanced water to OT one to seven days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American Monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. Regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  13. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  14. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  15. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  16. Method of measuring reactor water level

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1979-01-01

    Purpose: To provide a water level measuring system so that a reactor water level detecting signal can be corrected in correspondence to a recirculation flow, thereby to carry out a correct water level detection in a wide range of the reactor. Method: According to the operation record of a precursor reactor, the ratio Δh of the lowering of the water level due to the recirculation flow is lowered in proportion to the ratiowith respect to the rated differential pressure of the recirculation flow. Accordingly, the flow of recirculation pump is measured by an elbow differential pressure generator utilizing an elbow of a pipe, and the measured value is multiplied by a gain by a ratio setter, and therefter, an addition computation is carried out by an adder for correcting the signal from a water level detector. When the signal from the water level detector is corrected in this manner, the influence of the lowering of the water level due to the recirculation flow can be removed, and an interlocker predetermined in the defined water level can be actuated, thus the influence of the dynamic pressure due to the recirculation flow acting on the instrumental pipe line detecting the reactor water level can be removed effectively. (Yoshino, Y.)

  17. Status of domestic wastewater management in relation to drinking-water supply in two states of India.

    Science.gov (United States)

    Pandey, R A; Kaul, S N

    2000-01-01

    In India, supply of drinking water, treatment and disposal of domestic wastewater including faecal matter are managed by local bodies. The existing status of water supply, characteristics of domestic wastewater, modes of collection, treatment and disposal system for sewage and faecal matter in 82 municipalities and 4 municipal corporations were assessed in the States of Bihar and West Bengal in India. Domestic wastewater in the municipal areas is collected and discharged through open kachha (earthen), pucca (cement-concrete) and natural drains and discharged into water courses or disposed on land. Scavenger carriage system for night soil disposal is in-vogue at several places in the surveyed States. Open defecation by the inhabitants in some of the municipalities also occurs. The existing methods of collection, treatment and disposal of sewage impairs the water quality of different water sources. Techno-economically viable remedial measures for providing basic amenities, namely safe drinking-water supply and proper sanitation to the communities of these two States of India are suggested and discussed.

  18. Water level measurement uncertainty during BWR instability

    International Nuclear Information System (INIS)

    Torok, R.C.; Derbidge, T.C.; Healzer, J.M.

    1994-01-01

    This paper addresses the performance of the water-level measurement system in a boiling water reactor (BWR) during severe instability oscillations which, under some circumstances, can occur during an anticipated transient without SCRAM (ATWS). Test data from a prototypical mock-up of the water-level measurement system was used to refine and calibrate a water-level measurement system model. The model was then used to predict level measurement system response, using as boundary conditions vessel pressures calculated by ppercase RETRAN for an ATWS/instability event.The results of the study indicate that rapid pressure changes in the reactor pressure vessel which cause oscillations in downcomer water level, coupled with differences in instrument line lengths, can produce errors in the sensed water level. Using nominal parameters for the measurement system components, a severe instability transient which produced a 0.2 m peak-to-minimum water-level oscillation in the vessel downcomer was predicted to produce pressure difference equivalent to a 0.7 m level oscillation at the input to the differential pressure transmitter, 0.5 m oscillation at the output of the transmitter, and an oscillation of 0.3 m on the water-level indicator in the control room. The level measurement system error, caused by downcomer water-level oscillations and instrument line length differential, is mitigated by damping both in the differential pressure transmitter used to infer level and in the control room display instrument. ((orig.))

  19. 75 FR 4173 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2010-01-26

    ... Part III Environmental Protection Agency 40 CFR Part 131 Water Quality Standards for the State of...-HQ-OW-2009-0596; FRL-9105-1] RIN 2040-AF11 Water Quality Standards for the State of Florida's Lakes... Environmental Protection Agency (EPA) is proposing numeric nutrient water quality criteria to protect aquatic...

  20. "Using Satellite Remote Sensing to Derive Numeric Criteria in Coastal and Inland Waters of the United States"

    Science.gov (United States)

    Crawford, T. N.; Schaeffer, B. A.

    2016-12-01

    Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.

  1. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  2. State of Art About water Uses and Waste water Management in Lebanon

    International Nuclear Information System (INIS)

    Geara, D.; Moilleron, R.; Lorgeoux, C.; El Samarani, A.; Chebbo, Gh.

    2010-01-01

    This paper shows the real situation about management of water and waste water in Lebanon and focuses on problems related to urban water pollution released in environment. Water and waste water infrastructures have been rebuilt since 1992. However, waste water management still remains one of the greatest challenges facing Lebanese people, since water supply projects have been given priority over wastewater projects. As a consequence of an increased demand of water by agricultural, industrial and household sectors in the last decade, waste water flows have been increased. In this paper, the existing waste water treatment plants (WWTP) operating in Lebanon are presented. Most of them are small-scale community-based ones, only two large-scale plants, constructed by the government, are currently operational. Lebanese aquatic ecosystems are suffering from the deterioration of water quality because of an insufficient treatment of waste water, which is limited mostly to pre-treatment processes. In fact, domestic and industrial effluents are mainly conducted together in the sewer pipes to the WWTP before being discharged, without adequate treatment into the rivers or directly into the Mediterranean Sea. Such discharges are threatening the coastal marine ecosystem in the Mediterranean basin. This paper aims at giving the current state of knowledge about water uses and wastewater management in Lebanon. The main conclusion drawn from this state of art is a lack of data. In fact, the available data are limited to academic research without being representative on a national scale. (author)

  3. Water-temperature data acquisition activities in the United States

    Science.gov (United States)

    Pauszek, F.H.

    1972-01-01

    Water Data Coordination, U.S. Geological Survey, and published in the "Catalog of Information on Water Data, Index to Water Quality Section, Edition 1970." This is one of four indexes, each of which is a separate section of the Catalog. Three of the indexes, "Index to Water-Quality Section," "Index to Surface-Water Section," and "Index to Ground-.Water Stations," contain information on data acquired on a recurrent basis at specific locations for a period of 3 years or more. The fourth section, "Index to Areal Investigations and Miscellaneous Activities," is concerned with specific projects or shorter-term data activities that involve field or laboratory measurements or observations not included in any other section of the Catalog. The Catalog is a record of activities throughout the country (and in some places along the international border between the United States and Canada) conducted by Federal and non-Federal agencies engaged in the acquisition of water data and who furnish such information for presentation in the Catalog. The Catalog itself is an outgrowth of an assignment to the Department of the Interior and in turn to the Geological Survey, by the Office of Management and Budget, through the medium of OMB Circular A-67. This Circular states in part that one of the assigned responsibilities will be maintenance of a "central catalog of information on...water data and on Federal activities being planned or conducted to acquire such data." As an extension of this activity, non-Federal agencies are solicited to participate in the program. In this report, information is presented by means of tables and illustrations preceded by brief explanations. It includes the agencies collecting the data, the number of stations located on surface and ground waters where temperature measurements are made, the distribution of stations by States and by the 21 regions of the Water Resources Council (WRC) (a Federal agency created in accordance with the Water Resources Planning Act of

  4. Produced water volumes and management practices in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Veil, J. A. (Environmental Science Division)

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced

  5. Solid-state track recorder neutron dosimetry in light water reactor pressure vessel surveillance mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1984-09-01

    Solid-State Track Recorder (SSTR) measurements of neutron-induced fission rates have been made in several pressure vessel mockup facilities as part of the US Nuclear Regulatory Commission's (NRC) Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP). The results of extensive physics-dosimetry measurements made at the Pool Critical Assembly (PCA) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN are summarized. Included are 235 U, 238 U, 237 Np and 232 Th fission rates in the PCA 12/13, 8/7, and 4/12 SSC configurations. Additional low power measurements have been made in an engineering mockup at the VENUS critical assembly at CEN-SCK, Mol, Belgium. 237 Np and 238 U fission rates were made at selected locations in the VENUS mockup, which models the in-core and near-core regions of a pressurized water reactor (PWR). Absolute core power measurements were made at VENUS by exposing solid-state track recorders (SSTRs) to polished fuel pellets within in-core fuel pins. 8 references, 4 figures, 10 tables

  6. 40 CFR 131.20 - State review and revision of water quality standards.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.20 State review and revision of water quality standards. (a) State review. The State shall... reviewing applicable water quality standards and, as appropriate, modifying and adopting standards. Any...

  7. Development of Water Quality Modeling in the United States

    Science.gov (United States)

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  8. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  9. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  10. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  11. Component state-based integrated importance measure for multi-state systems

    International Nuclear Information System (INIS)

    Si, Shubin; Levitin, Gregory; Dui, Hongyan; Sun, Shudong

    2013-01-01

    Importance measures in reliability engineering are used to identify weak components and/or states in contributing to the reliable functioning of a system. Traditionally, importance measures do not consider the possible effect of groups of transition rates among different component states, which, however, has great effect on the component probability distribution and should therefore be taken into consideration. This paper extends the integrated importance measure (IIM) to estimate the effect of a component residing at certain states on the performance of the entire multi-state systems. This generalization of IIM describes in which state it is most worthy to keep the component to provide the desired level of system performance, and which component is the most important to keep in some state and above for improving the performance of the system. An application to an oil transportation system is presented to illustrate the use of the suggested importance measure

  12. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons

  13. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    DEFF Research Database (Denmark)

    Holtappels, Moritz; Glud, Ronnie N.; Doris, Daphne

    2013-01-01

    Eddy correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print...... area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations...... in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2...

  14. Mapping water availability, projected use and cost in the western United States

    Science.gov (United States)

    Tidwell, Vincent C.; Moreland, Barbara D.; Zemlick, Katie M.; Roberts, Barry L.; Passell, Howard D.; Jensen, Daniel; Forsgren, Christopher; Sehlke, Gerald; Cook, Margaret A.; King, Carey W.; Larsen, Sara

    2014-05-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  15. Water Savings of Crop Redistribution in the United States

    Directory of Open Access Journals (Sweden)

    Kyle Frankel Davis

    2017-01-01

    Full Text Available Demographic growth, changes in diet, and reliance on first-generation biofuels are increasing the human demand for agricultural products, thereby enhancing the human pressure on global freshwater resources. Recent research on the food-water nexus has highlighted how some major agricultural regions of the world lack the water resources required to sustain current growth trends in crop production. To meet the increasing need for agricultural commodities with limited water resources, the water use efficiency of the agricultural sector must be improved. In this regard, recent work indicates that the often overlooked strategy of changing the crop distribution within presently cultivated areas offers promise. Here we investigate the extent to which water in the United States could be saved while improving yields simply by replacing the existing crops with more suitable ones. We propose crop replacement criteria that achieve this goal while preserving crop diversity, economic value, nitrogen fixation, and food protein production. We find that in the United States, these criteria would greatly improve calorie (+46% and protein (+34% production and economic value (+208%, with 5% water savings with respect to the present crop distribution. Interestingly, greater water savings could be achieved in water-stressed agricultural regions of the US such as California (56% water savings, and other western states.

  16. Radium activity measurements in bottled mineral water

    International Nuclear Information System (INIS)

    Kappke, Jaqueline; Paschuk, Sergei A.; Correa, Janine N.; Denyak, Valeriy; Reque, Marilson; Rocha, Paschuk; Rocha, Zildete; Santos, Talita O.

    2011-01-01

    This work presents the preliminary results of 226 Ra activity measurements of fifteen samples of bottled mineral water acquired at markets of Curitiba-PR, Brazil. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Parana (UTFPR) in collaboration with the Center of Nuclear Technology Development of Brazilian Nuclear Energy Committee (CNEN). The experimental setup was based on the electronic radon detector RAD7 (Durridge Company, Inc.). The measurements were carried out with a special kit of accessory vessels (vials) RAD7 H 2 O, which allows one to identify the 222 Rn activity concentration in small water samples of 40 mL and 250 mL in the range going from less than 30 pCi/L to greater than 10 5 pCi/L. During each measurement a vial from RAD H 2 O was poured with a sample of water. The air pump, included in the close loop aeration circuit and connected to the vial and RAD7 detector, operated for five minutes to snatch the sample of air maintained above the level of water sample and transporting it from the vial through the system. Evaluation of the concentration of soluble radium ( 226 Ra) salts in water and their activity was performed after 30 days when 222 Rn in the water samples reached secular equilibrium. The background measurements were performed using the samples of the distilled water. Considering the importance of background measurements, it was found that the value suggested by user Manual protocol (RAD7) for the case of low activity radon measurements, has to be slightly modified. (author)

  17. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement...... for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring the water content quantitatively. And the definition on bread water content index is presented...

  18. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  19. In-field radon measurement in water: a novel approach

    International Nuclear Information System (INIS)

    Talha, S.A.; Meijer, R.J. de; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Hlatshwayo, I.N.

    2010-01-01

    This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L -1 radon in-water. -- Research highlights: →Radon-in-water, large volume container, in-field measurements, MEDUSA gamma-ray detection system.

  20. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  1. Uncertainties in pipeline water percentage measurement

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bentley N.

    2005-07-01

    Measurement of the quantity, density, average temperature and water percentage in petroleum pipelines has been an issue of prime importance. The methods of measurement have been investigated and have seen continued improvement over the years. Questions are being asked as to the reliability of the measurement of water in the oil through sampling systems originally designed and tested for a narrow range of densities. Today most facilities sampling systems handle vastly increased ranges of density and types of crude oils. Issues of pipeline integrity, product loss and production balances are placing further demands on the issues of accurate measurement. Water percentage is one area that has not received the attention necessary to understand the many factors involved in making a reliable measurement. A previous paper1 discussed the issues of uncertainty of the measurement from a statistical perspective. This paper will outline many of the issues of where the errors lie in the manual and automatic methods in use today. A routine to use the data collected by the analyzers in the on line system for validation of the measurements will be described. (author) (tk)

  2. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    composite behaviors that are consistent with the nominal use of each reservoir and their impacts on observed stream gage behaviors. We decided to use Artificial Neural Networks (ANN) in this context. We see as an important advantage of ANN, its ability to detect complex nonlinear relations between input and output data, which makes it a valuable tool for time series prediction and fitness approximation. High quality, measured parameters are available throughout the United States; thus, we are able to use measured data to train and test ANN and operate reservoirs in a way that simulates real world reservoirs' behavior more accurately. By using economics, population, land cover and climate change estimates for 21st century, we are seeking to forecast in a systematic manner all major facets of future water supply and use in north east United States which will enable us to identify locations prone to water stress due to urban and domestic or agriculture and irrigation water demand, quantify change in chemical and thermal pollution of rivers and availability of water for power generation.

  3. Hydration measured by doubly labeled water in ALS and its effects on survival.

    Science.gov (United States)

    Scagnelli, Connor N; Howard, Diantha B; Bromberg, Mark B; Kasarskis, Edward J; Matthews, Dwight E; Mitsumoto, Hiroshi M; Simmons, Zachary; Tandan, Rup

    2018-05-01

    We present a study of hydration in ALS patients and its effects on survival. This was a multicenter study over 48 weeks in 80 ALS patients who underwent 250 individual measurements using doubly labeled water (DLW). Total body water (TBW) and water turnover (a surrogate for water intake) were 3.4% and 8.6% lower, respectively, in patients compared to age- and gender-matched healthy controls, and both significantly decreased over study duration. In 20% of patients, water turnover measured over 10 d was 2 standard deviations below the mean value in healthy controls. In a separate clinic cohort of 208 patients, water intake estimated from a de novo equation created from common clinical endpoints was a prognostic indicator of survival. Regardless of nutritional state assessed by BMI, survival was two-fold longer in the group above the median for estimated water intake, suggesting that hydration may be a more important predictor of survival than malnutrition. Risk factors for poor hydration were identified. Water intake equations recommended by US Centers for Medicare and Medicaid Services in healthy elderly were inaccurate for use in ALS patients. We developed equations to estimate TBW and water intake in ALS patients for use in clinics to accurately estimate hydration and improve clinical care.

  4. The Geographical Distribution of Water Supply in Ekiti State ...

    African Journals Online (AJOL)

    The provision of potable water to every nock and crannies of the state must be pursed vigorously. To achieve this task in Ekiti State, the problems militating against the supply of clean water need to be tackled effectively. For this reason, the rehabilitation of existing dams provision of funds, completion of the 132 KVA ...

  5. Measurement of underground water-soil radioactivity at different depths in arsenic prone areas

    International Nuclear Information System (INIS)

    Ghosh, D.; Deb, A.; Patra, K.K.; Sengupta, R.; Nag, S.K.

    2007-01-01

    Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Measurement of radioactivity in arsenic contaminated drinking water has already been reported. To perform a detail study we have undertaken a programme to measure radioactivity in drinking water and soil samples in three different places of North 24 Parganas in West Bengal, India, where arsenic contamination is severe. A detail investigation on soil samples at different depths and soil-water samples at same depth have been made with CR-39 plates -a Solid State Nuclear Track Detector (SSNTD) -a commonly used detector for alpha radiation. The data indicates high alpha activity in soil than water and this ratio is different at different places varying from 1.22 to 2.63. The dependence of the alpha activity in soil on depth is also different at different sites. The data shows some interesting results. (author)

  6. Measuring your water footprint: What's next in water strategy

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    By now, carbon neutrality is such a catchphrase in the world of responsible business, it’s impossible to ignore the carbon footprint of a new product or service. But with the exception of a few companies like Coca-Cola, Nestlé and Suez, the concept of water neutrality, or measuring your water

  7. How Natural Water Retention Measures (NWRM) can help rural and urban environments improve their resilience?

    Science.gov (United States)

    Siauve, Sonia

    2016-04-01

    The challenges related to water resources management are exacerbated by climate change which implies additional complexity and uncertainty. The impacts of climate change have thus to be taken into account, from today on the next decades, to ensure a sustainable integrated water resources management. One of the main environmental objective of the Water Framework Directive (2000/30/CE) was to achieve and maintain a good status for all water bodies by the target date of 2015. Unfortunately, Member States didn't manage to reach this goal and in this context, the European Commission (EC), since many years, have started many initiatives and reforms to improve the global situation. In 2012 the DG Environment (DGENV) of the EC published a "Blueprint to safeguard Europe's water resources" that states the need for further implementation of water resource management measures and in particular Natural Water Retention Measures (NWRMs). NWRM are measures that aim to safeguard and enhance the water storage potential of landscape, soils and aquifers, by restoring ecosystems, natural features and characteristics of water courses, and by using natural processes. They are Nature-Based Solutions supporting adaptation and reducing vulnerability of water resources. Their interest lies with the multiple benefits they can deliver, and their capacity to contribute simultaneously to the achievement of the objectives of different European policies (WFD, FD, Biodiversity strategy …). However the knowledge on NWRM is scattered and addressed differently in the countries, whereas the NWRM potential for improving the state of the environment and resilience (drought, flood, biodiversity…) in a changing environment is high. In 2013, all EU countries started the elaboration of the second River Basin Management Plan and associated Programme of Measures. To support MS authorities and local implementers of these measures DGENV launched a 14 month project for collaboratively building knowledge and

  8. Measurements of radon concentration levels in drinking water at urban area of Curitiba, Brazil

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi; Paschuk, Sergei A.; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Current work presents the results of more than 100 measurements of 222 Rn activity in drinking water collected at artesian bores at Curitiba region during the period of 2008 - 2009. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology in cooperation with the Nuclear Technology Development Center (CDTN) of Brazilian Nuclear Energy Committee (CNEN). Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specific kit of glass vessels Aqua KIT through the air pump. The equipment was adjusted with air flow of 0.5 L/min. The 222 Rn concentration levels were detected and analyzed by the computer every 10 minutes using the software DataEXPERT by GENITRON Instruments. Collected average levels of 222 Rn concentration were processed taking into account the volume of water sample and its temperature, atmospheric pressure and the total volume of the air in the vessels. Collected samples of water presented the average 222 Rn activity about 57.70 Bq/L which is almost 5 times more than maximum level of 11.1 Bq/L recommended by the USEPA (United States Environmental Protection Agency). It has to be noted that many artesian drillings presented the radon activity in the range of 100 - 200 Bq/L. Further measurements are planned to be performed at other regions of Parana State and will involve the mineral water sources, explored artesian drillings as well as soil samples. (author)''

  9. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  10. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    Science.gov (United States)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the

  11. Measurement of age of underground water, using tritium

    International Nuclear Information System (INIS)

    Chatani, Kunio; Kagami, Tadaaki; Tomita, Ban-ichi; Onuma, Akiko; Shoka, Yasushi

    1978-01-01

    Age of four kinds of underground water in Aichi prefecture was estimated by measuring a concentration of tritium. The tritium concentration was measured by the usual method. The first water-bearing zone of the shallow part, about 50m in depth, of Nobi plain is a new underground water cultivated within 20 years, whereas second water-bearing zone is an old underground water of 20 years old or more. No relationship of water flow between the first and the second water-bearing zone was observed. A very deep underground about 100m or more in depth, of the Nobi plain is confirmed to be infinite years old fossil water by measuring of tritium. The underground water in Atsumi peninsula is mostly a new underground water within 20 years. Only one out of eight showed the existence of old underground water before 20 years or more. The underground water of the granite area at Mikawa district is confirmed to be old underground water before 20 years or more. Alkaline underground water in the granite zone is considered to be very old in view of composition of water. The origin of underground water can be learned by tritium concentration, which shows whether the water is new water in the neighborhood of earth's surface or very old cultivated water. (Iwakiri, K.)

  12. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  13. Square-root measurement for pure states

    International Nuclear Information System (INIS)

    Huang Siendong

    2005-01-01

    Square-root measurement is a very useful suboptimal measurement in many applications. It was shown that the square-root measurement minimizes the squared error for pure states. In this paper, the least squared error problem is reformulated and a new proof is provided. It is found that the least squared error depends only on the average density operator of the input states. The properties of the least squared error are then discussed, and it is shown that if the input pure states are uniformly distributed, the average probability of error has an upper bound depending on the least squared error, the rank of the average density operator, and the number of the input states. The aforementioned properties help explain why the square-root measurement can be effective in decoding processes

  14. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  15. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  16. Water-mediated variability in the structure of relaxed-state haemoglobin

    International Nuclear Information System (INIS)

    Kaushal, Prem Singh; Sankaranarayanan, R.; Vijayan, M.

    2008-01-01

    Partial dehydration of high-salt horse methaemoglobin crystals tends to shift the structure from the R state to the R2 state, in agreement with previous observations that movements in the molecule resulting from changes in water content mimic those involved in protein action. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h. 79%, the water content of the crystal is reduced and the molecule appears to move towards the R2 state. The crystals undergo a water-mediated transformation involving a doubling of one of the unit-cell parameters and an increase in water content when the environmental humidity is further reduced to r.h. 75%. The water content is now similar to that in the native crystals and the molecules are in the R state. The crystal structure at r.h. 66% is similar, but not identical, to that at r.h. 75%, but the solvent content is substantially reduced and the molecules have a quaternary structure that is in between those corresponding to the R and R2 states. Thus, variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action

  17. A short-term study of the state of surface water acidification at Semenyih dam

    International Nuclear Information System (INIS)

    Kantasamy, Nesamalar; Sumari, S.M.; Salam, S.M.; Riniswani Aziz

    2007-01-01

    A short-term study was done to analyze the state of acidification of surface water at Semenyih Dam. This study is part of a continuous monitoring programme for Malaysia as a participatory country of EANET (Acid Monitoring Network in East Asia). Surface water samples were taken at selected points of the dam from February to December 2005. Temperature, electrical conductivity, pH, alkalinity, acid neutralizing capacity (ANC) as well as concentration of specific ionic species were measured, determined and analysed in this study. Present available sort-term study data indicates Semenyih Dam surface water is currently not undergoing acidification. (author)

  18. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  19. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs.

    Science.gov (United States)

    Villanueva, Cristina M; Kogevinas, Manolis; Cordier, Sylvaine; Templeton, Michael R; Vermeulen, Roel; Nuckols, John R; Nieuwenhuijsen, Mark J; Levallois, Patrick

    2014-03-01

    Safe drinking water is essential for well-being. Although microbiological contamination remains the largest cause of water-related morbidity and mortality globally, chemicals in water supplies may also cause disease, and evidence of the human health consequences is limited or lacking for many of them. We aimed to summarize the state of knowledge, identify gaps in understanding, and provide recommendations for epidemiological research relating to chemicals occurring in drinking water. Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures are typically at low concentrations, measurements in water are frequently insufficient, chemicals are present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the relative risks tends to be small. Research should include well-designed epidemiological studies covering regions with contrasting contaminant levels and sufficient sample size; comprehensive evaluation of contaminant occurrence in combination with bioassays integrating the effect of complex mixtures; sufficient numbers of measurements in water to evaluate geographical and temporal variability; detailed information on personal habits resulting in exposure (e.g., ingestion, showering, swimming, diet); collection of biological samples to measure relevant biomarkers; and advanced statistical models to estimate exposure and relative risks, considering methods to address measurement error. Last, the incorporation of molecular markers of early biological effects and genetic susceptibility is essential to understand the mechanisms of action. There is a particular knowledge gap and need to evaluate human exposure and the risks of a wide range of emerging contaminants. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P. 2014. Assessing

  20. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    Science.gov (United States)

    2010-04-01

    earth’s water is fresh water , stored in rivers, lakes, reservoirs, glaciers, permanent snow, groundwater aquifers, and the atmosphere. 10 This... freshwater resources between and within countries. 13 There is significant media attention given to intra-state water sharing issues. One...intrusion into coastal ground freshwater sources, among other effects. Consequently, water scarcity brought about by climate change could drive

  1. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  2. Water vapor measurements in the 0.94 micron absorption band - Calibration, measurements and data applications

    Science.gov (United States)

    Reagan, J. A.; Thome, K.; Herman, B.; Gall, R.

    1987-01-01

    This paper describes methods and presents results for sensing the columnar content of atmospheric water vapor via differential solar transmission measurements in and adjacent to the 0.94-micron water-vapor absorption band. Calibration and measurement techniques are presented for obtaining the water vapor transmission from the radiometer measurements. Models are also presented for retrieving the columnar water vapor amount from the estimated transmission. Example retrievals are presented for radiometer measurements made during the 1986 Arizona Monsoon Season to track temporal variations in columnar water vapor amount.

  3. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  4. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  5. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  6. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  7. Measuring water ingestion from spray exposures.

    Science.gov (United States)

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  9. Federal Disaster Funding Opportunities for Water and Wastewater Utilities through the Drinking Water and Clean Water State Revolving Funds

    Science.gov (United States)

    The following provides a checklist that will help you take advantage of Drinking Water State Revolving Funds. For more detailed information on Drinking Water SRF, see DWSRF in Fed FUNDS. For more information on Clean Water SRF, see CWSRF in Fed FUNDS.

  10. INFLUENCE OF CARP BREEDING ON PHYSICOCHEMICAL STATE OF WATER IN FISH POND AND RECEIVE

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2015-10-01

    Full Text Available The paper presents the results of tests on quality features of feeding water and fish ponds of Mydlniki fish farm in the małopolskie province. The measurement and control points are situated in the river Rudawa before and below the farm and in four breeding ponds were measured in water: temperature, concentrations of dissolved oxygen, electrolytic conductivity, pH, total suspended solids, dissolved solids and concentrations of minerals: SO42+, Cl-, Ca2+, Mg2+, Na+, K+, Fe i Mn, and also biogenic compounds (PO43-, N-NH4+, N-NO2-, N-NO3-. It was found that water from the Rudawa river feeding the ponds did not meet the requirements for inland waters which are the natural environment for the cyprinids. The physicochemical state is below the well due to the high concentration of phosphate. Statistical analysis of 19 tested features revealed a positive effect of the fish ponds on water quality. Concentrations of biogenic compounds (phosphate, nitrite and nitrate nitrogen, dissolved solids, calcium and water conductivity in the fish ponds decreased on average by between 30 and 87% in comparison with the feeding watercourse.

  11. Remote measurements of water pollution with a lidar polarimeter

    Science.gov (United States)

    Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.

    1974-01-01

    This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-

  12. On the physicochemical states of cadmium and lead in sea water and sediment pollution

    International Nuclear Information System (INIS)

    Aoyama, Isao; Sakai, Takashi; Inoue, Yoriteru

    1976-01-01

    The existence states of cadmium and lead in sea water taken from Wakasa Bay in Japan were experimentally studied and their transfer to bottom sand layer was tested. Sample water was filtered through a glass wool filter and a 0.45 μ-m membrane filter. Cadmium chloride and lead chloride were fed so that the concentrations of the metals became the environmental standard values (0.01 ppm for cadmium and 0.1 ppm for lead). Cd-115m and lead-210 were added to the sample as tracers. The existence states were measured by dialysis, the filtration with a membrane filter and the adsorption on an ion-exchange resin. As a result, the ionic state of cadmium decreased to 85% and the deposition factor on the membrane filter increased to about 30% when pH is 9.6. The distribution factor of the cation exchange resin was 2 - 5, whereas that of the anion exchange resin was 1000 or more at pH 8,4 or less, but was reduced to 541 at pH 9.6. The ion existence ratio of lead was 80% - 90% at pH 8 or less, and was 10% or less at pH 8.8. The deposition factor of lead was higher than that of cadmium. The distribution factor of lead showed similar tendency to that of cadmium. As a result of measuring the radioactivity adsorbed by the bottom sand in the experimental tank, it was found that the transfer of very small amount of heavy metals to the bottom material depended upon the physicochemical existence states of the metals in water. (Iwakiri, K.)

  13. Method for steam generator water level measurement

    International Nuclear Information System (INIS)

    Srinivasan, J.S.

    1991-01-01

    This paper describes a nuclear power plant, a method of controlling the steam generator water level, wherein the steam generator has an upper level tap corresponding to an upper level, a lower level, a riser positioned between the lower and upper taps, and level sensor means for indicating water level between a first range limit and a second range limit, the sensor means being connected to at least the lower tap. It comprises: calculating a measure of velocity head at about the lower level tap; calculating a measure of full water level as the upper level less the measure of velocity head; calibrating the level sensor means to provide an output at the first limit corresponding to an input thereto representative of the measure of full level; calculating a high level setpoint equal to the level of the riser less a bias amount which is a function of the position of the riser relative to the span between the taps; and controlling the water level when the sensor means indicates that the high level setpoint has been reached

  14. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.R.; Zou, X.; Kuo, Y.H. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  15. Water laws in eleven midwestern states: summary tables

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, T.L.; Torpy, M.F.

    1979-06-01

    Basic information about the water laws of Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Ohio, and West Virginia is summarized. References to state laws and court decisions that may be useful in assessing the legal availability of water for energy development are provided. (MCW)

  16. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M., E-mail: kangm@ornl.gov [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bilheux, H.Z., E-mail: bilheuxhn@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Voisin, S. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Cheng, C.L.; Perfect, E. [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Horita, J. [Department of Geosciences, Texas Tech University, Lubbock, TX (United States); Warren, J.M. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2013-04-21

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  17. Measurement and quasi-states in quantum mechanics

    International Nuclear Information System (INIS)

    Harper, C.D.

    1987-01-01

    Part of the task of quantum logic is to account for the collapse of the state vector during measurement. A difficulty in this is that it is not obvious how to describe measurement quantum mechanically as the interaction of two or more systems; interacting quantum-mechanical systems do not possess states, so their states cannot collapse. This dissertation shows that component systems of a composite system possess families of state-like vectors. These are the quasi-projections of the state vector of the composite system, each associated with a family of commutable observables. Often these quasi-projections cluster so closely around a quasi-state that they are practically indistinguishable from it. A description of measurement based on quasi-projections reveals the apparent collapse of the state vector during measurement to be illusory. The continuous evolution of the state of the composite system give rise to abrupt changes in the quasi-projections which make it appear that the state has changed. The quasi-projections cease to cluster near one quasi-state, are momentarily scattered, and then cluster again near another quasi-state. The concept of quasi-projection is also used to generalize the quantum logic of Birkhoff and von Neumann in such a fashion that a proposition can always be assigned a truth value

  18. Sectoral contributions to surface water stress in the coterminous United States

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Caldwell, P; Sun, G; McNulty, S; Huber-Lee, A; Madden, N

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast. (letter)

  19. Management of ground water and evolving hydrogeologic studies in New Jersey : a heavily urbanized and industrialized state in the northeastern United States

    Science.gov (United States)

    Leahy, P. Patrick

    1985-01-01

    New Jersey is the most densely populated and one of the most industrialized states in the United States. An abundance of freshwater and proximity to major northeastern metropolitan centers has facilitated this development. Pumpage of freshwater from all aquifers in the State in 1980 was 730 million gallons per day (2.76 million cubic meters per day).Management and efficient development of the ground-water resources of the State are the responsibility of the New Jersey Department of Environmental Protection. Laws have been enacted and updated by the State legislature to manage water allocation and to control the disposal of hazardous wastes. Present resource management is guided by the New Jersey Water-Supply Master Plan of 1981. Funding for management activities is partially derived from the sale of state-approved bonds.Effective planning and regional management require accurate and up-to-date hydrologic information and analyses. The U.S. Geological Survey, in cooperation with the New Jersey Geological Survey, is conducting three intensive ground-water studies involving the collection and interpretation of hydrologic data to meet the urgent water-management needs of New Jersey. These studies are part of a long-term cooperative program and are funded through the Water-Supply Bond Act of 1981. They began in 1983 and are scheduled to be completed in 1988.The project areas are situated in the New Jersey part of the Atlantic Coastal Plain in and near Atlantic City, Camden, and South River. They range in size from 400 to 1,200 mil (1,040 to 3,120 km2). The studies are designed to define the geology, hydrology, and geochemistry of the local ground-water systems. The results of these studies will enable the State to address more effectively major problems in these areas such as declining water levels, overpumping, saltwater intrusion, and ground-water contamination resulting from the improper disposal of hazardous wastes.Specific objectives of these studies by the U

  20. Analyzing the Dynamics of Inter-state water peace: A study of the Huitzilapan-Xalapa Water Transfers

    Directory of Open Access Journals (Sweden)

    Carmen Maganda

    2017-01-01

    Full Text Available This article examines the political conflict surrounding the interstate transfer of water in the Huitzilapan-Xalapa Aqueduct, from which about 60% of the water resources for the city of Xalapa, state capital of Veracruz, come. This interstate water transfer has eventually lead to political and social conflict based on misinformation about perceived water shortages to Xalapa. The article examines a case in which water officials from Xalapa have apparently complied with guidelines related to procedural, distributive, and ecological justice. Therefore, the article proposes a focus on «justice as responsible (and informed dialogue» as a central element of procedural justice. The analysis is based on a review of official documents, such as Mexican water laws and the water concession under which this water transfer has occurred, press reviews published in regional newspapers, a field visit and interviews with key stakeholders and researchers mostly in Veracruz state.

  1. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S H [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Cerussi, A E; Tromberg, B J [Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road, Irvine 92612, CA (United States); Merritt, S I [Masimo Corporation, 40 Parker, Irvine, CA 92618 (United States); Ruth, J, E-mail: bjtrombe@uci.ed [Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Room 240, Skirkanich Hall, Philadelphia, PA 19104 (United States)

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 {+-} 0.91 {sup 0}C over a range of 28-48 {sup 0}C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  2. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  3. Assessment of radioactivity in the drinking water of state of Goias, Brazil

    International Nuclear Information System (INIS)

    Santos, Eliane E.; Costa, Heliana F.; Mignote, Raquel M.; Thome Filho, Jamilo J.; Bakker, Alexandre P. de

    2013-01-01

    The demand for drinking water is supplied by surface and underground sources such as rivers and streams. However, there is an increasing worldwide concern about the quality of drinking water. As a result, it is a major goal of governments throughout the world to ensure that water is safe for human consumption through the control of microorganisms, chemicals and radioactive substances. The Brazilian Ministry of Health has issued guidelines designed to protect the quality of drinking water. The use of screening measurements for gross alpha and beta radioactivity is recommend since it maximizes cost-effectiveness of assessing the individual radionuclide content of drinking water. In order to do so tests were carried out to determine of gross alpha and beta radioactivity concentrations in drinking water samples from 44 water supply wells within the State of Goias. The technique used was thermal preconcentration and radiometric determination by liquid scintillation spectrometry. The concentrations for gross alpha ranged from < LD at 0.19 ± 0.05 Bq/L. As for gross beta they ranged from < LD at 0.2 ± 0.1 Bq/L. The results were also related with the geological and hydrological data. (author)

  4. Assessment of radioactivity in the drinking water of state of Goias, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Eliane E.; Costa, Heliana F.; Mignote, Raquel M., E-mail: mingote@cnen.gov.br, E-mail: heliana@cnen.gov.br, E-mail: esantos@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadias de Goias, GO (Brazil); Thome Filho, Jamilo J., E-mail: jamilothome@gmail.com [Geological Consultant, Cuiaba, MT (Brazil); Bakker, Alexandre P. de [Instituto Nacional do Semiarido (INSA/MCTI), Campina Grande, PB (Brazil)

    2013-07-01

    The demand for drinking water is supplied by surface and underground sources such as rivers and streams. However, there is an increasing worldwide concern about the quality of drinking water. As a result, it is a major goal of governments throughout the world to ensure that water is safe for human consumption through the control of microorganisms, chemicals and radioactive substances. The Brazilian Ministry of Health has issued guidelines designed to protect the quality of drinking water. The use of screening measurements for gross alpha and beta radioactivity is recommend since it maximizes cost-effectiveness of assessing the individual radionuclide content of drinking water. In order to do so tests were carried out to determine of gross alpha and beta radioactivity concentrations in drinking water samples from 44 water supply wells within the State of Goias. The technique used was thermal preconcentration and radiometric determination by liquid scintillation spectrometry. The concentrations for gross alpha ranged from < LD at 0.19 ± 0.05 Bq/L. As for gross beta they ranged from < LD at 0.2 ± 0.1 Bq/L. The results were also related with the geological and hydrological data. (author)

  5. Water state changes during the composting of kitchen waste.

    Science.gov (United States)

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  7. Potential Implications of Approaches to Climate Change on the Clean Water Rule Definition of "Waters of the United States".

    Science.gov (United States)

    Faust, Derek R; Moore, Matthew T; Emison, Gerald Andrews; Rush, Scott A

    2016-05-01

    The 1972 Clean Water Act was passed to protect chemical, physical, and biological integrity of United States' waters. The U.S. Environmental Protection Agency and U.S. Army Corps of Engineers codified a new "waters of the United States" rule on June 29, 2015, because several Supreme Court case decisions caused confusion with the existing rule. Climate change could affect this rule through connectivity between groundwater and surface waters; floodplain waters and the 100-year floodplain; changes in jurisdictional status; and sea level rise on coastal ecosystems. Four approaches are discussed for handling these implications: (1) "Wait and see"; (2) changes to the rule; (3) use guidance documents; (4) Congress statutorily defining "waters of the United States." The approach chosen should be legally defensible and achieved in a timely fashion to provide protection to "waters of the United States" in proactive consideration of scientifically documented effects of climate change on aquatic ecosystems.

  8. Meeting water needs for sustainable development: an overview of approaches, measures and data sources

    Science.gov (United States)

    Lissner, Tabea; Reusser, Dominik E.; Sullivan, Caroline A.; Kropp, Jürgen P.

    2013-04-01

    An essential part of a global transition towards sustainability is the Millennium Development Goals (MDG), providing a blueprint of goals to meet human needs. Water is an essential resource in itself, but also a vital factor of production for food, energy and other industrial products. Access to sufficient water has only recently been recognized as a human right. One central MDG is halving the population without access to safe drinking water and sanitation. To adequately assess the state of development and the potential for a transition towards sustainability, consistent and meaningful measures of water availability and adequate access are thus fundamental. Much work has been done to identify thresholds and definitions to measure water scarcity. This includes some work on defining basic water needs of different sectors. A range of data and approaches has been made available from a variety of sources, but all of these approaches differ in their underlying assumptions, the nature of the data used, and consequently in the final results. We review and compare approaches, methods and data sources on human water use and human water needs. This data review enables identifying levels of consumption in different countries and different sectors. Further comparison is made between actual water needs (based on human and ecological requirements), and recognised levels of water abstraction. The results of our review highlight the differences between different accounts of water use and needs, and reflect the importance of standardised approaches to data definitions and measurements, making studies more comparable across space and time. The comparison of different use and allocation patterns in countries enables levels of water use to be identified which allow for an adequate level of human wellbeing to be maintained within sustainable water abstraction limits. Recommendations are provided of how data can be defined more clearly to make comparisons of water use more meaningful and

  9. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    (V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...... in shelf waters at midlatitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 degrees C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced...... chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean Pu-238/Pu-239,Pu-240 activity ratio in the water column (dissolved phase) at Thule (0.06 +/- 0.02; n = 10) is similar to the global fallout ratio at this latitude...

  10. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano

  11. Water Pollution Detection by Reflectance Measurements

    Science.gov (United States)

    Goolsby, A. D.

    1971-01-01

    Measurement of the intensity of light reflected from various planar liquid surfaces has been performed. The results of this brief study show that the presence of a film of foreign material floating on a reference substrate is easily detected by reflectance measurement if the two liquids possess significantly different refractive indices, for example, oil (n = 1.40) and water (n = 1.33). Additional study of various optical configurations, and the building and testing of a prototype monitoring device revealed that the method is sufficiently practical for application to continuous water quality monitoring.

  12. Methods for Estimating Water Withdrawals for Mining in the United States, 2005

    Science.gov (United States)

    Lovelace, John K.

    2009-01-01

    The mining water-use category includes groundwater and surface water that is withdrawn and used for nonfuels and fuels mining. Nonfuels mining includes the extraction of ores, stone, sand, and gravel. Fuels mining includes the extraction of coal, petroleum, and natural gas. Water is used for mineral extraction, quarrying, milling, and other operations directly associated with mining activities. For petroleum and natural gas extraction, water often is injected for secondary oil or gas recovery. Estimates of water withdrawals for mining are needed for water planning and management. This report documents methods used to estimate withdrawals of fresh and saline groundwater and surface water for mining during 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Fresh and saline groundwater and surface-water withdrawals during 2005 for nonfuels- and coal-mining operations in each county or county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands were estimated. Fresh and saline groundwater withdrawals for oil and gas operations in counties of six states also were estimated. Water withdrawals for nonfuels and coal mining were estimated by using mine-production data and water-use coefficients. Production data for nonfuels mining included the mine location and weight (in metric tons) of crude ore, rock, or mineral produced at each mine in the United States, Puerto Rico, and the U.S. Virgin Islands during 2004. Production data for coal mining included the weight, in metric tons, of coal produced in each county or county equivalent during 2004. Water-use coefficients for mined commodities were compiled from various sources including published reports and written communications from U.S. Geological Survey National Water-use Information Program (NWUIP) personnel in several states. Water withdrawals for oil and gas extraction were estimated for six States including California, Colorado, Louisiana, New

  13. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available In this paper we report on the laboratory investigations of breaking water waves. Measurements of the water levels and instantaneous fluid velocities were conducted in water waves breaking on a sloping beach within a glass flume. Instantaneous water...

  14. Advances in Radiocarbon Measurement of Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Janovics, R.; Molnar, M.; Major, I. [Institute of Nuclear Research (ATO MKI), Hungarian Academy of Sciences, H-4001 Debrecen (Hungary); Svetlik, I. [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Prague (Czech Republic); Wacker, L. [Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2013-07-15

    In this paper two very different and novel methods for the {sup 14}C measurement of water samples are presented. The first method uses direct absorption into a scintillation cocktail and a following liquid scintillation measurement. Typical sample size is 20-40 L and overall uncertainty is {+-} 2% for modern samples. It is a very cost effective and easy to use method based on a novel and simple static absorption process for the CO{sub 2} extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using a gas ion source. With a MICADAS type AMS system we demonstrated that you can routinely measure the {sup 14}C content of 1 mL of water sample with better than 1% precision (for a modern sample). This direct {sup 14}C AMS measurement of water takes less than 20 minutes including sample preparation. (author)

  15. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  16. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Science.gov (United States)

    2012-12-18

    ... proposing numeric water quality criteria to protect ecological systems, aquatic life, and human health from... III surface waters share water quality criteria established to protect fish consumption, recreation... Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida Inland...

  17. Method for Estimating Water Withdrawals for Livestock in the United States, 2005

    Science.gov (United States)

    Lovelace, John K.

    2009-01-01

    Livestock water use includes ground water and surface water associated with livestock watering, feedlots, dairy operations, and other on-farm needs. The water may be used for drinking, cooling, sanitation, waste disposal, and other needs related to the animals. Estimates of water withdrawals for livestock are needed for water planning and management. This report documents a method used to estimate withdrawals of fresh ground water and surface water for livestock in 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Categories of livestock included dairy cattle, beef and other cattle, hogs and pigs, laying hens, broilers and other chickens, turkeys, sheep and lambs, all goats, and horses (including ponies, mules, burros, and donkeys). Use of the method described in this report could result in more consistent water-withdrawal estimates for livestock that can be used by water managers and planners to determine water needs and trends across the United States. Water withdrawals for livestock in 2005 were estimated by using water-use coefficients, in gallons per head per day for each animal type, and livestock-population data. Coefficients for various livestock for most States were obtained from U.S. Geological Survey water-use program personnel or U.S. Geological Survey water-use publications. When no coefficient was available for an animal type in a State, the median value of reported coefficients for that animal was used. Livestock-population data were provided by the National Agricultural Statistics Service. County estimates were further divided into ground-water and surface-water withdrawals for each county and county equivalent. County totals from 2005 were compared to county totals from 1995 and 2000. Large deviations from 1995 or 2000 livestock withdrawal estimates were investigated and generally were due to comparison with reported withdrawals, differences in estimation techniques, differences in livestock

  18. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  19. Measurement of very low alpha activity in water

    International Nuclear Information System (INIS)

    Crespo, M. T.; Acena, M. L.

    1987-01-01

    Measurement of very low levels of alpha-emitting nuclides in water needs substantial improvements. A system based on the adsorbing properties manganese dioxide eliminates the need for transporting very large volumes of water and increases the sensitivity of the measurement. (Author) 21 refs

  20. A scheme of quantum state discrimination over specified states via weak-value measurement

    Science.gov (United States)

    Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming

    2018-04-01

    The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.

  1. Assessment of Water Supply Quality in Awka, Anambra State, Nigeria

    African Journals Online (AJOL)

    The patronage of water of questionable qualities in the study area due to the failure of the Anambra State Water Corporation to provide potable water supply in Awka and environs prompted this research work. Various water sources patronized in the study area were collected and subjected to physical, chemical and ...

  2. Radon measurements in well and spring water in Lebanon

    International Nuclear Information System (INIS)

    Abdallah, Samer M.; Habib, Rima R.; Nuwayhid, Rida Y.; Chatila, Malek; Katul, Gabriel

    2007-01-01

    The variation of dissolved radon ( 222 Rn) levels in water supplies remains of interest because of the radiation-induced public health hazards. A large part of the Lebanese population relies on springs and wells for their drinking water. 222 Rn measurements in spring and well water sources were conducted using the E-PERM method at sites ranging from sea level to 1200m above sea level and across several geologic formations within Lebanon. The dissolved radon concentrations ranged from a low of 0.91BqL -1 in a coastal well source to a high of 49.6BqL -1 for a spring source in a mountainous region. Of the 20 sites sampled, only five had radon levels above 11BqL -1 and these mostly occurred in areas adjacent to well-known geological fault zones. A preliminary national average radon level was determined to be about 11.4BqL -1 . In general, as all determined concentrations were well below the 100 and 146BqL -1 revised reference levels proposed in the European Union and the United States, respectively, it is concluded that there is no reason to believe these water sources pose any radon-related hazard. On the other hand, at locations where water is collected directly from the springhead, it is advisable to have a settling/piping system installed allowing for further radon decay and radon loss into the air to alleviate any possible radon problem

  3. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Science.gov (United States)

    2010-08-03

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice of Data...), proposing numeric nutrient water quality criteria to protect aquatic life in lakes and flowing waters within... will consider the comments received before finalizing the proposed rule, ``Water Quality Standards for...

  4. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir, SP

    Directory of Open Access Journals (Sweden)

    Giovanna Moreti Buzelli

    2013-04-01

    Full Text Available As a consequence of the intensification of environmental degradation, we observed a decrease in water availability and a change in water quality. Therefore, the integrated management of watersheds is an issue of extreme importance. Limnological monitoring is an important tool for environmental management, providing information on the quality of inland waters and indicating the main factors responsible for the degradation of water resources. The Barra Bonita reservoir is located in the central region of São Paulo State, in the Superior Middle Tietê Basin, and the adjacent areas of the reservoir are subject to several human activities potentially impacting the environment. In this context, there is a need to determine the nature of negative human impacts on water resources. The present study aimed to analyze and diagnose the water quality of Barra Bonita reservoir using the water quality index (WQI and the trophic state index (TSI. To this end, measurements of specific limnological variables were made in situ and laboratory and an analysis of data from CETESB annual reports was conducted. The results found that the waters of the reservoir were relatively healthy, but hyper eutrophic for the period from2007 to 2012, indicating the importance of environmental management for the restoration and preservation of natural resources in this region. The estimated indices and the land use map of adjacent areas of the Barra Bonita reservoir showed that agriculture was the largest category of land use and that it contributes directly to the degradation of water quality due to contamination by run-off from fertilizers.

  6. Cibicidodes Pachyderma B/Ca as a Shalow Water Carbonate Saturation State Proxy

    Science.gov (United States)

    Wojcieszek, D. E.; Flower, B. P.; Moyer, R. P.; Byrne, R. H.

    2012-12-01

    Since the industrial revolution, the oceans have absorbed about 25% of anthropogenic CO2 emissions to the atmosphere, leading to a decrease in seawater pH (termed ocean acidification: OA) as well as many associated effects, including decreased saturation states. Assessment of the effects of OA on marine ecosystems is presently based on chemistry and its impact on biota over much longer time scales can provide essential context for likely future consequences of OA. Reliable oceanic paleo-proxies for influential chemical variables such as pH and carbonate saturation state are crucial components for examining ancient environments affected by OA. Addition of CO2 to seawater leads to not only decreases in seawater pH and saturation state, but also the extent to which boron (B) is incorporated into CaCO3 during biotic calcification. Consequently, the abundance of B in calcite could reflect pH and/or saturation state of the water in which calcification occurred. Recent studies indicate a linear relationship between the ratio of boron to calcium (B/Ca) in benthic foraminifera shells ( Cibicidoides wuellerstorfi, C. mundulus) and the degree of carbonate saturation (Δ[CO32-]), defined as a difference between [CO32-]in situ and [CO32-]saturation. However, the observed relationship between B/Ca and Δ[CO32-] was only established for depths >1000m. Thus, since OA most immediately affects the upper 1000 m of the water column, a reliable shallow water (chemistry proxy is desirable. We are testing the utility of B/Ca in Cibicidoides pachyderma as a shallow water Δ[CO32-] proxy. C. pachyderma is an epibenthic species and therefore records the composition of bottom, rather than interstitial, waters. It usually inhabits depths between 200 and 1000 m, and is a common species in the Gulf of Mexico. The gently sloping West Florida Shelf (WFS) is an excellent setting for this kind of study as it provides a full range of depths habitable by C.pachyderma. Nine surface sediment samples

  7. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  8. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  9. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  10. Evaluation of the state water-resources research institutes

    Science.gov (United States)

    Ertel, M.O.

    1988-01-01

    Water resources research institutes, as authorized by the Water Resources Research Act of 1984 (Public Law 98-242), are located in each state and in the District of Columbia, Guam, Puerto Rico , and the Virgin Islands. Public Law 98-242 mandated an onsite evaluation of each of these institutes to determine whether ' . . .the quality and relevance of its water resources research and its effectiveness as an institution for planning, conducting, and arranging for research warrant its continued support in the national interest. ' The results of these evaluations, which were conducted between September 1985 and June 1987, are summarized. The evaluation teams found that all 54 institutes are meeting the basic objectives of the authorizing legislation in that they: (1) use the grant funds to support research that addresses water problems of state and regional concern; (2) provide opportunities for training of water scientists through student involvement on research projects; and (3) promote the application of research results through preparation of technical reports and contributions to the technical literature. The differences among institutes relate primarily to degrees of effectiveness, and most often are determined by the financial, political, and geographical contexts in which the institutes function and by the quality of their leadership. (Lantz-PTT)

  11. Data compilation and assessment for water resources in Pennsylvania state forest and park lands

    Science.gov (United States)

    Galeone, Daniel G.

    2011-01-01

    As a result of a cooperative study between the U.S. Geological Survey and the Pennsylvania Department of Conservation and Natural Resources (PaDCNR), available electronic data were compiled for Pennsylvania state lands (state forests and parks) to allow PaDCNR to initially determine if data exist to make an objective evaluation of water resources for specific basins. The data compiled included water-quantity and water-quality data and sample locations for benthic macroinvertebrates within state-owned lands (including a 100-meter buffer around each land parcel) in Pennsylvania. In addition, internet links or contacts for geographic information system coverages pertinent to water-resources studies also were compiled. Water-quantity and water-quality data primarily available through January 2007 were compiled and summarized for site types that included streams, lakes, ground-water wells, springs, and precipitation. Data were categorized relative to 35 watershed boundaries defined by the Pennsylvania Department of Environmental Protection for resource-management purposes. The primary sources of continuous water-quantity data for Pennsylvania state lands were the U.S. Geological Survey (USGS) and the National Weather Service (NWS). The USGS has streamflow data for 93 surface-water sites located in state lands; 38 of these sites have continuous-recording data available. As of January 2007, 22 of these 38 streamflow-gaging stations were active; the majority of active gaging stations have over 40 years of continuous record. The USGS database also contains continuous ground-water elevation data for 32 wells in Pennsylvania state lands, 18 of which were active as of January 2007. Sixty-eight active precipitation stations (primarily from the NWS network) are located in state lands. The four sources of available water-quality data for Pennsylvania state lands were the USGS, U.S. Environmental Protection Agency, Pennsylvania Department of Environmental Protection (PaDEP), and

  12. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  13. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Science.gov (United States)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the

  14. Water states and types of water in materials from different argillaceous formations

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.

    2010-01-01

    clayey formations, the amount of accessory minerals, type of clays and water contents affect the amount and distribution of the external and internal water; and the combination of such properties is not well understood. In this work, the study of water states, types of water (adsorbed, free water), and the water volume accessible to ions is performed in samples belonging to different clay formations (Boom Clay, Opalinus Clay and Callovo-Oxfordian). This offers the opportunity of understanding the nature of water in clayey systems because of their variations in parameters affecting to the amount of adsorbed and capillary water such as: degree of compaction, water content, clay content, type of clays, salinity, nature of exchangeable cations, etc. The aim is to obtain the accessible porosity or geochemical porosity in compacted materials in order to determine the chemical composition of the pore water. The results are compared with those obtained in experimental lab (by squeezing and aqueous leaching) and in situ studies. The research is accomplished by a careful and detailed characterization of the clay samples. Parameters such as particle size, layer spacing, chemical composition, mineralogy, external and total surfaces, porosity and pore water chemistry were determined. The method combines different types of methodologies to obtain a representative description of double porosity systems and the amount of free, adsorbed and confined water involved in real-type porous media: water adsorption isotherms, XRD, TG, calorimetric measurements and diffuse reflectance FTIR. Besides, a comparison among different types of clayey formation is given, in which there are variations in the types of clays, water contents, dry densities, pore water chemistry and type of exchangeable cations. The results try to reduce the lack of data about water volume accessible to ions, and the involved uncertainty in the use of total porosity or accessible porosity in the modelling of the pore water

  15. Measurement of low levels of cesium-137 in water

    International Nuclear Information System (INIS)

    Milham, R.C.; Kantelo, M.V.

    1984-10-01

    Large volume water sampling systems were developed to measure very low levels of cesium-137 in river water and in finished water from water treatment plants. Three hundred to six hundred liters of filtered water are passed through the inorganic ion exchanger potassium cobalti-ferrocyanide to remove greater than 90% of the cesium. Measurement of cesium-137 by gamma ray spectrometry results in a sensitivity of 0.001 pCi/L. Portable as well as stationary samplers were developed to encompass a variety of applications. Results of a one year study of water from the Savannah River and from water treatment plants processing Savannah River water are presented. 3 references, 7 figures

  16. High-Resolution Water Footprints of Production of the United States

    Science.gov (United States)

    Marston, Landon; Ao, Yufei; Konar, Megan; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-03-01

    The United States is the largest producer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, spatially detailed database of water use by sector would provide insight into U.S. utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the United States. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the U.S. economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking. In fact, we find that 94% of U.S. industries could reduce their total water footprint more by sourcing from more water-efficient suppliers in their supply chain than they could by converting their own operations to be more water-efficient.

  17. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  18. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  19. Electrical measurement of the hydration state of the skin surface in vivo.

    Science.gov (United States)

    Tagami, H

    2014-09-01

    Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.

  20. Development of microcontroller based water flow measurement

    Science.gov (United States)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  1. Assessment of the quality of drinking water in Khartoum State

    International Nuclear Information System (INIS)

    Bashir, E. A.

    2005-07-01

    Assessment of drinking water quality in Khartoum State was the main purpose of this study. Seven sites were selected to represent the area of wells water, relevance to environmental pollution in Khartoum area, Ummbadah near industrial area, Elthawra near a power station, Elfiteihap near the White Nile, Elriyadh near a petroleum station, Elkalakla in the last bus station, Elhag Yousif in the market, as well Eldroshap as control area. Raw and treated water samples were collected from the White Nile, the Blue Nile and the River Nile, wells water and treated water from the three Niles these samples stored in metallic and fiber glass tanks in the rainy and dry seasons. Standard methods were used for samples collection and preparation for the measurements using Atomic Absorption Spectroscopy (AAS) and flame photometer. Thirteen elements were observed and their concentrations determined in the various locations, those are Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mg, Mn, Na, Ni, Pb and Zn. The concentration levels for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were lower than the detection limits for (AAS), and pre-concentration by physical method was found necessary for these elements, the evaporation method of the drinking water samples were used. The data obtained were compared with the data from literature. The results are generally comparable except the concentration of Fe of the raw water for the River Nile in the two seasons as well as the treated water for the River Nile, the treated water for the River Nile stored in fiber glass tank (rainy season), and the treated water for the White Nile stored in metallic tank (rainy season) are lower than the maximum permissible international levels provided by the World Health Organization (WHO) and the concentration of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organization (SSMO). There is no pollution in the ground water resulting from human activities can be made.(Author)

  2. Equity in water and sanitation: developing an index to measure progressive realization of the human right.

    Science.gov (United States)

    Luh, Jeanne; Baum, Rachel; Bartram, Jamie

    2013-11-01

    We developed an index to measure progressive realization for the human right to water and sanitation. While in this study we demonstrate its application to the non-discrimination and equality component for water, the conceptual approach of the index can be used for all the different components of the human right. The index was composed of one structural, one process, and two outcome indicators and is bound between -1 and 1, where negative values indicate regression and positive values indicate progressive realization. For individual structural and process indicators, only discrete values such as -1, -0.5, 0, 0.5, and 1 were allowed. For the outcome indicators, any value between -1 and 1 was possible, and a State's progress was evaluated using rates of change. To create an index that would allow for fair comparisons between States and across time, these rates of change were compared to benchmarked rates, which reflect the maximum rates a State can achieve. Using this approach, we calculated the index score for 56 States in 2010 for which adequate data were available and demonstrated that these index scores were not dependent on factors such as achieved level of coverage or gross national income. The proposed index differs from existing measures of inequality as it measures rate of change and not level of achievement, and thus addresses the principle of progressive realization that is fundamental to human rights. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Surveillance for waterborne disease and outbreaks associated with recreational water--United States, 2003-2004.

    Science.gov (United States)

    Dziuban, Eric J; Liang, Jennifer L; Craun, Gunther F; Hill, Vincent; Yu, Patricia A; Painter, John; Moore, Matthew R; Calderon, Rebecca L; Roy, Sharon L; Beach, Michael J

    2006-12-22

    Since 1971, CDC, the U.S. Environmental Protection Agency, and the Council of State and Territorial Epidemiologists have collaboratively maintained the Waterborne Disease and Outbreak Surveillance System for collecting and reporting waterborne disease and outbreak (WBDO)-related data. In 1978, WBDOs associated with recreational water (natural and treated water) were added. This system is the primary source of data regarding the scope and effects of WBDOs in the United States. Data presented summarize WBDOs associated with recreational water that occurred during January 2003-December 2004 and one previously unreported outbreak from 2002. Public health departments in the states, territories, localities, and the Freely Associated States (i.e., the Republic of the Marshall Islands, the Federated States of Micronesia, and the Republic of Palau, formerly parts of the U.S.-administered Trust Territory of the Pacific Islands) have primary responsibility for detecting, investigating, and voluntarily reporting WBDOs to CDC. Although the surveillance system includes data for WBDOs associated with drinking water, recreational water, and water not intended for drinking, only cases and outbreaks associated with recreational water are summarized in this report. During 2003-2004, a total 62 WBDOs associated with recreational water were reported by 26 states and Guam. Illness occurred in 2,698 persons, resulting in 58 hospitalizations and one death. The median outbreak size was 14 persons (range: 1-617 persons). Of the 62 WBDOs, 30 (48.4%) were outbreaks of gastroenteritis that resulted from infectious agents, chemicals, or toxins; 13 (21.0%) were outbreaks of dermatitis; and seven (11.3%) were outbreaks of acute respiratory illness (ARI). The remaining 12 WBDOs resulted in primary amebic meningoencephalitis (n = one), meningitis (n = one), leptospirosis (n = one), otitis externa (n = one), and mixed illnesses (n = eight). WBDOs associated with gastroenteritis resulted in 1,945 (72

  4. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  5. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  6. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  7. Evaluation of the Current State of Integrated Water Quality Modelling

    Science.gov (United States)

    Arhonditsis, G. B.; Wellen, C. C.; Ecological Modelling Laboratory

    2010-12-01

    Environmental policy and management implementation require robust methods for assessing the contribution of various point and non-point pollution sources to water quality problems as well as methods for estimating the expected and achieved compliance with the water quality goals. Water quality models have been widely used for creating the scientific basis for management decisions by providing a predictive link between restoration actions and ecosystem response. Modelling water quality and nutrient transport is challenging due a number of constraints associated with the input data and existing knowledge gaps related to the mathematical description of landscape and in-stream biogeochemical processes. While enormous effort has been invested to make watershed models process-based and spatially-distributed, there has not been a comprehensive meta-analysis of model credibility in watershed modelling literature. In this study, we evaluate the current state of integrated water quality modeling across the range of temporal and spatial scales typically utilized. We address several common modeling questions by providing a quantitative assessment of model performance and by assessing how model performance depends on model development. The data compiled represent a heterogeneous group of modeling studies, especially with respect to complexity, spatial and temporal scales and model development objectives. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modelling, and ending in 2009, we selected over 150 papers fitting a number of criteria. These criteria involved publications that: (i) employed distributed or semi-distributed modelling approaches; (ii) provided predictions on flow and nutrient concentration state variables; and (iii) reported fit to measured data. Model performance was quantified with the Nash-Sutcliffe Efficiency, the relative error, and the coefficient of determination. Further, our

  8. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  9. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  10. AN ASSESSMENT OF WATER QUALITY (NH4+, NO2-, NO3-, TP, SO4, COLIFORM BACTERIA AND HEAVY METALS OF THE MAIN WATER SUPPLIES IN THE STATE OF CAMPECHE

    Directory of Open Access Journals (Sweden)

    Jorge Arturo Benitez

    2011-04-01

    Full Text Available Water quality testing (in situ and in laboratory was conducted on 50 wells across the state of Campeche. Further to this (to aid in water quality management and policy, a GIS was implemented to i approximate Zones of Contribution (ZOC for well recharge which in turn supplies water for main cities in the state and ii perform predictive land change modeling on these ZOC’s to predict the future effect of non-point source pollution. Due to natural geohydrological conditions, values of TDS, pH, and SO4 exceeded Mexican regulations in roughly one third of the wells. Although most wells do not exceed the permissible limits of nutrients and heavy metals, some wells show worryingly high levels of NO2-, TP, and Pb, indicators of pollution from anthropogenic sources. All wells were contaminated by coliform bacteria. Poor water quality in some of the main water sources in the state is mainly due to the proliferation of open dumps and the lack of sewage infrastructure, as well as the ongoing conversion of vegetated land to agriculture into the ZOC’s. It is shown that unless remedial measures are implemented, human activities will continue to extend into these areas, placing the state’s water supply at even higher risk of contamination.Â

  11. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  12. Appropriation System: water rights in the western United States; water pollution problems peculiar to the uranium industry

    International Nuclear Information System (INIS)

    Worcester, T.E.

    1976-01-01

    The legal framework surrounding water rights acquisition and usage in the western United States and the steps which should be taken in analyzing potential sources of water are dealt with. Some of the applicable water pollution control laws and regulations are discussed briefly

  13. Identifying future electricity-water tradeoffs in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Sovacool, Kelly E.

    2009-01-01

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs.

  14. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  15. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  16. Extant or Absent: Formation Water in New York State Drinking Water Wells

    Science.gov (United States)

    Christian, K.; Lautz, L. K.

    2013-12-01

    The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity

  17. Low-Cost Alternative for the Measurement of Water Levels in Surface Water Streams

    Directory of Open Access Journals (Sweden)

    Luis E. PEÑA

    2017-11-01

    Full Text Available Flood risk management and water resources planning involve a deep knowledge of surface streams so that mitigation strategies and climate change adaptations can be implemented. Commercially, there is a wide range of technologies for the measurement of hydroclimatic variables; however, many of these technologies may not be affordable for institutions with limited budgets. This paper has two main objectives: 1 Present the design of an ultrasound-based water level measurement system, and 2 Propose a methodological alternative for the development of instruments, according to the needs of institutions conducting monitoring of surface waterbodies. To that end, the proposed methodology is based on selection processes defined according to the specific needs of each waterbody. The prototype was tested in real-world scale, with the potential to obtain accurate measurements. Lastly, we present the design of the ultrasound-based water level measurement instrument, which can be built at a low cost. Low-cost instruments can potentially contribute to the sustainable instrumental autonomy of environmental entities and help define measurement and data transmission standards based on the specific requirements of the monitoring.

  18. Public supply and domestic water use in the United States, 2015

    Science.gov (United States)

    Dieter, Cheryl A.; Maupin, Molly A.

    2017-10-30

    IntroductionThe U.S. Geological Survey (USGS) National Water Use Science Project (NWUSP), part of the USGS Water Availability and Use Science Program (WAUSP), has estimated water use in the United States every 5 years since 1950. This report provides an overview of total population, public-supply use, including the population that is served by public-supply systems and the domestic deliveries to those users, and self-supplied domestic water use in the United States for 2015, continuing the task of estimating water use in the United States every 5 years. In this report, estimates for the United States include the 50 States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands (hereafter referred to as “states” for brevity).County-level data for total population, public-supply withdrawals and the population served by public-supply systems, and domestic withdrawals for 2015 were published in a data release in an effort to provide data to the public in a timely manner. Data in the current version (1.0) of Dieter and others (2017) contains county-level total withdrawals from groundwater and surface-water sources (both fresh and saline) for public-water supply, the deliveries from those suppliers to domestic users, and the quantities of water from groundwater and surface-water sources for self-supplied domestic users, and total population. Methods used to estimate the various data elements for the public-supply and domestic use categories at the county level are described by Bradley (2017).This Open-File Report is an interim report summarizing the data published in Dieter and others (2017) at the state and national level. This report includes discussions on the total population, totals for public-supply withdrawals and population served, total domestic withdrawals, and provides comparisons of the 2015 estimates to 2010 estimates (Maupin and others, 2014). Total domestic water use, as described in this report, represents the summation of deliveries from

  19. Radioecological state of some surface water systems of contaminated areas of both Gomel and Mogilev Regions

    International Nuclear Information System (INIS)

    Datskevich, P. I.; Komissariv, F. D.; Khvale', O. D.; Basharina, L. P.; Lobach, I. L.

    1997-01-01

    The radioecological situation of different ecosystems of Belarus and their components has been analysed. Such components of the surface water ecosystems as water, suspensions, sediments and soils of water-collection areas were used for the investigation of the content of cesium 137 and strontium 90. The received data were given since 1990. The content of cesium 137 and strontium 90 in the components of water ecosystems was counted in the laboratory conditions by means of standard methods of beta radiometry, semiconductor gamma spectrometry and radiochemistry. The error of measurement of radioactivity was not higher than 25 and 35% for cesium 137 and strontium 90 accordingly. Water ecosystems were distinguished by the state of contamination of water-collection areas and hydrological parameters. These and some other reasons considered in the article influence on the character of cesium 137 and strontium 90 behaviour in water ecosystems

  20. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Science.gov (United States)

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  1. Establishment of X-ray Measurement System for On-line Monitoring of Water Content in Powder

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J. S. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Choi, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, B. J. [Idealsystem Co., Daegu (Korea, Republic of)

    2012-05-15

    On-line process monitoring is of critical importance in many industries, and therefore a variety of the state-of-the-art physical and chemical measurement techniques have been proposed. But, these techniques have their own pros and cons under the field process environments. Because the field process environments are very different from the well-organized chemical laboratories, many factors should be considered in order to optimize the process monitoring system. However, there have been few studies on the on-line measurement of water content in powder materials. For that reason, the X-ray measurement system based on the X-ray scattering technique, which was first proposed in 2011 as a new method for the determination of water content in powder, has been improved. in the present study, our original X-ray measurement system has been modified for more rapid, simple, and adequate for maximizing the field applicability of the on-line monitoring system

  2. A spatially detailed blue water footprint of the United States economy

    Science.gov (United States)

    Rushforth, Richard R.; Ruddell, Benjamin L.

    2018-05-01

    This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the US is 589 m3 per capita (F'Withdrawal: 1298 m3 per capita; F'CUMax: 720 m3 per capita; F'CUMin: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are

  3. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  4. States and Measures on Hyper BCK-Algebras

    Directory of Open Access Journals (Sweden)

    Xiao-Long Xin

    2014-01-01

    Full Text Available We define the notions of Bosbach states and inf-Bosbach states on a bounded hyper BCK-algebra (H,∘,0,e and derive some basic properties of them. We construct a quotient hyper BCK-algebra via a regular congruence relation. We also define a ∘-compatibled regular congruence relation θ and a θ-compatibled inf-Bosbach state s on (H,∘,0,e. By inducing an inf-Bosbach state s^ on the quotient structure H/[0]θ, we show that H/[0]θ is a bounded commutative BCK-algebra which is categorically equivalent to an MV-algebra. In addition, we introduce the notions of hyper measures (states/measure morphisms/state morphisms on hyper BCK-algebras, and present a relation between hyper state-morphisms and Bosbach states. Then we construct a quotient hyper BCK-algebra H/Ker(m by a reflexive hyper BCK-ideal Ker(m. Further, we prove that H/Ker(m is a bounded commutative BCK-algebra.

  5. Lowest auto-detachment state of the water anion

    International Nuclear Information System (INIS)

    Houfek, K.; Cizek, M.

    2016-01-01

    Because of the abundance of water in living tissue the reactive low-energy electron collisions with the water molecule represent an important step in the radiation damage of cells. In this paper, the potential energy surface of the ground state of the water anion H_2O"- is carefully mapped using multireference configuration interaction (MRCI) calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O"-+H_2 and OH"-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The auto-detachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O"- + H_2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slightly off the linear geometry and is separated by a saddle from the auto-detachment region. The auto-detachment region is directly accessible from the OH"-+H asymptote. For the molecular geometries in the auto-detachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication

  6. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  7. Radon measurement waters from different regions of Transylvania

    International Nuclear Information System (INIS)

    Moldovan, M.; Cosma, C.

    2004-01-01

    Radon exposure is still a very current problem in the scientific world. It is well-known that 222 Rn and its short-lived daughters contribute to the effective dose equivalent, through inhalation, in a percent of 50% of the total effective dose equivalent from natural sources [UNSCEAR, 1988]. The radon gas incorporated in water is transferred into the indoor air by simple utilisation of water for domestic purposes. According to the American standards, the waters with concentrations of radon higher than 11.11 Bq/l (300 pCi/l) must not be consumed. Radon studies are very motivated even from the medical and geophysical point of view. Moreover, interesting correlations can be done between the measured concentration indoors and the concentration of those underground waters that supply them. We measured over 135 samples of groundwater. These were collected from wells, at different depths. The samples were measured after 12 hours, in order to prevent the radon loss. For groundwater measurements we used, a device called LUK-3A, manufactured in Czech Republic, which has a standard deviation of ± 10% and a sensibility of 0.56 Bq/l (15 pCi/l).The method is based on the detection of alpha radioactivity of 222 Rn. It can be set to perform measurements of 222 Rn from water. In case of this method a water sample of 0.3 l is collected into a glass container which is intensely stirred and shaken for one minute. The container is then connected to a vacuumed Lucas cell on one side and on the other side connected to a syringe in which distillated water was introduced having an amount equal to the volume of gas left into the collector container. Three successive measurements of 100 s were made for each sample. Before starting the measurements the background of the Lucas cells that were going to be used was determined. The concentration of radon is calculated using the formula: C Rn = k · N [Bq/l] where k - calibration constant, k = 9.85; N - count of pulses recorded in 100 minutes

  8. Fiscal Year 1990 program report: New York State Water Resources Institute

    International Nuclear Information System (INIS)

    Porter, K.S.

    1991-08-01

    New York has made major strides in reducing or eliminating point sources of water pollutants. Nonpoint sources have become the primary focus of many State water pollution control programs. Among the most critical remaining water pollutant sources in New York are toxics-contaminated sediments in surface water bodies and leaks and spills of toxic and hazardous materials. Contaminated sediments are implicated as a major origin of certain persistent synthetic organics accumulated by higher aquatic organisms, as well as representing an uncertain but large reservoir of contaminants which may be re-released during high flows. Spills and leaks represent threats to both surface and ground water. The State now responds to over 10,000 of these cases each year. A growing number of cases are leaking underground petroleum storage tanks, requiring long and expensive cleanup activities

  9. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  10. Indirect MRI of 17 o-labeled water using steady-state sequences: Signal simulation and preclinical experiment.

    Science.gov (United States)

    Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto

    2018-05-01

    Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson

  11. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    Science.gov (United States)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  12. 77 FR 74449 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay

    Science.gov (United States)

    2012-12-14

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay AGENCY... Protection Agency (EPA) proposes to temporarily stay our regulation the ``Water Quality Standards for the... Information Does this action apply to me? Citizens concerned with water quality in Florida may be interested...

  13. The measurement of water vapor permeability of glove materials using dilute tritiated water

    International Nuclear Information System (INIS)

    Doughty, D.H.

    1982-01-01

    As fusion technology progresses, there will be an increasing need to handle tritium and tritiated compounds. Protective clothing, especially drybox gloves, must be an effective barrier to minimize worker exposure. The water vapor permeability of glove materials and finished glove constructions is a crucial property of drybox gloves and is not sufficiently well characterized. We have built an apparatus that measures water vapor permeability of elastomers using dilute tritiated water. The technique is more sensitive than other methods currently available and allows us to make measurements on materials and under conditions previously inaccessible. In particular, we present results on laminated drybox gloves for which data is not currently available. (orig.)

  14. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  15. Measurement of gross alpha - activity in some thermal water sources in Yugoslavia by SSNTDs. [Solid state nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benderac, R.; Ristic, D. (Inst. of Security, Belgrade (Yugoslavia)); Antanasijevic, R.; Vukovic, J. (Belgrade Univ. (Yugoslavia))

    1991-01-01

    The possible application of the CN-BDH (type 1) nitrocellulose detector synthesized in laboratory conditions, and also the CR-39 detector, to the measurement of the gross alpha-activity of geothermal and mineral water has been investigated. (author).

  16. Quantum Nanomechanics: State Engineering and Measurement

    International Nuclear Information System (INIS)

    Woolley, M. J.; Milburn, G. J.; Doherty, A. C.

    2011-01-01

    There has recently been a surge of interest in the study of mechanical systems near the quantum limit. Such experiments are motivated by both fundamental interest in studying quantum mechanics with macroscopic engineered systems and potential applications as ultra-sensitive transducers, or even in quantum information processing. A particularly promising system is a microwave cavity optomechanical system, in which a nanomechanical resonator is embedded within (and capacitively coupled to) a superconducting microwave cavity. Here we discuss two schemes for the generation and measurement of quantum states of the nanomechanical resonator. A quantum squeezed state may be generated via mechanical parametric amplification, while a number state may be conditionally generated via continuous measurement and feedback control mediated by a superconducting qubit.

  17. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    Science.gov (United States)

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  18. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  19. Identifying future electricity-water tradeoffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Sovacool, Kelly E. [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2009-07-15

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs. (author)

  20. Measuring and modeling water imbibition into tuff

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.; George, J.T.; Gauthier, J.H.

    1986-01-01

    Yucca Mountain (Nevada) is being investigated as a potential site for a high-level-radioactive-waste repository. The site combines a partially saturated hydrologic system and a stratigraphy of fractured, welded and nonwelded tuffs. The long time scale for site hydrologic phenomena makes their direct measurement prohibitive. Also, modeling is difficult because the tuffs exhibit widely varying, and often highly nonlinear hydrologic properties. To increase a basic understanding of both the hydrologic properties of tuffs and the modeling of flow in partially saturated regimes, the following tasks were performed, and the results are reported: (1) Laboratory Experiment: Water imbibition into a cylinder of tuff (taken from Yucca Mountain drill core) was measured by immersing one end of a dry sample in water and noting its weight at various times. The flow of water was approximately one-dimensional, filling the sample from bottom to top. (2) Computer Simulation: The experiment was modeled using TOSPAC (a one-dimensional, finite-difference computer program for simulating water flow in partially saturated, fractured, layered media) with data currently considered for use in site-scale modeling of a repository in Yucca Mountain. The measurements and the results of the modeling are compared. Conclusions are drawn with respect to the accuracy of modeling transient flow in a partially saturated, porous medium using a one-dimensional model and currently available hydrologic-property data

  1. State dependent optimization of measurement policy

    Science.gov (United States)

    Konkarikoski, K.

    2010-07-01

    Measurements are the key to rational decision making. Measurement information generates value, when it is applied in the decision making. An investment cost and maintenance costs are associated with each component of the measurement system. Clearly, there is - under a given set of scenarios - a measurement setup that is optimal in expected (discounted) utility. This paper deals how the measurement policy optimization is affected by different system states and how this problem can be tackled.

  2. State dependent optimization of measurement policy

    International Nuclear Information System (INIS)

    Konkarikoski, K

    2010-01-01

    Measurements are the key to rational decision making. Measurement information generates value, when it is applied in the decision making. An investment cost and maintenance costs are associated with each component of the measurement system. Clearly, there is - under a given set of scenarios - a measurement setup that is optimal in expected (discounted) utility. This paper deals how the measurement policy optimization is affected by different system states and how this problem can be tackled.

  3. Information Management System for the California State Water Resources Control Board (SWRCB)

    Science.gov (United States)

    Heald, T. C.; Redmann, G. H.

    1973-01-01

    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included.

  4. Implications of water constraints for electricity capacity expansion in the United States

    Science.gov (United States)

    Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.

    2017-12-01

    U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water

  5. Diel cycles of hydrogen peroxide in marine bathing waters in Southern California, USA: In situ surf zone measurements

    International Nuclear Information System (INIS)

    Clark, Catherine D.; De Bruyn, Warren J.; Hirsch, Charlotte M.; Aiona, Paige

    2010-01-01

    Hydrogen peroxide is photochemically produced in natural waters. It has been implicated in the oxidative-induced mortality of fecal indicator bacteria (FIB), a microbial water quality measure. To assess levels and cycling of peroxide in beach waters monitored for FIB, diel studies were carried out in surf zone waters in July 2009 at Crystal Cove State Beach, Southern California, USA. Maximum concentrations of 160-200 nM were obtained within 1 h of solar noon. Levels dropped at night to 20-40 nM, consistent with photochemical production from sunlight. Day-time production and night-time dark loss rates averaged 16 ± 3 nM h -1 and 12 ± 4 nM h -1 respectively. Apparent quantum yields averaged 0.07 ± 0.02. Production was largely dominated by sunlight, with some dependence on chromophoric dissolved organic matter (CDOM) levels in waters with high absorption coefficients. Peroxide levels measured here are sufficient to cause oxidative-stress-induced mortality of bacteria, affect FIB diel cycling and impact microbial water quality in marine bathing waters.

  6. Water binding by soybean seeds as measured by pulsed NMR.

    OpenAIRE

    掛澤, 雅章; 望月, 務; 海老根, 英雄; MASAAKI, KAKEZAWA; TSUTOMU, MOCHIZUKI; HIDEO, EBINE; 中央味噌研究所; 東海物産株式会社; 中央味噌研究所; Central Miso Research Institute; Tokai Bussan, Co.; Central Miso Research Institute

    1983-01-01

    The water in soybean powder, soaked soybeans and cooked soybeans was fractionated into unfrozen water and freezable water from the data on the free induction decay freezing curve, and into bound and mobile fractions from the data on the spin-spin relaxation curve by pulsed nuclear magnetic resonance. The effects of soaking and cooking conditions on the state of water were examined. In soybean powder of several hydration levels, the freezing curves showed that the levels of unfrozen water were...

  7. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  9. Composite measures of watershed health from a water quality perspective

    Science.gov (United States)

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity...

  10. 33 CFR 328.5 - Changes in limits of waters of the United States.

    Science.gov (United States)

    2010-07-01

    ... OF THE ARMY, DEPARTMENT OF DEFENSE DEFINITION OF WATERS OF THE UNITED STATES § 328.5 Changes in... drainage may remove an area from waters of the United States. Man-made changes may affect the limits of...

  11. High resolution production water footprints of the United States

    Science.gov (United States)

    Marston, L.; Yufei, A.; Konar, M.; Mekonnen, M.; Hoekstra, A. Y.

    2017-12-01

    The United States is the largest producer and consumer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to this economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, high-resolution database of water use by sector would provide insight into US utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the US. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the US economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking.

  12. Temperature measurement of the land-surface. Measuring methods and their application for the survey of subsoil water

    Energy Technology Data Exchange (ETDEWEB)

    Allvar, T

    1979-02-01

    The variation of the water content of a landscape has been investigated. The method of measurement was the use of the radiation of heat from the land surface. The radiation was measured by an airborne infrared scanner and a manual infrared thermometer. The water content and the temperature of the soil were recorded separately. The principle of the measurement is the slow reaction of a soil with a high water content to the temperature changes between day and night. Comparison of different methods points to an association of temperatures and water content. The correlation of the results is very low so that a mapping of water content in the area of Vibydalen becomes uncertain. The experiment displays the requirements of the accuracy in measuring methods.

  13. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  14. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    Science.gov (United States)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  15. Entanglement measure for general pure multipartite quantum states

    International Nuclear Information System (INIS)

    Heydari, Hoshang; Bjoerk, Gunnar

    2004-01-01

    We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states

  16. Quantification of resilience to water scarcity, a dynamic measure in time and space

    Directory of Open Access Journals (Sweden)

    S. P. Simonovic

    2016-05-01

    Full Text Available There are practical links between water resources management, climate change adaptation and sustainable development leading to reduction of water scarcity risk and re-enforcing resilience as a new development paradigm. Water scarcity, due to the global change (population growth, land use change and climate change, is of serious concern since it can cause loss of human lives and serious damage to the economy of a region. Unfortunately, in many regions of the world, water scarcity is, and will be unavoidable in the near future. As the scarcity is increasing, at the same time it erodes resilience, therefore global change has a magnifying effect on water scarcity risk. In the past, standard water resources management planning considered arrangements for prevention, mitigation, preparedness and recovery, as well as response. However, over the last ten years substantial progress has been made in establishing the role of resilience in sustainable development. Dynamic resilience is considered as a novel measure that provides for better understanding of temporal and spatial dynamics of water scarcity. In this context, a water scarcity is seen as a disturbance in a complex physical-socio-economic system. Resilience is commonly used as a measure to assess the ability of a system to respond and recover from a failure. However, the time independent static resilience without consideration of variability in space does not provide sufficient insight into system's ability to respond and recover from the failure state and was mostly used as a damage avoidance measure. This paper provides an original systems framework for quantification of resilience. The framework is based on the definition of resilience as the ability of physical and socio-economic systems to absorb disturbance while still being able to continue functioning. The disturbance depends on spatial and temporal perspectives and direct interaction between impacts of disturbance (social, health

  17. Thermodynamic studies of hydriodic acid in ethylene glycol-water mixtures from electromotive force measurements

    International Nuclear Information System (INIS)

    Elsemongy, M.M.; Abdel-Khalek, A.A.

    1983-01-01

    The standard potentials of the Ag-AgI electrode in twenty ethylene glycol-water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt|H 2 (g, 1atm)| HOAc(m 1 ), NaOAc(m 2 ), KI(m 3 ), solvent|AgI|Ag at nine different temperatures ranging from 15 to 55 0 C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI, from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. (Author)

  18. How the Drinking Water State Revolving Fund Works

    Science.gov (United States)

    The DWSRF was established by the 1996 amendments to the Safe Drinking Water Act (SDWA) as a financial assistance program for systems and states to achieve the health protection objectives of the law, 42 U.S.C. §300j-12

  19. 33 CFR 66.05-10 - State waters for private aids to navigation; designations; revisions, and revocations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false State waters for private aids to... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-10 State waters for private aids to navigation; designations; revisions, and...

  20. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    Mohammed, M. E. A.

    2010-10-01

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  1. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water

    International Nuclear Information System (INIS)

    Eggert, Jon H.; Weck, Gunnar; Loubeyre, Paul; Mezouar, Mohamed

    2002-01-01

    We report quantitatively accurate high-pressure, structure-factor measurements of fluids in diamond anvil cells (DAC's) using x-ray diffraction. In the analysis of our diffraction data, we found it possible (and necessary) to determine the density directly. Thus, we also present a diffraction-based determination of the equation of state for fluid water. The analysis of these measurements is difficult since the diamond anvils are many times as thick as the sample and excessive care must be taken in the background subtraction. Due to the novel nature of the experiment and the complexity of the analysis, this paper is concerned primarily with a careful exposition of our analytical methods. Our analysis is applicable to both atomic and molecular fluids and glasses, and we present results for the structure factor and density of two relatively low-Z liquids: argon and water. In order to validate our methods we present an extensive comparison of our measurements on water at P≅0 in a DAC to recent state-of-the-art x-ray and neutron diffraction experiments and to first-principles simulations at ambient conditions

  2. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures

    International Nuclear Information System (INIS)

    Yoshida, K; Yamaguchi, T; Kittaka, S; Bellissent-Funel, M-C; Fouquet, P

    2012-01-01

    Neutron spin echo measurements of monolayer and capillary condensed heavy water (D 2 O) confined in MCM-41 C10 (pore diameter 2.10 nm) were performed in a temperature range of 190-298 K. The intermediate scattering functions were analyzed by the Kohlrausch-Williams-Watts stretched exponential function. The relaxation times of confined D 2 O in the capillary condensed state follow remarkably well the Vogel-Fulcher-Tammann equation between 298 and 220 K, whereas below 220 K they show an Arrhenius type behavior. That is, the fragile-to-strong (FTS) dynamic crossover occurs, which has never been seen in experiments on bulk water. On the other hand, for monolayer D 2 O, the FTS dynamic crossover was not observed in the temperature range measured. The FTS dynamic crossover observed in capillary condensed water would take place in the central region of the pore, not near the pore surface. Because the tetrahedral-like water structure in the central region of the pore is more preserved than that near the pore surface, the FTS dynamic crossover would be concerned with the tetrahedral-like water structure. (paper)

  3. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  4. State of dissolved water in triglycerides as determined by Fourier transform infrared and near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. (Ajinomoto Co. Inc., Tokyo (Japan)); Takaoka, K.; Takasago, M.; Taru, Y.; Kobayashi, K. (Musashi Institute of Technology, Tokyo (Japan))

    1991-07-20

    The states of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein and trilinolenin were analyzed by Fourier transform infrared (FT-IR) and near infrared (FT-NIR) spectroscopy, and compared with those of water itself. In the case of water, its states were considered to be mainly polymer clusters larger than dimer ones at 20{degree}C, and mostly monomer or dimer clusters at 120{degree}C. In TG, the states varied widely from monomer to polymer clusters at 20{degree}C. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG, and the water state was noted to change due to the interaction between unsaturated bonds and dissolved water. Although the states of dissolved water in trilinolein were similar to those of original water at 20{degree}C, the ratio of monomer water decreased and polymer clusters bigger than those in original water increased with an increase in number of unsaturated bonds of TG. 9 refs., 6 figs., 3 tabs.

  5. Improving regulatory effectiveness in federal/state siting actions: water supplies and the nuclear licensing process

    International Nuclear Information System (INIS)

    Davenport, F.S.

    1977-07-01

    The Interstate Conference on Water Problems (ICWP) is a national association of State, intrastate, and interstate officials concerned with water resources administration and related matters. The Conference was established in 1959 as an outgrowth of regional conferences on water problems as recognized in the same year by action of the General Assembly of the States. This report was produced by the Interstate Conference on Water Problems in an effort to provide a compilation and summary of the views of selected States regarding relationships of water supplies to the nuclear power plant licensing process. This publication does not represent the official position of the U.S Water Resources Council, or the U.S. Nuclear Regulatory Commission, nor does it represent the position of any single state or the ICWP

  6. Improvements to measuring water flux in the vadose zone.

    Science.gov (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  7. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  8. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  9. 78 FR 12349 - Proposed Information Collection; Land and Water Conservation Fund State Assistance Program

    Science.gov (United States)

    2013-02-22

    ...] Proposed Information Collection; Land and Water Conservation Fund State Assistance Program AGENCY: National.... Abstract The Land and Water Conservation Fund Act of 1965 (LWCF Act) (16 U.S.C. 460l-4 et seq.) was enacted... discussed in detail in the Land and Water Conservation Fund State Assistance Program Federal Financial...

  10. Radiative lifetime measurements of rubidium Rydberg states

    International Nuclear Information System (INIS)

    Branden, D B; Juhasz, T; Mahlokozera, T; Vesa, C; Wilson, R O; Zheng, M; Tate, D A; Kortyna, A

    2010-01-01

    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 ≤ n ≤ 45. To enable long-lived states to be measured, our experiment uses slow-moving (∼100 μK) 85 Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target nl Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition to a higher energy 'monitor state', n'l'. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the nl target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a method which is more prone to systematic error, and are also in excellent agreement with theory.

  11. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  12. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

    International Nuclear Information System (INIS)

    Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh

    2011-01-01

    We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.

  13. Difficulties in the evaluation and measuring of soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2013-04-01

    conditions by the land management, but also due to the manipulation of the soil before and during the measurement. Direct "in situ" field evaluations have to be preferred in any case to indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, or through the use of stochastic models such as the SCS Curve Number Method, or of other models using empirical or physical approaches, which have demonstrated to be of limited value in most of the cases. References Philip, J. R., 1954., An infiltration equation with physical significance: Soil Sci..,v. 77, p. 153-157. Philip, J. R., 1958. The theory of infiltration, pt. 7: Soil Sci., v. 85, no. 6, p. 333-337. Pla, I.1981. Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986. A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., 1997. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 11(1):17-30. Elsevier Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia). Pla, I., 2006. Hydrological approach for assessing desertification processes in the Mediterranean region. In W.G. Kepner et al. (Editors), Desertification in the Mediterranean Region. A Security Issue. 579-600 Springer. Heidelberg (Germany) Pla, I. 2011. Evaluación y Modelización Hidrológica para el Diagnóstico y Prevención de "Desastres Naturales". Gestión y Ambiente 14 (3): 17-22. UN

  14. Salzburger State Reactance Scale (SSR Scale): Validation of a Scale Measuring State Reactance.

    Science.gov (United States)

    Sittenthaler, Sandra; Traut-Mattausch, Eva; Steindl, Christina; Jonas, Eva

    This paper describes the construction and empirical evaluation of an instrument for measuring state reactance, the Salzburger State Reactance (SSR) Scale. The results of a confirmatory factor analysis supported a hypothesized three-factor structure: experience of reactance, aggressive behavioral intentions, and negative attitudes. Correlations with divergent and convergent measures support the validity of this structure. The SSR Subscales were strongly related to the other state reactance measures. Moreover, the SSR Subscales showed modest positive correlations with trait measures of reactance. The SSR Subscales correlated only slightly or not at all with neighboring constructs (e.g., autonomy, experience of control). The only exception was fairness scales, which showed moderate correlations with the SSR Subscales. Furthermore, a retest analysis confirmed the temporal stability of the scale. Suggestions for further validation of this questionnaire are discussed.

  15. Quantification of Helicobacter pylori in the viable but nonculturable state by quantitative PCR in water disinfected with ozone.

    Science.gov (United States)

    Casasola-Rodríguez, B; Orta de Velásquez, M T; Luqueño-Martínez, V G; Monje-Ramírez, I

    2013-01-01

    Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes the gastric mucosa and is associated with gastric diseases. It may present a morphological adaptation when it is out of its natural environment, such as in water. The morphological adaptation is a coccoid form, which is a viable but non-culturable state (VNC) in which the DNA remains active and therefore infective. Due to the impossibility of culture by traditional methods in the VNC state, we developed a methodology that includes a molecular technique, quantitative polymerase chain reaction (qPCR), which is capable of measuring the bacteria in both forms (helical and coccoidal) and therefore is able to measure a disinfection process and to estimate the resistance of the bacteria to ozone. The methodology developed measures the efficiency of the ozone disinfection when bacteria are in a VNC state only. Bacterial culture at 9 × 10(8)CFU/mL diluted in 40 mL reaction volumes were exposed to a wide range of CT values (0.11-15 mg min/L). The results show a 3.92-log reduction when treated with 15 mg min/L. Our results demonstrate the feasibility of using qPCR for the quantification and detection of H. pylori, in coccoid form, in water systems treated with an ozone disinfection process.

  16. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  17. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  18. Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review

    Directory of Open Access Journals (Sweden)

    J. Meyer

    2015-07-01

    Full Text Available For almost two decades, the airborne Fast In-situ Stratospheric Hygrometer (FISH has stood for accurate and precise measurements of total water mixing ratios (WMR, gas phase + evaporated ice in the upper troposphere and lower stratosphere (UT/LS. Here, we present a comprehensive review of the measurement technique (Lyman-α photofragment fluorescence, calibration procedure, accuracy and reliability of FISH. Crucial for FISH measurement quality is the regular calibration to a water vapor reference, namely the commercial frost-point hygrometer DP30. In the frame of this work this frost-point hygrometer is compared to German and British traceable metrological water standards and its accuracy is found to be 2–4 %. Overall, in the range from 4 to 1000 ppmv, the total accuracy of FISH was found to be 6–8 %, as stated in previous publications. For lower mixing ratios down to 1 ppmv, the uncertainty reaches a lower limit of 0.3 ppmv. For specific, non-atmospheric conditions, as set in experiments at the AIDA chamber – namely mixing ratios below 10 and above 100 ppmv in combination with high- and low-pressure conditions – the need to apply a modified FISH calibration evaluation has been identified. The new evaluation improves the agreement of FISH with other hygrometers to ± 10 % accuracy in the respective mixing ratio ranges. Furthermore, a quality check procedure for high total water measurements in cirrus clouds at high pressures (400–500 hPa is introduced. The performance of FISH in the field is assessed by reviewing intercomparisons of FISH water vapor data with other in situ and remote sensing hygrometers over the last two decades. We find that the agreement of FISH with the other hygrometers has improved over that time span from overall up to ± 30 % or more to about ± 5–20 % @ 10 ppmv. As presented here, the robust and continuous calibration and operation procedures of the FISH instrument over the last two decades establish the

  19. The measurement of water scarcity: Defining a meaningful indicator.

    Science.gov (United States)

    Damkjaer, Simon; Taylor, Richard

    2017-09-01

    Metrics of water scarcity and stress have evolved over the last three decades from simple threshold indicators to holistic measures characterising human environments and freshwater sustainability. Metrics commonly estimate renewable freshwater resources using mean annual river runoff, which masks hydrological variability, and quantify subjectively socio-economic conditions characterising adaptive capacity. There is a marked absence of research evaluating whether these metrics of water scarcity are meaningful. We argue that measurement of water scarcity (1) be redefined physically in terms of the freshwater storage required to address imbalances in intra- and inter-annual fluxes of freshwater supply and demand; (2) abandons subjective quantifications of human environments and (3) be used to inform participatory decision-making processes that explore a wide range of options for addressing freshwater storage requirements beyond dams that include use of renewable groundwater, soil water and trading in virtual water. Further, we outline a conceptual framework redefining water scarcity in terms of freshwater storage.

  20. Measurement of radon concentration in water using the portable radon survey meter.

    Science.gov (United States)

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be water was >20 Bq l(-1).

  1. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  2. Estimating the relation between groundwater and river water by measuring the concentration of Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Minoru; Morisawa, Shinsuke [Kyoto Univ. (Japan). Faculty of Engineering

    1997-02-01

    This study aimed to estimate the relationship between groundwater in shallow layer and river water by determining the concentrations of {sup 222}Rn and nitric nitrogen along with water temperature. The region around ca. 20 km along river A in a certain basin was chosen as a test area. The Rn concentration of groundwater was determined by Rn extracting with toluene and counting in liquid scintillation counter, whereas for river water, it was determined by activated charcoal passive collector method developed by the authors, by which the amount of Rn adsorbed on activated charcoal was estimated by Ge-solid state detector. In addition, water temperature and nitric nitrogen concentration were measured at various points in the test area. Thus, a distribution map of the three parameters was made on the basis of the data obtained in December, 1989. Since Rn concentration is generally higher in ground water than river water and the water temperature in December is higher in the former, it seems likely that the concentrations of Rn and nitric nitrogen would become higher in the area where ground water soaks into river water. Thus, the directions of ground water flow at the respective sites along river A were estimated from the data regarding the properties of ground water. (M.N.)

  3. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking--United States, 2003-2004.

    Science.gov (United States)

    Liang, Jennifer L; Dziuban, Eric J; Craun, Gunther F; Hill, Vincent; Moore, Matthew R; Gelting, Richard J; Calderon, Rebecca L; Beach, Michael J; Roy, Sharon L

    2006-12-22

    Since 1971, CDC, the U.S. Environmental Protection Agency (EPA), and the Council of State and Territorial Epidemiologists have maintained a collaborative Waterborne Disease and Outbreaks Surveillance System for collecting and reporting data related to occurrences and causes of waterborne disease and outbreaks (WBDOs). This surveillance system is the primary source of data concerning the scope and effects of WBDOs in the United States. Data presented summarize 36 WBDOs that occurred during January 2003-December 2004 and nine previously unreported WBDOs that occurred during 1982-2002. The surveillance system includes data on WBDOs associated with drinking water, water not intended for drinking (excluding recreational water), and water of unknown intent. Public health departments in the states, territories, localities, and Freely Associated States (i.e., the Republic of the Marshall Islands, the Federated States of Micronesia, and the Republic of Palau, formerly parts of the U.S.-administered Trust Territory of the Pacific Islands) are primarily responsible for detecting and investigating WBDOs and voluntarily reporting them to CDC by using a standard form. During 2003-2004, a total of 36 WBDOs were reported by 19 states; 30 were associated with drinking water, three were associated with water not intended for drinking, and three were associated with water of unknown intent. The 30 drinking water-associated WBDOs caused illness among an estimated 2,760 persons and were linked to four deaths. Etiologic agents were identified in 25 (83.3%) of these WBDOs: 17 (68.0%) involved pathogens (i.e., 13 bacterial, one parasitic, one viral, one mixed bacterial/parasitic, and one mixed bacterial/parasitic/viral), and eight (32.0%) involved chemical/toxin poisonings. Gastroenteritis represented 67.7% of the illness related to drinking water-associated WBDOs; acute respiratory illness represented 25.8%, and dermatitis represented 6.5%. The classification of deficiencies contributing

  4. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    Science.gov (United States)

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean

  5. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  6. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  7. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  8. Arid site water balance: evapotranspiration modeling and measurements

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table

  9. Weak measurements and quantum weak values for NOON states

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  10. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  11. Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water, 1-Propanethiol + Methane + Water and 1-Butanethiol + Methane + Water Ternary Systems at 303, 335, and 365 K and Pressure Up to 9 MPa

    DEFF Research Database (Denmark)

    Awan, Javeed; Kontogeorgis, Georgios; Tsivintzelis, Ioannis

    2013-01-01

    New vapor–liquid–liquid equilibrium (VLLE) data for ethanethiol + methane + water, 1-propanethiol + methane + water, and 1-butanethiol + methane + water ternary systems have been measured at three temperatures (303, 335, and 365 K) and pressures up to 9 MPa. A “static-analytic” method was used...... for performing the measurements; the total system pressure was maintained by CH4. The objective of this work is to provide experimental VLLE data for mixtures of mercaptans (thiols) with other natural gas contents at its crude form, for which no data are available in the open literature. Such data will help...... the industrial modeling of processes relevant to reduction of sulfur emissions. The Cubic-Plus-Association (CPA) equation of state was applied to describe the phase behavior of the investigated systems. It is shown that the CPA EoS satisfactorily describes the solubilities of mercaptans (thiols) in all phases...

  12. Trends in the occurrence of MTBE in drinking water in the Northeast United States

    Science.gov (United States)

    Moran, M.J.

    2007-01-01

    Public water systems in Connecticut, Maine, Maryland, New Hampshire, New Jersey, and Rhode Island sampled treated drinking water from 1993-2006 and analyzed the samples for MTBE. The US Geological Survey examined trends in the occurrence of MTBE in drinking water derived from ground water in these States for two near-decadal time steps; 1993-1999 and 2000-2006. MTBE was detected in 14% of drinking water samples collected in all States from 1993-1999 and in 19% of drinking water samples collected from the same systems from 2000-2006 and this difference was statistically significant. Trends in the occurrence of MTBE in each State by individual year indicated significant positive trends in Maryland and New Hampshire. Significant, increasing trends in MTBE concentrations were observed in Maryland and Rhode Island by individual year. This is an abstract of a paper presented at the 2007 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment and Remediation Conference (Houston, TX 11/5-6/2007).

  13. Synoptic water-level measurements of the Upper Floridan aquifer in Florida and parts of Georgia, South Carolina, and Alabama, May-June 2010

    Science.gov (United States)

    Kinnaman, Sandra L.

    2012-01-01

    Water levels for the Upper Floridan aquifer were measured throughout Florida and in parts of Georgia, South Carolina, and Alabama in May-June 2010. These measurements were compiled for the U.S. Geological Survey (USGS) Floridan Aquifer System Groundwater Availability Study and conducted as part of the USGS Groundwater Resources Program. Data were collected by personnel from the USGS Florida Water Science Center, Georgia Water Science Center, South Carolina Water Science Center and several state and county agencies in Florida, Georgia, South Carolina, and Alabama using standard techniques. Data collected by USGS personnel are stored in the USGS National Water Information System (NWIS), Groundwater Site-Inventory System (GWSI). Furnished records from cooperators are stored in NWIS/GWSI when possible, but are available from the source agency.

  14. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  15. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  16. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  17. Alternative fidelity measure between two states of an N-state quantum system

    International Nuclear Information System (INIS)

    Chen Jingling; Fu Libin; Zhao Xiangeng; Ungar, Abraham A.

    2002-01-01

    An alternative fidelity measure between two states of a qunit, an N-state quantum system, is proposed. It has a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special case when N=2

  18. A Retrospective Analysis on the Occurrence of Arsenic in Ground-Water Resources of the United States and Limitations in Drinking-Water-Supply Characterizations

    Science.gov (United States)

    Focazio, Michael J.; Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Horn, Marilee A.

    2000-01-01

    ,000 and less than 10,000 people) in the United States. The arsenic data were summarized for the selected counties by associating the arsenic concentrations measured in the ground-water resource with the numbers and sizes of public water-supply systems using ground water in those counties. Targeted arsenic concentrations of 1, 2, 5, 10, 20, and 50 ug/L were exceeded in the ground-water resource associated with 36, 25, 14, 8, 3, and 1 percent respectively of all public water-supply systems accounted for in the analysis.Contributions to uncertainty such as changes in sampling methods and changes in laboratory reporting appear to be less important to the national occurrence estimates than other factors such as temporal variability in arsenic concentrations at a given well, the types of wells sampled, and density and types of sampling locations. In addition, no attempt was made to quantify arsenic concentrations in relation to depth within aquifers. With these qualifications, the USGS data represent the ground-water resource in general and are not restricted to wells currently used for public drinking-water sources. In this way, the broad spatial extent, large number of water samples, and low detection limits used for the USGS data provide a unique source of information to determine where targeted concentrations of arsenic are likely to occur in the ground-water resources within much of the United States.These results indicate USGS data can be effectively used to augment national estimates of arsenic occurrence in the nation's ground-water resources if limitations are recognized. Existing estimates of the occurrence of arsenic in ground water that are used as a source of drinking water can be supplemented with the USGS arsenic concentration data when associated with the public water-supply data base. One such supplementary application is the additional insight gained by establishing relations between arsenic concentration data in the ground-water resource and small public wat

  19. State estimation in water distribution network: A review

    CSIR Research Space (South Africa)

    Tshehla, KS

    2017-11-01

    Full Text Available . 333–348. [17] A. Bargiela and G. Hainsworth, “Pressure and flow uncertainty in water systems,” Journal of Water Resources Planning and Management, vol. 115, no. 2, pp. 212–229, 1989. [18] P. Carpentier and G. Cohen, “Applied mathematics in water supply... and Hainsworth [17] introduced the idea of incorporating measurement bounds with the aim of increasing the robustness of SE under uncertainty. Carpentier and Cohen [18] used a graph-theoretic approach for classifying variables and parameters as redundant...

  20. Challenges with secondary use of multi-source water-quality data in the United States

    Science.gov (United States)

    Sprague, Lori A.; Oelsner, Gretchen P.; Argue, Denise M.

    2017-01-01

    Combining water-quality data from multiple sources can help counterbalance diminishing resources for stream monitoring in the United States and lead to important regional and national insights that would not otherwise be possible. Individual monitoring organizations understand their own data very well, but issues can arise when their data are combined with data from other organizations that have used different methods for reporting the same common metadata elements. Such use of multi-source data is termed “secondary use”—the use of data beyond the original intent determined by the organization that collected the data. In this study, we surveyed more than 25 million nutrient records collected by 488 organizations in the United States since 1899 to identify major inconsistencies in metadata elements that limit the secondary use of multi-source data. Nearly 14.5 million of these records had missing or ambiguous information for one or more key metadata elements, including (in decreasing order of records affected) sample fraction, chemical form, parameter name, units of measurement, precise numerical value, and remark codes. As a result, metadata harmonization to make secondary use of these multi-source data will be time consuming, expensive, and inexact. Different data users may make different assumptions about the same ambiguous data, potentially resulting in different conclusions about important environmental issues. The value of these ambiguous data is estimated at \\$US12 billion, a substantial collective investment by water-resource organizations in the United States. By comparison, the value of unambiguous data is estimated at \\$US8.2 billion. The ambiguous data could be preserved for uses beyond the original intent by developing and implementing standardized metadata practices for future and legacy water-quality data throughout the United States.

  1. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  2. Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought

    Science.gov (United States)

    Martin, Roberta E.; Asner, Gregory P.; Francis, Emily; Ambrose, Anthony; Baxter, Wendy; Das, Adrian J.; Vaughn, Nicolas R.; Paz-Kagan, Tarin; Dawson, Todd E.; Nydick, Koren R.; Stephenson, Nathan L.

    2018-01-01

    California experienced severe drought from 2012 to 2016, and there were visible changes in the forest canopy throughout the State. In 2014, unprecedented foliage dieback was recorded in giant sequoia (Sequoiadendron giganteum) trees in Sequoia National Park, in the southern California Sierra Nevada mountains. Although visible changes in sequoia canopies can be recorded, biochemical and physiological responses to drought stress in giant sequoia canopies are not well understood. Ground-based measurements provide insight into the mechanisms of drought responses in trees, but are often limited to few individuals, especially in trees of tall stature such as giant sequoia. Recent studies demonstrate that remotely measured forest canopy water content (CWC) is a general indicator of canopy response to drought, but the underpinning leaf- to canopy-level causes of observed variation in CWC remain poorly understood. We combined field and airborne remote sensing measurements taken in 2015 and 2016 to assess the biophysical responses of giant sequoias to drought. In 49 study trees, CWC was related to leaf water potential, but not to the other foliar traits, suggesting that changes in CWC were made at whole-canopy rather than leaf scales. We found a non-random, spatially varying pattern in mapped CWC, with lower CWC values at lower elevation and along the outer edges of the groves. This pattern was also observed in empirical measurements of foliage dieback from the ground, and in mapped CWC across multiple sequoia groves in this region, supporting the hypothesis that drought stress is expressed in canopy-level changes in giant sequoias. The fact that we can clearly detect a relationship between CWC and foliage dieback, even without taking into account prior variability or new leaf growth, strongly suggests that remotely sensed CWC, and changes in CWC, are a useful measure of water stress in giant sequoia, and valuable for assessing and managing these iconic forests in drought.

  3. Two-colorable graph states with maximal Schmidt measure

    International Nuclear Information System (INIS)

    Severini, Simone

    2006-01-01

    The Schmidt measure was introduced by Eisert and Briegel for quantifying the degree of entanglement of multipartite quantum systems [J. Eisert, H.-J. Briegel, Phys. Rev. A 64 (2001) 22306]. For two-colorable graph states, the Schmidt measure is related to the spectrum of the associated graph. We observe that almost all two-colorable graph states have maximal Schmidt measure and we construct specific examples. By making appeal to a result of Ehrenfeucht et al. [A. Ehrenfeucht, T. Harju, G. Rozenberg, Discrete Math. 278 (2004) 45], we point out that the graph operations called local complementation and switching form a transitive group acting on the set of all graph states of a given dimension

  4. Recovery of maximally entangled quantum states by weak-measurement reversal

    Science.gov (United States)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-05-01

    Maximal quantum entanglement provided by N00N states is a unique resource in the quest for the ultimate precision in physical measurements. Such states, however, are fragile and prone to decoherence. Even in weak-measurement schemes, as we demonstrate in this work, the phase super-resolution provided by N00N states is achieved at a cost of an N-fold enhancement of amplitude damping. Still, as the analysis presented here shows, a partial collapse of N00N states induced by weak measurements can be reversed, despite the dramatic, N-fold enhancement of amplitude damping, through appropriate reversal operations on the post-measurement state, enabling a full restoration of the Heisenberg-limit phase super-resolution of N00N states.

  5. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  6. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    Science.gov (United States)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  7. Creating potentiometric surfaces from combined water well and oil well data in the midcontinent of the United States

    Science.gov (United States)

    Gianoutsos, Nicholas J.; Nelson, Philip H.

    2013-01-01

    For years, hydrologists have defined potentiometric surfaces using measured hydraulic-head values in water wells from aquifers. Down-dip, the oil and gas industry is also interested in the formation pressures of many of the same geologic formations for the purpose of hydrocarbon recovery. In oil and gas exploration, drillstem tests (DSTs) provide the formation pressure for a given depth interval in a well. These DST measurements can be used to calculate hydraulic-head values in deep hydrocarbon-bearing formations in areas where water wells do not exist. Unlike hydraulic-head measurements in water wells, which have a low number of problematic data points (outliers), only a small subset of the DST data measure true formation pressures. Using 3D imaging capabilities to view and clean the data, we have developed a process to estimate potentiometric surfaces from erratic DST data sets of hydrocarbon-bearing formations in the midcontinent of the U.S. The analysis indicates that the potentiometric surface is more readily defined through human interpretation of the chaotic DST data sets rather than through the application of filtering and geostatistical analysis. The data are viewed as a series of narrow, 400-mile-long swaths and a 2D viewer is used to select a subset of hydraulic-head values that represent the potentiometric surface. The user-selected subsets for each swath are then combined into one data set for each formation. These data are then joined with the hydraulic-head values from water wells to define the 3D potentiometric surfaces. The final product is an interactive, 3D digital display containing: (1) the subsurface structure of the formation, (2) the cluster of DST-derived hydraulic head values, (3) the user-selected subset of hydraulic-head values that define the potentiometric surface, (4) the hydraulic-head measurements from the corresponding shallow aquifer, (5) the resulting potentiometric surface encompassing both oil and gas and water wells, and (6

  8. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  9. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  10. Measurement of radioactivity in water samples

    International Nuclear Information System (INIS)

    Richards, L.

    1990-01-01

    Public concern about the levels of radioactivity release to the environment whether authorised discharges or resulting from nuclear accident, has increased in recent years. Consequently there is increasing pressure for reliable data on the distribution of radioactivity and the extent of its intrusion into food chains and water supplies. As a result a number of laboratories not experienced in radioactivity measurements have acquired nucleonic counting equipment. These notes explore the underlying basics and indicate sources of essential data and information which are required for a better understanding of radioactivity measurements. Particular attention is directed to the screening tests which are usually designated ''gross'' alpha and ''gross'' beta activity measurement. (author)

  11. Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications

    Directory of Open Access Journals (Sweden)

    Galdenzi Sandro

    2012-07-01

    Full Text Available The measurement of the weight loss in limestone tablets placed in the Grotta del Fiume (Frasassi, Italy provided data on the rate of limestone dissolution due to the sulfidic water and on the influence of local environmental conditions.A linear average corrosion rate of 24 mm ka-1 was measured in stagnant water, while the values were higher (68-119 mm ka-1 where the hydrologic conditions facilitate water movement and gas exchanges. In these zones the increase in water aggressivity is due to mixing with descending, O2-rich, seepage water and is also favored by easier gas exchange between ground-water and the cave atmosphere. Very intense corrosion was due to weakly turbulent flow, which caused evident changes in the tablets shape in few months. A comparison between the measured corrosion rates and the cave features showed that the values measured in the pools with stagnant water are too low to account for the largest solutional cave development, while the average values measured in the zones with moving water are compatible with the dimension of the cave rooms in the main cave levels, that must have developed when the base level was stable and hydrologic conditions favored the increase of water aggressivity.

  12. EnviroAtlas - Watershed Index Online Water Mask for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer represents all surface water features in the United States. This grid was created by combining water features identified in two sources, the Cropland...

  13. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    Science.gov (United States)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  14. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  15. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking--United States, 2005-2006.

    Science.gov (United States)

    Yoder, Jonathan; Roberts, Virginia; Craun, Gunther F; Hill, Vincent; Hicks, Lauri A; Alexander, Nicole T; Radke, Vince; Calderon, Rebecca L; Hlavsa, Michele C; Beach, Michael J; Roy, Sharon L

    2008-09-12

    Since 1971, CDC, the U.S. Environmental Protection Agency (EPA), and the Council of State and Territorial Epidemiologists have maintained a collaborative Waterborne Disease and Outbreak Surveillance System (WBDOSS) for collecting and reporting data related to occurrences and causes of waterborne-disease outbreaks (WBDOs) and cases of waterborne disease. This surveillance system is the primary source of data concerning the scope and effects of waterborne disease in the United States. Data presented summarize 28 WBDOs that occurred during January 2005--December 2006 and four previously unreported WBDOs that occurred during 1979--2002. The surveillance system includes data on WBDOs associated with recreational water, drinking water, water not intended for drinking (WNID) (excluding recreational water), and water use of unknown intent. Public health departments in the states, territories, localities, and Freely Associated States (FAS) (i.e., the Republic of the Marshall Islands, the Federated States of Micronesia, and the Republic of Palau, formerly parts of the U.S.-administered Trust Territory of the Pacific Islands) are primarily responsible for detecting and investigating WBDOs and voluntarily reporting them to CDC by a standard form. Only cases and outbreaks associated with drinking water, WNID (excluding recreational water), and water of unknown intent (WUI) are summarized in this report. Cases and outbreaks associated with recreational water are reported in a separate Surveillance Summary. Fourteen states reported 28 WBDOs that occurred during 2005--2006: a total of 20 were associated with drinking water, six were associated with WNID, and two were associated with WUI. The 20 drinking water-associated WBDOs caused illness among an estimated 612 persons and were linked to four deaths. Etiologic agents were identified in 18 (90.0%) of the drinking water-associated WBDOs. Among the 18 WBDOs with identified pathogens, 12 (66.7%) were associated with bacteria, three

  16. Direct methods for radionuclides measurement in water environment

    International Nuclear Information System (INIS)

    Chernyaev, A.; Gaponov, I.; Kazennov, A.

    2004-01-01

    The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90 Sr detection are considered

  17. Notification: Oversight of Clean Water State Revolving Loan Funds

    Science.gov (United States)

    Project #OA-FY15-0153, April 6, 2015. The Office of Inspector General (OIG) for the U.S. Environmental Protection Agency (EPA) is beginning preliminary research on the EPA oversight of the Clean Water State Revolving Fund (CWSRF).

  18. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.

    Science.gov (United States)

    Gao, Meng; Zhai, Peng-Wang; Franz, Bryan; Hu, Yongxiang; Knobelspiesse, Kirk; Werdell, P Jeremy; Ibrahim, Amir; Xu, Feng; Cairns, Brian

    2018-04-02

    Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

  19. Forest management and water in the United States [Chapter 13

    Science.gov (United States)

    Daniel G. Neary

    2017-01-01

    This chapter outlines a brief history of the United States native forests and forest plantations. It describes the past and current natural and plantation forest distribution (map, area, main species), as well as main products produced (timber, pulp, furniture, etc.). Integrated into this discussion is a characterization of the water resources of the United States and...

  20. Measurements of radon and radium activity in bottled mineral water

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, Jaqueline; Paschuk, Sergei A.; Correa, Janine N.; Reque, Marilson; Tabuchi, Camila Garcia; Del Claro, Flavia; Perna, Allan Felipe, E-mail: jaquelinekappke@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2013-07-01

    Current work presents the results of further development of optimized experimental protocol for RAD7 instant radon detector (Durridge Company Inc.) usage in low level radon in water measurements and the results concerning Ra-226 activity evaluation in bottled mineral water samples purchased at Brazilian market. With the purpose to achieve the statistically consistent results for the activity levels of 0.1Bq/L for radon (radium) activity in water, present study used modified experimental protocol which consists of: 1) water samples were stored in hermetically sealed glass vials of 250mL during 30 days to guarantee that Rn-222 will reach the secular equilibrium; 2) the measurements were performed using WAT250 protocol of RAD7 detector; 3) with an aim to decrease the background, the cleaning (activated carbon filter) and drying (DRIERITE desiccant) vessels, which have a function to retain the radioactive decay product of Rn-222 and humidity, were connected to a closed air loop of RAD7 permanently by means of valves and taps, which gave a possibility to repeat all sequence of measurements (including background evaluation) three or four times without to open the air loop and disconnect the sample vial with water. Each water sample was submitted to such measurements two or three times. Obtained results presented the level of Ra-226 activity in studied samples of bottled mineral water that varied from 0.007 ± 0.061 Bq/L to 0.145 ± 0.049 Bq/L, which is below the limit of 0,5 Bq/L established by the World Health Organization (WHO) in 2011 for drinking water. (author)

  1. Measurements of radon and radium activity in bottled mineral water

    International Nuclear Information System (INIS)

    Kappke, Jaqueline; Paschuk, Sergei A.; Correa, Janine N.; Reque, Marilson; Tabuchi, Camila Garcia; Del Claro, Flavia; Perna, Allan Felipe; Deniak, Valeriy

    2013-01-01

    Current work presents the results of further development of optimized experimental protocol for RAD7 instant radon detector (Durridge Company Inc.) usage in low level radon in water measurements and the results concerning Ra-226 activity evaluation in bottled mineral water samples purchased at Brazilian market. With the purpose to achieve the statistically consistent results for the activity levels of 0.1Bq/L for radon (radium) activity in water, present study used modified experimental protocol which consists of: 1) water samples were stored in hermetically sealed glass vials of 250mL during 30 days to guarantee that Rn-222 will reach the secular equilibrium; 2) the measurements were performed using WAT250 protocol of RAD7 detector; 3) with an aim to decrease the background, the cleaning (activated carbon filter) and drying (DRIERITE desiccant) vessels, which have a function to retain the radioactive decay product of Rn-222 and humidity, were connected to a closed air loop of RAD7 permanently by means of valves and taps, which gave a possibility to repeat all sequence of measurements (including background evaluation) three or four times without to open the air loop and disconnect the sample vial with water. Each water sample was submitted to such measurements two or three times. Obtained results presented the level of Ra-226 activity in studied samples of bottled mineral water that varied from 0.007 ± 0.061 Bq/L to 0.145 ± 0.049 Bq/L, which is below the limit of 0,5 Bq/L established by the World Health Organization (WHO) in 2011 for drinking water. (author)

  2. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  3. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Thomas Walther

    2008-09-01

    Full Text Available Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter.

  4. Geomembranes as an interim measure to control water infiltration at a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    Weishan, M.R.; Sonntag, T.L.; Shehane, W.D.

    1997-01-01

    Using an exposed geomembrane an interim measure to cover a closed, Low-Level Radioactive Waste Disposal Area requires unique design and construction considerations. In response to a Resource Conservation and Recovery Act Administrative Consent Order, the New York State Energy Research and Development Authority (NYSERDA) used very low-density polyethylene (VLDPE) geomembrane as an interim measure to cover two soil-capped, grass-covered waste trenches to address a rapid increase in water accumulation in the trenches. Two years later, NYSERDA covered the remaining grass-covered trench caps with a reinforced ethylene interpolymer alloy (EIA-R) geomembrane to reduce water accumulation in these trenches. This paper addresses the differences in geomembrane materials and discusses the lessons learned during design, construction, and operation since installation of the covers. Discussed are the successes and obstacles regarding the use of both geomembrane materials as an exposed cover, selecting the geomembrane materials, anchoring the geomembrane from wind uplift, and mitigating the increased surface water runoff from the geomembrane covered area

  5. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    Science.gov (United States)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  6. A measure of state persecutory ideation for experimental studies.

    Science.gov (United States)

    Freeman, Daniel; Pugh, Katherine; Green, Catherine; Valmaggia, Lucia; Dunn, Graham; Garety, Philippa

    2007-09-01

    Experimental research is increasingly important in developing the understanding of paranoid thinking. An assessment measure of persecutory ideation is necessary for such work. We report the reliability and validity of the first state measure of paranoia: The State Social Paranoia Scale. The items in the measure conform to a recent definition in which persecutory thinking has the 2 elements of feared harm and perpetrator intent. The measure was tested with 164 nonclinical participants and 21 individuals at high risk of psychosis with attenuated positive symptoms. The participants experienced a social situation presented in virtual reality and completed the new measure. The State Social Paranoia Scale was found to have excellent internal reliability, adequate test-retest reliability, clear convergent validity as assessed by both independent interviewer ratings and self-report measures, and showed divergent validity with measures of positive and neutral thinking. The measure of paranoia in a recent social situation has good psychometric properties.

  7. Estimated use of water in the United States, 1960

    Science.gov (United States)

    MacKichan, K.A.; Kammerer, J.C.

    1961-01-01

    The estimated overage withdrawal use of water in the United States during 1960 was almost 270,000 mgd (million gallons per day), exclusive of water used to develop water power. This estimated use amounts to about 1,500 gpd (galIons per day) per capita. An additional 2,000,000 mgd were used to develop waterpower.Withdrawal use of water requires that the water be removed from the ground or diverted from a stream or lake. In this report the use is divided into five types: public supplies, rural, irrigation, self-supplied industrial, and waterpower. Consumptive use of water is the quantity discharged to the atmosphere or incorporated in the products of the process in which it was used. Only 61,000 mgd of the 270,000 mgd withdrawn was consumed.Of the water withdrawn in 1960, 220,000 mgd (including irrigation conveyance losses) was taken from surface sources and 47,000 from underground sources. Withdrawal of water for uses other than waterpower has increased 12 percent since 1955. The amount of water used for generation of waterpower has! increased 33 percent since 1955. The use of saline water was almost twice as great in 1960 as in 1955.The upper limit of our water supply is the average annual runoff, nearly 1,200,000 mgd. The supply in 1960 was depleted by 61,000 mgd, the amount of water consumed. However, a large part of the water withdrawn but not consumed was deteriorated in quality.

  8. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    Directory of Open Access Journals (Sweden)

    Sangmin Shin

    2018-02-01

    Full Text Available Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measures addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.

  9. A real-time tritium-in-water monitor for measurement of heavy water leak to the secondary coolant

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Samant, R.K.; Abani, M.C.

    2000-01-01

    The paper describes the development and evaluation of on-line, real-time tritium in water monitor for detection and measurement of heavy water leak to the secondary coolant in a Pressurised Heavy Water Reactor. The detector used for this is a plastic scintillator film, made in the form of sponge and housed in a flow cell which is used for measurement of tritium activity present in heavy water. Two photomultiplier tubes are optically coupled on either face of the flow cell detector and measurement is done in coincidence mode. The sample water is continuously passed through the flow cell detector and a continuous measurement of tritium activity is carried out. It is observed that the impurities in the process water sample are gradually trapped in the flow cell, which affects the transparency of the detector with use. This reduces the sensitivity of the system. In addition, chlorine, which is added in the sample water, to arrest the fungus formation, creates chemiluminescence which interfere the measurement. To improve the sample quality as well as to eliminate the chemiluminescence created by chlorine, sample conditioner consisting of polypropylene candle, activated charcoal and glass fibre filter paper is developed. Polypropylene candle traps particulates above 5 μm pore size, activated charcoal absorbs organic compounds, free chlorine, fungus and turbidity and glass fibre filter paper stops submicron size particles. The measurement is also affected by the interference of dissolved argon-41 in the sample water. A bubbler system developed at BARC is used to strip the dissolved Ar-41 present in the sample which enables the system to measure tritium in presence of this interfering radioactive gas. The microprocessor based electronic system, used in the monitor provides the facility for selection of counting time and thereby improving the counting statistics. Alarm circuit is provided to give timely alarm when the tritium activity concentration exceeds the preset level

  10. Estimated Use of Water in the United States in 1985

    Science.gov (United States)

    Solley, Wayne B.; Merk, Charles F.; Pierce, Robert R.

    1988-01-01

    Water withdrawals in the United States during 1985 were estimated to average 399,000 million gallons per day (Mgal/d) of freshwater and saline water for offstream uses--10 percent less than the 1980 estimate. Average per-capita use for all offstream uses was 1,650 gallons per day (gal/d) of freshwater and saline water combined and 1,400 gal/d of freshwater alone. Offstream water-use categories are classified in this report as public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power. During 1985, public-supply withdrawals were estimated to be 36,500 Mgal/d, and self-supplied withdrawals were estimated as follows: domestic, 3,320 Mgal/d: commercial, 1,230 Mgal/d; irrigation, 137,000 Mgal/d: livestock, 4,470 Mgal/d; industrial, 25,800 Mgal/d; mining, 3,440 Mgal/d; and thermoelectric power, 187,000 Mgal/d. Water use for hydroelectric power generation, the only instream use compiled in this report, was estimated to be 3,050,000 Mgal/d during 1985, or 7 percent less than during 1980. This is in contrast to an increasing trend that persisted from 1950 to 1980. Estimates of withdrawals by source indicate that, during 1985, total surface-water withdrawals were 325,000 Mgal/d, or 10 percent less than during 1980, and total ground-water withdrawals were 74,000 Mgal/d, or 12 percent less than during 1980. Total saline-water withdrawals during 1985 were 60,300 Mgal/d, or 16 percent less than during 1980; most was saline surface water. Reclaimed sewage averaged about 579 Mgal/d during 1985, or 22 percent more than during 1980. Total freshwater consumptive use was estimated to be 92,300 Mgal/d during 1985, or 9 percent less than during 1980. Consumptive use by irrigation accounted for the largest part of consumptive use during 1985 and was estimated to be 73,800 Mgal/d. A comparison of total withdrawals (fresh and saline) by State indicates that 37 States and Puerto Rico had less water withdrawn for offstream uses during 1985 than

  11. Measuring workload in collaborative contexts: trait versus state perspectives.

    Science.gov (United States)

    Helton, William S; Funke, Gregory J; Knott, Benjamin A

    2014-03-01

    In the present study, we explored the state versus trait aspects of measures of task and team workload in a disaster simulation. There is often a need to assess workload in both individual and collaborative settings. Researchers in this field often use the NASATask Load Index (NASA-TLX) as a global measure of workload by aggregating the NASA-TLX's component items. Using this practice, one may overlook the distinction between traits and states. Fifteen dyadic teams (11 inexperienced, 4 experienced) completed five sessions of a tsunami disaster simulator. After every session, individuals completed a modified version of the NASA-TLX that included team workload measures.We then examined the workload items by using a between-subjects and within-subjects perspective. Between-subjects and within-subjects correlations among the items indicated the workload items are more independent within subjects (as states) than between subjects (as traits). Correlations between the workload items and simulation performance were also different at the trait and state levels. Workload may behave differently at trait (between-subjects) and state (within-subjects) levels. Researchers interested in workload measurement as a state should take a within-subjects perspective in their analyses.

  12. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  13. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  14. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    Science.gov (United States)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows

  15. Effect of Smart Meter Measurements Data On Distribution State Estimation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements in the phy......Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements...... in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...

  16. Re-dispersion of alumina particles in water: influence of the surface state

    International Nuclear Information System (INIS)

    Desset, Sabine

    1999-01-01

    The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not

  17. Re-dispersion of alumina particles in water: influence of the surface state

    International Nuclear Information System (INIS)

    Desset, Sabine

    1999-01-01

    The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well-known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not

  18. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    Science.gov (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  19. Measuring global water security towards sustainable development goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  20. Measuring Global Water Security Towards Sustainable Development Goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  1. How Much Water Can We Save by Achieving Renewable Portfolio Standards in the Southwest United States?

    Directory of Open Access Journals (Sweden)

    Yuzhen Feng

    2018-03-01

    Full Text Available Electricity in the Southwestern United States is primarily generated with water intensive steam turbines. If energy demand continues to rise this will lead to a further rise in water demand. A comprehensive understanding of water consumption and withdrawal for utility scale generation of electricity is necessary before any improvements in the water efficiency of such systems in arid environments can be made. This study estimated and compared the water usage associated with thermoelectric generation (i.e., natural gas, coal, and solar energy, in the five driest Colorado River Basin states: Utah, New Mexico, Nevada, Arizona, and California. This study also examined and compared each state’s Renewable Portfolio Standards (RPS and how this might impact water savings. Results showed that each state’s current RPS goals would reduce the water that is consumed by the generation of electricity. However, the amount of water savings will vary on a state by state basis. In order to reduce water consumption, replacing thermal electric generation with photovoltaic (PV solar can be significant and should be encouraged. The amount of water saved will vary, however, depending on the state’s choice of coal or natural gas.

  2. Assessment of water pollution by airborne measurement of chlorophyll

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  3. Comparison of dose measurements in water versus in air for therapy

    International Nuclear Information System (INIS)

    Nasukha

    1987-01-01

    Comparison of dose measurements in water versus in air for therapy. Dose measurements in water and in the air had been done by teletherapy unit Co-60 Picker Model V 4m/60 with Farmer dosimeter. The result of inverse square law, TAR, PDD, and PSF compared to BJR No. 17 produced a difference of more than 4,65% with SSD 80 cm. Doses in water calculated from the result of dose measurement in air using BJR tables given, was compared with direct dose measurement in water. Values of 0,9850 to 1,0302 were obtained if using inverse square law, PDD and PSF formula. Using inverse square law and TAR, values of 0,9474 to 1,0197 were obtained for 4 depths and 5 field sizes. Measurements done in 5 cm depth and 10 cm x 10 cm field size using both methods, were still good. (author). 7 figs, 8 refs

  4. Approximate and Conditional Teleportation of an Unknown Atomic-Entangled State Without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; LI Shao-Hua

    2007-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic-entangled state in cavity QED is proposed.It is the novel extension of the scheme of [Phys.Rev.A 69 (2004) 064302],where the state to be teleported is an unknown atomic state and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given.In fact,there exists multi-time points and the corresponding fidclities,which are shown in this paper and then are used to realize the approximate and conditional teleportation of the unknown atomic-entangled state.Naturally,our scheme does not involve the Bell-state measurement or an additional atom,which is required in the Bell-state measurement,only requiring one single-mode cavity.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap and the teleportation of the multi-atomic entangled states included in generalized GHZ states.

  5. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level

    Science.gov (United States)

    Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky

    2018-03-01

    The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.

  6. Trophic state of water in the watershed of Lake Mirim, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Orlando Pereira-Ramirez

    2009-04-01

    Full Text Available The objective of this work was to analyze the spacetime variations in the trophic characteristics of the principal water bodies feeding Lake Mirim, in the state of Rio Grande do Sul, by determination of the Trophic State Index proposed by Toledo Jr. (IETT and Lamparelli (IETL, to assess water quality data between 1996 and 1998. It was verified that the lotic environments presented greater eutrophication conditions when evaluated by the Toledo Jr. methodology, in which the IETT varied from Eutrophic to Hypereutrophic. However, the evaluated environments showed variations from Mesotrophic to Hypereutrophic for the IETL when evaluated according to the Lamparelli methodology. From the classification proposed by Toledo Jr., lentic water bodies were considered Mesotrophic (IETT > 44 and Hypereutrophic (IETT > 74, while the Lamparelli method classified them as Eutrophic (IETL > 59 and Hypereutrophic (IETL > 67. Concentrations of phosphorus encountered in all water samples were greater than the limits established by the CONAMA Resolution n. 357, 2005, for class 2 water bodies, probably due to the discharge of untreated domestic and industrial wastes into the waters.

  7. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  8. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  9. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Science.gov (United States)

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  10. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  11. Estimated use of water in the United States in 2015

    Science.gov (United States)

    Dieter, Cheryl A.; Maupin, Molly A.; Caldwell, Rodney R.; Harris, Melissa A.; Ivahnenko, Tamara I.; Lovelace, John K.; Barber, Nancy L.; Linsey, Kristin S.

    2018-06-19

    Water use in the United States in 2015 was estimated to be about 322 billion gallons per day (Bgal/d), which was 9 percent less than in 2010. The 2015 estimates put total withdrawals at the lowest level since before 1970, following the same overall trend of decreasing total withdrawals observed from 2005 to 2010. Freshwater withdrawals were 281 Bgal/d, or 87 percent of total withdrawals, and saline-water withdrawals were 41.0 Bgal/d, or 13 percent of total withdrawals. Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/day) were about 8 percent greater than in 2010. Saline surface-water withdrawals were 38.6 Bgal/d, or 14 percent less than in 2010. Total saline groundwater withdrawals in 2015 were 2.34 Bgal/d, mostly for mining use.Thermoelectric power and irrigation remained the two largest uses of water in 2015, and total withdrawals decreased for thermoelectric power but increased for irrigation. With­drawals in 2015 for thermoelectric power were 18 percent less and withdrawals for irrigation were 2 percent greater than in 2010. Similarly, other uses showed reductions compared to 2010, specifically public supply (–7 percent), self-supplied domestic (–8 percent), self-supplied industrial (–9 percent), and aquaculture (–16 percent). In addition to irrigation (2 percent), mining (1 percent) reported larger withdrawals in 2015 than in 2010. Livestock withdrawals remained essentially the same in 2015 compared to 2010 (0 percent change). Thermoelectric power, irrigation, and public-supply withdrawals accounted for 90 percent of total withdrawals in 2015.Withdrawals for thermoelectric power were 133 Bgal/d in 2015 and represented the lowest levels since before 1970. Surface-water withdrawals accounted for more than 99 percent of total thermoelectric-power withdrawals, and 72 percent of those surface-water withdrawals were from freshwater sources. Saline surface-water withdrawals for

  12. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.

    2009-01-01

    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency...... of a bright quantum state by transferring the sideband modes under interrogation to a vacuum state and subsequently measuring the quadrature via homodyne detection. The scheme is implemented experimentally, and it is successfully tested with a bright squeezed state of light....

  13. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  14. 78 FR 36183 - State Allotment Percentages for the Drinking Water State Revolving Fund Program

    Science.gov (United States)

    2013-06-17

    ... systems serving American Indian (AI) communities and Alaska Native Villages (ANV). These agencies... water systems within each individual State and for AI/ANV systems within each EPA Region or the Navajo... needed and future projects that will be needed over the next 20 years. Projects to correct immediate...

  15. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  16. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  17. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  18. Effects of water chemistry and potential distribution on electrochemical corrosion potential measurements in 553 K pure water

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Wada, Yoichi; Tachibana, Masahiko; Ota, Nobuyuki; Aizawa, Motohiro

    2013-01-01

    The effects of water chemistry distribution on the potential of a reference electrode and of the potential distribution on the measured potential should be known qualitatively to obtain accurate electrochemical corrosion potential (ECP) data in BWRs. First, the effects of oxygen on a platinum reference electrode were studied in 553 K pure water containing dissolved hydrogen (DH) concentration of 26 - 10 5 μg kg -1 (ppb). The platinum electrode worked in the same way as the theoretical hydrogen electrode under the condition that the molar ratio of DH to dissolved oxygen (DO) was more than 10 and that DO was less than 100 ppb. Second, the effects of potential distribution on the measured potential were studied by using the ECP measurement part without platinum deposition on the surfaces connected to another ECP measurement part with platinum deposition on the surfaces in 553 K pure water containing 100 - 130 ppb of DH or 100 - 130 ppb of DH plus 400 ppb of hydrogen peroxide. Measured potentials for each ECP measurement part were in good agreement with literature data for each surface condition. The lead wire connecting point did not affect the measured potential. Potential should be measured at the nearest point from the reference electrode in which case it will be not affected by either the potential distribution or the connection point of the lead wire in pure water. (author)

  19. Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2007-01-01

    In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two special cases, two schemes of controlled teleportation of an unknown single-qutrit state and an unknown two-qutrit state are investigated in detail. In the first scheme, a maximally entangled three-qutrit state is used as the quantum channel, while in the second scheme, an entangled two-qutrit state and an entangled three-qutrit state are employed as the quantum channels. In these schemes, an unknown qutrit state can be teleported to either one of two receivers, but only one of them can reconstruct the qutrit state with the help of the other. Based on the case of qutrits, a scheme of controlled teleportation of an unknown qudit state is presented.

  20. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    International Nuclear Information System (INIS)

    McMahon, C.A.; Leon Vintro, L.; Mitchell, P.I.; Dahlgaard, H.

    2000-01-01

    The speciation of plutonium in Arctic waters sampled on the northwest Greenland shelf in August 1997 is discussed in this paper. Specifically, we report the results of analyses carried out on seawater sampled (a) close to the Thule air base where, in 1968, a US military aircraft carrying four nuclear weapons crashed on sea ice, releasing kilogram quantities of plutonium to the snow pack and underlying seabed sediments, and (b) at a reference station (Upernavik) located ∼400 km to the south. The data show that most of the plutonium in the dissolved phase at Thule is in the form of Pu(V, VI) (mean: 68±6%; n=6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed in shelf waters at mid-latitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 deg. C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean 238 Pu/ 239,240 Pu activity ratio in the water column (dissolved phase) at Thule (0.06±0.02; n=10) is similar to the global fallout ratio at this latitude (∼0.04). Thus, there is little evidence of weapons-grade plutonium in the water column at Thule at the present time

  1. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  2. State-level high school completion rates: Concepts, measures, and trends.

    Directory of Open Access Journals (Sweden)

    John Robert Warren

    2005-12-01

    Full Text Available Since the mid 1970s the national rate at which incoming 9th graders have completed high school has fallen slowly but steadily; this is also true in 41 states. In 2002, about three in every four students who might have completed high school actually did so; in some states this figure is substantially lower. In this paper I review state-level measures of high school completion rates and describe and validate a new measure that reports these rates for 1975 through 2002. Existing measures based on the Current Population Survey are conceptually imperfect and statistically unreliable. Measures based on Common Core Data (CCD dropout information are unavailable for many states and have different conceptual weaknesses. Existing measures based on CCD enrollment and completion data are systematically biased by migration, changes in cohort size, and/or grade retention. The new CCD-based measure described here is considerably less biased, performs differently in empirical analyses, and gives a different picture of the dropout situation across states and over time.

  3. 1944 Water Treaty Between Mexico and the United States: Present Situation and Future Potential

    Directory of Open Access Journals (Sweden)

    Anabel Sánchez

    2006-01-01

    Full Text Available Historically and culturally, water has always been considered to be a critical issue in Mexico- USA agenda. Along the 3 140-km border between Mexico and the United States, there is intense competition over the adequate availability of water. Water uses in urban border areas have continued to increase exponentially due to steadily increasing levels of population growth. Rapid industrialisation and urbanisation have resulted in more intensive patterns of water consumption and use. Agricultural water demands continue to be high. Mexico and the United States have established institutions and agreements to manage and protect rivers in the border region. The Treaty between Mexico and the United States for the Utilisation of Waters of the Colorado and Tijuana Rivers and of the Rio Grande was signed in 1944. With the turn of the century, the growing urban centers along the Rio Grande (Rio Bravo, where the river becomes the international boundary, started increasingly to depend on groundwater. This situation was not specifically addressed in the 1944 Treaty, especially as groundwater use at that time was not so significant.

  4. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  5. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  6. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    Directory of Open Access Journals (Sweden)

    Shaharudin Nuraida

    2017-01-01

    Full Text Available An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters were compared with National Drinking Water Quality Standards. Collection of data were involved three housing areas in Johor. The quality of drinking water from water filter system were analysed using pH meter, turbidity meter, DR6000 and Inductively Coupled Plasma-Mass Spectrometer. pH value was increased from 16.4% for before maintenance services to 30.7% for after maintenance service. Increment of removal percentage for turbidity, residual chlorine and nitrate after maintenance were 21.5, 13.6 and 26.7, respectively. This result shows that maintenance service enhance the performance of the system. However, less significant of maintenance service for enhance the removal of heavy metals which the increment of removal percentage in range 0.3 to 9.8. Only aluminium shows percentage removal for after maintenance with 92.8% lower compared to before maintenance service with 95.5%.

  7. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  8. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  9. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    in the temperature range of 303-323 K at atmospheric pressure. In the second part of this work, the CPA EoS has been used for modeling hydrocarbon systemcontaining polar chemicals, such as water and gas hydrate inhibitor MEG or methanol. All the experimental data measured in this work have been investigated using...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  10. Mapping of tritium in drinking water from various Indian states

    International Nuclear Information System (INIS)

    Shah, Chirag A.; Baburajan, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The tritium in fresh water used for drinking purpose across five state of India was analyzed for tritium activity. The tritium data obtained were compared with the monitoring data of tritium in drinking water sources at Tarapur site, which houses a number of nuclear facilities. It is observed that the tritium activity in the water sample from various out station locations were in the range of < 0.48 to 1.33 Bq/l. The tritium value obtained in the drinking water sources at Tarapur was found to be in the range of 0.91 to 3.10 Bq/l. The monitoring of tritium in drinking water from Tarapur and from various out station location indicate that the level is negligible compared to the USEPA limit of 10000 Bq/l and the contribution of operation nuclear facilities to the tritium activity in drinking water source at Tarapur is insignificant. (author)

  11. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  12. The State and Water Resources Development through the Lens of History: A South African Case Study

    Directory of Open Access Journals (Sweden)

    Larry A. Swatuk

    2010-10-01

    Full Text Available This article sets contemporary challenges to good water governance in South Africa within an important historical context. While it is correct to say that 'the world water crisis is a crisis of governance', it is problematic to assume that all states can follow a similar path toward environmentally sustainable, economically efficient and socially equitable water resources governance and management. The nexus of decision-making power varies within and beyond states, and over time. Gramsci (1971 describes this as the "constellation of social forces". Where this constellation of social forces achieves consensus, a 'historic bloc' is said to emerge giving rise to a particular state form. The South African state form has varied greatly over several centuries, giving rise to various historic blocs. The resulting body of laws and policies and the varied forms of infrastructure that were developed to harness water for multiple social practices over time constitute a complex political ecological terrain not easily amenable to oversimplified frameworks for good water governance. This article outlines the role of water in the history of South Africa’s multiple state forms. It shows that over time, water policy, law and institutions came to reflect the increasingly complex needs of multiple actors (agriculture, mining, industry, cities, the newly enfranchised represented by different state forms and their characteristic political regimes: the Dutch East India Company; the British Empire; the Union of South Africa; the apartheid and post-apartheid republics. Authoritarian, semi-authoritarian and democratic state forms have all used central-state power to serve particular interests. Through time, this constellation of social forces has widened until, today, the state has taken upon itself the task of providing "some water for all forever" (slogan of the Department of Water Affairs. As this article suggests, despite the difficult challenges presented by a

  13. Validation of radioactivity measurements under the Safe Drinking Water Act

    International Nuclear Information System (INIS)

    Goldin, Abraham S.

    1978-01-01

    Radioactivity measurements are made under the Safe Drinking Water Act to obtain information on the potential radiological hazard of water and to institute regulatory action when water quality does not meet requirements. Measurements must be both precise and accurate if these goals are to be met. Regulations issued under the act require that analyses be performed by approved (certified) laboratories, which must carry out quality assurance programs. This paper briefly describes the certification requirements and discusses the components of an effective quality assurance program. The Environmental Protection Agency has established procedures for the certification of laboratories making radioactivity measurements of drinking water. These procedures recommend minimum laboratory qualifications for personnel, facilities, equipment, and procedures; proficiency testing by analysis of samples provided by the Agency; and operation of a quality assurance program. A major function of a quality assurance program is to provide the Laboratory Director an ongoing flow of information on laboratory analytical performance. A properly designed and conducted program provides this information in a timely manner, indicates areas where discrepancies exist, and often suggests ways of correcting the discrepancies. Pertinent aspects of radioactivity measurements for drinking water are discussed, including how analyses of blanks, blind duplicates, and reference samples contribute needed information, and evaluations by control charts and statistical analyses. Examples of the usefulness of quality control in correcting both procedural and background problems are given. (author)

  14. Water and sanitation in Nigeria: a case study of Ondo State ...

    African Journals Online (AJOL)

    Water and sanitation have been recognized as critical to ensure good quality of life. This paper examines the existing water supply and sanitation in Ondo State, Nigeria with a view to determine the extent of deficiency and what will be required to meet the Millennium Development Goals that seeks to halve the Population of ...

  15. On the physicochemical states of heavy metals of very small amounts in river water

    International Nuclear Information System (INIS)

    Aoyama, Isao; Inoue, Yoriteru; Hashimoto, Noriaki.

    1976-01-01

    The physicochemical existence states of the heavy metals in river water were experimentally studied, with radioactive nuclides as tracers. The experimental samples taken from Kamo-river in the city of Kyoto were filtered through a membrane filter of 0.45 μm pore diameter. The radioactive nuclides of heavy metal tracers were added into the sample water, and pH was adjusted to the given value with hydrochloric solution on the acidic side and with sodium hydroxide solution on the alkaline side. After two days aging, the radioactivity ratios of the sediments on membrane filters to that of total passed samples were measured. The variation in the course of time of the concentrations of ionic tracers dialysed with cellulose tubes (24 angstrom pore diameter) was traced until the equilibrium condition was reached. The radioactivity of the supernatant of 20 ml of sample water added with 0.5 g of anion or cation exchange resin, and the concentrations of tracers in the upper layer of liquid in a centrifuge were measured. The existing conditions of elements such as zinc, cadmium, cobalt, strontium-yttrium were examined. In conclusion, the adsorption of all nuclides on the membrane filters increased with the increase of pH, but the significant difference was not recognized owing to the pore diameter (1.2 μm - 0.05 μm) excepting some experimental results. (Iwakiri, K.)

  16. Lifetime measurements of excited states in 196Pt

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Katayama, Ichiro; Sakai, Hideyuki; Fujita, Yoshitaka; Fujiwara, Mamoru

    1979-01-01

    The lifetimes of six excited states in 196 Pt up to an excitation energy of 1525 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 220 MeV 58 Ni ion beams. The measured lifetimes of the 2 1 + , 4 1 + , 6 1 + , 2 2 + , 4 2 + and 0 2 + states and the B(E2) values inferred for the depopulating transitions from these levels are presented. With the exception of the 2 1 + state, the meanlives of all other levels are the first such direct experimental determinations to be reported. (author)

  17. Simple method of measuring pulmonary extravascular water using heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Basset, G; Moreau, F; Scaringella, M; Tistchenko, S; Botter, F; Marsac, J

    1975-11-20

    The field of application of the multiple indicators dilution method in human pathology, already used to study pulmonary edema, can be extended to cover the identification and testing of all conditions leading to increase lung water. To be really practical it must be simple, fast, sensitive, inexpensive and subject to repetition; the use of non-radioactive tracers is implied. Indocyanine Green and heavy water were chosen respectively as vascular and diffusible indicators. Original methods have been developed for the treatment and isotopic analysis of blood: mass spectrometric analysis of aqueous blood extracts after deproteinisation by zinc sulphate then rapid distillation of the supernatant under helium; infrared analysis either of acetone extracts from small blood samples (100..mu..litre) or of blood itself in a continuous measurement. The infrared technique adopted has been used on rats and on men in normal and pathological situations. The results show that the method proposed for the determination of pulmonary extravascular water meets the requirements of clinicians while respecting the patients' safety, and could be generalized to other organs.

  18. Measurement and Quantum State Transfer in Superconducting Qubits

    Science.gov (United States)

    Mlinar, Eric

    The potential of superconducting qubits as the medium for a scalable quantum computer has motivated the pursuit of improved interactions within this system. Two challenges for the field of superconducting qubits are measurement fidelity, to accurately determine the state of the qubit, and the efficient transfer of quantum states. In measurement, the current state-of-the-art method employs dispersive readout, by coupling the qubit to a cavity and reading the resulting shift in cavity frequency to infer the qubit's state; however, this is vulnerable to Purcell relaxation, as well as being modeled off a simplified two-level abstraction of the qubit. In state transfer, the existing proposal for moving quantum states is mostly untested against non-idealities that will likely be present in an experiment. In this dissertation, we examine three problems within these two areas. We first describe a new scheme for fast and high-fidelity dispersive measurement specifically designed to circumvent the Purcell Effect. To do this, the qubit-resonator interaction is turned on only when the resonator is decoupled from the environment; then, after the resonator state has shifted enough to infer the qubit state, the qubit-resonator interaction is turned off before the resonator and environment are recoupled. We also show that the effectiveness of this "Catch-Disperse-Release'' procedure partly originates from quadrature squeezing of the resonator state induced by the Jaynes-Cummings nonlinearity. The Catch-Disperse-Release measurement scheme treats the qubit as a two-level system, which is a common simplification used in theoretical works. However, the most promising physical candidate for a superconducting qubit, the transmon, is a multi-level system. In the second work, we examine the effects of including the higher energy levels of the transmon. Specifically, we expand the eigenstate picture developed in the first work to encompass multiple qubit levels, and examine the resulting

  19. Forests, Water and People: Drinking water supply and forest lands in the Northeast and Midwest United States, June 2009

    Science.gov (United States)

    Martina Barnes; Albert Todd; Rebecca Whitney Lilja; Paul Barten

    2009-01-01

    Forests are critically important to the supply of clean drinking water in the Northeast and Midwest portion of the United States. In this part of the country more than 52 million people depend on surface water supplies that are protected in large part by forested lands. The public is generally unaware of the threats to their water supplies or the connection between...

  20. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  1. Channel capacities versus entanglement measures in multiparty quantum states

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2010-01-01

    For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.

  2. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  3. Water vapor δ17O measurements using an off-axis integrated cavity output spectrometer and seasonal variation in 17O-excess of precipitation in the east-central United States

    Science.gov (United States)

    Tian, C.; Wang, L.; Novick, K. A.

    2016-12-01

    High-precision triple oxygen isotope analysis can be used to improve our understanding of multiple hydrological and meteorological processes. Recent studies focus on understanding 17O-excess variation of tropical storms, high-latitude snow and ice-core as well as spatial distribution of meteoric water (tap water). The temporal scale of 17O-excess variation in middle-latitude precipitation is needed to better understand which processes control on the 17O-excess variations. This study focused on assessing how the accuracy and precision of vapor δ17O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. Meanwhile, we presented 17O-excess data from two-year, event based precipitation sampling in the east-central United States. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ2H, δ18O and δ17O measurements. GISP and SLAP2 from IAEA and four working standards were used to evaluate the sensitivity in the three factors. Overall, the accuracy and precision of all isotope measurements were sensitive to concentration, with higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. Precision was also sensitive to the range of delta values, though the effect was not as large when compared to the sensitivity to concentration. The precision was much less sensitive to averaging time when compared with concentration and delta range effects. The preliminary results showed that 17O-excess variation was lower in summer (23±17 per meg) than in winter (34±16 per meg), whereas spring values (30±21 per meg) was similar to fall (29±13 per meg). That means kinetic fractionation influences the isotopic composition and 17O-excess in different seasons.

  4. Metric Indices for Performance Evaluation of a Mixed Measurement based State Estimator

    Directory of Open Access Journals (Sweden)

    Paula Sofia Vide

    2013-01-01

    Full Text Available With the development of synchronized phasor measurement technology in recent years, it gains great interest the use of PMU measurements to improve state estimation performances due to their synchronized characteristics and high data transmission speed. The ability of the Phasor Measurement Units (PMU to directly measure the system state is a key over SCADA measurement system. PMU measurements are superior to the conventional SCADA measurements in terms of resolution and accuracy. Since the majority of measurements in existing estimators are from conventional SCADA measurement system, it is hard to be fully replaced by PMUs in the near future so state estimators including both phasor and conventional SCADA measurements are being considered. In this paper, a mixed measurement (SCADA and PMU measurements state estimator is proposed. Several useful measures for evaluating various aspects of the performance of the mixed measurement state estimator are proposed and explained. State Estimator validity, performance and characteristics of the results on IEEE 14 bus test system and IEEE 30 bus test system are presented.

  5. 76 FR 79604 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2011-12-22

    ... following methods: 1. http://www.regulations.gov : Follow the on-line instructions for submitting comments... inland waters rule established numeric nutrient criteria in the form of total nitrogen, total phosphorus... of the State's applicable water quality designated uses. More specifically, the numeric nutrient...

  6. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    International Nuclear Information System (INIS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-01-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously

  7. Methodology for Outdoor Water Savings Model and Spreadsheet Tool for U.S. and Selected States

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-31

    Green lawns and landscaping are archetypical of the populated American landscape, and typically require irrigation, which corresponds to a significant fraction of residential, commercial, and institutional water use. In North American cities, the estimated portion of residential water used for outdoor purposes ranges from 22-38% in cooler climates up to 59-67% in dry and hot environments, while turfgrass coverage within the United States spans 11.1-20.2 million hectares (Milesi et al. 2009). One national estimate uses satellite and aerial photography data to develop a relationship between impervious surface and lawn surface area, yielding a conservative estimate of 16.4 (± 3.6) million hectares of lawn surface area in the United States—an area three times larger than that devoted to any irrigated crop (Milesi et al. 2005). One approach that holds promise for cutting unnecessary outdoor water use is the increased deployment of “smart” irrigation controllers to increase the water efficiency of irrigation systems. This report describes the methodology and inputs employed in a mathematical model that quantifies the effects of the U.S. Environmental Protection Agency’s WaterSense labeling program for one such type of controller, weather-based irrigation controllers (WBIC). This model builds off that described in “Methodology for National Water Savings Model and Spreadsheet Tool–Outdoor Water Use” and uses a two-tiered approach to quantify outdoor water savings attributable to the WaterSense program for WBIC, as well as net present value (NPV) of that savings. While the first iteration of the model assessed national impacts using averaged national values, this version begins by evaluating impacts in three key large states that make up a sizable portion of the irrigation market: California, Florida, and Texas. These states are considered to be the principal market of “smart” irrigation controllers that may result in the bulk of national savings. Modeled

  8. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  9. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  10. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.

    Science.gov (United States)

    McDonald, Robert I; Olden, Julian D; Opperman, Jeffrey J; Miller, William M; Fargione, Joseph; Revenga, Carmen; Higgins, Jonathan V; Powell, Jimmie

    2012-01-01

    Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3) in 2010 to 2,359,000-3,271,000 Mm(3) in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3) consumption in 2010 to 21,000-58,400 Mm(3) consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3)GJ(-1) (0.1-0.5 m(3)GJ(-1) consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3)GJ(-1) (0.2-0.3 m(3)GJ(-1) consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3) (20,300 Mm(3) consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur

  11. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.

    Directory of Open Access Journals (Sweden)

    Robert I McDonald

    Full Text Available Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3 in 2010 to 2,359,000-3,271,000 Mm(3 in 2035 under the Reference Case of the Energy Information Administration (EIA. Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3 consumption in 2010 to 21,000-58,400 Mm(3 consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3GJ(-1 (0.1-0.5 m(3GJ(-1 consumption, while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3GJ(-1 (0.2-0.3 m(3GJ(-1 consumption. The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3 (20,300 Mm(3 consumption. The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur

  12. Distribution and Availability of State and Areawide Water Quality Reports in Oklahoma Libraries.

    Science.gov (United States)

    McClure, Charles R.; Million, Anne

    This report examines the distribution and availability of water quality reports in the state of Oklahoma. Based on legislation from the Clean Water Act and regulations from the Environmental Protection Agency's "Public Participation Handbook for Water Quality Management," depository libraries must be established to provide citizen access to…

  13. Gross alpha and beta activities in drinking water from Goias State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mingote, Raquel M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil); Nogueira, Regina A.; Costa, Heliana F. da, E-mail: raquel.mingote@cdtn.br, E-mail: rnogueira@cnen.gov.br, E-mail: heliana@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN), Abadia de Goias, GO (Brazil). Parque Estadual Telma Ortegal

    2017-07-01

    Detection of gross alpha and beta radioactivity is important for a quick surveying of both natural and anthropogenic radioactivity in water. Furthermore, gross alpha and gross beta parameters are included in Brazilian legislation on quality of drinking water. In this work, a low background liquid scintillation spectrometer was used to simultaneously determine gross alpha and gross beta in samples of the public water supplies in the state of Goias, Brazil, during 2010-2015. Sample preparation involved evaporation to concentrate the sample ten-fold. The results indicate that the water meets the radioactivity standards required by the regulations MS 2914/2011 of the Brazilian Department of Health. Concerning the high level of censored observations, a statistical treatment of data was conducted by using analysis methods of censored data to provide a reference value of the gross alpha and beta radioactivity in drinking water from the state of Goias. The estimated typical activities are very low, 0.030 Bq•L{sup -1} and 0.058 Bq•L{sup -1}, respectively. (author)

  14. Measurement of lung water with SPECT

    International Nuclear Information System (INIS)

    Chu, R.Y.L.; Ficken, V.J.; Ekeh, S.U.; Ryals, C.J.; Allen, E.W.; Basmadjian, G.

    1990-01-01

    This paper investigates the use of iodoantipyrine (IAP) labeled with radioactive iodine (I-123) and single photon emission tomography (SPECT) to measure lung water. I-123 IAP was injected intravenously to six New Zealand White rabbits under anesthesia. After 1 hour, Tc-99m macroaggregates of albumin (MAA) were injected. SPECT imaging was performed in dual-energy mode. After a blood sample was drawn, the animals were sacrificed, and the lungs were removed. Blood samples were assayed for radioactivity. The lungs were weighed, dried, and weighted again to determine water content. The product of area defined by MAA in a tomogram and IAP count rate of central pixels of that region in the corresponding tomogram was taken as the relative amount of IAP in each lung

  15. Implementation of State Obligations and Responsibility Ensuring the Availability of Clean Water in Karimunjawa Islands

    Science.gov (United States)

    Rahayu; Soeprobowati, Tri Retnaningsih

    2018-02-01

    This article aims to analyze the implementation of state obligations and responsibility ensuring the availability of clean water as part of human rights in Karimunjawa islands. The analysis based on principle of the State obligations and responsibility to fulfill their citizen right. Water sources in Karimunjawa Islands is very limited. It depend on forest conservation. Around 9.600 peoples live in Karimunjawa Islands, but Karimunjawa is non groundwater basin region. It means, Karimunjawa doesn't have groundwater potential. The quantity of water depends on the season. The solution to maintain the sustainability of clean water is piping from water reservoir to residential areas. The problem is there are so many hotels in Karimunjawa islands, it disrupted the fulfillment of clean water. Besides utilizing water from reservoir, many hotels drilled the ground to get water. It had impact to the availibity of water in dry season and affected to fulfillment of water supply for Karimunjawa people. There is no specific regulation and policy to solve this problem. Clean water management is doing by Karimunjawa's people. Meanwhile, based on Mahkamah Konstitusi Decree number 85/PUU-XI/2013, state is a rights holder to dominate the water in accordance with the Articles 33 paragraph (2) and (3) UUD NRI 1945, so the government has an obligation to make a policy, regulations, management, and supervision.

  16. Validation of doubly labeled water for measuring energy expenditure during parenteral nutrition

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Kushner, R.F.; Jones, P.J.

    1986-01-01

    The doubly labeled water method was compared with intake-balance for measuring energy expenditure in five patients receiving total parenteral nutrition (TPN). Because parenteral solutions were isotopically different from local water, patients had to be placed on TPN at least 10 days before the metabolic period. Approximately 0.1 g 2H2O and 0.25 g H2(18)O per kg total body water were given orally. We collected saliva before, 3 h, and 4 h after the dose for measurement of total body water and urine before, 1 day, and 14 days after the dose for measurement of isotope eliminations. On day 14, total body weight was remeasured and change in body energy stores was calculated, assuming constant hydration. Intake was assessed from weights of TPN fluids plus dietary record for any oral intake. Energy expenditure from doubly labeled water (+/- SD) averaged 3 +/- 6% greater than intake-balance. Doubly labeled water method is a noninvasive, nonrestrictive method for measuring energy expenditure in patients receiving TPN

  17. GRASP [GRound-Water Adjunct Sensitivity Program]: A computer code to perform post-SWENT [simulator for water, energy, and nuclide transport] adjoint sensitivity analysis of steady-state ground-water flow: Technical report

    International Nuclear Information System (INIS)

    Wilson, J.L.; RamaRao, B.S.; McNeish, J.A.

    1986-11-01

    GRASP (GRound-Water Adjunct Senstivity Program) computes measures of the behavior of a ground-water system and the system's performance for waste isolation, and estimates the sensitivities of these measures to system parameters. The computed measures are referred to as ''performance measures'' and include weighted squared deviations of computed and observed pressures or heads, local Darcy velocity components and magnitudes, boundary fluxes, and travel distance and time along travel paths. The sensitivities are computed by the adjoint method and are exact derivatives of the performance measures with respect to the parameters for the modeled system, taken about the assumed parameter values. GRASP presumes steady-state, saturated grondwater flow, and post-processes the results of a multidimensional (1-D, 2-D, 3-D) finite-difference flow code. This document describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. The implementation of GRASP is verified with simple one- and two-dimensional flow problems, for which analytical expressions of performance measures and sensitivities are derived. The linkage between GRASP and multidimensional finite-difference flow codes is described. This document also contains a detailed user's manual. The use of GRASP to evaluate nuclear waste disposal issues has been emphasized throughout the report. The performance measures and their sensitivities can be employed to assist in directing data collection programs, expedite model calibration, and objectively determine the sensitivity of projected system performance to parameters

  18. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  19. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    areas, and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions.The chapters in this professional paper present (first) an overview of climatic and hydrogeologic framework (chapter A), followed by a regional analysis of ground-water recharge across the entire study area (chapter B). These are followed by an overview of site-specific case studies representing different subareas of the geographically diverse arid and semiarid southwestern United States (chapter C); the case studies themselves follow in chapters D–K. The regional analysis includes detailed hydrologic modeling within the framework of a high-resolution geographic-information system (GIS). Results from the regional analysis are used to explore both the distribution of ground-water recharge for mean climatic conditions as well as the influence of two climatic patterns—the El Niño-Southern Oscillation and Pacific Decadal Oscillation—that impart a high degree of variability to the hydrologic cycle. Individual case studies employ a variety of geophysical and geochemical techniques to investigate recharge processes and relate the processes to local geologic and climatic conditions. All of the case studies made use of naturally occurring tracers to quantify recharge. Thermal and geophysical techniques that were developed in the course of the studies are presented in appendices.The quantification of ground-water recharge in arid settings is inherently difficult due to the generally low amount of recharge, its spatially and temporally spotty nature, and the absence of techniques for directly measuring fluxes entering the saturated zone from the unsaturated zone. Deep water tables in arid alluvial basins correspond to thick unsaturated zones that produce up to millennial time lags between changes in hydrologic conditions at the land surface and subsequent changes in recharge to underlying ground water. Recent advances in physical, chemical, isotopic, and modeling techniques have

  20. Sustainable Materials Management: U.S. State Data Measurement Sharing Program

    Science.gov (United States)

    The State Data Measurement Sharing Program (SMP) is an online reporting, information sharing, and measurement tool that allows U.S. states to share a wide range of information about waste, recycling, and composting.

  1. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  2. Tritium in water monitor for measurement of tritium activity in the process water

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Abani, M.C.; Mehta, S.K.

    1999-01-01

    This paper presents the evaluation of a tritium in water monitor for measurement of tritium activity in the secondary coolant in pressurised heavy water reactor used for power generation. For this purpose it uses a plastic scintillator flow cell detector in a continuous on-line mode. It is observed that the sensitivity of the system depends on the transparency of the detector, which gradually reduces with use because of the collection of dirt around the scintillator. A simple type of sample conditioner based on polypropylene candle filter and filter paper is developed and installed at RAPS along with tritium in water monitor. The functioning of this system is reported here. (author)

  3. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  4. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  5. Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C

    International Nuclear Information System (INIS)

    Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.

    1976-01-01

    The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density

  6. Weekend Warriors for Water: Combating Water Scarcity in West Africa with United States Army National Guard and Reserve Forces

    Science.gov (United States)

    2017-06-09

    vulnerable to “conflict and instability from political, social, economic , and environmental challenges” (United States Africa Command 2017). The...improve regional stability , which in turn increases economic , political, and social development. RC deployments to support water scarcity missions can...Capacity DOD Department of Defense DOS Department of State ECOWAS Economic Community of West African States FHA Foreign Humanitarian Assistance

  7. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions

    International Nuclear Information System (INIS)

    Binford, M.W.; Brenner, M.

    1986-01-01

    Lake sediments reflect conditions in the water column and can be used for rapid, integrative measurements of limnological variables. Examination of 210 Pb-dated cores from 12 Florida lakes of widely differing trophic state (expressed as Carlson's trophic state index: TSI) shows that net accumulation rate of organic matter is related to primary productivity in the water column. In 26 other lakes the activity of unsupported 210 Pb g -1 organic matter in surficial sediments is inversely related to trophic state and, therefore, to organic accumulation rate. From this observation, the authors develop a new method that uses fallout 210 Pb as a dilution tracer to calculate net sedimentary accumulation rates of any material in surface mud. They demonstrate strong relationships between net loss rate of biologically important materials (C, N, P, and pigments) and their respective water concentrations (expressed as TSI). Multiple regression models incorporating net sediment accumulation rates of all four variables explain up to 70% of the lake-to-lake variation of TSI. The 210 Pb-dilution method has application for studies for material cycling, paleolimnology, and sediment accumulation processes

  8. 78 FR 9047 - Public Water System Supervision Program Revision for the State of Texas

    Science.gov (United States)

    2013-02-07

    ... Water System Supervision Program. Texas has adopted three EPA drinking water rules, namely the: (1) Long Term 2 Enhanced Surface Water Treatment Rule (LT2), (2) the Stage 2 Disinfectants and Disinfection... Drinking Water Section (MC-155), Building F, 12100 Park 35 Circle, Austin, TX 78753; and United States...

  9. Bias caused by water adsorption in hourly PM measurements

    Science.gov (United States)

    Kiss, Gyula; Imre, Kornélia; Molnár, Ágnes; Gelencsér, András

    2017-07-01

    Beta-attenuation monitors are used worldwide to monitor PM mass concentration with high temporal resolution. Hourly PM10 and PM2. 5 dry mass concentrations are publicly available with the tacit assumption that water is effectively removed prior to the measurement. However, as both the filter material of the monitor and the aerosol particles are capable of retaining a significant amount of water even at low relative humidities, the basic assumption may not be valid, resulting in significant bias in reported PM10 and PM2. 5 concentrations. Here we show that in PM10 measurement, particle-free air can produce apparent hourly average PM concentrations in the range of -13-+21 µg m-3 under conditions of fluctuating relative humidity. Positive and negative apparent readings are observed with increasing and decreasing relative humidities, respectively. Similar phenomena have been observed when the instrument filter was previously loaded with atmospheric aerosol. As a result the potential measurement biases in hourly readings arising from the interaction with water may be in the range of -53… + 69 %.

  10. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  11. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  12. In-situ gamma spectroscopic measurement of natural waters in Bulgaria

    International Nuclear Information System (INIS)

    Manushev, B.; Mandzhukov, I.; Tsankov, L.; Boshkova, T.; Gurev, V.; Mandzhukova, B.; Kozhukharov, I.; Grozev, G.

    1983-01-01

    In-situ gamma spectrometric measurements are carried out to record differences higher than the errors of measurement in the gamma-field spectra in various basins in Bulgaria - two high mountain lakes, dam and the Black sea. A standard scintillation gamma spectrometer, consisting of a scintillation detector ND-424 type, a channel analyzer NP-424 and a 128 channel Al-128 type analyzer, has been used. The sensitivity of the procedure used is sufficient to detect the transfer of nuclides by dissolution from rocks, forming the bottom and the water-collecting region of the water basin. The advancement of the experimental techniques defines the future use of the procedure. In-situ gamma spectrometric determination may be used in cases of continuous and automated control of the radiation purity of the cooling water in atomic power plants or the water basins located close to such plants and of radioactive contamination of the sea and ocean water

  13. State Succession in Int'l Transboundary Water Obligations: South ...

    African Journals Online (AJOL)

    Abiy Chelkeba

    7 International Crisis Group (2006), Sudan Comprehensive Peace ... the case of South Sudan has examined the theories of state succession and it reached at .... Case Study of the Nile Water Treaties, Published by Konrad Adenauer Foundation and ... The treaty is also reproduced in Office of Legal Affairs, cited above in this.

  14. QNS measurements on water in biological and model systems

    International Nuclear Information System (INIS)

    Trantham, E.C.; Rorschach, H.E.; Clegg, J.C.; Hazlewood, C.F.; Nicklow, R.M.

    1981-01-01

    Results are presented on the quasi-elastic spectra of 0.95 THz neutrons scattered from pure water, a 20% agarose gel and cysts of the brine shrimp (Artemia) of hydration 1.2 gms H 2 O per gm of dry solids. The lines are interpreted with a two-component model in which the hydration water scatters elastically and the free water is described by a jump-diffusion correlation function. The results for the line widths GAMMA(Q 2 ) are in good agreement with previous measurements for the water sample but show deviations from pure water at large Q for agarose and the Artemia cysts that suggest an increased value of the residence time in the jump-diffusion model

  15. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  16. Diffusive and quantum effects of water properties in different states of matter

    International Nuclear Information System (INIS)

    Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen; Lin, Shiang-Tai

    2014-01-01

    The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments

  17. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  18. [Current state of measures to deal with natural disasters at public universities].

    Science.gov (United States)

    Hirouchi, Tomoko; Tanka, Mamoru; Shimada, Ikuko; Yoshimoto, Yoshinobu; Sato, Atsushi

    2012-03-01

    The responsibility of a university after a large-scale, natural disaster is to secure the safety of students' and local residents' lives. The present study investigated the current state of measures at public universities to deal with natural disasters in coordination with the local community. A survey was administered at 77 public universities in Japan from March 25 to May 10, 2011. The survey included questions on the existence of local disaster evacuation sites, a disaster manual, disaster equipment storage, emergency drinking water, and food storage. A total of 51% of universities had designated local evacuation sites. Based on responses for the remaining questions, universities with and without the designated disaster response solutions accounted for 42% and 57%, respectively, for disaster manuals; 55% and 33%, respectively, for disaster equipment; 32% and 13%, respectively, for disaster drinking water storage; and 26% and 7%, respectively, for emergency food storage. A majority of public universities have not created disaster manuals, regardless of whether they have a local evacuation site. The survey results also indicated that most universities have no storage of disaster equipment or emergency supplies.

  19. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Two drastically different climate states on an Earth-like land planet with overland water recycling

    Science.gov (United States)

    Kalidindi, S.; Reick, C. H.; Raddatz, T.; Claussen, M.

    2017-12-01

    Prior studies have demonstrated that habitable areas on low-obliquity land planets are confined to the edges of frozen ice caps. Whether such dry planets can maintain long-lived liquid water is unclear. Leconte et al. 2013 argue that on such planets mechanisms like gravity driven ice flows and geothermal flux can maintain liquid water at the edges of thick ice caps and this water may flow back to the lower latitudes through rivers. However, there exists no modelling study which investigates the climate of an Earth-like land planet with an overland recycling mechanism bringing fresh water back from higher to lower latitudes. In our study, by using a comprehensive climate model ICON, we find that an Earth-like land planet with an overland recycling mechanism can exist in two drastically different climate states for the same set of boundary conditions and parameter values: A Cold and Wet (CW) state with dominant low-latitude precipitation and, a Hot and Dry (HD) state with only high-latitude precipitation. For perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo (α) while above that only the CW state is stable. Starting from the HD state and increasing α above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35°C globally which is of the order of the temperature difference between the present-day and the Snowball Earth state. In contrast to the Snowball Earth instability, we find that the sudden cooling in our study is driven by the cloud albedo feedback rather than the snow-albedo feedback. Also, when α in the CW state is reduced back to zero the land planet does not display a closed hysteresis. Our study also has implications for the habitability of Earth-like land planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer

  1. Pitot tube and drag body measurements in transient steam--water flows

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.; Dacus, M.W.

    1979-01-01

    The use of full-flow drag devices and rakes of water-cooled Pitot tubes to measure the transient two-phase mass flow during loss-of-coolant experiments in pressurized water reactor (PWR) environments has been developed. Mass flow rate measurements have been obtained in high temperature and pressure environments, similar to PWRs, under transient conditions. Comparisons of the measured time integrated value of mass flow to the known system mass before depressurization are made

  2. Evaluation of policy measures and methods to reduce diffuse water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ute; Doehler, Helmut; Eurich-Menden, Brigitte; Goemann, Horst; Jaeger, Peter; Kreins, Peter; Moeller, Christine; Prigge, Achim; Ristenpart, Erik; Schultheiss, Ute

    2006-11-15

    After considerable improvements of wastewater treatment, the loads of nutrients and plant protection agents, deriving from agriculture and heavy metals from urban drainages effluents as well as from erosion of agricultural soils are the main sources of nutrients and harmful substances in the loads of water bodies. The targets of the project were on the one hand the analysis of the political and legislative framework of both policy fields and on the other hand the evaluation of several, selected water protection measures with regard to their contribution to reduce water pollution, their economical effects as well as their political enforceability. The focus was laid on diffuse water pollution caused by agriculture. As main reasons for the diffuse water pollution stagnating at high level, the analysis of the political framework identified a lack of implementation discipline of water law, followed by the fragmented and insufficient water protection legislation itself and the previous design of the common agricultural policy slanted towards increasing productivity. For the future co-operation of agricultural and water authorities in implementation of their reforms and better definition of 'Good Farming Practice' are recommended. The second investigation level focuses on the analysis and assessment of selected measures to reduce the input of nutrients and plant protection agents. This part was done with help of calculation models focussing on the specific cost/benefit ratios for water protection. In detail the following measures have been analysed: decoupling of direct payments, coupling of livestock farming to areas, tax on mineral nitrogen, pesticide levy, buffer stripes alongside of watercourses, all season crop cover on arable land, soil cultivation procedures, changing the use of arable land, optimisation of animal nutrition, optimisation of manure storage and application, co-operative agreements, education and training. Co-operations and water protection

  3. Baseline studies of water quality of Okura River in Kogi State, Nigeria

    African Journals Online (AJOL)

    Water samples from Okura river in kogi state were analysed for some physicochemical parameters and heavy metals to ascertain the water quality. The samples were collected at six sampling points along the river. Results obtained were compared with WHO and other regulatory standard guidelines. Average nitrate and ...

  4. A brief overview on radon measurements in drinking water.

    Science.gov (United States)

    Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael

    2017-07-01

    The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Penumbral measurements in water for high-energy x rays

    International Nuclear Information System (INIS)

    Dawson, D.J.; Schroeder, N.J.; Hoya, J.D.

    1986-01-01

    Ionization chambers of varying inside diameter have been used to investigate the penumbral region of 60 Co, 6-MV, and 31-MV x-ray beams. Measurements were made in water at varying depths up to 25 cm for a square field of side length 10 cm. The dependence of the penumbral widths on both the inside diameter of the ionization chamber and the depth in water is established along with the asymmetry of the penumbral distributions about the 50% level. A standard correction is indicated to eliminate the dependence of the measured penumbral widths on the inside diameter of the ionization chamber

  6. 77 FR 29271 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-05-17

    ... comments, identified by Docket ID No. EPA-HQ-OW- 2009-0596, by one of the following methods: 1. http://www... final inland waters rule established numeric nutrient criteria in the form of total nitrogen, total... attainment of the State's applicable water quality designated uses. More specifically, the numeric nutrient...

  7. Water sample data set from the State of Hawaii, Department of Health, 1999-2006 in Hawaiian waters (NODC Accession 0013723)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water quality data from were collected by the Monitoring Section of the State of Hawaii, Department of Health. Data were obtained from 373 state-wide coastal...

  8. Surveillance for waterborne disease outbreaks associated with drinking water---United States, 2007--2008.

    Science.gov (United States)

    Brunkard, Joan M; Ailes, Elizabeth; Roberts, Virginia A; Hill, Vincent; Hilborn, Elizabeth D; Craun, Gunther F; Rajasingham, Anu; Kahler, Amy; Garrison, Laurel; Hicks, Lauri; Carpenter, Joe; Wade, Timothy J; Beach, Michael J; Yoder Msw, Jonathan S

    2011-09-23

    Since 1971, CDC, the Environmental Protection Agency (EPA), and the Council of State and Territorial Epidemiologists have collaborated on the Waterborne Disease and Outbreak Surveillance System (WBDOSS) for collecting and reporting data related to occurrences and causes of waterborne disease outbreaks associated with drinking water. This surveillance system is the primary source of data concerning the scope and health effects of waterborne disease outbreaks in the United States. Data presented summarize 48 outbreaks that occurred during January 2007--December 2008 and 70 previously unreported outbreaks. WBDOSS includes data on outbreaks associated with drinking water, recreational water, water not intended for drinking (WNID) (excluding recreational water), and water use of unknown intent (WUI). Public health agencies in the states, U.S. territories, localities, and Freely Associated States are primarily responsible for detecting and investigating outbreaks and reporting them voluntarily to CDC by a standard form. Only data on outbreaks associated with drinking water, WNID (excluding recreational water), and WUI are summarized in this report. Outbreaks associated with recreational water are reported separately. A total of 24 states and Puerto Rico reported 48 outbreaks that occurred during 2007--2008. Of these 48 outbreaks, 36 were associated with drinking water, eight with WNID, and four with WUI. The 36 drinking water--associated outbreaks caused illness among at least 4,128 persons and were linked to three deaths. Etiologic agents were identified in 32 (88.9%) of the 36 drinking water--associated outbreaks; 21 (58.3%) outbreaks were associated with bacteria, five (13.9%) with viruses, three (8.3%) with parasites, one (2.8%) with a chemical, one (2.8%) with both bacteria and viruses, and one (2.8%) with both bacteria and parasites. Four outbreaks (11.1%) had unidentified etiologies. Of the 36 drinking water--associated outbreaks, 22 (61.1%) were outbreaks of

  9. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  10. Measured and simulated soil water evaporation from four Great Plains soils

    Science.gov (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  11. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  12. A solution thermodynamics definition of the fiber saturation point and the derivation of a wood-water phase (state) diagram

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Joseph E. Jakes; Donald S. Stone

    2016-01-01

    The fiber saturation point (FSP) is an important concept in wood– moisture relations that differentiates between the states of water in wood and has been discussed in the literature for over 100 years. Despite its importance and extensive study, the exact theoretical definition of the FSP and the operational definition (the correct way to measure the FSP) are still...

  13. The Institutional Vision of the Geopolitics of Water Resources in Venezuela (State, Nation and Government

    Directory of Open Access Journals (Sweden)

    Carlos Javier Lizcano Chapeta

    2017-08-01

    Full Text Available In the global, regional and local context, water resources are a strategic element from the geopolitical point of view, given the scarcity of water and the management that must be given to this problem from States, governments and nations. In this sense, the purpose is to analyze the strategic importance that has been given to water resources in Venezuela, taking into account the vision of the State, government and nation. A documentary design is used, of descriptive type, and as a data collection technique, bibliographic archiving and content analysis of previous sources are used. The results indicate that the international debate on the importance of water resources is a fact and that in countries such as Venezuela that have great reserves, a strategy must be adopted that aims at a true integral management of water resources. It is concluded that it is urgent the coordinated work between the national government and local governments to enforce the regulations created by the State and operationalize with the institutions that have been established for the management of water resources in the country.

  14. Measurements of distribution coefficient for U and Th on sand stone in synthesized sea water and distilled water

    International Nuclear Information System (INIS)

    Nakazawa, Toshiyuki; Okada, Kenichi; Saito, Yoshihiko; Shibata, Masahiro; Sasamoto, Hiroshi

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has developed the sorption database for bentonite and rocks in order to assess the retardation property of important radioactive elements in natural and engineered barriers in the H12 report. However, there are not enough distribution coefficient data for radioactive elements in saline type groundwater in the database. Thus the batch sorption tests were performed for uranium (U) and thorium (Th) in saline type groundwater. For these elements, there are little registration numbers in the JNC's sorption database, and also these elements are important to evaluate the safety of disposal system. The experiments for each radioactive element were performed on the following conditions; U: Kd measurements using the solutions (synthesized sea water and distilled water) reacted with sand stone as a function of carbonate concentration, under reducing conditions. Th: Kd measurements using the solutions (synthesized sea water and distilled water) reacted with sand stone. The results of the experiments are summarized below; In the case of U, Kd was approximately 6.5E-01 - 9.2E-01 m 3 /kg in synthesized sea water. On the other hand, Kd was 2.2E-02 - 2.4E-02 m 3 /kg in the high carbonate solution. And also, Kd was 6.5E-02 - 7.2E-02 m 3 /kg in synthesized sea water adjusted pH 10 and 3.4E-02 - 4.1E-02 m 3 /kg in distilled water adjusted pH 10, respectively. In the case of Th, Kd was measured in synthesized sea water adjusted to pH 10 and in distilled water adjusted to pH 10. At the sorption measurements of Th, precipitation might be occurred by very low solubility of Th. (author)

  15. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Directory of Open Access Journals (Sweden)

    Bąk Joanna

    2018-01-01

    Full Text Available At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water – air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  16. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Science.gov (United States)

    Bąk, Joanna

    2018-02-01

    At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  17. ECP measurements in the BWR-1 water loop relative to water composition changes

    Energy Technology Data Exchange (ETDEWEB)

    Kus, P.; Vsolak, R.; Kysela, J., E-mail: ksp@ujv.cz [Nuclear Research Inst. Rez plc, Husinec - Rez (Czech Republic); Hanawa, S.; Nakamura, T.; Uchida, S., E-mail: hanawa.satoshi@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

    2010-07-01

    The goal of this study is to investigate the usage of ECP sensors in nuclear power plants. ECP sensors were tested using the LVR-15 reactor at the Nuclear Research Institute Rez plc (NRI) in the Czech Republic. The experiment took place on the BWR-1 loop, which was designed for investigating the behaviour of structural materials and radioactivity transport under BWR conditions. The BWR-1 loop facilitates irradiation experiments within a wide range of operating parameters (max. pressure of 10 MPa, max. temperature of 573 K and a neutron flux of 1.0* 10{sup 18} n/m{sup 2}s). This study involves the measurement of electrochemical potential (ECP). Corrosion potential is the main parameter for monitoring of water composition changes in nuclear power plants (NPP). The electrochemical potentials of stainless steel were measured under high temperatures in a test loop (BWR-1) under different water composition conditions. Total neutron flux was ∼10{sup -3} to ∼10{sup 12} n/cm{sup 2}s (>0.1 MeV) at a temperature of 560K, neutral pH, and water resistivity of 18.2 MOhm. ECP sensor response related to changes in water composition was monitored. Switching from NWC (normal water conditions) to HWC (hydrogen water conditions) was controlled using oxygen dosage. Water chemistry was monitored approx. 50 meters from the active channel. The active channel temperature was maintained within a range of 543 - 561 K from the start of irradiation for the entire duration of the experiment. A total of 24 reference electrodes composed of platinum (Pt), silver/silver chloride (Ag/AgCl) and a zircon membrane containing silver oxide (Ag{sub 2}O) powder were installed inside the active channel of the LVR-15 test reactor. The active channel (Field tube) was divided into four zones, with each zone containing six sensors. A mathematical radiolysis code model was created in cooperation with the Japan Atomic Energy Agency. (author)

  18. Clean Water State Revolving Fund (CWSRF): Water Conservation

    Science.gov (United States)

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  19. 10 CFR Appendix T to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Water Closets and Urinals

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Water Consumption of... Appendix T to Subpart B of Part 430—Uniform Test Method for Measuring the Water Consumption of Water... previous step. The final water consumption value shall be rounded to one decimal place. b. The test...

  20. An apparatus to measure water optical attenuation length for LHAASO-MD

    Science.gov (United States)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  1. 77 FR 13496 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-03-07

    ... other material, such as copyrighted material, is not placed on the Internet and will be publicly... watersheds of the Florida waters covered by this rule, or who rely on, depend upon, influence, or contribute... uses of Florida's waters, which are a critical part of the State's economy. III. Revised Effective Date...

  2. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico)

    International Nuclear Information System (INIS)

    Villalba, L.; Montero-Cabrera, M. E.; Manjon-Collado, G.; Colmenero-Sujo, L.; Renteria-Villalobos, M.; Cano-Jimenez, A.; Rodriguez-Pineda, A.; Davila-Rangel, I.; Quirino-Torres, L.; Herrera-Peraza, E. F.

    2006-01-01

    The activity concentration of 222 Rn, 226 Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from -1 . Generally, radium activity concentration was -1 , with some exceptions; in spring water of San Diego de Alcala, in contrast, the value reached ∼5.3 Bq l -1 . Radon activity concentration obtained throughout the state was from 1.0 to 39.8 Bq l -1 . A linear correlation between uranium and radon dissolved in groundwater of individual wells was observed near Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 μSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality. (authors)

  3. Summary of estimated water use in the United States in 2015

    Science.gov (United States)

    Maupin, Molly A.

    2018-06-19

    A total of 322 Bgal/d of water withdrawals was reported for eight categories of use in the United States in 2015, which was 9 percent less than in 2010 (354 Bgal/d), and continued a declining trend since 2005. The decline in total withdrawals in 2015 primarily was caused by significant decreases (28.8 Bgal/d) in thermoelectric power, which accounted for 89 percent of the decrease in total withdrawals. Between 2010 and 2015, withdrawals decreased in all categories except irrigation (2 percent increase), mining (1 percent increase), and livestock (no change). Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/d) were about 8 percent more than in 2010. Saline surface-water withdrawals (38.6 Bgal/d) were 14 percent less than in 2010, and saline groundwater withdrawals (2.34 Bgal/d) were 5 percent more than in 2010. Total population in the United States in 2015 (325 million) increased by 4 percent (12.4 million) from 2010, which was similar to the increase between 2005 and 2010. For the first time since 1995, consumptive use for irrigation and thermoelectric power were reported. Consumptive use accounted for 62 percent (73.2 Bgal/d) of water used for irrigation, and 3 percent (4.31 Bgal/d) of water used for thermoelectric power in 2015.

  4. Influence of Soil Management on Water Retention from Saturation to Oven Dryness and Dominant Soil Water States in a Vertisol under Crop Rotation

    Science.gov (United States)

    Vanderlinden, Karl; Pachepsky, Yakov; Pederera, Aura; Martinez, Gonzalo; Espejo, Antonio Jesus; Giraldez, Juan Vicente

    2014-05-01

    Unique water transfer and retention properties of Vertisols strongly affect their use in rainfed agriculture in water-limited environments. Despite the agricultural importance of the hydraulic properties of those soils, water retention data dryer than the wilting point are generally scarce, mainly as a result of practical constraints of traditional water retention measurement methods. In this work we provide a detailed description of regionalized water retention data from saturation to oven dryness, obtained from 54 minimally disturbed topsoil (0-0.05m) samples collected at a 3.5-ha experimental field in SW Spain where conventional tillage (CT) and direct drilling (DD) is compared in a wheat-sunflower-legume crop rotation on a Vertisol. Water retention was measured from saturation to oven dryness using sand and sand-kaolin boxes, a pressure plate apparatus and a dew point psychrometer, respectively. A common shape of the water retention curve (WRC) was observed in both tillage systems, with a strong discontinuity in its slope near -0.4 MPa and a decreasing spread from the wet to the dry end. A continuous function, consisting of the sum of a double exponential model (Dexter et al, 2008) and the Groenevelt and Grant (2004) model could be fitted successfully to the data. Two inflection points in the WRC were interpreted as boundaries between the structural and the textural pore spaces and between the textural and the intra-clay aggregate pore spaces. Water retention was significantly higher in DD (ptillage and compaction, increasing and decreasing the amount of the largest pores in CT and DD, respectively, but resulting in a proportionally larger pore space with relevant pore-sizes for water dynamics and agronomic performance. Significant differences in water retention and equivalent pore-sizes at the dry end of the WRC could be associated with the higher organic matter content found in DD. These results explain the superior performance of DD over CT in satisfying

  5. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    Science.gov (United States)

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  7. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  8. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    Science.gov (United States)

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  9. Measurements of the state of stress in deep drill holes

    International Nuclear Information System (INIS)

    Vaeaetaeinen, A.; Saerkkae, P.

    1985-05-01

    The state of stress in rock is one of the most important parameters in the safe planning of stable underground openings in rock. At the same time, it is very difficult to be determined from a great distance. The common methods for the determination of state of stress in bedrock are usually not able to do this from a distance over 30 m. This work is a survey on rock stress determination methods usable in deep, over 500 m, drill holes. It also contains a recommendation for a method to determine the state of stress in Lavia test hole. The presented recommendation for the measurement of the state of stress contains an estimation on the working time for the measurement as well as the amount and location of the measuring points. The examination of the methods has been concentrated on three methods, hydraulic fracturing, overcoring by Vattenfall and differential strain analysis. Theoretical background of these methods has been analyzed. A special interest has been laid on the fundamental assumptions of different methods and their influence on the reliability of the results and the interpretation of the state of stress. The comparison of the methods has been made by literature and user interviews. Equipment and personnel needed, and way of measurement are described for the methods. The parameters measured and their possible sources of errors are described, too, as well as the fundamental assumptions and potential difficulties in the measurement. The organizations in Scandinavia performing measurements and their abilities to do measurements and interpretation are presented. Readiness to interpretation in Finland is described shortly

  10. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  11. A closed unventilated chamber for the measurement of transepidermal water loss.

    Science.gov (United States)

    Nuutinen, Jouni; Alanen, Esko; Autio, Pekka; Lahtinen, Marjo-Riitta; Harvima, Ilkka; Lahtinen, Tapani

    2003-05-01

    Open chamber systems for measuring transepidermal water loss (TEWL) have limitations related to ambient and body-induced airflows near the probe, probe size, measurement sites and angles, and measurement range. The aim of the present investigation was to develop a closed chamber system for the TEWL measurement without significant blocking of normal evaporation through the skin. Additionally, in order to use the evaporimeter to measure evaporation rates through other biological and non-biological specimens and in the field applications, a small portable, battery-operated device was a design criteria. A closed unventilated chamber (inner volume 2.0 cm(3) was constructed. For the skin measurement, the chamber with one side open (open surface area 1.0 cm(2) is placed on the skin. The skin application time was investigated at low and high evaporation rates in order to assess the blocking effect of the chamber on normal evaporation. From the rising linear part of the relative humidity (RH) in the chamber the slope was registered. The slope was calibrated into a TEWL value by evaporating water at different temperatures and measuring the water loss of heated samples with a laboratory scale. The closed chamber evaporation technique was compared with a conventional evaporimeter based on an open chamber method (DermaLab), Cortex Technology, Hadsund, Denmark). The reproducibility of the closed chamber method was measured with the water samples and with volar forearm and palm of the hand in 10 healthy volunteers. The skin application time varied between 7 and 9 s and the linear slope region between 3 and 5 s at the evaporation rates of 3-220 g/m(2) h. A correlation coefficient between the TEWL value from the closed chamber measurements and the readings of the laboratory scale was 0.99 (P measurements with the water samples was 4.0% at the evaporation rate of 40 g/m(2) h. A correlation coefficient of the TEWL values between the closed chamber and open chamber measurements was 0

  12. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  13. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  14. Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States

    Science.gov (United States)

    Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.

    2017-12-01

    A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water

  15. 76 FR 366 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9247-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted a definition for public water system that is analogous to EPA's definition of public water system, and has adopted regulations...

  16. 77 FR 39949 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-07-06

    ... statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be... Florida waters covered by this rule, or who rely on, depend upon, influence, or contribute to the water..., which are a critical part of the State's economy. III. Revised Effective Date A. Rationale for Extending...

  17. Bias caused by water adsorption in hourly PM measurements

    Directory of Open Access Journals (Sweden)

    G. Kiss

    2017-07-01

    Full Text Available Beta-attenuation monitors are used worldwide to monitor PM mass concentration with high temporal resolution. Hourly PM10 and PM2. 5 dry mass concentrations are publicly available with the tacit assumption that water is effectively removed prior to the measurement. However, as both the filter material of the monitor and the aerosol particles are capable of retaining a significant amount of water even at low relative humidities, the basic assumption may not be valid, resulting in significant bias in reported PM10 and PM2. 5 concentrations. Here we show that in PM10 measurement, particle-free air can produce apparent hourly average PM concentrations in the range of −13–+21 µg m−3 under conditions of fluctuating relative humidity. Positive and negative apparent readings are observed with increasing and decreasing relative humidities, respectively. Similar phenomena have been observed when the instrument filter was previously loaded with atmospheric aerosol. As a result the potential measurement biases in hourly readings arising from the interaction with water may be in the range of −53… + 69 %.

  18. Using Rainbow Trout to Measure Arsenic Toxicity in Water

    Directory of Open Access Journals (Sweden)

    Kazem Naddafi

    2006-06-01

    Full Text Available The purpose of this study is to determine arsenic toxicity on rainbow trout. Acute toxicity of arsenic was determined by measuring the lethal effects on rainbow trout in static conditions. Five aquariums of 25×30×30 cm with five concentrations of 5,10,15,20 and 25 mg/L of arsenic were prepared and then ten fishes were added to each concentration. Also one aquarium with similar conditions was considered as a control with no arsenic solution. Hardness, temperature and dissolved oxygen of dilution water were determined by standard methods, and concentration of dissolved oxygen, pH and temperature of solution test in time periods of 2,4,6,8,24,48,72 and 96 hrs were measured. Water temperature of aquarium was regulated by circulation of water in refrigerator through indirect conduction with solution test. LC50 was measured at intervals of 24,48,72 and 96 hrs by SPSS software and respectively showed 28.13,21.77,15.78 and 12.72 mg/L.Probit curve was drawn by Harvard Chart XL software, and LC50 curve was drawn by Excel software.

  19. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  20. 77 FR 33456 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2012-06-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9682-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted regulations analogous to... of Health--Office of Drinking Water, [[Page 33457

  1. EnviroAtlas - Agricultural Water Demand by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national agricultural water demand metric provides insight into the amount of water currently used for agricultural irrigation in the contiguous United States....

  2. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  3. Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Macknick, J; Newmark, R; Rogers, J; Madden, N; Fisher, J

    2013-01-01

    Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges. (letter)

  4. Extravascular lung water: its measurement by simultaneous pulmonary and aortic sampling and iterative convolution

    International Nuclear Information System (INIS)

    Giuntini, C.; Fazio, F.

    1975-01-01

    the limit, and on the distribution of the extravascular pulmonary water volume that may not be entirely adjacent to permeable branches of the pulmonary arterial system. In any case, before stating that the dilution method is inadequate to measure the extravascular lung water volume, it should be ascertained whether it is applied correctly especially with respect to using unwarranted procedures to correct for recirculation. (author)

  5. Comments on the water cycle of the atmosphere and its measurement

    International Nuclear Information System (INIS)

    Benton, G.S.

    1967-01-01

    There are two major water cycles of the atmosphere: the meridional cycle, which results in a latitudinal exchange of water, and the hydrological cycle, which carries water from the oceans over the continents. In the present paper a model is used for the estimation of atmospheric water balance from direct measurements of atmospheric vapour flux and limitation of this model are discussed

  6. Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Hill, R.F.; Brown, S.; Baldock, C.

    2008-01-01

    Gamma ray transmission measurements have been used to evaluate the water equivalence of solid phantoms. Technetium-99m was used in narrow beam geometry and the transmission of photons measured, using a gamma camera, through varying thickness of the solid phantom material and water. Measured transmission values were compared with Monte Carlo calculated transmission data using the EGSnrc Monte Carlo code to score fluence in a geometry similar to that of the measurements. The results indicate that the RMI457 Solid Water, CMNC Plastic Water and PTW RW3 solid phantoms had similar transmission values as compared to water to within ±1.5%. However, Perspex had a greater deviation in the transmission values up to ±4%. The agreement between the measured and EGSnrc calculated transmission values agreed to within ±1% over the range of phantom thickness studied. The linear attenuation coefficients at the gamma ray energy of 140.5 keV were determined from the measured and EGSnrc calculated transmission data and compared with predicted values derived from data provided by the National Institute of Standards and Technology (NIST) using the XCOM program. The coefficients derived from the measured data were up to 6% lower than those predicted by the XCOM program, while the coefficients determined from the Monte Carlo calculations were between measured and XCOM values. The results indicate that a similar process can be followed to determine the water equivalency of other solid phantoms and at other photon energies

  7. The Institutional Vision of the Geopolitics of Water Resources in Venezuela (State, Nation and Government)

    OpenAIRE

    Carlos Javier Lizcano Chapeta

    2017-01-01

    In the global, regional and local context, water resources are a strategic element from the geopolitical point of view, given the scarcity of water and the management that must be given to this problem from States, governments and nations. In this sense, the purpose is to analyze the strategic importance that has been given to water resources in Venezuela, taking into account the vision of the State, government and nation. A documentary design is used, of descriptive type, and as a data colle...

  8. Whole body [O-15]water pharmacokinetics measured in blood

    NARCIS (Netherlands)

    Maguire, RP; Spyrou, NM; Leenders, KL

    A simple pharmacokinetic model to explain the time course of [0-15]water in human whole blood after bolus injection is described. The model has been derived from measurements in twelve healthy volunteers who were measured repeatedly, resulting in 67 datasets, made in the context of PET blood flow

  9. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    Science.gov (United States)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  10. Measuring household consumption and waste in unmetered, intermittent piped water systems

    Science.gov (United States)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  11. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    African Journals Online (AJOL)

    The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM), Gravimetric ...

  12. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  13. Radiological study of brackish and fresh water food samples in Lagos and Ondo states, southwestern Nigeria

    International Nuclear Information System (INIS)

    Ojo, T.J.; Ojo, O.C.

    2007-01-01

    Measurement of the average radioactivity concentration in brackish and fresh water food samples in Lagos and Ondo States of Nigeria was carried out using a very sensitive gamma spectroscopic system consisting of a 76 mm x 76 mm Nal (TI) scintillation detector coupled to a computerized ACCUSPEC installation. All the radionuclide detected are traceable to the naturally occurring 4 ''0K and ''2''3''2Th. The average concentrations of ''2''3''8U and ''2''3''2Th were found to be higher in brackish water food samples, 50.92±7.04 Bq/kg and 24.60± 6.47 Bq/kg respectively. The average concentration of ''4''0K was found to be higher in food samples got from freshwater, 738.94±84.81Bq/kg

  14. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  15. Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations

    International Nuclear Information System (INIS)

    Belandria, Veronica; Mohammadi, Amir H.; Richon, Dominique

    2009-01-01

    In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar TM digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich-Kister equation. The Redlich-Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.

  16. MEASURING THE PARTICULATE BACKSCATTERING OF INLAND WATERS: A COMPARISON OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Campbell

    2012-07-01

    Full Text Available The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9 or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532 and the particulate backscattering spectral slope (γ. In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532 by approximately 50% and overestimated γ by approximately 40

  17. A short overview of measures for securing water resources for irrigated crop production

    DEFF Research Database (Denmark)

    Jensen, Christian Richardt; Ørum, Jens Erik; Pedersen, Søren Marcus

    2014-01-01

    Agriculture is the main user of limited fresh water resources in the world. Optimisation of agricultural water resources and their use can be obtained by both agronomical and political incentives. Important options are: reduction of the loss of irrigation water in conveyance before it reaches...... of the 'virtual water' principles so that water-rich regions secure food supply to dry regions; reduction in waste of food, feed and biofuel from post-harvest to the end consumer; changing of food composition to less water-consuming products; regulating amount of irrigation water by rationing, subsidies or water...... pricing to support water-saving measures such as use of drip, irrigation scheduling and DI. The potential for water saving for different measures is discussed and estimated. Reduction in waste of food and loss of irrigation water from conveyance source to farm both has a great potential for water saving...

  18. In-Line Measurement of Water Content in Ethanol Using a PVA-Coated Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Byoung Chul Kim

    2014-01-01

    Full Text Available An in-line device for measuring the water content in ethanol was developed using a polyvinyl alcohol (PVA-coated quartz crystal microbalance. Bio-ethanol is widely used as the replacement of gasoline, and its water content is a key component of its specifications. When the PVA-coated quartz crystal microbalance is contacted with ethanol containing a small amount of water, the water is absorbed into the PVA increasing the load on the microbalance surface to cause a frequency drop. The determination performance of the PVA-coated microbalance is examined by measuring the frequency decreases in ethanol containing 2% to 10% water while the ethanol flows through the measurement device. The measurements indicates that the higher water content is the more the frequency reduction is, though some deviation in the measurements is observed. This indicates that the frequency measurement of an unknown concentration of water in ethanol can be used to determine the water content in ethanol. The PVA coating is examined by microscopy and FTIR (Fourier transform infrared spectroscopy.

  19. Water permeation dynamics of AqpZ: A tale of two states

    DEFF Research Database (Denmark)

    Xin, Lin; Su, Haibin; Helix Nielsen, Claus

    2011-01-01

    Molecular dynamics simulations of aquaporin Z homotetramer which is a membrane protein facilitating rapid water movement through the plasma membrane of Escherichia coli were performed. Initial configurations were taken from the open and closed states of crystal structures separately. The resulting...... and carbonyl oxygen of A117 was constructed based on the umbrella sampling technique. There are multiple local minima and transition states on the PMF. The assignment of the open or closed state was supported by the permeability pf, calculated within trajectories in umbrella sampling simulations. Our study...

  20. Higgs measurements in the diboson final state

    CERN Document Server

    Nomidis, Ioannis; The ATLAS collaboration

    2018-01-01

    This article summarises recent measurements of the Higgs boson properties using its diboson final states performed with 36.1 fb$^{−1}$ of data collected with the ATLAS detector in 13 TeV proton-proton collisions at the LHC. Two most recent results are highlighted: the measurement of the Higgs production cross-section from gluon-gluon fusion and vector-boson-fusion modes with the $H \\to WW^*$ decay and also a measurement of the Higgs boson production combining the differential cross-sections of $H \\to ZZ^∗$ and $H \\to \\gamma\\gamma$ decay channels.

  1. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  2. Pharmaceuticals in the Built and Natural Water Environment of the United States

    Directory of Open Access Journals (Sweden)

    Randhir P. Deo

    2013-09-01

    Full Text Available The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows, and improving efficiency of treatment facilities.

  3. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  4. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  5. Development of methods to measure virus inactivation in fresh waters.

    OpenAIRE

    Ward, R L; Winston, P E

    1985-01-01

    This study concerns the identification and correction of deficiencies in methods used to measure inactivation rates of enteric viruses seeded into environmental waters. It was found that viable microorganisms in an environmental water sample increased greatly after addition of small amounts of nutrients normally present in the unpurified seed virus preparation. This burst of microbial growth was not observed after seeding the water with purified virus. The use of radioactively labeled poliovi...

  6. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  7. Continuing Discontinuities: Local and State Perspectives on Cattle Production and Water Management in Botswana

    Directory of Open Access Journals (Sweden)

    Emmanuel Manzungu

    2009-06-01

    Full Text Available From 1885 when the modern state of Botswana was founded until the discovery of significant mineral deposits in 1967, one year after independence, the livestock industry, particularly cattle production, played a significant role in the country’s economy. Today there are concerns about how the livestock industry, because of its importance to many rural households, and its potential to diversify the mineral-dominated economy, can be revived. In recognition of the country’s semi-arid climate, the government has promoted a policy of developing water sources for livestock watering. The state has acknowledged the policy has largely been ineffective, but continues to implement it. This paper attempts to explain this paradox by examining state and local perspectives in the management of water and related resources in the Botswana part of the Limpopo river basin. The discontinuities between the local inhabitants and state practitioners are analyzed within the wider physical social, political, and economic landscape. We ascribe the continued implementation of an ineffective policy to modernisation claims.

  8. Lifetime measurements of the first 2+ states in 104,106Zr: Evolution of ground-state deformations

    Directory of Open Access Journals (Sweden)

    F. Browne

    2015-11-01

    Full Text Available The first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2+ states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 21+ state in 104Zr was obtained, τ(21+=2.90−20+25 ns, as well as a first measurement of the 21+ state in 106Zr, τ(21+=2.60−15+20 ns, with corresponding reduced transition probabilities of B(E2;21+→0g.s.+=0.39(2 e2b2 and 0.31(1 e2b2, respectively. Comparisons of the extracted ground-state deformations, β2=0.39(1 (104Zr and β2=0.36(1 (106Zr with model calculations indicate a persistence of prolate deformation. The data show that 104Zr is the most deformed of the neutron-rich Zr isotopes measured so far.

  9. Report on air and water radioactivity measurement presented to the Commission for Protection against Ionizing Radiations of the State Secretary for Public Health (sessions of the 6 January and 18 February 1957). Report on the determination of radioactivity of mineral waters presented to High Council for Thermal cures of the State Secretary for Public Health (6 February 1957)

    International Nuclear Information System (INIS)

    Fallot, P.; Bugnard, L.

    1957-06-01

    The first part of this document discusses radioactivity measurement techniques which seem to be recommended for the monitoring of the release of radio-elements by civil and military applications of nuclear energy. These methods first concern air radioactivity due to uranium ore extraction, ore storage, air-cooling of piles, uranium fuel sheath failure, plutonium extraction and fission product processing, and nuclear explosion. Methods are discussed for the measurement of gas or aerosol radioactivity. The measurement of water radioactivity is then addressed by distinguishing measurements performed on rainfalls or snow, on effluents from nuclear plants. The second part discusses the determination of radioactivity of mineral waters. The authors describe the three main principles on which measurement methods are based: direct measurement of radioactivity of gases contained by water, direct measurement of gas radioactivity by the active deposit method, and measurement of alpha and beta radiations of the evaporation residue or of water precipitation product. Notably about radon measurement in waters, the instrumentation, dosing procedure, measurement sensitivity and precision are presented and discussed

  10. Impacts of multiple stresses on water demand and supply across the southeastern United States

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen

    2008-01-01

    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  11. Property measurements and inner state estimation of simulated fuel debris

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2014-07-01

    Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)

  12. The hyperturbid state of the water column in estuaries and rivers: the importance of hindered settling

    Science.gov (United States)

    Dijkstra, Yoeri M.; Schuttelaars, Henk M.; Winterwerp, Johan C.

    2018-03-01

    Over the last few decades, some estuaries have undergone a transition to a hyperturbid state, characterised by suspended sediment concentrations of several grammes per litre averaged over the water column. To improve our understanding of this transition and of naturally hyperturbid estuaries, we systematically identify the processes allowing for high suspended sediment concentrations using a water column (1DV) model. Under a range of realistic forcing conditions, the state of the water column can be characterised by one of two equilibrium states. The first is an erosion-limited state, in which there still is sediment available for erosion at the bed. We find that this state only occurs with relatively low concentrations. The second is a supply-limited state, in which all erodable sediment is in suspension. The concentration in this state depends entirely on the amount of sediment in the system and can potentially be very high. We identify the conditions under which the state of the water column can jump from a low to a high concentration and identify hysteresis in the transition between the two states. The mechanism responsible for this hysteresis is hindered settling. It thus follows that hyperturbidity is only possible in a supply-limited state. From this observation we derive a necessary condition for an estuarine system to make the transition from low turbidity to hyperturbidity in a 1DV context. This is an important step towards understanding why some estuaries are hyperturbid and assessing the risk that particular estuaries may become hyperturbid in the future.

  13. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    International Nuclear Information System (INIS)

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-01-01

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered

  14. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-04-01

    Full Text Available To reduce the size and cost of an integrated infrared (IR and green airborne LiDAR bathymetry (ALB system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

  15. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  16. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  17. A condensed water method for measuring the atmospheric radon

    CERN Document Server

    Wu Xin; Pan Xiao Qing; Yu Yi Ling

    1998-01-01

    The author summarizes the present situation of atmospheric Radon measurement, and introduces the working principle, working method and advantage and disadvantage of condensed water method in detail. The structure and function of the instrument used for this method, and the measuring result are discussed. The direction of further work is pointed out from now on

  18. Water Services in the Buenos Aires Metropolitan Area: How Does State Regulation Work?

    Directory of Open Access Journals (Sweden)

    Mariela Verónica Rocca

    2014-08-01

    Full Text Available This article deals with the State regulation of drinking water and sanitation services in the Metropolitan Area of Buenos Aires. Its main objective is to identify the continuities and ruptures in State regulation during the transition from private management (1993-2006 to renationalisation and State management (2006 onwards. The concept of “State capacities” (both administrative and relational is used to assess regulatory performance. For the administrative capacities, the correspondence between the design and resources of the agencies, as well as the differences between their formal functions and actual practices, is examined. For the relational capacities, the policies of the National Government and its interaction with both the water and sanitation companies and the regulatory and control agencies are considered. The analysis is based on official documents, legislation and statistics, company balance sheets and reports, newspaper articles and semi-structured interviews.

  19. Measurement of evaporative water loss in small animals by dew-point hygrometry.

    Science.gov (United States)

    Bernstein, M H; Hudson, D M; Stearns, J M; Hoyt, R W

    1977-08-01

    This paper presents the procedures and equations to be utilized for measurement of evaporative water loss (mw), by use of the dew-point hygrometer, in small animals exposed to air containing water vapor in an open-flow system. The system accounted accurately for the water evaporated from a bubble flask. In addition, hygrometric measurements of pulmocutaneous mw in pigeons (Columba livia, mean mass 0.31 kg) agreed closely with simultaneous gravimetric measurements, utilizing a desiccant in the sample stream, in a manner independently of air temperature (Ta, 20 or 40 degrees C), ambient water vapor pressure (PW, 4-16 10(2) Pa), or mw (5-66 mg-min-1). Evaporation in pigeons was independent of PW at 20 degrees C, but increased with decreasing PW at 40 degrees C, suggesting differences in ventilatory adjustments to changes in PW at the two temperatures.

  20. Water radiological sanitary control of Veracruz State; Control sanitario radiologico de agua del Estado de Veracruz

    Energy Technology Data Exchange (ETDEWEB)

    Carreon G, E.; Vazquez C, J. A.; Aguilar P, M. del C.; Parissi C, A., E-mail: eulaliacarreon@gmail.com [Laboratorio Estatal de Salud Publica, Eucalipto Mza. 12, Lote 7, Corredor Industrial Bruno Pagliai, 91697 Veracruz (Mexico)

    2014-10-15

    This work is carried out in Veracruz State covering over 11 jurisdictions of the State (Panuco, Tuxpan, Poza Rica, Martinez de la Torre, Xalapa, Cordoba, Orizaba, Veracruz, Cosamaloapan, San Andres Tuxtla and Coatzacoalcos). The sampling was realized in a period from 2009 to 2013 analyzing home drinking water, supply sources and wells, the sampling was done by the sanitary checkers of different jurisdictions with approved methods and the methodology was validated at the State Laboratory of Public Health. 1637 samples were analyzed by counting equipment Tennelec Canberra series 5 and a gas supply system P-10 with calibration curves for alpha and gross beta. The results of measurements ranging from 0.07 to 0.25 Bq/L in the activity concentration gross alpha annual average, an gross beta were from 0.12 to 0.17 Bq/L in the activity concentration gross beta annual average, and with a concentration range of alpha activity up to 0.62 and a minimum 0.02, and the concentration of beta activity of a maximum value 1.54 and a minimum 0.02, taking also as resulted in five years of analysis only 1.16% of the analyzed samples (19 samples) showed a value of alpha activity concentration above the minimum detectable concentration and 62.43% (1022 samples) of the analyzed samples showed a value of beta activity concentration above the minimum detectable concentration, is also clear that the results of the sanitary jurisdictions of Panuco and Tuxpan not have corresponding activity values for the years 2009, 2011-2013 except 2010. We can conclude that the regular measurements of alpha and gross beta activity in water are invaluable for timely detection of radioactive contamination. (Author)

  1. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates

    International Nuclear Information System (INIS)

    Ajayi, O. S.; Achuka, J.

    2009-01-01

    Activity concentrations of 40 K, 226 Ra, 228 Ac and 235 U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 ± 1.83 to 4.69 ± 0.17 Bq l -1 ; 2.89 ± 0.62 to 7.79 ± 7.22 Bq l -1 ; 0.35 ± 0.07 to 1.17 ± 0.40 Bq l -1 and 0.18 ± 0.05 to 4.77 ± 0.34 Bq l -1 for 40 K, 226 Ra, 228 Ac and 235 U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y -1 for age groups -4 to 8.9 x 10 -2 Sv. The calculated annual effective dose values due to the ingestion of 226 Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y -1 for individual public exposure. These wells are recommended for treatment that would remove radium from their waters. (authors)

  2. Multidimensional Measurement of Household Water Poverty in a Mumbai Slum: Looking Beyond Water Quality.

    Science.gov (United States)

    Subbaraman, Ramnath; Nolan, Laura; Sawant, Kiran; Shitole, Shrutika; Shitole, Tejal; Nanarkar, Mahesh; Patil-Deshmukh, Anita; Bloom, David E

    2015-01-01

    A focus on bacterial contamination has limited many studies of water service delivery in slums, with diarrheal illness being the presumed outcome of interest. We conducted a mixed methods study in a slum of 12,000 people in Mumbai, India to measure deficiencies in a broader array of water service delivery indicators and their adverse life impacts on the slum's residents. Six focus group discussions and 40 individual qualitative interviews were conducted using purposeful sampling. Quantitative data on water indicators-quantity, access, price, reliability, and equity-were collected via a structured survey of 521 households selected using population-based random sampling. In addition to negatively affecting health, the qualitative findings reveal that water service delivery failures have a constellation of other adverse life impacts-on household economy, employment, education, quality of life, social cohesion, and people's sense of political inclusion. In a multivariate logistic regression analysis, price of water is the factor most strongly associated with use of inadequate water quantity (≤20 liters per capita per day). Water service delivery failures and their adverse impacts vary based on whether households fetch water or have informal water vendors deliver it to their homes. Deficiencies in water service delivery are associated with many non-health-related adverse impacts on slum households. Failure to evaluate non-health outcomes may underestimate the deprivation resulting from inadequate water service delivery. Based on these findings, we outline a multidimensional definition of household "water poverty" that encourages policymakers and researchers to look beyond evaluation of water quality and health. Use of multidimensional water metrics by governments, slum communities, and researchers may help to ensure that water supplies are designed to advance a broad array of health, economic, and social outcomes for the urban poor.

  3. Multidimensional Measurement of Household Water Poverty in a Mumbai Slum: Looking Beyond Water Quality.

    Directory of Open Access Journals (Sweden)

    Ramnath Subbaraman

    Full Text Available A focus on bacterial contamination has limited many studies of water service delivery in slums, with diarrheal illness being the presumed outcome of interest. We conducted a mixed methods study in a slum of 12,000 people in Mumbai, India to measure deficiencies in a broader array of water service delivery indicators and their adverse life impacts on the slum's residents.Six focus group discussions and 40 individual qualitative interviews were conducted using purposeful sampling. Quantitative data on water indicators-quantity, access, price, reliability, and equity-were collected via a structured survey of 521 households selected using population-based random sampling.In addition to negatively affecting health, the qualitative findings reveal that water service delivery failures have a constellation of other adverse life impacts-on household economy, employment, education, quality of life, social cohesion, and people's sense of political inclusion. In a multivariate logistic regression analysis, price of water is the factor most strongly associated with use of inadequate water quantity (≤20 liters per capita per day. Water service delivery failures and their adverse impacts vary based on whether households fetch water or have informal water vendors deliver it to their homes.Deficiencies in water service delivery are associated with many non-health-related adverse impacts on slum households. Failure to evaluate non-health outcomes may underestimate the deprivation resulting from inadequate water service delivery. Based on these findings, we outline a multidimensional definition of household "water poverty" that encourages policymakers and researchers to look beyond evaluation of water quality and health. Use of multidimensional water metrics by governments, slum communities, and researchers may help to ensure that water supplies are designed to advance a broad array of health, economic, and social outcomes for the urban poor.

  4. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility

  5. Qubit state tomography in a superconducting circuit via weak measurements

    Science.gov (United States)

    Qin, Lupei; Xu, Luting; Feng, Wei; Li, Xin-Qi

    2017-03-01

    In this work we present a study on a new scheme for measuring the qubit state in a circuit quantum electrodynamics (QED) system, based on weak measurement and the concept of weak value. To be applicable under generic parameter conditions, our formulation and analysis are carried out for finite-strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to present state-of-the-art circuit QED experiments.

  6. The measurement of water transport in porous materials using impedance spectroscopy

    International Nuclear Information System (INIS)

    Ball, R J; Allen, G C

    2010-01-01

    This paper describes the application of electrical measurements to monitor the extraction (movement of water from the mortar) of water from calcium lime, natural hydraulic lime and Portland cement mortars placed on an adsorbent brick substrate. Impedance measurements were used to identify the changes in bulk resistance of the mortar. A model has been developed combining sharp front theory and Boltzmann's distribution law of statistical thermodynamics to identify the point at which no further absorption of water into the brick occurs. A linear relationship was found between the exponential of bulk resistance and the square root of time during dewatering. A change in gradient was attributed to the end of dewatering.

  7. Results of measurements of thermal interaction between molten metal and water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-10-01

    The report describes results of an experimental investigation into thermal interaction of molten metals with water. The experiments were performed in two stages: the aim of the first stage was to study the general character of thermal interaction between molten metal and water and to measure the Leidenfrost temperature of the inverse Leidenfrost phenomenon. The second stage was directed to the experimental study of the triggering mechanism of thermal explosion. The experimental material gathered in this study includes: 1) transient temperature measurements in the hot material and in water, 2) measurements of pressure and reactive force combined with thermal explosion, 3) high-speed films of thermal interaction, 4) investigation results of thermal explosion debris (microscopic, mechanical, metallographical and chemical). The most significant observation is, that small jets from the main particle mass occuring 1 to 10 msec before, precede thermal explosion. (orig.) [de

  8. Closing the 21st century global water gap: costs and effectiveness of adaptation measures

    Science.gov (United States)

    Bierkens, M. F.; Droogers, P.; Hunink, J.; Buitink, J.; Sutanudjaja, E.; Karssenberg, D.; Van Beek, L. P.; Straatsma, M. W.

    2017-12-01

    Water scarcity affects a major part of the globe, and is expected to increase significantly until 2100 as a result of climate change and socioeconomic developments. Yet, global projections are unavailable on the effectiveness and costs of adaptation measures to close the future water gap under global change. Here, we present a 21st century projection of the closure of the water gap under two contrasting climate and socio-economic scenarios: RCP2.6/SSP1(s1) and RCP8.5/SSP5(s5). We coupled a global hydrological model to water demand and redistribution model, and forced them with five General Circulation Models (GCMs) to assess the future water gap for 1604 water provinces covering most of the global land mass. Subsequently, using so-called water availability cost curves, we determined the water gap reduction that could be achieved by increasingly aggressive and expensive sets of adaptation measures, respectively aimed at improving agriculture, increasing water supply, and reducing water demands. Our results show that for s1, the water gap peaks around 2050 and declines towards 2100. Contrastingly, for s5, the gap increases linearly. Hotspots in water scarcity are found in the USA, India, and China. The proposed adaptation sets reduce the water gap, but for the majority of the hotspots are not sufficient to close the water gap completely. The median annual adaptation costs for the proposed measures amount to less than 2% of the GDP of the affected water provinces. Although these costs are already substantial, they do leave room for additional unorthodox adaptation measures.

  9. Reconstruction of photon number conditioned states using phase randomized homodyne measurements

    International Nuclear Information System (INIS)

    Chrzanowski, H M; Assad, S M; Bernu, J; Hage, B; Lam, P K; Symul, T; Lund, A P; Ralph, T C

    2013-01-01

    We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging. (paper)

  10. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  11. A method for the measurement of physiologic evaporative water loss.

    Science.gov (United States)

    1963-10-01

    The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...

  12. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  13. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  14. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    Valente, E.S.

    1984-01-01

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  15. Effects of vinasse accumulation ponds and decantation reservoirs of water used for washing cane sugar in water resources in Dobrada municipality, Sao Paulo State, Brazil; Efeitos da estocagem de vinhaca e das aguas de lavagem da cana-de-acucar na qualidade dos recursos hidricos da regiao de Dobrada, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Sabadia, Jose Antonio Beltrao; Reboucas, Aldo da Cunha [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias

    1996-12-31

    This work shows the results of a monitoring carried out in an area of about 21 km{sup 2}, Dobrada Municipality, central west region of the state of Sao Paulo (Brazil), where the impacts in ground water and surface water were evaluated by the infiltration and percolation of vinasse and water used for washing cane sugar, through accumulation ponds and decantation reservoirs, respectively, in areas of Bauru Aquifer (Cretaceous). The Bauru Aquifer, free and porous, occurs in a extended area of 104.000 km{sup 2} in Sao Paulo State, as a major exploitable aquifer (more than 15.000 wells), used for domestic and industrial water supplies. For the groundwater, the following measures were found in analyses exceeding drinking water standards (WHO; CONAMA/Brazil and Sao Paulo State): manganese (0,03 to 3,5 mg/l), iron (0.45 to 34 mg/l), aluminum (1 to 52 mg/l) and phosphate (0,03 to 0.38 mg/l). For superficial water, the following measures exceeded drinking water standards: total iron (3 mg/l) and phosphate (0,035 mg/l). The main purpose of this research is to improve the field methodology to characterize the impacts of vinasse and washing water of cane sugar infiltration/percolation., detaching the relationship between ground and surface water, with the major aim to supply the legislation to protect drinking water resources. (author) 11 refs.

  16. The importance of lake-specific characteristics for water quality across the continental United States.

    Science.gov (United States)

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    Lake water quality is affected by local and regional drivers, including lake physical characteristics, hydrology, landscape position, land cover, land use, geology, and climate. Here, we demonstrate the utility of hypothesis testing within the landscape limnology framework using a random forest algorithm on a national-scale, spatially explicit data set, the United States Environmental Protection Agency's 2007 National Lakes Assessment. For 1026 lakes, we tested the relative importance of water quality drivers across spatial scales, the importance of hydrologic connectivity in mediating water quality drivers, and how the importance of both spatial scale and connectivity differ across response variables for five important in-lake water quality metrics (total phosphorus, total nitrogen, dissolved organic carbon, turbidity, and conductivity). By modeling the effect of water quality predictors at different spatial scales, we found that lake-specific characteristics (e.g., depth, sediment area-to-volume ratio) were important for explaining water quality (54-60% variance explained), and that regionalization schemes were much less effective than lake specific metrics (28-39% variance explained). Basin-scale land use and land cover explained between 45-62% of variance, and forest cover and agricultural land uses were among the most important basin-scale predictors. Water quality drivers did not operate independently; in some cases, hydrologic connectivity (the presence of upstream surface water features) mediated the effect of regional-scale drivers. For example, for water quality in lakes with upstream lakes, regional classification schemes were much less effective predictors than lake-specific variables, in contrast to lakes with no upstream lakes or with no surface inflows. At the scale of the continental United States, conductivity was explained by drivers operating at larger spatial scales than for other water quality responses. The current regulatory practice of using

  17. Tentative reference method for measurement of tritium in environmental waters. Environmental monitoring series

    International Nuclear Information System (INIS)

    1975-12-01

    A tentative reference method for the measurement of tritium in potable and nonpotable environmental water is described. Water samples are treated with sodium hydroxide and potassium permanganate and then a water fraction is separated from interferences by distillation. Two distillation procedures are described, a simple aqueous distillation for samples from potable water sources, and an aqueous-azeotropic-benzene distillation for nonpotable water sources. Alliquots of a designated distillate fraction are measured for tritium activity by liquid scintillation detection. Distillation recovery and counting efficiency factors are determined with tritium standards. Results are reported in picocuries per milliliter

  18. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    Science.gov (United States)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  19. Chromatographic method of measurement of helium concentration in underground waters for dating in hydrological questions

    International Nuclear Information System (INIS)

    Najman, J.

    2008-04-01

    Research methods which use natural environmental indicators are widely applied in hydrology. Different concentrations of indicators and their isotopic components in ground waters allow to determine the genesis of waters and are valuable source of information about the water flow dynamics. One of the significant indicator is helium. The concentration of 4 He (helium) in ground water is a fine indicator in water dating in a range from a hundreds to millions of years (Aeschbach-Hertig i in., 1999; Andrews i in., 1989; Castro i in., 2000; Zuber i in., 2007). 4 He is also used for dating young waters of age about 10 years (Solomon i in., 1996). Thesis consist the description of elaborated in IFJ PAN in Krakow chromatographic measurement method of helium concentration in ground waters in aim of dating. Chapter 1 contain short introduction about ground water dating and chapter 2 description of helium property and chosen applications of helium for example in technology and earthquake predictions. Helium sources in ground waters are described in chapter 3. Helium concentration in water after infiltration (originated from atmosphere) to the ground water system depends mainly on the helium concentration coming from the equilibration with the atmosphere increased by additional concentration from '' excess air ''. With the increasing resistance time of ground water during the flow, radiogenic, non-atmospheric component of helium dissolves also in water. In chapter 4 two measurement methods of helium concentration in ground waters were introduced: mass spectrometric and gas chromatographic method. Detailed description of elaborated chromatographic measurement method of helium concentration in ground water contain chapter 5. To verify developed method the concentration of helium in ground waters from the regions of Krakow and Busko Zdroj were measured. For this waters the concentrations of helium are known from the earlier mass spectrometric measurements. The results of

  20. Spatial distribution of water supply in the coterminous United States

    Science.gov (United States)

    Thomas C. Brown; Michael T. Hobbins; Jorge A. Ramirez

    2008-01-01

    Available water supply across the contiguous 48 states was estimated as precipitation minus evapotranspiration using data for the period 1953-1994. Precipitation estimates were taken from the Parameter- Elevation Regressions on Independent Slopes Model (PRISM). Evapotranspiration was estimated using two models, the Advection-Aridity model and the Zhang model. The...